JP2007201363A - 半導体ウェハの真空吸着用部材 - Google Patents

半導体ウェハの真空吸着用部材 Download PDF

Info

Publication number
JP2007201363A
JP2007201363A JP2006020953A JP2006020953A JP2007201363A JP 2007201363 A JP2007201363 A JP 2007201363A JP 2006020953 A JP2006020953 A JP 2006020953A JP 2006020953 A JP2006020953 A JP 2006020953A JP 2007201363 A JP2007201363 A JP 2007201363A
Authority
JP
Japan
Prior art keywords
vacuum suction
semiconductor wafer
water
polishing
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006020953A
Other languages
English (en)
Other versions
JP4741375B2 (ja
Inventor
Kazuhiro Ishikawa
和洋 石川
Saburo Nagano
三郎 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006020953A priority Critical patent/JP4741375B2/ja
Publication of JP2007201363A publication Critical patent/JP2007201363A/ja
Application granted granted Critical
Publication of JP4741375B2 publication Critical patent/JP4741375B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

【課題】半導体ウェハを真空吸着して固定しながら研磨するために用いられる真空吸着用部材であって、真空吸着用部材への研磨屑の堆積を特に抑制することができる真空吸着用部材を提供する。
【解決手段】真空吸着用部材2は相互に焼結して多孔質セラミックスを構成する各結晶粒子4に、撥水性樹脂8を被着形成してなる。結晶粒子4は炭化珪素であり、結晶粒子4の存在しない領域における撥水性樹脂8の占める割合が70%以上、多孔質セラミックスの気孔率が20〜50体積%である。
【選択図】図1

Description

本発明は、半導体ウェハなどの被処理物を真空吸着して固定するための真空吸着用部材に関するものである。
半導体ウェハは、その厚みを薄くし、かつその厚みを高い寸法精度とする目的のために、半導体ウェハのデバイス形成面を真空吸着装置の真空吸着用部材に真空吸着して固定し、デバイス形成面の裏面が研磨されている。
図4(a)、(b)は従来の真空吸着用部材を用いて半導体ウェハを真空吸着により固定するための真空吸着装置の断面図である。多孔質体からなる真空吸着用部材52は、緻密質セラミックスからなる支持用部材62に接合されている。半導体ウェハ(不図示)はその片面にデバイスが形成され、この面が樹脂層で保護されている。半導体ウェハは、デバイス形成面側を真空吸着用部材52の吸着面66に接触させた状態で、真空吸引孔64から気体を排気することによって、真空吸着用部材52の吸着面66に真空吸着される。ここで、気体を排気すると半導体ウェハが真空吸着用部材52の吸着面66に吸着されるのは、真空吸着用部材52の下面と支持用部材62の上面の間には、真空吸引口と繋がる隙間が設けられ、かつ真空吸着用部材52は吸着面66(上面)から下面に連通する連通孔を多数有しているので、支持用部材62と真空吸着用部材52の間の隙間から気体を排気すると、この連通孔からも気体が排気されて、連通孔内が負圧になり、この負圧が半導体ウェハを真空吸着させるからである。
同じ直径の半導体ウェハのみの研磨は、図4(a)のように、円板型の真空吸着用部材52を1個だけ支持用部材62に固定して真空吸着装置70を用いて行われている。
一方、半導体ウェハには、その直径が6インチ、8インチなど様々な種類のものがあり、小さな直径の半導体ウェハを研磨した後、同じ真空吸着装置70を用いてさらに大きな直径の半導体ウェハを加工することが頻繁に行われている。このため、直径の異なる半導体ウェハを同じ真空吸着装置を用いて加工する場合には、例えば特許文献1に記載されているように、図4(b)の構造の真空吸着装置70が用いられている。図4(b)の真空吸着装置70においては、円板状の真空吸着用部材52aと、真空吸着用部材52aよりも大きな環状の真空吸着用部材52bとが、緻密質セラミックスからなる支持部材62によって隔離されている。このため、直径が真空吸着用部材52aの外径の半導体ウェハを加工する場合には、真空吸引孔64aからのみ気体を排気して半導体ウェハを真空吸着している。直径が真空吸着用部材52bの外径の半導体ウェハを加工する場合には、真空吸引孔64aおよび64bから気体を排気することによって半導体ウェハを真空吸着している。
これらのように真空吸着された半導体ウェハは、真空吸着装置70を用いて一般的に次のように加工されている。
まず、半導体ウェハを真空吸着装置70に固定する前に、真空吸着装置70の真空吸着用部材52の吸着面66を自己研磨する。この自己研磨によって、吸着面の平坦度が向上し、半導体ウェハの研磨精度を向上させることができる。
次に、半導体ウェハを真空吸着した状態でダイヤモンド砥石(不図示)等を用いて半導体ウェハのデバイス形成面の裏面を湿式で研磨する。この研磨は、半導体ウェハを高精度に研磨するための後述の精密研磨を行う前の予備研磨である。精密研磨の方式としては乾式研磨方式、湿式研磨方式などがあるが、これらの方式のうち乾式研磨方式が経済的であるため汎用されている。乾式研磨方式による精密研磨は、乾式研磨用砥石により行われている。
従来の真空吸着用部材52としては次のようなものが知られている。
特許文献2には、円板状の多孔質セラミックスの上面に、平均細孔径が2.5〜15μm、厚み幅が0.1〜1.0μmである多孔質樹脂層(不図示)を被着した真空吸着用部材52が記載されている。特許文献2によれば、多孔質セラミックスは3次元的に入り込んだ構造をしているため、多孔質樹脂層がない場合には、研磨片などを含む研磨廃液が多孔質セラミックスの貫通微小孔や微小空孔(気孔)に堆積すると、研磨片などを殆ど除去できない、と記載されている。そこで、半導体ウェハの研磨加工によって生じる研磨片などを多孔質セラミックスに堆積させない目的のために真空吸着用部材52は、多孔質セラミックスの吸着面に多孔質樹脂層を被着形成したものとすると記載されている。
特許文献1,3には、アルミナや炭化珪素などの材質の多孔質セラミックスからなる真空吸着用部材52が記載されている。
特許文献1〜3に記載された多孔質セラミックスは、図5に多孔質セラミックスの断面を模式的に表した断面図を示したように、セラミックスの結晶粒子54と、開気孔56から構成されて、開気孔56は、上述した連通孔を形成している。
半導体素子を搭載した機器の誤動作を抑制するため、デバイスを形成した半導体ウェハから作製される半導体素子の厚みは、近年の半導体素子の超微細配線化に伴って、特に高精度にすることが求められている。このため、デバイスを形成した半導体ウェハの厚みは、従来よりもさらにばらつきがないことが求められている。このような要求に鑑み、半導体ウェハを研磨する際に、研磨屑が殆ど堆積しない、または全く堆積しない真空吸着用部材が求められてきている。
特開2000−21959号公報 特開平11−243135号公報 特開2005−212000号公報
特許文献1、3の真空吸着用部材52を用いて、直径が小さな半導体ウェハを研磨した後、この半導体ウェハよりも大きな直径の半導体ウェハを研磨すると、特許文献1に記載されているように、研磨屑が真空吸着用部材52の吸着面66に堆積するという不具合が生じていた。この堆積の問題の原因は次のようにして起こると考えられる。
図4(b)の真空吸着用部材70が例えば直径が6インチのシリコンウェハと直径が8インチのシリコンウェハを研磨する真空吸着用部材70であり、この真空吸着装置70を用いて、6インチのシリコンウェハを研磨する場合を例にして説明する。シリコンウェハを湿式で予備研磨すると、吸着面66bに研磨屑を含む研磨廃液が、吸着面66bに飛散して真空吸着用部材52bの表面および内部に付着する。研磨廃液に含まれるシリコン(Si)からなる微粒子は、空気または研磨廃液に含まれる水に含まれる酸素(O)と反応してSi−O結合を多数有する微粒子に変質する。多孔質セラミックス52の結晶粒子54は、Si−O結合を多数有する微粒子との化学的反応性が高い。このため、真空吸着用部材52bに付着した研磨溶液に含まれるSi−O結合を多数有する微粒子が、結晶粒子54と化学的に反応して開気孔56に堆積するという問題が発生し、開気孔56を目詰まりさせてしまう。
このような堆積の問題は、半導体ウェハの材質がシリコンの場合のみならず、他の材質の半導体ウェハでも同様に起こる。研磨屑の堆積の問題が起こると、半導体ウェハを真空吸着する力が低下するため、研磨の際に半導体ウェハに砥石から応力がかかった状態で、半導体ウェハと真空吸着用部材の相対的な位置が変化しやすくなる。その結果、得られる半導体ウェハの厚みが大きくばらつくという不具合が発生する。
多孔質セラミックスに多孔質樹脂層を被着した特許文献2の真空吸着用部材52は、多数の半導体ウェハを繰り返し研磨すると、多孔質樹脂層から真空吸着用部材の表面および内部へ研磨屑が浸透、堆積して多孔質セラミックスの気孔26が目詰まし、さらに多孔質樹脂も目詰まりするので、真空吸着する力が弱くなるだけでなく、多孔質樹脂の表面に研磨屑が堆積するという問題もあった。
本発明は、上記問題点に鑑み、半導体ウェハを真空吸着して固定しながら研磨するために用いられる真空吸着用部材であって、真空吸着用部材への研磨屑の堆積を特に抑制することができる真空吸着用部材を提供することを目的とする。
上記に鑑みて本発明は、相互に焼結して多孔質セラミックスを構成する各結晶粒子に、撥水性樹脂を被着形成してなることを特徴とする。
さらに前記結晶粒子が炭化珪素であり、該結晶粒子同士が珪素を介して接合してなることを特徴とする。
さらに前記真空吸着用部材を断面視したとき、前記結晶粒子の存在しない領域における前記撥水性樹脂の占める面積の割合が70%以上であることを特徴とする。
さらに前記多孔質セラミックスの気孔率が20〜50体積%であることを特徴とする。
相互に焼結して多孔質セラミックスを構成する各結晶粒子に、撥水性樹脂を被着形成してなる真空吸着用部材とすることによって、撥水性樹脂が真空吸着用部材への水の付着を防止するので、半導体ウェハを湿式研磨した際に発生する研磨廃液が真空吸着用部材から直ぐに離脱し、研磨廃液に含まれる研磨屑が真空吸着用部材に堆積することが防止される。その結果、研磨屑の堆積によって起こる気孔の目詰まりがない為、直径の小さな半導体ウェハを研磨した後、同じ真空吸着装置で直径のさらに大きな半導体ウェハを研磨した場合でも、半導体ウェハを真空吸着する力が弱くなることを防止できる。
また、前記結晶粒子が炭化珪素であり、該結晶粒子が珪素により接合してなる真空吸着用部材とすることによって、多孔質セラミックスの熱伝導率を高くすることができるので、半導体ウェハを研磨する際の摩擦熱を効率良く放熱して半導体ウェハのデバイス形成面の樹脂層が溶融するおそれをなくすことができるとともに、電気抵抗を特に小さくすることができるので、真空吸着用部材に微細な研磨屑やゴミが静電付着することを特に抑制することができる。
また、前記真空吸着用部材を断面視したとき、前記結晶粒子及び該結晶粒子を接合する珪素の断面以外において、前記撥水性樹脂が70面積%以上を占める真空吸着用部材とすることによって、多孔質セラミックスへの水を含む研磨廃液の付着を十分に防止することができ、その結果、真空吸着用部材に研磨屑が堆積することを特に効果的に防止することができる。
さらに、前記撥水性樹脂を除いた前記多孔質セラミックスの気孔率が20〜50体積%である真空吸着用部材とすることによって、真空吸着する力を十分に大きくして半導体ウェハを強く吸着して固定でき、かつ半導体ウェハの研磨の際に真空吸着用部材を構成するセラミックスの一部が欠損するおそれをなくすことができる。
以下、本発明を実施するための最良の形態について説明する。
本発明の真空吸着用部材は、相互に焼結して多孔質セラミックスを構成する各結晶粒子に、撥水性樹脂を被着形成してなるものである。
図1は本発明の真空吸着用部材の断面を拡大し、これを模式的に表した断面図である。本発明の真空吸着用部材2は、相互に焼結して多孔質セラミックスを構成する各結晶粒子4に撥水性樹脂8を被着形成してなるものである。図1は、結晶粒子4からなる多孔質セラミックス2の断面(結晶粒子4が破断された面)の図であるため、結晶粒子4の周囲のみに撥水性樹脂8が図示されているが、実際には真空吸着用部材2は、開気孔6に隣接する各結晶粒子4の表面の略全体に撥水性樹脂が被着形成されているので、図1の奥行き方向で各結晶粒子4は互いに焼結し合っている。また、真空吸着用部材2の骨格は多孔質セラミックスからなり、この骨格に撥水性樹脂が被着形成されている。
また、真空吸着用部材2は、図2に示したように、セラミックスの結晶粒子4が、ガラスまたは珪素からなる接合剤10で接合されたものに、撥水性樹脂8を被着形成してなることが好ましい。これによって、自己研磨の際に多孔質セラミックスが欠けるおそれをなくすことができるからである。なお、セラミックスの結晶粒子4がガラスからなる接合剤10により接合されている多孔質セラミックスも、本発明では真空吸着用部材2を構成する多孔質セラミックスとする。
図3は本発明の真空吸着用部材2を用いた真空吸着装置20の断面図である。真空吸着装置20は、円板状の真空吸着用部材2aと、真空吸着用部材2aの外径よりも大きな環状の真空吸着用部材2bとが、緻密質セラミックスからなる支持部材12によって隔離され、真空吸着用部材2aを真空引きするための吸引孔14a、真空吸着用部材2bを真空引きするための吸引孔14bを備え、真空吸着用部材2aと支持部材12の間、真空吸着用部材2bと支持部材の間には、それぞれ吸引孔14a、14bと繋がっている隙間が設けられている。多孔質セラミックスからなる真空吸着用部材2a,2bは、緻密質セラミックスからなる支持用部材12に接合されている。
図3のような真空吸着装置20とすることによって、真空吸着用部材2aの外径に相当する直径の半導体ウェハを加工する場合には、真空吸引孔14aからのみ気体を排気して半導体ウェハを真空吸着し、真空吸着用部材2bの外径に相当する直径の大きな半導体ウェハを加工する場合には、真空吸引孔14aおよび14bから気体を排気することによって半導体ウェハを真空吸着することができる構造となっている。
半導体ウェハは、デバイス形成面側を真空吸着用部材2a,2bの吸着面16a,16bに接触させた状態で、真空吸引孔14a、14bから気体を排気することによって、真空吸着用部材2a,2bの吸着面16a,16bに真空吸着される。ここで、気体を排気すると半導体ウェハが真空吸着用部材2a,2bの吸着面16a,16bに吸着されるのは、真空吸着用部材2a,2bの下面と支持用部材12の上面の間には、それぞれ真空吸引口と繋がる隙間が設けられ、かつ真空吸着用部材2a,2bは吸着面16a,16b(上面)から下面に連通する連通孔を多数有しているので、支持用部材12と真空吸着用部材2a,2bの間の隙間から気体を排気すると、この連通孔からも気体が排気されて、連通孔内が負圧になり、この負圧が半導体ウェハを真空吸着させるからである。
真空吸着用部材2は、結晶粒子4の表面に撥水性樹脂が被着形成されているので、水を含む研磨廃液などが付着しにくく、その結果、研磨廃液に含まれる研磨屑が真空吸着用部材2に堆積することがない。本発明の真空吸着用部材2を用いることにより、吸着面16bで研磨屑が堆積して開気孔6の目詰まりをなくすことができるため、直径の小さな半導体ウェハを研磨した後、同じ真空吸着装置20で直径の大きな半導体ウェハを研磨した場合でも、吸着面16b上にある半導体ウェハを真空吸着する力が低下しない。このため、吸着面16aおよび16b上にある大きな半導体ウェハを強く真空吸着したまま研磨することができるので、砥石から半導体ウェハに応力がかかっても、半導体ウェハの下面と吸着面16a,16bとの相対的な位置が変わらない状態を保ったまま研磨することができ、その結果、得られる半導体ウェハの厚みのばらつきを低減することができる。
結晶粒子4は、主成分が、アルミナ、炭化珪素、窒化珪素、窒化アルミニウムおよびコーディエライトのうちいずれかからなることが好ましい。ここで、主成分とは、少なくとも結晶粒子4の50体積%以上を占める結晶相をいう。
結晶粒子4の主成分が炭化珪素の場合は、炭化珪素は熱伝導率が高いため、半導体ウェハを研磨する際に発生した摩擦熱を効率的に放熱できるので、半導体ウェハのデバイス形成面に形成された樹脂層が、半導体ウェハを研磨する際に発生する摩擦熱によって溶融するおそれがなり、その結果、得られる半導体ウェハを高品質のものとすることができる。また、炭化珪素は電気抵抗が低いので、導電性または半導電性の撥水性樹脂8を被着形成した場合には、精密研磨を乾式研磨方式により行う際に、電気的にアースを取れば、研磨によって真空吸着用部材2に発生する静電気を逃がすことができ、真空吸着用部材2に微細な研磨屑やゴミが静電付着し、開気孔6を目詰まりさせるおそれがない。このため、小さな直径の半導体ウェハを加工した後、この半導体ウェハよりも大きな直径の半導体ウェハを加工しても、半導体ウェハを真空吸着する力が全く弱まることがないので、大きな直径の半導体ウェハ厚みのばらつきをさらに低減することができる。したがって、多孔質セラミックスを構成する結晶粒子4は、主成分が炭化珪素からなることが好ましい。
また、多孔質セラミックスは、セラミックスの結晶粒子4がガラスまたは珪素からなる接合剤10で接合されたものからなることが好ましい。この理由は、結晶粒子4が互いに接合剤10を介して強固に接合されるので真空吸着用部材2の機械的強度が向上するからである。
また、多孔質セラミックスは、結晶粒子4が炭化珪素からなり、接合剤10が珪素からなることがさらに好ましい。この理由は、多孔質セラミックスの熱伝導率を高くすることができるので、半導体ウェハを研磨する際の摩擦熱を効率良く放熱して半導体ウェハのデバイス形成面の樹脂層が溶融するおそれをなくすことができるとともに、電気抵抗を特に小さくすることができるので、真空吸着用部材2に微細な研磨屑やゴミが静電付着することを特に抑制することができるからである。
また、真空吸着用部材2を断面視したとき、結晶粒子4及び結晶粒子4を接合する珪素の断面以外において、撥水性樹脂8が70面積%以上を占めることが好ましい。これによって、多孔質セラミックスへの水を含む研磨廃液の付着を十分に防止することができ、その結果、真空吸着用部材2に研磨屑が堆積することを特に効果的に防止することができる。
また、撥水性樹脂8を除いた多孔質セラミックスの気孔率が20〜50体積%であることが好ましい。これにより、真空吸着する力を十分に大きくして半導体ウェハを強く吸着して固定でき、かつ自己研磨の際に真空吸着用部材2を構成するセラミックスの一部が欠損するおそれをなくすことができる。
気孔率が20体積%未満では、真空吸着力を十分に大きくすることができないおそれがある。50体積%を超えると、真空吸着用部材2の骨格を形成する多孔質セラミックスの機械的強度が低下するとともに、自己研磨の際に真空吸着用部材2を構成するセラミックスの一部が欠損するおそれがあるからである。多孔質セラミックスの気孔率はアルキメデス法により測定することができる。アルキメデス法により測定する場合、気孔率はJIS R 1634−1998に規定された方法に準拠して測定しても良い。
撥水性樹脂8としては、撥水性能の高いフッ素樹脂およびシリコン樹脂が好ましい。このうちフッ素樹脂からなる撥水性樹脂8は、強固に結晶粒子4や接合剤10に被着するのでさらに好ましい。また、導電性の撥水性樹脂8を用いることによって、半導体ウェハに研磨屑やゴミが静電付着することを効果的に防止することができる。
撥水性樹脂8は真空吸着用部材2全体に被着形成してなることが好ましいものの、撥水性樹脂8の撥水効果を出すためには、真空吸着用部材2の吸着面16(上面)から下面18a,18bの方向に少なくとも1mm以上被着形成されていれば良い。
また、撥水性樹脂8の厚みは0.01〜5μmであることが好ましい。これにより、撥水性樹脂8の剥離を特に抑制することができるからである。撥水性樹脂8の厚みが0.01μm未満の場合は、研磨屑を含む研磨廃液が撥水性樹脂8を摩耗させて結晶粒子4が露出することによって撥水効果がなくなるおそれがあるため好ましくない。撥水性樹脂8の厚みが5μmを超えると、多孔質セラミックスと撥水性樹脂8の熱膨張率の違いによって撥水性樹脂8が剥離するおそれがあるため好ましくない。撥水性樹脂8の材質、後述する撥水性樹脂8の溶解のための溶媒の種類などを変更することにより、撥水性樹脂8の厚みを0.01〜5μmとすることができる。
本発明の真空吸着用部材2の各種測定方法について説明する。
真空吸着用部材2に撥水性樹脂8が含まれていることは、例えばフーリエ変換赤外分光分析装置(FTIR)、ガスクロマトグラフ(GCmass)のうち少なくとも1種を用いて分析することができる。例えば、撥水性樹脂8がフッ素樹脂の場合は、FTIRでパワースペクトルを測定し、フッ素樹脂の標準パワースペクトルとピークを比較することによって同定することが可能である。GCmassでは熱分解した気体としてポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン(TFE)やヘキサフロロエチレン(HFE)等が検出され、フッ素樹脂であることが同定出来る。
また、真空吸着用部材2の骨格が多孔質セラミックスからなることは、次のようにして分析することができる。真空吸着用部材2を600〜900℃程度で3〜5時間加熱し、撥水性樹脂8を分解させて除去し、FTIR、GCmassのうち少なくとも1種の方法により、撥水性樹脂8が分解され残留していないことを確認する。撥水性製樹脂8が真空吸着用部材残留している場合には、再度加熱する。撥水性樹脂8を除去すると多孔質セラミックスだけが残る。多孔質セラミックスが結晶質の結晶相を含む場合には、残った多孔質セラミックスをX線回折法により分析することにより、多孔質セラミックスに含まれる結晶粒子4の結晶構造を同定することができる。これにより、多孔質セラミックスに含まれる結晶粒子4が例えば炭化珪素を主成分とするものであることがわかる。
さらに、多孔質セラミックスが炭化珪素からなる結晶粒子4で構成され、炭化珪素からなる結晶粒子4が珪素により接合されている場合、X線回折で珪素が含まれていることがわかる。この場合、多孔質セラミックスの破断面を微少部X線回折法により分析することで、結晶粒子4が炭化珪素からなり、この結晶粒子が珪素で接合されていることをさらに確認しても良い。
多孔質セラミックスの気孔率は、前記のようにして加熱して真空吸着用部材2から撥水性樹脂8を除去したものの気孔率を測定することで求められる。気孔率の測定はJIS R 1634−1998に規定された方法に準拠して測定しても良い。
真空吸着用部材を断面視したとき、結晶粒子4及び結晶粒子4を接合する珪素の断面以外において、撥水性樹脂8が70面積%以上を占めることは、例えば次のようにして分析することができる。真空吸着用部材2を破断した面を走査型電子顕微鏡(SEM)により倍率100〜5000倍で観察した視野の面積500〜10000μmを、写真の総面積400〜1000mm程度でSEM写真に撮り、この写真を観察すると、撥水性樹脂8が被着している面(開気孔6に隣接する面)は、結晶粒子4の粒界が撥水性樹脂8の下に隠れて見えないので、撥水性樹脂8で覆われていない部分と区別することができる。ここで、撥水性樹脂8で覆われていない部分は、結晶粒子4が破断された面や結晶粒子4の粒界が見える。SEM写真のうち、多孔質セラミックスが破断している断面(結晶粒子4の断面)を除く面積を100%とした場合、撥水性樹脂8が占める面積割合(%)を求める。この面積割合は、例えば、SEM写真を、撥水性樹脂8が被着形成されている部分Aと、被着形成されていない部分Bとを区別して均一な厚みの紙にトレースした後、部分A、Bを切り抜いて部分AおよびBの重量WおよびWを測定し、W/(W+W)を100倍して求めることもできる。
また、撥水性樹脂8の厚みは、真空吸着用部材2の欠片を集束イオンビームにより加工してSEM写真を撮り観察することで求めることができる。ここで、集束イオンビームで加工すると撥水性樹脂8が部分的に除去されるので、撥水性樹脂8が被着されている部分と被着されていない部分の境界が現れ、これをSEMで観察することにより、撥水性樹脂8が被着されていた厚みを測定することができる。
熱伝導率はレーザーフラッシュ法により測定する。例えばレーザーフラッシュ法により熱伝導率を測定する場合は、JIS R1611−1997に準拠した方法で測定しても良い。JIS R1611−1997に準拠した方法で測定した熱伝導率は、気孔率が10%を超える測定試料の場合、測定誤差が大きくなるものの、この方法で得られた熱伝導率を真空吸着用部材2の熱伝導率とすることができる。なお、熱伝導率を測定する場合は、真空吸着用部材2から、熱伝導率を測定可能な形状を切り出して測定することが好ましい。
次に、本発明の真空吸着用部材2の製造方法について具体的に説明する。
図1の真空吸着用部材2の製造方法について、撥水性樹脂8がフッ素樹脂である場合を例にして説明する。
まず、多孔質セラミックスを次のようにして製造する。
多孔質セラミックスの第一の製造方法は次の通りである。セラミックス原料粉体を湿式粉砕して得られたスラリーに有機バインダーを添加、混合後、噴霧乾燥して造粒粉末を作製する。この造粒粉末を金型を用いて粉末加圧成形機により成形し、成形体を作製する。得られた成形体を焼成して作製する。ここで、焼成して得られるセラミックスは、成形体が完全に緻密化する温度よりも例えば低い温度、例えば100〜200℃低い温度で焼成することで、気孔率20〜50体積%の多孔質セラミックスを製造することができる。
多孔質セラミックスの第二の方法は次の通りである。前記第一の方法と同様にして作製した造粒粉末と、造孔剤(焼成の際に分解蒸発して気孔を形成させる素材)として、粒径が30〜300μm程度の球状の樹脂ビーズとを乾式混合し、造孔剤を含む成形用原料を作製する。この成形用原料を金型を用いて粉末加圧成型機により成形し、成形体を作製する。得られた成形体を焼成する。ここで、焼成後の気孔率が20〜50体積%となるように、前記造孔剤を添加すればよい。また、焼成温度は、焼結体の気孔以外の部分が完全に緻密化する温度とすることが好ましい。
次いで、フッ素系溶媒に溶質として撥水性樹脂8を溶解させた溶液を作製し、前記多孔質セラミックスの第一、第二の製造方法で作製した多孔質セラミックスのいずれかを含浸する。含浸すると溶液が多孔質セラミックスの外表面だけでなく、毛細管現象等によって多孔質セラミックスの開気孔(連通孔も含む)を容易に濡らすことができる。含浸後、この溶液で濡れた多孔質セラミックスを乾燥し、必要に応じて60〜100℃程度で熱処理すると、多孔質セラミックスを構成する各結晶粒子4に撥水性樹脂8が被着形成された真空吸着用部材2が得られる。なお多孔質セラミックスに研削、研磨等の機械加工を施し、所望の形状にした後で撥水性樹脂8を被着形成しても良い。
撥水性樹脂8がシリコン樹脂の場合も、溶媒としてこれらの樹脂を溶解させる溶媒にシリコン樹脂を溶解させて同様に製造できる。
また、吸着面16はその面状態が加工後の半導体ウェハの精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれるため、撥水性樹脂8を被着形成する前またはその後で、吸着面16側を研磨して平坦にしても良い。
図2の真空吸着用部材2の製造方法は次の通りである。
α型炭化珪素粉末100重量部に対して、珪素粉末15〜25重量部を調合し、成形助剤として熱硬化性樹脂、例えばフェノール樹脂をα型炭化珪素粉末100重量部に対し、フェノール樹脂に含まれる炭素換算で1〜2重量部添加し、ボールミル等で均一に混合する。
α型炭化珪素粉末の平均粒径を105〜350μmとすることが好ましく、平均粒径が105μm以下では、径の小さな粉末が閉気孔を形成したり、気孔自体を小さくしたりすることで圧力損失が高くなり、一方、350μmを超えると、真空吸着用部材の密度が低下することで、強度が低下するおそれがある。α型炭化珪素粉末の平均粒径を105〜350μmとすることで、圧力損失が低く、強度低下を招くことのない真空吸着用部材部材とすることができる。また、珪素粉末は、後の熱処理で珪素層となって、炭化珪素の結晶粒子4を接合する。
また、α型炭化珪素粉末100重量部に対し、珪素粉末の比率を15〜25重量部としたのは、珪素粉末の比率が15重量部未満では、炭化珪素の結晶粒子4に対する比率が低く、結晶粒子4を十分接合できないからである。一方、比率が25重量部を超えると、珪素が偏析しやすく、相対的に機械的特性の良好な炭化珪素の比率が下がり、十分な機械的特性を得られないからである。珪素粉末の比率を15〜25重量部とすることで、十分な機械的特性を備えた均質な組織を有する炭化珪素−珪素複合体からなる多孔質セラミックスとすることができる。
上記炭化珪素粉末、珪素粉末の各平均粒径は液相沈降法、光投下法、レーザー散乱回折法等により測定することができる。
次に、混合した原料を転動造粒機等を用いて造粒し粒径が0.1〜1mm程度の顆粒を得る。この顆粒を公知の成形方法で所望の形状に成形して成形体とし、さらに成形助剤の脱脂処理を行った後、非酸化雰囲気中、1420〜1450℃で熱処理する。熱処理温度を1420〜1450℃とすることで珪素粉末は蒸発することなく溶融し、炭化珪素の結晶粒子4を珪素と接合することができ、適切な強度及び熱伝導率が得られ、製造コストも削減することができる。熱処理温度が1420℃未満では、珪素粉末が十分溶融しないため、炭化珪素の結晶粒子4を珪素8と接合することができず、1450℃を超えると、珪素が蒸発することで強度低下を招きやすいとともに、製造コストが高くなる。
このような製造方法で得られた炭化珪素−珪素複合体からなる多孔質セラミックスは、吸着面16側となる面を必要に応じて研削、研磨等により機械加工し、所望の平坦度とすることができる。この場合、吸着面16側はその面状態が加工後の半導体ウェハの精度に影響を与えることから極力平坦化する必要があり、少なくとも平坦度1μm以下、好ましくは平坦度0.3μm以下とすることが望まれる。
得られた炭化珪素−珪素複合体からなる多孔質セラミックスを構成する各結晶粒子4に、上述した方法で撥水性樹脂8を被着形成することで、真空吸着用部材2を製造することができる。
(実施例1)
表1〜3の本発明の試料をそれぞれ複数個作製するため、まず、直径297mm、厚み7mmの形状の多孔質セラミックス(炭化珪素質多孔質体、アルミナ−ガラス複合体、炭化珪素−ガラス複合体、炭化珪素−珪素複合体)を次のように作製した。
炭化珪素質多孔質体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素粉末と炭化硼素粉末の合計を100質量部とし、これらの粉末に対しさらに成形助剤となるフェノール樹脂を表1に示す量を添加、均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて圧力90MPaで成形して成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、温度を上げ同じく窒素雰囲気中で熱処理し、熱処理して炭化珪素質多孔質体からなる多孔質セラミックスを得た。α型炭化珪素粉末、珪素粉末の各平均粒径、α型炭化珪素粉末に対する珪素粉末及びフェノール樹脂の添加量、造粒時間及び熱処理の温度は、表1に示す通りである。
アルミナ−ガラス複合体からなる多孔質セラミックスは次のようにして作製した。主原料として電融アルミナの粗粒粉末92.5質量%に対してガラス粉末7.5質量%を混合した混合粉末をボールミルで水を加えて湿式混合し、得られたスラリーに含まれる混合粉末100質量部に対して、有機バインダーとしてポリビニルアルコール(PVA)を3質量部添加、混合後、噴霧乾燥して造粒粉末を作製した。ここで用いたガラス粉末の組成は、酸化珪素(SiO)66.7質量%、酸化マグネシウム(MgO)4質量%、酸化カルシウム(CaO)2.7質量%、酸化チタン(TiO)26.6質量%とした。得られた造粒粉末を金型を用いた粉末加圧成形法により成形して成形体を作製し、成形体を表1に示す焼成温度で焼成し、ガラス粉末を溶融させて電融アルミナの粗粒がガラスを介して接合した、アルミナ−ガラス複合体からなる多孔質セラミックスを得た。ここで、主原料である電融アルミナの粗粒粉末のメジアン径(主原料粉末の粒径)は表2の通りである。
炭化珪素−ガラス複合体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素(SiC)の粗粒粉末を主原料として90質量%と、前記ガラス粉末10質量%とを水を加えて混合ボールミルで湿式混合し、アルミナ−ガラス複合体からなる多孔質セラミックスと同様にして、造粒粉末を作製、成形し、表1に示す焼成温度で焼成した。ここで主原料であるα型炭化珪素の粗粒粉末のメジアン径(主原料粉末の粒径)は表2に示す通りである。
炭化珪素−珪素複合体からなる多孔質セラミックスは次のようにして作製した。α型炭化珪素粉末と珪素粉末の合計を100質量部とし、これらの粉末に対し、さらに成形助剤となるフェノール樹脂を表2に示す量を添加、均一に混合し、調合原料を作製した。この調合原料を転動造粒機に投入し、顆粒とした後、乾式加圧成形にて圧力90MPaで成形して成形体を得た。次にこの成形体を窒素雰囲気中、500℃で脱脂処理した後、温度を上げ同じく窒素雰囲気中で熱処理し、熱処理中に珪素を溶融させてα型炭化珪素粉末が珪素を介して接合された多孔質セラミックスを得た。α型炭化珪素粉末、珪素粉末の各平均粒径、α型炭化珪素粉末に対する珪素粉末及びフェノール樹脂の添加量、造粒時間及び熱処理の温度は、表2に示す通りである。
得られた炭化珪素−珪素複合体からなる多孔質セラミックスについては、走査型電子顕微鏡(SEM)を用い、倍率20〜〜5000倍の範囲から最適な倍率を選択して、炭化珪素の結晶粒子が珪素により接合されているかどうかを評価した。
以上のようにして作製した炭化珪素質多孔質体、アルミナ−ガラス複合体、炭化珪素―ガラス複合体、炭化珪素−珪素複合体のそれぞれの多孔質セラミックスに、フッ素樹脂またはシリコン樹脂を次のように被着して本発明の真空吸着用部材からなる試料を作製した。フッ素樹脂は、多孔質セラミックスを市販のフッ素樹脂溶液(フッ素樹脂をフッ素系溶媒に溶解させた溶液)に含浸してこの溶液から取出し、常温で乾燥後、さらに80℃で1時間加熱して被着した。シリコン樹脂は、多孔質セラミックスを市販のシリコン樹脂溶液に含浸してこの溶液から取り出し、常温乾燥して被着した。
得られた本発明の試料に撥水性樹脂が含まれているかどうかを、株式会社島津製作所製IRPrestige−21 NIRシステムからなるフーリエ変換赤外分光分析装置(FT−IR)および株式会社島津製作所製QP5000ガスクロマトグラフ(GC−mass)を用いて分析した。
多孔質セラミックスの気孔率は、空気中750℃で3時間加熱して真空吸着用部材から撥水性樹脂を除去したものの気孔率を測定することで求めた。
真空吸着用部材2を断面視して、結晶粒子を除く多孔質セラミックスの断面の何%に撥水性樹脂が被着形成されていることは、次のようにして分析した。真空吸着用部材2を破断した面を走査型電子顕微鏡(SEM)により倍率100〜5000倍の範囲から適宜選定した倍率で観察した視野の面積500〜10000μmを、写真に撮りこの写真の総面積1000mmの部分を観察すると、開気孔に隣接し撥水性樹脂が被着している部分は、結晶粒子の粒界が撥水性樹脂の下に隠れて見えなかったので、撥水性樹脂で覆われていない部分と区別することができた。ここで、撥水性樹脂で覆われていない部分には、結晶粒子4が破断された面や結晶粒子の粒界層として接合剤が観察された。SEM写真のうち、多孔質セラミックスが破断している断面(結晶粒子の断面)を除く面積を100%とした場合、撥水性樹脂8が占める面積割合(%)は、SEM写真を、撥水性樹脂が被着形成されている部分Aと、被着形成されていない部分Bとを区別して紙にトレースした後、部分A、Bを切り抜いてそれぞれの紙の重量W,Wを測定し、W/(W)を100倍して求めた。
また、撥水性樹脂の厚みは真空吸着用部材の欠片からなる試料を、株式会社日立ハイテクノロジーズ製FIBのFB2100を用い、集束イオンビームにより加工してSEM写真を観察することで求めた。ここで、撥水性樹脂が被着されていた部分の撥水性樹脂の厚みは、イオンビーム加工によって撥水性樹脂が除去されるので、イオンビームの加工前後の試料の観察により、測定した。
得られた本発明の試料の3点曲げ強度は、測定用試料を本発明の試料から切り出して作製し、この分析用試料をJIS R 1601−1995に準拠して測定した。また、試料の熱伝導率は、試料から熱伝導率測定用試料を切り出し、JIS R1611−1997に準拠するレーザーフラッシュ法により25℃の環境下で測定した。また、圧力損失については、直径60mm、高さ10mmの円板体からなる多孔質セラミックスを上記と同様にして作製し、この円板体の一方の主面から空気を導入し、予め反対側の主面のみから空気が排出されるように円板体の側面を覆った試料を準備し、流量9L/分の空気導入前後に発生する圧力差を圧力ゲージにより圧力損失として検出した。
次に、真空吸着用部材からなる試料を組み込み、自己研磨を行った。その後、図3の真空吸着装置を用い、直径203mm、厚み300μmのシリコンウェハを真空吸着用部材に載置し、真空吸着しながら、旭ダイヤモンド工業株式会社製の直径300mmの砥石を用いて、砥石回転数2500回転/分で回転させながら水を用いた60分間の湿式研磨を行った。その後、半導体ウェハを取り外して真空吸着用部材を水で洗い流して洗浄、乾燥後、吸着面(真空吸着用部材の上面の外径側)にある開気孔に研磨屑が堆積しているかどうか調べるため、試料から吸着面を含む欠片を、吸着面に垂直な面を含むように破断し、SEMを用いて倍率200倍で観察した。SEMを用いて倍率200倍で観察し、吸着面にある開気孔に研磨屑が堆積している場合、試料に研磨屑が堆積しているとした。研磨屑が堆積していた試料については、倍率500〜2000倍で、吸着面と垂直な面(破断面)の視野150000〜300000μmをSEMで観察し、研磨屑が吸着面にある結晶粒子、珪素またはガラスよりも突出している部分の最大高さを求め、この高さを研磨屑が堆積した厚みとした。
結果は次の通りである。本発明の試料に含まれる撥水性樹脂は、フッ素樹脂またはシリコン樹脂であることが確認できた。また、試料の表面および内部にある結晶粒子、珪素、ガラスは撥水性樹脂で被着されていた。すなわち、本発明の試料に含まれる多孔質セラミックスには撥水性樹脂が被着していた。
その他の結果は次の通りである。表1〜3に示すように、炭化珪素質多孔質体に含まれる結晶粒子に撥水性樹脂を被着形成した試料No.1,2は研磨屑の堆積厚みが0.4μm、アルミナ−ガラス複合体からなる多孔質セラミックスに撥水性樹脂を被着した試料No.5,6は研磨屑の堆積厚みが0.3μm、炭化珪素−ガラス複合体からなる多孔質セラミックスに撥水性樹脂を被着形成した試料No.7〜9は研磨屑の堆積厚みが0.2μmと小さかった。特に、炭化珪素−珪素複合体からなる多孔質セラミックスに撥水性樹脂を被着形成した試料No.12〜17は、研磨屑の堆積が全くなかった。また、気孔率が20〜50体積%の試料No.6〜8,12〜17は、圧力損失が0.43kPa以下となり、さらに表には示していないが自己研磨の際に試料からの結晶粒子または破片の離脱、欠けが見られなかった。気孔率が50体積%を超えた試料No.9,17は吸着面の表層が自己研磨の後でごくわずかなに欠けていた。また、多孔質セラミックスとしてアルミナ−ガラス複合体を用いて作製した試料No.5,6の熱伝導率は3〜4W/(m・K)、炭化珪素−ガラス素複合体を用いて作製した試料No.7〜9の熱伝導率は6〜8W/(m・K)と低かったのに対し、炭化珪素−珪素複合体を用いて作製した試料No.12〜17は75〜135W/(m・K)と非常に高くなり、シリコンウェハを研磨する際に発生する熱を効率良く放熱できることが確認できた。
また、接合剤としてガラスまたは珪素を含む表2,3の試料の3点曲げ強度は、接合剤を含まない表1の試料よりも3点曲げ強度が大きく優れていた。特に炭化珪素−珪素複合体からなる多孔質セラミックスを用いて作製した表3の試料No.12〜17は、3点曲げ強度が75〜135MPaと特に大きく優れていた。
Figure 2007201363
Figure 2007201363
Figure 2007201363
次に、実施例1と同様にして多孔質セラミックスを作製し、撥水性樹脂を被着しなかったものを比較例の試料として作製し、この比較例の試料を実施例1と同様に評価した。その結果を表1、2に示すように、比較例の試料の表面には研磨屑が2〜5μmと非常に厚く堆積していた。
(実施例2)
実施例1で作製した表3の試料No.15で用いた炭化珪素−珪素複合体からなる多孔質セラミックスを同様に作製し、撥水性樹脂として、実施例1で用いたフッ素樹脂の代わりに、導電性高分子であるポリピロールを分散溶媒であるメチルエチルケトン(MEK)に分散させた溶液に多孔質セラミックスを含浸し、乾燥して本発明の試料(これを試料Cとする。)を作製し、試料Cを用いて、実施例1の条件でシリコンウェハを研磨した。その後、真空吸着装置に組み込まれた真空吸着用部材を洗浄、乾燥し、電気的にアースを取りながら、精密研磨用砥石を用いて、10分間精密研磨した。
精密研磨後、シリコンウェハを取り外し、吸着面に研磨屑からなる粒子が付着していないか観察した。その結果、導電性高分子であるポリピロールを被着した試料Cには、研磨屑からなる粒子が付着していなかったが、試料No.15はごく微細な粒子が静電気によって付着していることが確認された。
本発明の真空吸着用部材の断面を拡大したものを模式的に表した断面図である。 本発明の真空吸着用部材の断面を拡大したものを模式的に表した断面図である。 本発明の真空吸着用部材を用いた真空吸着装置の断面図である。 (a)及び(b)は従来の真空吸着用部材を用いた真空吸着装置の断面図である。 従来の真空吸着用部材の断面を拡大したものを模式的に表した断面図である。
符号の説明
2,52a,52b,52:真空吸着用部材
4,54:結晶粒子
6,56:開気孔
8:撥水性樹脂
10:接合剤
12,62:支持部材
14a,14b,64a,64b,64:吸引孔
16a,16b,16,66a,66b,66:吸着面
20,70:真空吸着装置

Claims (4)

  1. 相互に焼結して多孔質セラミックスを構成する各結晶粒子に、撥水性樹脂を被着形成してなることを特徴とする半導体ウェハの真空吸着用部材。
  2. 前記結晶粒子が炭化珪素であり、該結晶粒子同士が珪素を介して接合してなることを特徴とする請求項1に記載の半導体ウェハの真空吸着用部材。
  3. 前記真空吸着用部材を断面視したとき、前記結晶粒子の存在しない領域における前記撥水性樹脂の占める面積の割合が70%以上であることを特徴とする請求項2に記載の半導体ウェハの真空吸着用部材。
  4. 前記多孔質セラミックスの気孔率が20〜50体積%であることを特徴とする請求項1〜3のいずれかに記載の半導体ウェハの真空吸着用部材。
JP2006020953A 2006-01-30 2006-01-30 半導体ウェハの真空吸着用部材 Active JP4741375B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006020953A JP4741375B2 (ja) 2006-01-30 2006-01-30 半導体ウェハの真空吸着用部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006020953A JP4741375B2 (ja) 2006-01-30 2006-01-30 半導体ウェハの真空吸着用部材

Publications (2)

Publication Number Publication Date
JP2007201363A true JP2007201363A (ja) 2007-08-09
JP4741375B2 JP4741375B2 (ja) 2011-08-03

Family

ID=38455609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006020953A Active JP4741375B2 (ja) 2006-01-30 2006-01-30 半導体ウェハの真空吸着用部材

Country Status (1)

Country Link
JP (1) JP4741375B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224402A (ja) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp 真空吸着装置
JP2010135443A (ja) * 2008-12-02 2010-06-17 Tanken Seal Seiko Co Ltd 真空吸着パッドおよび真空吸着装置
JP2011041991A (ja) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd ウエーハの研削装置
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method
JP2016058433A (ja) * 2014-09-05 2016-04-21 株式会社ディスコ チャックテーブル
JP2016152303A (ja) * 2015-02-17 2016-08-22 株式会社東京精密 ウエハの受け渡し装置及び方法
JP2016162800A (ja) * 2015-02-27 2016-09-05 株式会社東京精密 ダイシング装置及びダイシング装置用のテーブル
WO2020195184A1 (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 撥水部材、並びにそれを用いた建築部材及び水廻り部材
JPWO2020203680A1 (ja) * 2019-03-29 2020-10-08
WO2021065261A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 複合部材
JP7515965B2 (ja) 2020-02-17 2024-07-16 株式会社ディスコ ポーラス板の製造方法、チャックテーブルの製造方法及び加工装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624446A (ja) * 1985-06-29 1987-01-10 Ibiden Co Ltd 触媒担体
JPH08164370A (ja) * 1994-12-13 1996-06-25 Ckd Corp 多数の微細な孔を有する板材の洗浄装置及び洗浄方法、並びに真空チャックのチャックプレートの洗浄装置及び洗浄方法
JP2005279788A (ja) * 2004-03-26 2005-10-13 Ibiden Co Ltd 研削・研磨用真空チャック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS624446A (ja) * 1985-06-29 1987-01-10 Ibiden Co Ltd 触媒担体
JPH08164370A (ja) * 1994-12-13 1996-06-25 Ckd Corp 多数の微細な孔を有する板材の洗浄装置及び洗浄方法、並びに真空チャックのチャックプレートの洗浄装置及び洗浄方法
JP2005279788A (ja) * 2004-03-26 2005-10-13 Ibiden Co Ltd 研削・研磨用真空チャック

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224402A (ja) * 2008-03-13 2009-10-01 Taiheiyo Cement Corp 真空吸着装置
JP2010135443A (ja) * 2008-12-02 2010-06-17 Tanken Seal Seiko Co Ltd 真空吸着パッドおよび真空吸着装置
JP2011041991A (ja) * 2009-08-19 2011-03-03 Disco Abrasive Syst Ltd ウエーハの研削装置
EP2301905A1 (en) * 2009-09-28 2011-03-30 ABC Taiwan Electronics Corp. Porous ceramic preparation method
JP2016058433A (ja) * 2014-09-05 2016-04-21 株式会社ディスコ チャックテーブル
JP2016152303A (ja) * 2015-02-17 2016-08-22 株式会社東京精密 ウエハの受け渡し装置及び方法
JP2016162800A (ja) * 2015-02-27 2016-09-05 株式会社東京精密 ダイシング装置及びダイシング装置用のテーブル
JPWO2020195184A1 (ja) * 2019-03-26 2020-10-01
WO2020195184A1 (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 撥水部材、並びにそれを用いた建築部材及び水廻り部材
CN113614053A (zh) * 2019-03-26 2021-11-05 松下知识产权经营株式会社 疏水构件以及使用了该疏水构件的建筑构件和用水场所构件
JP7336738B2 (ja) 2019-03-26 2023-09-01 パナソニックIpマネジメント株式会社 撥水部材、並びにそれを用いた建築部材及び水廻り部材
US11898343B2 (en) 2019-03-26 2024-02-13 Panasonic Intellectual Property Management Co., Ltd. Water-repellent member, and building member and wet room member using same
JPWO2020203680A1 (ja) * 2019-03-29 2020-10-08
WO2020203680A1 (ja) * 2019-03-29 2020-10-08 京セラ株式会社 ガスプラグ、静電吸着用部材およびプラズマ処理装置
JP7204893B2 (ja) 2019-03-29 2023-01-16 京セラ株式会社 ガスプラグ、静電吸着用部材およびプラズマ処理装置
WO2021065261A1 (ja) * 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 複合部材
JPWO2021065261A1 (ja) * 2019-09-30 2021-04-08
JP7515965B2 (ja) 2020-02-17 2024-07-16 株式会社ディスコ ポーラス板の製造方法、チャックテーブルの製造方法及び加工装置

Also Published As

Publication number Publication date
JP4741375B2 (ja) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4741375B2 (ja) 半導体ウェハの真空吸着用部材
KR101386021B1 (ko) 정전 척
JP4744855B2 (ja) 静電チャック
US9188397B2 (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JP4987238B2 (ja) 窒化アルミニウム焼結体、半導体製造用部材及び窒化アルミニウム焼結体の製造方法
JP5510411B2 (ja) 静電チャック及び静電チャックの製造方法
JP2008132562A (ja) 真空チャックおよびこれを用いた真空吸着装置
JP2017178665A (ja) 多孔質セラミックスおよびガス分散板ならびに吸着用部材
WO2020203680A1 (ja) ガスプラグ、静電吸着用部材およびプラズマ処理装置
JP2022031743A (ja) 窒化アルミニウムウェハの製造方法およびその窒化アルミニウムウェハ
JP2004306254A (ja) 真空チャック
JP2008132573A (ja) Cmpコンディショナ
JP5261057B2 (ja) 吸着盤および真空吸着装置
JP4545536B2 (ja) 真空吸着用治具
KR102387056B1 (ko) 세라믹 접합체 및 그 제조 방법
JP2005279789A (ja) 研削・研磨用真空チャック
JP2002036102A (ja) ウエハ保持治具
JP2005072039A (ja) 真空チャック
JP5231064B2 (ja) 真空吸着装置及びその製造方法
JP2008166312A (ja) 真空チャック及びこれを用いた真空吸着装置
JP2008006529A (ja) 真空チャック及びこれを用いた真空吸着装置
JP2009107880A (ja) 接合体、吸着部材、吸着装置および加工装置
JP2005279788A (ja) 研削・研磨用真空チャック
JP2007283435A (ja) 炭化珪素系研磨プレート、製造方法、半導体ウェーハの研磨方法
JP2005118979A (ja) 研削・研磨用真空チャックおよび吸着板

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110506

R150 Certificate of patent or registration of utility model

Ref document number: 4741375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3