JP2007227651A - 2波長半導体発光装置及びその製造方法 - Google Patents
2波長半導体発光装置及びその製造方法 Download PDFInfo
- Publication number
- JP2007227651A JP2007227651A JP2006047099A JP2006047099A JP2007227651A JP 2007227651 A JP2007227651 A JP 2007227651A JP 2006047099 A JP2006047099 A JP 2006047099A JP 2006047099 A JP2006047099 A JP 2006047099A JP 2007227651 A JP2007227651 A JP 2007227651A
- Authority
- JP
- Japan
- Prior art keywords
- light
- semiconductor
- layer
- emitting device
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
【課題】n電極、p電極が同一面側に設けられた2波長半導体発光装置において、チップ面積を小さくして同一のウエハから取れるチップ数を増やすことができ、長波長側の発光素子における活性層の製造過程における劣化を防止することができる2波長半導体発光装置及びその製造方法を提供する。
【解決手段】共通の基板1上に、発光波長の異なる2つの発光素子として半導体レーザD1、D2が集積形成されている。半導体レーザD1ではn型コンタクト層21上に半導体積層体Aが積層され、半導体レーザD2では半導体積層体Bが積層される。半導体積層体Aと半導体積層体Bとでは層構造が異なる構成となる。半導体レーザD1、D2の間に形成されたn電極12は、半導体レーザD1及びD2で共有しており、n側の共通電極となっている。また、短波長側の半導体積層体Aの方から先に結晶成長させる。
【選択図】 図1
【解決手段】共通の基板1上に、発光波長の異なる2つの発光素子として半導体レーザD1、D2が集積形成されている。半導体レーザD1ではn型コンタクト層21上に半導体積層体Aが積層され、半導体レーザD2では半導体積層体Bが積層される。半導体積層体Aと半導体積層体Bとでは層構造が異なる構成となる。半導体レーザD1、D2の間に形成されたn電極12は、半導体レーザD1及びD2で共有しており、n側の共通電極となっている。また、短波長側の半導体積層体Aの方から先に結晶成長させる。
【選択図】 図1
Description
本発明は、同一基板上に異なる波長の光を発光する2つの発光素子が形成された2波長半導体発光装置とその製造方法に関する。
近年、高密度光ディスク記録等への応用を目的として短波長の半導体レーザの開発が注力されている。短波長半導体レーザには、GaN、AlGaN、InGaN、InGaAlN、GaPNなどの窒素を含む六方晶化合物半導体(以下、単に窒化物半導体という)が用いられる。
また、インターネットの爆発的な普及による通信トラフィックの急増に伴い、高速・大容量通信を可能とする光通信技術を始め、高速転送・大容量の光ディスク、高効率のLED発光素子などの光デバイスへの期待が大きく高まっている。例えば、書き換え型CDと書き換え型DVDの両方式に対応させるために異なる2つの半導体レーザを搭載した素子や、多重化通信に対応した2波長の半導体レーザなどの開発が盛んになってきている。
そこで、特許文献1に記載されているように、同一の成長基板上に、2波長の発光素子を形成し、各発光素子のp電極とn電極を成長基板を挟んで対向させた半導体発光装置が提案されている。
また、特許文献1に記載の半導体発光装置では、モノリシックに2波長の波長で発振する発光素子を製造するようにしている。半導体基板の主面に、その主面と平行な平面と主面から傾斜した傾斜面をもって形成された六方晶窒化物からなる半導体層を各々形成しておき、半導体層の前記平面上及び傾斜面上に活性層を結晶成長させると、それぞれInを互いに異なる組成比で含んだ活性層が形成され、2波長の波長で発振することができるというものである。
特開2003−101156号公報
しかしながら、上記従来の構成では、2波長の各発光素子のp電極とn電極を成長基板を挟んで対向させた構造としているので、2波長の各発光素子を1チップとしたチップ面積を比較的小さくでき、1枚のウエハから比較的多くのチップを製造することができるが、p電極とn電極を成長基板の同一面側に設ける構造とした場合には、各発光素子のp電極とn電極が成長基板の同一面側に並ぶことになり、チップ面積が大きくなって、同一のウエハから取れるチップ数が減少するという問題があった。
また、モノリシックに2波長の波長で発振する発光素子を製造する方法は、2波長の活性層を同時に結晶成長させることができ、製造工程数が少なくなるものの、活性層を挟むようにして設けられている光ガイド層やクラッド層が2つの発光素子でモノリシックに形成されているため、デバイス特性を悪化させるという問題があった。すなわち、光ガイド層やクラッド層等の各半導体層の屈折率は光の波長に依存するために、発光波長が変わると、放射光に対する各半導体層の屈折率が変化し、同じ組成の光ガイド層やクラッド層では2つの発光素子毎に光閉じ込め効果が異なることになり、性能の良い半導体発光装置を製造できない。
そこで、製造工程数が多くなっても、2波長の発光素子を各々別個の工程で製造すれば良いが、Inを含む窒化物で構成された活性層を有する発光素子では、活性層のIn含有比率が高い程、すなわち長波長の発光素子になるほど、活性層の結晶成長後に形成する半導体層の成長温度が高いと、成膜された活性層が壊れやすいという問題があった。
本発明は、上述した課題を解決するために創案されたものであり、n電極、p電極が同一面側に設けられた2波長半導体発光装置であっても、チップ面積を小さくして同一のウエハから取れるチップ数を増やすことができ、長波長側の発光素子における活性層の製造過程における劣化を防止することができる2波長半導体発光装置及びその製造方法を提供することを目的としている。
上記目的を達成するために、請求項1記載の発明は、異なる波長の光を発光する2つの発光素子が同一基板上に形成され、基板の同一面側に前記2つの発光素子に対応するn電極とp電極が各々配置される2波長半導体発光装置において、前記n電極は前記2つの発光素子の共通するn側の電極となっていることを特徴とする2波長半導体発光装置である。
また、請求項2記載の発明は、異なる波長の光を発光する2つの発光素子が同一基板上に形成され、基板の同一面側に前記2つの発光素子に対応するn電極とp電極が各々配置されるとともに、前記2つの発光素子における活性層はInを異なる比率で含む窒化物層で構成されている2波長半導体発光装置の製造方法において、前記2つの発光素子のうちInの組成比率が低い方の活性層を含む第1発光素子から結晶成長させた後、Inの組成比率が高い方の活性層を含む第2発光素子を結晶成長させ、その後に前記第1発光素子と第2発光素子の共通するn電極を形成することを特徴とする2波長半導体発光装置の製造方法である。
また、請求項3記載の発明は、前記第2発光素子の活性層は、バリア層としてn型GaNを用いたことを特徴とする請求項2記載の2波長半導体発光装置の製造方法である。
また、請求項4記載の発明は、前記第2発光素子の活性層の結晶成長後、p型の半導体層としてはInGaN層のみを形成することを特徴とする請求項2〜請求項3のいずれか1項に記載の2波長半導体発光装置の製造方法である。
また、請求項5記載の発明は、前記第2発光素子の結晶成長を行う前に、前記第1発光素子の積層体上及び前記第1発光素子と第2発光素子とで共通のn型コンタクト層上にSi系膜を成膜することを特徴とする請求項2〜請求項4のいずれか1項に記載の2波長半導体発光装置の製造方法である。
本発明によれば、異なる波長の光を発光する2つの発光素子が同一基板上に形成されるとともに、基板の同一面側に2つの発光素子に対応するn電極とp電極が形成されるが、n電極は2つの発光素子の共通のn側電極として共用されているので、1チップ当たりの面積を小さくすることができ、1枚のウエハから取れるチップ数を増やすことができる。
また、製造工程においては、先にInの含有比率の高い窒化物で構成された活性層を有する長波長の発光素子を、短波長の発光素子よりも後にエピタキシャル成長させるようにしているので、高温下における劣化を防止することができる。
以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による2波長半導体発光装置の概略構成を示す。
共通の成長用の基板1上に、発光波長の異なる2つの発光素子として半導体レーザD1、D2が集積形成されている。基板1には、サファイア基板、GaN基板、SiC基板等が用いられる。成長用の基板1の上には、各半導体レーザD1、D2に共通のn型コンタクト層21が積層されている。
図の一点鎖線で囲んだ部分が1チップを構成するもので、実際には半導体レーザD1、D2を1セットとして、これを繰り返して複数個形成されたウエハから一点鎖線で囲んだ部分毎にダイシング等により切断して1チップとするものである。しかし、繰り返して形成される半導体レーザD1、D2のうち、隣接して形成されるもう一つの半導体レーザD1を示さなければ、全体形状が明確にならないために、図のように示している。また、図1に記載された矢印は、レーザ光の出射方向を示す。
半導体レーザD1では、n型コンタクト層21上にストライプ状のリッジ部を有する半導体積層体Aが積層され、半導体レーザD2では、同じくn型コンタクト層21上にストライプ状のリッジ部を有する半導体積層体Bが積層される。半導体積層体Aと半導体積層体Bとでは層構造が異なる構成となる。半導体積層体Aのリッジ部側面を覆うように、また、半導体積層体Bのリッジ部側面を覆うようにして絶縁膜8(斜線部分)が形成されている。n型コンタクト層21の一部は、エッチングにより除去されており、エッチングにより露出した面までのn型コンタクト層21側面及び半導体積層体A、Bの各側面には絶縁膜40(斜線部分)が形成されている。なお、同じ種類の斜線が付されている領域は、同じ絶縁膜を表す。
また、半導体積層体Aのリッジ部上部と絶縁膜8を覆うようにしてp電極9aが形成され、同様に半導体積層体Bのリッジ部上部と絶縁膜8を覆うようにしてp電極9bが形成されている。また、半導体レーザD1のp電極9a上には、ワイヤボンディング等のために、p側パッド電極13aが、半導体レーザD2のp電極9b上には、p側パッド電極13bが形成されている。
半導体レーザD1、D2の間に形成されたn電極12は、半導体レーザD1及びD2で共有しており、n側の共通電極となっている。したがって、半導体レーザD2に隣接したもう1方の半導体レーザD1(図1の右端の半導体レーザD1)との間には、n側パッド電極は形成されていない。n電極12上にはワイヤボンディング等のためにn側パッド電極13bが形成されている。
以上のように、n電極とp電極が同一面側に設けられた2波長半導体発光装置において、成長用の基板1とn型コンタクト層21とをまとめて1つの基板とみなせば、同一の基板上にn電極12が設けられ、このn電極12を長波長の発光素子と、短波長の発光素子とで共通に使用できるようにしたことで、1チップ面積を小さくすることができ、1枚のウエハから分離してできるチップ数も増加する。
図1の2波長半導体発光装置の製造方法を図2〜図16を使って説明する。ここで、半導体レーザD1を例えば青色の短波長レーザ(第1発光素子)とし、半導体レーザD2を例えば緑色の長波長レーザ(第2発光素子)とする。また、基板1やその上に積層される半導体層を含めたウエハは、紙面の横方向や前後方向にも拡がっているものであるが、図1と同様、繰り返して形成される半導体レーザD1、D2のうち、隣接して形成されるもう一つの半導体レーザD1を含めたD1、D2、D1の形成領域について示している。
まず、短波長の半導体レーザD1を形成するために、基板1をMOCVD(有機金属化学気相成長)装置に入れ、水素ガスを流しながら、1050℃程度まで温度を上げ、基板1をサーマルクリーニングする。温度を600℃程度まで下げ、n型コンタクト層21としてSiドープのn型GaNコンタクト層211を成長させる。その後、MOCVD装置内の温度を再び1000℃程度まで上げ、Siドープのn型AlGaNクラッド層22、Siドープのn型GaN光ガイド層23を成長させる。
次に、温度を約750℃まで下げて、InGaN活性層24を成長させる。その後温度を1000℃〜1100℃程度まで上げて、Mgドープのp型GaN光ガイド層25、Mgドープのp型AlGaNクラッド層26、Mgドープのp型GaNコンタクト層27を順次積層する。
InGaN活性層24は、InGaN単層でも良いが、多重量子井戸構造としても良く、その場合は、井戸層をInGaN、バリア層(障壁層)をアンドープGaN又はInGaNで形成し、井戸層とバリア層を交互に数周期積層することで構成される。前述のように、青色の発光波長(短波長側)の半導体レーザをD1と仮定したので、InGaN活性層24のIn組成は15%前後とし、InGaN井戸層を30Å前後とすることが望ましい。
n−AlGaNクラッド層22のAlの組成は10%までとするのが望ましく、クラックを防止するためには、膜厚を1.2μm以下とすることが望ましい。n−GaN光ガイド層23はn−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。
また、p−GaN光ガイド層25もp−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。なお、p−AlGaNクラッド層26のAlは、10%までで、膜厚としては0.4μmまでが望ましい。
次に、図3に示すように、短波長の半導体レーザD1の素子形状を形成する領域にマスク4をパターニングする。次に、図4に示すようにICPなどを用いて、塩素系ガス等でn−GaNバッファ層21を少し削る程度までドライエッチングを行い、半導体レーザD1の半導体積層体Aの形状が作製される。ここで、n−AlGaNクラッド層22〜p−GaNコンタクト層27までが、半導体積層体Aに相当する。
マスク4を除去して、図5に示すように、Si系の絶縁膜5を全体に形成し、絶縁膜5の上に長波長の半導体レーザD2を形成する領域部分を除いてマスク6をパターニングする。絶縁膜5には、GaNが成長不可能でウエットエッチングが容易なSiO2、Si3N4等のSi系膜が用いられる。このSi系膜を用いることにより、後述する半導体レーザD2の半導体積層体Bを積層させる場合に、既に積層が行われた半導体積層体A側に半導体層が成長することがなく、半導体積層体Bを構成する半導体層を順次積層していくだけで、半導体積層体Bの形状が得られる。そしてウエットエッチングにより、長波長の半導体レーザD2を形成する領域部分の絶縁膜5を除去した後、マスク6をリフトオフする。
次に、図6に示すように、半導体レーザD2の半導体積層体Bを形成する。半導体積層体Bを成長させるために、再び、MOCVD装置内で、温度を1000℃程度にまで上げ、n−GaNコンタクト層211の上にSiドープのn型AlGaNクラッド層32、Siドープのn型GaN光ガイド層33を結晶成長させる。次に、温度を約750℃まで下げて、InGaN活性層34を成長させる。その後、温度を850℃程度まで上げて、Mgドープのp型InGaN層35を成長させる。ここで、n−AlGaNクラッド層32〜p−InGaN層35までが、半導体積層体Bに相当する。
InGaN活性層34は、Siドープのn型InGaN単層でも良いが、多重量子井戸構造としても良く、その場合は、井戸層をSiドープのn型InGaN、バリア層をSiドープのn型GaNで形成し、井戸層とバリア層を交互に数周期積層して構成することができる。前述のように、緑色の発光波長(長波長側)の半導体レーザをD2と仮定したので、InGaN活性層34のIn組成は20%前後とし、InGaN井戸層を30Å前後とすることが望ましい。
半導体レーザD1の半導体積層体Aと同様、n−AlGaNクラッド層32のAlの組成は10%までとするのが望ましく、クラックを防止するためには、膜厚を1.2μm以下とすることが望ましい。n−GaN光ガイド層33はn−InGaN光ガイド層としても良く、この場合Inの組成は3%までとするのが望ましい。また、p−InGaN層35のIn組成は3%までとし、良好な膜質を得るためには0.5μm以下の膜厚とするのが望ましい。
ところで、従来、p型の電流注入層にはAlXGaYN(ただし、X+Y=1、0≦X<1、0<Y≦1)が用いられている。ところが、良好なp型伝導を示すAlXGaYNを得るためには1000℃を超える温度で成長させることが必要である。しかし、p型のAlXGaYNを1000℃を超える温度で成長させると、特にInの組成が大きい長波長側のInGaN活性層34が劣化しやすく、壊れやすくなる。長波長の発光素子程、活性層に含まれるInの組成が増大するが、Inの組成が増大する程、高温になると活性層中のInが昇華して分離するため活性層が劣化しやすく、また壊れやすくなるので、InGaN活性層34は、900℃以下で成長させる必要がある。
仮に、長波長側の半導体レーザD2を先に結晶成長させ、半導体レーザD2側にも半導体レーザD1と同様p型のAlGaNやGaNを使用していた場合には、Inの組成が大きいInGaN活性層34の成膜後に、InGaN活性層34が1000℃〜1100℃の高温にさらされる時間が長くなるが、短波長側の半導体レーザD1を先に成長させることで、Inの組成が大きいInGaN活性層34の成膜後に、InGaN活性層34が1000℃〜1100℃の高温にさらされる時間は短くなり、InGaN活性層34の劣化を防止することができる。
さらに、半導体レーザD2の方では、半導体レーザD1の場合と異なり、p−GaN光ガイド層、p−AlGaNクラッド層を形成せずに、InGaN活性層34の上にp−InGaN層35を積層するようにしているので、InGaN活性層34の成膜後も900℃以下の低温で結晶成長させることができる。また、InGaN活性層34を量子井戸構造とした場合には、バリア層をn型GaNとすることで、井戸層と同様の温度で成長させることができるので、InGaN活性層34の劣化や破壊を防止することができる。なお、p−InGaN層35は、クラッド層やコンタクト層の役割を兼ねる半導体層となる。
次に、図7に示すように、絶縁膜5を除去した後、半導体レーザD1、D2のストライプ状のリッジ部を同時に形成するために、絶縁膜40を塗布した後、マスク7をスパッタで形成し、これらをパターニングし、ストライプ状の形状を形成するためのドライエッチングを行った後、フッ酸に浸し、図8のようにライトエッチングを行って絶縁膜40の一部を溶かすとともに、リッジ部を整形する。
図9に示すように、半導体積層体A、Bのリッジ部側面から絶縁膜40上面に渡って、絶縁膜40と異なる材料の絶縁膜8をスパッタにより形成し、図10のように、再度フッ酸に浸した状態でリッジ部上の絶縁膜40を完全に溶解させて、リッジ部上方に形成されているマスク7、絶縁膜8を除去する。
次に、図11に示すように、p電極層91を積層した後に、p電極を形成する領域にマスク10をパターニングし、図12に示すように、ドライエッチングにより、余分なp電極層91を取り除いて、p電極9a、9bを形成する。
その後、図13のように、n電極を積層する領域を除いてレジスト11をメサパターニングし、ドライエッチングを行ってn電極部分の絶縁膜8、40を除去する。次に、図14に示すように、n電極層121を蒸着やスパッタにより積層し、ウエハをアセトン溶液に浸す等してレジスト11をリフトオフして半導体レーザD1、D2の共通電極であるn電極12を形成する。
図15に示すように、パッド電極を形成する領域を除いてレジスト42をパターニングし、パッド電極層を蒸着やスパッタにより積層し、レジスト42をリフトオフすると、図16に示すように、p電極9a上にはp側パッド電極13aが、p電極9b上にはp側パッド電極13bが、n電極12上にはn側パッド電極13cが形成される。
図16の断面構成の全体概観を示すのが図1となる。一点鎖線で囲まれた領域がダイシング等によって分割されて、1チップとなり、2波長半導体発光装置が完成する。
1 基板
2 半導体積層体A
3 半導体積層体B
8 絶縁膜
9a p電極
9b p電極
12 n電極
13a p側パッド電極
13b p側パッド電極
13c n側パッド電極
21 n型コンタクト層
40 絶縁膜
2 半導体積層体A
3 半導体積層体B
8 絶縁膜
9a p電極
9b p電極
12 n電極
13a p側パッド電極
13b p側パッド電極
13c n側パッド電極
21 n型コンタクト層
40 絶縁膜
Claims (5)
- 異なる波長の光を発光する2つの発光素子が同一基板上に形成され、基板の同一面側に前記2つの発光素子に対応するn電極とp電極が各々配置される2波長半導体発光装置において、
前記n電極は前記2つの発光素子の共通するn側の電極となっていることを特徴とする2波長半導体発光装置。 - 異なる波長の光を発光する2つの発光素子が同一基板上に形成され、基板の同一面側に前記2つの発光素子に対応するn電極とp電極が各々配置されるとともに、前記2つの発光素子における活性層はInを異なる比率で含む窒化物層で構成されている2波長半導体発光装置の製造方法において、
前記2つの発光素子のうちInの組成比率が低い方の活性層を含む第1発光素子から結晶成長させた後、Inの組成比率が高い方の活性層を含む第2発光素子を結晶成長させ、 その後に前記第1発光素子と第2発光素子の共通するn電極を形成することを特徴とする2波長半導体発光装置の製造方法。 - 前記第2発光素子の活性層は、バリア層としてn型GaNを用いたことを特徴とする請求項2記載の2波長半導体発光装置の製造方法。
- 前記第2発光素子の活性層の結晶成長後、p型の半導体層としてはInGaN層のみを形成することを特徴とする請求項2〜請求項3のいずれか1項に記載の2波長半導体発光装置の製造方法。
- 前記第2発光素子の結晶成長を行う前に、前記第1発光素子の積層体上及び前記第1発光素子と第2発光素子とで共通のn型コンタクト層上にSi系膜を成膜することを特徴とする請求項2〜請求項4のいずれか1項に記載の2波長半導体発光装置の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006047099A JP2007227651A (ja) | 2006-02-23 | 2006-02-23 | 2波長半導体発光装置及びその製造方法 |
PCT/JP2007/053367 WO2007097411A1 (ja) | 2006-02-23 | 2007-02-23 | 2波長半導体発光装置及びその製造方法 |
US12/224,287 US7745839B2 (en) | 2006-02-23 | 2007-02-23 | Double wavelength semiconductor light emitting device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006047099A JP2007227651A (ja) | 2006-02-23 | 2006-02-23 | 2波長半導体発光装置及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007227651A true JP2007227651A (ja) | 2007-09-06 |
Family
ID=38549161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006047099A Pending JP2007227651A (ja) | 2006-02-23 | 2006-02-23 | 2波長半導体発光装置及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007227651A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023086403A (ja) * | 2021-12-10 | 2023-06-22 | 日亜化学工業株式会社 | 発光素子の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294529A (ja) * | 1996-09-09 | 1998-11-04 | Toshiba Corp | 半導体レーザ及びその製造方法 |
JPH1187856A (ja) * | 1997-09-16 | 1999-03-30 | Toshiba Corp | 窒化ガリウム系化合物半導体レーザ及びその製造方法 |
-
2006
- 2006-02-23 JP JP2006047099A patent/JP2007227651A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10294529A (ja) * | 1996-09-09 | 1998-11-04 | Toshiba Corp | 半導体レーザ及びその製造方法 |
JPH1187856A (ja) * | 1997-09-16 | 1999-03-30 | Toshiba Corp | 窒化ガリウム系化合物半導体レーザ及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2023086403A (ja) * | 2021-12-10 | 2023-06-22 | 日亜化学工業株式会社 | 発光素子の製造方法 |
JP7502658B2 (ja) | 2021-12-10 | 2024-06-19 | 日亜化学工業株式会社 | 発光素子の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7745839B2 (en) | Double wavelength semiconductor light emitting device and method of manufacturing the same | |
US7773649B2 (en) | Semiconductor laser diode having wafer-bonded structure and method of fabricating the same | |
KR101020118B1 (ko) | 모놀리식형 반도체 레이저 | |
JP2005116659A (ja) | 半導体レーザ素子及びその製造方法 | |
JP2000196201A (ja) | 窒化物半導体レ―ザ素子 | |
JP2002124737A (ja) | 窒化物系半導体レーザ素子 | |
JPH07176826A (ja) | 窒化ガリウム系化合物半導体レーザ素子 | |
JP4960777B2 (ja) | 端面発光型半導体レーザチップ | |
JP2006093682A (ja) | 半導体レーザおよびその製造方法 | |
JP3796065B2 (ja) | 発光素子及びその製造方法 | |
JP2005142532A (ja) | 窒化物半導体素子の製造方法 | |
JP2007184644A (ja) | 半導体装置及びその製造方法 | |
JP2007324579A (ja) | 集積型半導体発光装置およびその製造方法 | |
JP2004311964A (ja) | 窒化物半導体素子およびその製造方法 | |
JP2007227652A (ja) | 2波長半導体発光装置及びその製造方法 | |
JP4481385B2 (ja) | 半導体発光素子及びその製造方法 | |
JP2007227651A (ja) | 2波長半導体発光装置及びその製造方法 | |
JP2003060319A (ja) | 窒化物系半導体レーザ素子 | |
JP2000299530A (ja) | 半導体発光装置 | |
JP2005101536A (ja) | 窒化物半導体レーザ素子 | |
JP3644446B2 (ja) | 窒化物半導体素子 | |
JP2007324577A (ja) | 集積型半導体発光装置およびその製造方法 | |
JP2000277862A (ja) | 窒化物半導体素子 | |
JP4868888B2 (ja) | 光半導体素子の製造方法 | |
JP2003347658A (ja) | 半導体発光素子およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A02 | Decision of refusal |
Effective date: 20120626 Free format text: JAPANESE INTERMEDIATE CODE: A02 |