JP2007135359A - 保護素子とこの保護素子を備えるパック電池 - Google Patents

保護素子とこの保護素子を備えるパック電池 Download PDF

Info

Publication number
JP2007135359A
JP2007135359A JP2005328122A JP2005328122A JP2007135359A JP 2007135359 A JP2007135359 A JP 2007135359A JP 2005328122 A JP2005328122 A JP 2005328122A JP 2005328122 A JP2005328122 A JP 2005328122A JP 2007135359 A JP2007135359 A JP 2007135359A
Authority
JP
Japan
Prior art keywords
current
resistance
point metal
melting point
low melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005328122A
Other languages
English (en)
Other versions
JP4511449B2 (ja
Inventor
Hideki Akamatsu
秀樹 赤松
Kousaku Yanagihara
考作 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005328122A priority Critical patent/JP4511449B2/ja
Publication of JP2007135359A publication Critical patent/JP2007135359A/ja
Application granted granted Critical
Publication of JP4511449B2 publication Critical patent/JP4511449B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)
  • Fuses (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

【課題】パック電池に内蔵する電池電圧が大幅に変動しても、加熱抵抗でヒューズを確実に溶断する。加熱抵抗の損傷を確実に防止する。
【解決手段】保護素子は、加熱すると溶断される低融点金属5と、この低融点金属5に熱結合されて、通電される電流で発生するジュール熱で低融点金属5を加熱する加熱抵抗4とを備える。加熱抵抗4は、複数の分流回路4Aを並列に接続している。各々の分流回路4Aは、電気抵抗が異なる抵抗素子7を備えると共に、少なくともひとつの分流回路4Aには、抵抗素子7と直列に電流制御素子8を接続している。電流制御素子8は、温度又は電流で電気抵抗が変化して分流回路4Aの電流を制御する素子である。保護素子は、加熱抵抗4に所定の供給電圧が供給されると、電流制御素子8が分流回路4Aに流れる電流を制御して、抵抗素子7のジュール熱で低融点金属5を加熱して溶断する。
【選択図】図2

Description

本発明は、主としてパック電池に使用されて電池を保護する保護素子と、この保護素子を備えるパック電池に関する。
パック電池は、電池が異常な状態で充放電されるのを防止するために、電池と直列に保護素子を接続している。この用途に使用される保護素子は開発されている(特許文献1参照)。この保護素子は、電池が異常な状態で充放電されるときに電流を遮断する。異常時に電池の電流を遮断するために、保護素子は過電流のジュール熱に加熱されて溶断する低融点金属のヒューズを内蔵する。さらに、電池が過充電される等の異常時に、ヒューズを短時間で溶断する加熱抵抗を備える。加熱抵抗は、通電される電流によるジュール熱で加熱される。加熱された加熱抵抗は、低融点金属のヒューズを加熱して溶断する。加熱抵抗が、低融点金属のヒューズに熱結合されているからである。
保護素子は、図1の回路図でパック電池に内蔵される。この回路図に示すように、保護素子192のヒューズ195は、電池191と直列に接続される。したがって、ヒューズ195が熱で溶断されると、電池191の電流は遮断される。ヒューズ195は過電流が流れると、ジュール熱に加熱されて溶断される。溶断したヒューズ195は、電池191の電流を遮断する。また、図の回路図の保護素子192は、加熱抵抗194でヒューズ195を加熱して溶断する。加熱抵抗194は、FET等のスイッチング素子193に接続されて、スイッチング素子193で通電が制御される。スイッチング素子193は制御回路196でオンオフに制御される。制御回路196は、電池191の異常を検出して、スイッチング素子193をオンオフに切り換える。電池191が異常な状態、たとえば過充電される状態になると、制御回路196はスイッチング素子193をオンに切り換える。オン状態のスイッチング素子193は、加熱抵抗194に通電させる。通電する加熱抵抗194はジュール熱で加熱されて、低融点金属のヒューズ195を溶断する。
特開2000−340267号公報
加熱抵抗の発生熱は、供給電圧の2乗に比例して大きくなる。したがって、加熱抵抗は供給電圧が高くなると、発生熱量が大幅に変動する。たとえば、図1に示すように、4個の電池191を直列に接続しているパック電池は、3つの電池191がショートして、ひとつの電池191が過充電になったとき、1本の電池191で加熱抵抗194を加熱してヒューズ195を溶断する必要がある。また、4つの電池191の全てが過充電されて、加熱抵抗194を加熱するときには、4本の電池電圧が加熱抵抗194に過大な加熱電流を流すことになる。すなわち、この構造のパック電池は、1本の電池191で加熱抵抗194を加熱してヒューズ195を溶断できるように設計する必要がある。このため、複数の電池による高い電圧が加熱抵抗194に加えられて加熱電流が流れると、加熱電流は極めて大きくなる。
たとえば、図1に示すように電池を4直列に接続するパック電池は、3本の電池がショートして1本の電池で加熱電流を流すときと、4本の電池で加熱電流を流すときでは、加熱電流が4倍も変化する。このため、加熱抵抗に大電流が流れるときに、ヒューズが溶断される前に加熱抵抗が焼損されると、加熱抵抗でヒューズを溶断できなくなる問題点がある。
本発明は、このような欠点を解決することを目的に開発されたものである。本発明の重要な目的は、パック電池に内蔵する電池電圧が大幅に変動しても、加熱抵抗でヒューズを確実に溶断できる保護素子とこの保護素子を備えるパック電池を提供することにある。
さらに、本発明の他の大切な目的は、加熱抵抗の焼損を確実に防止できる保護素子とこの保護素子を備えるパック電池を提供することにある。
本発明の保護素子は、前述の目的を達成するために以下の構成を備える。
保護素子は、加熱すると溶断される低融点金属5と、この低融点金属5に熱結合されて、通電される電流で発生するジュール熱で低融点金属5を加熱する加熱抵抗4とを備える。加熱抵抗4は、複数の分流回路4Aを並列に接続している。各々の分流回路4Aは、電気抵抗が異なる抵抗素子7を備えると共に、少なくともひとつの分流回路4Aには、抵抗素子7と直列に電流制御素子8を接続している。電流制御素子8は、温度又は電流で電気抵抗が変化して分流回路4Aの電流を制御する素子である。保護素子は、加熱抵抗4に所定の供給電圧が供給されると、電流制御素子8が分流回路4Aに流れる電流を制御して、抵抗素子7のジュール熱で低融点金属5を加熱して溶断する。
本発明の保護素子は、電流制御素子8、48を、温度が高くなると電気抵抗が増加するPTC8A、48Aとし、PTC8A、48Aが、流れる電流のジュール熱に加熱されて設定温度よりも高くなると電気抵抗が増加して、PTC8A、48Aを直列に接続している抵抗素子7、47の電流を減少させることができる。
本発明の保護素子は、電流制御素子98、108を、温度が高くなると電気抵抗が減少するNTC98D、108Dとして、NTC98D、108Dが、流れる電流のジュール熱に加熱されて設定温度よりも高温になると、NTC98D、108Dを直列に接続している抵抗素子97、107の電流を増加させることができる。
本発明の保護素子は、電流制御素子78、88を、所定の電流が流れると電流を遮断するブレーカ8Cとして、ブレーカ78C、88Cに流れる電流が設定電流よりも大きくなるとブレーカ78C、88Cが電流を遮断して、ブレーカ78C、88Cを直列に接続している抵抗素子77、87の電流を遮断することができる。
本発明の保護素子は、電流制御素子58、68を、所定の電流が流れると電流を遮断するヒューズ58B、68Bとして、ヒューズ58B、68Bに流れる電流が設定電流よりも大きくなるとヒューズ58B、68Bが電流を遮断して、ヒューズ58B、68Bを直列に接続している抵抗素子57、67の電流を遮断することができる。
本発明の保護素子は、加熱抵抗4が、ひとつの分流回路4Aを除く分流回路4Aに電流制御素子8を接続することができる。
本発明の保護素子は、加熱抵抗4の一端を、低融点金属5の中間に接続することができる。
本発明のパック電池は、前述の目的を達成するために以下の構成を備える。
パック電池は、電池1と、この電池1に直列に接続してなる保護素子2とを備える。保護素子2は、加熱すると溶断される低融点金属5と、この低融点金属5に熱結合されて、通電される電流で発生するジュール熱で低融点金属5を加熱する加熱抵抗4とを備える。加熱抵抗4は、複数の分流回路4Aを並列に接続している。各々の分流回路4Aは、電気抵抗が異なる抵抗素子7を備えると共に、少なくともひとつに分流回路4Aには、抵抗素子7と直列に電流制御素子8を接続している。電流制御素子8は、温度又は電流で電気抵抗が変化して分流回路4Aの電流を制御する素子である。保護素子2は、加熱抵抗4に所定の供給電圧が供給されると、電流制御素子8が分流回路4Aに流れる電流を制御して、抵抗素子7のジュール熱で低融点金属5を加熱して溶断する。
本発明のパック電池は、保護素子2、42の電流制御素子8、48を、温度が高くなると電気抵抗が増加するPTC8A、48Aとし、PTC8A、48Aが、流れる電流のジュール熱に加熱されて設定温度よりも高温になると電気抵抗が増加して、PTC8A、48Aを直列に接続している抵抗素子7、47の電流を減少させることができる。
本発明のパック電池は、保護素子92、102の電流制御素子98、108を、温度が高くなると電気抵抗が減少するNTC98D、108Dとして、NTC98D、108Dが、流れる電流のジュール熱に加熱されて設定温度よりも高温になると、NTC98D、108Dを直列に接続している抵抗素子97、107の電流を増加させることができる。
本発明のパック電池は、保護素子72、82の電流制御素子78、88を、所定の電流が流れると電流を遮断するブレーカ78C、88Cとして、ブレーカ78C、88Cに流れる電流が設定電流よりも大きくなるとブレーカ78C、88Cが電流を遮断して、ブレーカ78C、88Cを直列に接続している抵抗素子77、87の電流を遮断することができる。
本発明のパック電池は、保護素子52、62の電流制御素子58、68を、所定の電流が流れると電流を遮断するヒューズ58B、68Bとして、ヒューズ58B、68Bに流れる電流が設定電流よりも大きくなるとヒューズ58B、68Bが電流を遮断して、ヒューズ58B、68Bを直列に接続している抵抗素子57、67の電流を遮断することができる。
本発明のパック電池は、保護素子2の加熱抵抗4が、ひとつの分流回路4Aを除く分流回路4Aに電流制御素子8を接続することができる。
本発明のパック電池は、保護素子2が、加熱抵抗4の一端を、低融点金属5の中間に接続することができる。
本明細書において、加熱抵抗が焼損されるとは、加熱抵抗の電気抵抗が極めて大きくなって実質的に電流がほとんど流れなくなる状態(場合によっては、切れることもある)を意味するものとする。
本発明の保護素子とこの保護素子を備えるパック電池は、パック電池に内蔵する電池電圧が大幅に変動しても、加熱抵抗でヒューズを確実に溶断できる特長がある。それは、本発明の保護素子が、複数の分流回路を並列に接続している加熱抵抗で低融点金属を加熱しており、各々の分流回路は、電気抵抗が異なる抵抗素子を備えると共に、少なくともひとつの分流回路に、抵抗素子と直列に電流制御素子を接続しており、この電流制御素子は、温度又は電流で分流回路の電流を制御する素子であって、加熱抵抗に所定の供給電圧が供給されると、電流制御素子が分流回路に流れる電流を制御して、抵抗素子のジュール熱で低融点金属を加熱して溶断するようにしているからである。この構造の保護素子は、所定の供給電圧が加熱抵抗に供給されると、分流回路に接続している電流制御素子が、これと直列に接続している抵抗素子の電流を制御するので、最適な電気抵抗の抵抗素子に通電される電流で発生するジュール熱によって低融点金属を加熱して溶断できる。このため、本発明の保護素子とパック電池は、加熱抵抗に供給される電圧が大幅に変化しても、低融点金属を加熱して確実に溶断できる。
とくに、電流制御素子をPTCとする保護素子及びこの保護素子を備えるパック電池は、PTCの温度が設定温度より高くなるとPTCの電気抵抗が増加して、PTCと直列に接続している抵抗素子の電流を減少させるので、抵抗素子に大電流が流れて、抵抗素子が焼損するのを有効に防止できる。
また、電流制御素子をブレーカあるいはヒューズとする保護素子及びこの保護素子を備えるパック電池は、流れる電流が設定電流よりも大きくなると、ブレーカあるいはヒューズが電流を遮断するので、抵抗素子に大電流が流れて、抵抗素子が焼損するのを確実に防止できる。
さらにまた、電流制御素子をNTCとする保護素子及びこの保護素子を備えるパック電池は、NTCの温度が設定温度より高くなるとNTCと直列に接続している抵抗素子の電流を増加させるので、抵抗素子に大電流を流して、抵抗素子を速やかに焼損して、最適な電気抵抗の抵抗素子のジュール熱で低融点金属を加熱して溶断できる。
以下、本発明の実施例を図面に基づいて説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための保護素子とこの保護素子を備えるパック電池を例示するものであって、本発明は保護素子とパック電池を以下のものに特定しない。
さらに、この明細書は、特許請求の範囲を理解しやすいように、実施例に示される部材に対応する番号を、「特許請求の範囲」および「課題を解決するための手段の欄」に示される部材に付記している。ただ、特許請求の範囲に示される部材を、実施例の部材に特定するものでは決してない。
図2の回路図に示すパック電池は、電池1の異常を検出する制御回路6と、この制御回路6の出力信号でオンオフに切り換えられるスイッチング素子3と、このスイッチング素子3に制御されて異常時に電池1の電流を遮断する保護素子2を備える。
保護素子2は、図3に示すように、低融点金属5と、この低融点金属5に熱結合されて、低融点金属5を加熱して溶断する加熱抵抗4を備える。低融点金属5は、電池1と直列に接続されて、異常時に溶断されて電池1の電流を遮断する。加熱抵抗4は、ジュール熱で加熱されて、熱結合している低融点金属5を熱で溶断する。
保護素子2は、電池1に接続される電池端子11と、充電器や負荷に接続される充電端子12と、スイッチング素子3に接続されるスイッチ端子13とを備える。低融点金属5は、一端を低融点金属5に、他端を充電端子12に接続している。加熱抵抗4は一端を低融点金属5の中間に接続して、他端をスイッチ端子13に接続している。
制御回路6は、電池1が異常な状態になることを検出し、電池1が異常な状態になると、スイッチング素子3をオンにする信号を出力する。制御回路6が検出する電池1の異常な状態とは、たとえば、満充電された電池がさらに充電される状態、あるいは、電池に過電流が流れる状態である。ただ、本発明は、電池の異常な状態をこの状態には特定しない。電池の異常な状態とは、満充電された電池の充電や過電流のみでなく、たとえば、電池温度が異常な温度に上昇した状態等、パック電池を安全に、あるいは正常に使用できない電池が充電又は放電される状態を意味するものとする。複数の電池1を内蔵するパック電池は、各々の電池1の異常な状態を検出して、いずれかの電池1が異常な状態で使用されると、スイッチング素子3をオンにする信号を出力する。制御回路6は、全ての電池1が正常な状態にあるとき、スイッチング素子3をオンにする信号を出力せずに、スイッチング素子3をオフに保持する。
スイッチング素子3はFETである。FETは、ゲートを制御回路6の出力端子に接続して、ソースをアース側に、ドレインを加熱抵抗4に接続している。スイッチング素子3には、FETに代わってトランジスタ等の他のスイッチング素子も使用できる。トランジスタは、ベースを制御回路に接続して、エミッタをアースに、コレクタを加熱抵抗に接続する。スイッチング素子をトランジスタとするパック電池は、電池が異常な状態になると、トランジスタをオンにする信号を制御回路が出力する。さらに、スイッチング素子にはリレーも使用できる。リレーはノーマルオープン側の接点をアースと加熱抵抗との間に接続し、励磁コイルをアースと制御回路の出力側とに接続する。このパック電池は、電池が異常な状態になると、リレーの励磁コイルに通電して、ノーマルオープン側の接点を閉じて、加熱抵抗に加熱電流を流す。
図2のパック電池は、保護素子2の電池端子11を電池1に、充電端子12を出力端子10に接続して、出力端子10と電池1との間に、保護素子2の低融点金属5を直列に接続している。低融点金属5は、所定の温度に加熱されると溶断されて電流を遮断するヒューズである。ヒューズは、加熱抵抗4で加熱されない状態においても、それ自体に流れる過大な電流のジュール熱で溶断して電流を遮断できる。すなわち、ヒューズは自己発熱で溶断できる。ただし、本発明は、低融点金属を必ずしもヒューズとする必要はなく、低融点金属には、それ自体に流れる電流のジュール熱では溶断されないが、加熱抵抗に加熱されて溶断できるものも使用できる。
保護素子2は、図3に示すように、加熱抵抗4を低融点金属5の中間に接続して、一対の低融点金属5を直列に接続している。一方の低融点金属5は電池端子11を介して電池1に、他方の低融点金属5は充電端子12を介してパック電池の出力端子10に接続している。また、直列に接続している一対の低融点金属5の中間接続点18は、加熱抵抗4に接続している。この保護素子2は、電池1の放電電流と充電電流の両方を遮断できる。電池1に接続している低融点金属5を溶断して、電池1の放電電流を遮断し、また、充電器に接続される状態では充電器に接続される低融点金属5を溶断し、充電電流を遮断できる。
保護素子2は、加熱抵抗4で低融点金属5を加熱して溶断できるように、低融点金属5に熱結合して加熱抵抗4を配設している。加熱抵抗4は、低融点金属5に接近して配設され、あるいは絶縁材を介して積層して配設される。低融点金属5に接近して、あるいは絶縁状態で積層して配設される加熱抵抗4は、輻射熱や熱伝導で低融点金属5を加熱する。さらに、図3の保護素子2は、直列に接続している一対の低融点金属5の中間接続点18に加熱抵抗4を接続している。この加熱抵抗4は、中間接続点18を介して伝導される熱によっても低融点金属5を加熱する。低融点金属5に熱結合される加熱抵抗4は、通電される電流で発生するジュール熱で低融点金属5を加熱して溶断する。
加熱抵抗4は、一端を低融点金属5に接続して、他端をスイッチ端子13を介してスイッチング素子3に接続している。図に示す加熱抵抗4は、一対の低融点金属5の中間接続点18に一端を接続している。加熱抵抗4は、複数の分流回路4Aを並列に接続している。図3の保護素子2は2回路の分流回路4Aを並列に、図4の保護素子42は3回路の分流回路44Aを並列に接続している。各々の分流回路4A、44Aは、電気抵抗が異なる抵抗素子7、47を備えると共に、少なくともひとつの分流回路4A、44Aには抵抗素子7、47と直列に電流制御素子8、48を接続している。
電流制御素子8、48は、温度又は電流で電気抵抗が変化して分流回路4A、44Aの電流を制御する素子である。この電流制御素子8、48は、PTC、NTC、ブレーカ、ヒューズ等の素子である。PTC(Positive Temperature Coefficient)は、流れる電流のジュール熱に加熱されて設定温度よりも高くなると、電気抵抗が急激に増加する。電気抵抗が増大したPTCは、直列に接続している抵抗素子の電流を減少させる。NTC(Negative Temperature Coefficient)は、温度が高くなると電気抵抗が減少する電気特性を有する。NTCは、流れる電流のジュール熱に加熱されて温度が上昇する。ジュール熱で加熱されてNTCの温度が設定温度よりも高くなると、電気抵抗が急激に減少して、直列に接続している抵抗素子の電流を増加させる。ブレーカは、通電される電流が設定電流よりも大きくなると電流を遮断して、直列に接続している抵抗素子の電流を遮断する。ヒューズも、ブレーカと同じように、通電される電流が設定電流よりも大きくなると、溶断して電流を遮断する。ヒューズが溶断されると、これと直列に接続している抵抗素子の電流を遮断する。
各々の分流回路4A、44Aには、電気抵抗が異なる抵抗素子7、47を接続している。各々の抵抗素子7、47は、電気抵抗が異なるので、加熱抵抗4、44の供給電圧が同じであっても、ジュール熱による発熱量が異なる。保護素子2、42は、加熱抵抗4、44の発生熱で低融点金属5、45を加熱して溶断するが、抵抗素子7、47のジュール熱による発熱量が小さすぎると低融点金属5、45を熱で溶断できない。
抵抗素子のジュール熱による発熱量は消費電力Wに比例する。抵抗素子の発熱量Q(cal)は、以下の式(1)で示すようになる。
Q=0.24WT…………(1)
ただし、この式において、Wは消費電力、Tは時間(sec)である。
この式から、抵抗素子は消費電力に比例して発熱量が大きくなる。いいかえると、消費電力が発熱量を特定する。たとえば、抵抗素子の消費電力を2倍にすると発熱量も2倍になる。抵抗素子の消費電力Wは、以下の式(2)で示すように、電気抵抗と供給電圧で特定される。
W=E/R…………(2)
ただし、この式において、Eは抵抗素子の供給電圧、Rは電気抵抗である。
この式に示すように、抵抗素子の消費電力は電気抵抗に反比例して大きくなる。したがって、抵抗素子は、電気抵抗が1/2になると消費電力と発熱量は2倍に、電気抵抗が1/3になると消費電力と発熱量は3倍になる。このことから、並列に接続している抵抗素子は、電気抵抗によって消費電力と発熱量が異なり、電気抵抗の小さいものは大きいものよりも発熱量が大きくなる。
図12に示すように、加熱抵抗184をひとつの抵抗素子187とする従来の保護素子182は、加熱抵抗184の熱で低融点金属185を加熱して溶断するが、発熱量が大きすぎると、それ自体が焼損するので、加熱抵抗184の電気抵抗は、低融点金属185を溶断できるように小さい電気抵抗としながら、それ自体が焼損しない大きい電気抵抗とする必要がある。すなわち、加熱抵抗184は、電気抵抗を所定の範囲に設定している。加熱抵抗は電気抵抗が大きすぎると、発熱量が小さくなって低融点金属を溶断できなくなり、反対に電気抵抗が小さすぎると発熱量が大きすぎて、それ自体が焼損する。このことから、加熱抵抗の電気抵抗は、所定の供給電圧において、それ自体が焼損することなく、低融点金属を加熱して溶断できる発熱量となるように決定している。
ただ、加熱抵抗の消費電力と発熱量は、電気抵抗が一定であっても、供給電圧の2乗に比例して大きくなるので、供給電圧が規定値よりも大きくなると、発熱量が急激に大きくなって焼損する。たとえば加熱抵抗の供給電圧が規定電圧の2倍になると、発熱量は4倍に増加して加熱抵抗を焼損させる。焼損した加熱抵抗は電流が極端に少なくなってジュール熱を発生しなくなる。この加熱抵抗は、焼損した後の発熱量が極端に少なくなって低融点金属を加熱できなくなる。
以上の理由で、ひとつの抵抗素子からなる加熱抵抗が、損傷することなく低融点金属を加熱して溶断できる供給電圧は規定の範囲に制限される。供給電圧が規定範囲よりも低くなると、消費電力が小さくなって低融点金属を加熱して溶断できなくなり、反対に規定範囲よりも高くなると消費電力が大きくなってそれ自体が焼損して、低融点金属を加熱して溶断できなくなる。このため、ひとつの抵抗素子からなる加熱抵抗が低融点金属を加熱して溶断できる電圧範囲は規定の範囲に制限される。
本発明の保護素子は、図3ないし図10に示すように、加熱抵抗4、44、54、64、74、84、94、104に供給される電圧が大幅に変化しても、低融点金属5、45、55、65、75、85、95、105を加熱して溶断できるように、複数の分流回路4A、44A、54A、64A、74A、84A、94A、104Aで加熱抵抗を構成する。各々の分流回路4A、44A、54A、64A、74A、84A、94A、104Aには、電気抵抗が異なる抵抗素子7、47、57、67、77、87、97、107を接続している。電気抵抗の小さい抵抗素子は、低い供給電圧における消費電力と発熱量が大きく、供給電圧の低い状態で低融点金属5、45、55、65、75、85、95、105を加熱して溶断する。電気抵抗の大きい抵抗素子は、高い供給電圧における消費電力と発熱量が大きく、供給電圧が高い状態で低融点金属5、45、55、65、75、85、95、105を加熱して溶断する。図3ないし図10に示す保護素子2、42、52、62、72、82、92、102は、供給電圧の低い状態では、低抵抗な抵抗素子が低融点金属5、45、55、65、75、85、95、105を加熱して溶断する。この状態で、高抵抗な抵抗素子は消費電力と発熱量が小さいために、低融点金属5、45、55、65、75、85、95、105を加熱して溶断できない。供給電圧が高くなると、高抵抗な抵抗素子の消費電力と発熱量が大きくなって、低融点金属5、45、55、65、75、85、95、105を加熱して溶断する。加熱抵抗4、44、54、64、74、84、94、104の供給電圧が高くなると、低抵抗な抵抗素子は消費電力と発熱量が大きくなって焼損されるので、図3ないし図8に示す保護素子2、42、52、62、72、82は、供給電圧が高くなると、電流制御素子8、48、58、68、78、88で低抵抗な抵抗素子の電流を遮断する。また、図9と図10に示す保護素子92、102は、供給電圧が高くなると、電流制御素子98、108でもって低抵抗な抵抗素子の電流を増加させて焼損させる。
なお、図4ないし図10に示す実施例において、図2と図3に示す実施例を同じ構成要素については、図4ないし図9では上1桁を除く下桁に、図10では上2桁を除く下桁に同符号を付して、その説明を省略する。
図3ないし図8に示す保護素子2、42、52、62、72、82は、加熱抵抗4、44、54、64、74、84に供給される電圧が高くなると、低抵抗な抵抗素子の電流を電流制御素子8、48、58、68、78、88で減少し、あるいは遮断して、供給電圧が高くなる状態で、低抵抗な抵抗素子の焼損を防止する。
図3と図4の保護素子2、42は、供給電圧が高くなると、PTC8A、48Aの電気抵抗が急激に増加して、これに接続している抵抗素子7、47の電流を著しく減少させて、実質的にはほとんど流れなくする。図3に示すように、2回路の分流回路4Aを並列に接続する保護素子2は、電気抵抗の小さい低抵抗な抵抗素子7Aと直列に、電流制御素子8のPTC8Aを接続して、電気抵抗の大きい抵抗素子7Cには電流制御素子を接続しない。PTC8Aは、トリップ電圧よりも低い電圧において電気抵抗が小さく、印加電圧がトリップ電圧よりも高くなると電気抵抗が急激に増加する素子である。PTC8Aの電気抵抗が急激に増加する電圧がトリップ電圧である。
電流制御素子8をPTC8Aとする保護素子2は、PTC8Aの印加電圧がトリップ電圧よりも高くなると、PTC8Aの電気抵抗が急激に大きくなる。この状態で、低抵抗な抵抗素子7Aの電流は著しく減少し、実質的には電流が遮断される。加熱抵抗4に供給される電圧は、PTC8Aと低抵抗な抵抗素子7Aとに分圧されるので、供給電圧が分圧してPTC8Aに供給され、PTC8Aの印加電圧がトリップ電圧を越えると、PTC8Aは電気抵抗が急激に増加する。分圧して供給されるPTC8Aの印加電圧がトリップ電圧よりも低いとき、PTC8Aは極めて低抵抗な状態にある。したがって、この状態で、PTC8Aは、これと直列に接続している低抵抗な抵抗素子7Aの電流を遮断しない。この状態において、PTC8Aと直列に接続している低抵抗な抵抗素子7Aは、PTC8Aに電流が遮断されることなく、電流が流れてジュール熱で発熱する。したがって、低抵抗な抵抗素子7Aは、供給電圧が低い状態ではPTC8Aで電流が遮断されず、供給電圧が高くなると、PTC8Aで電流が電流が遮断される。このため、低抵抗な抵抗素子7Aは、供給電圧が低いときにジュール熱で発熱し、供給電圧が高くなるとPTC8Aで電流が遮断される。したがって、低抵抗な抵抗素子7Aは、加熱抵抗4の供給電圧が高くなっても、大電流で焼損されない。
加熱抵抗4の供給電圧が高くなると、低抵抗な抵抗素子7Aの電流は遮断され、これに代わって、高抵抗な抵抗素子7Cが低融点金属5を加熱して溶断するようになる。高抵抗な抵抗素子7Cの消費電力が増加してジュール熱が大きくなるからである。すなわち、供給電圧が低いときは、低抵抗な抵抗素子7Aが低融点金属5を加熱して溶断し、供給電圧が高い状態では、高抵抗な抵抗素子7Cが低融点金属5を加熱して溶断する。
以上のように、供給電圧が低いときに低抵抗な抵抗素子7Aが低融点金属5を加熱して溶断し、供給電圧が高くなると高抵抗な抵抗素子7Cが低融点金属5を溶断するように、低抵抗な抵抗素子7Aと高抵抗な抵抗素子7Cの電気抵抗が特定される。
抵抗素子7A、7Cの電気抵抗は、供給電圧と、消費電力と、発熱量と、低融点金属5を溶断できる熱量とを考慮して特定される。たとえば、抵抗素子7A、7Cの消費電力を5W以上として、低融点金属5を加熱して溶断できるとし、かつ低抵抗な抵抗素子7Aでもって、5V以上の供給電圧で低融点金属5を加熱して溶断するとすれば、低抵抗な抵抗素子7Aの電気抵抗は5Ωとなる。
低抵抗な抵抗素子7Aは、供給電圧が高くなると消費電力が大きくなって焼損する。抵抗素子7Aが焼損する消費電力を15Wより大きくすると、低抵抗な抵抗素子7Aに供給できる最高電圧は8.6Vとなる。抵抗素子7Aの供給電圧がこの電圧を越えると、消費電力が15Wを越えて焼損するからである。低抵抗な抵抗素子7Aに直列に接続しているPTC8Aは、低抵抗な抵抗素子7Aの供給電圧が上昇するときに電気抵抗が大きくなって、低抵抗な抵抗素子7Aの供給電圧を8.6V以下に制限する。たとえば、PTC8Aは低抵抗な抵抗素子7Aの供給電圧が8Vを越えると、トリップして電気抵抗が急激に大きくなる。PTC8Aは、低抵抗な抵抗素子7Aと直列に接続されるので、低抵抗な抵抗素子7Aの電圧が8V以下では、電気抵抗が極めて小さく、低抵抗な抵抗素子7Aの電流を小さく制限しない。
PTC8Aがトリップして電気抵抗が大きくなる状態で、高抵抗な抵抗素子7Cが低融点金属5を加熱して溶断する。高抵抗な抵抗素子7Cは、電気抵抗を10Ωとする。この高抵抗な抵抗素子7Cは、供給電圧が7.1V以上のときに消費電力が5W以上となって、低融点金属5を溶断する。この電気抵抗の高抵抗な抵抗素子7Cは、供給電圧が12.2Vとなると、消費電力が15Wとなるので、高抵抗な抵抗素子7Cの供給電圧が12.2Vになるまで発熱して、低融点金属5を溶断する。
以上のことから、消費電力を5W〜15Wとする範囲で低融点金属5を溶断できるふたつの抵抗素子7A、7Cであって、電気抵抗を5Ωとする抵抗素子7Aと、10Ωとする抵抗素子7Cとを分流回路4Aの抵抗素子7とする加熱抵抗4は、抵抗素子7の供給電圧が5V〜12.2Vとなる広い範囲で低融点金属5を加熱して溶断できる。この保護素子2は、供給電圧を5V〜8Vとする範囲では電気抵抗を5Ωとする抵抗素子7Aが低融点金属5を加熱して溶断し、供給電圧が8Vを越えて、PTC8Aがトリップして電気抵抗が大きくなった後は、電気抵抗を10Ωとする抵抗素子7Cが低融点金属5を加熱して溶断する。
保護素子は、図4に示すように、分流回路44Aを3回路として、さらに使用できる電圧範囲を広くできる。たとえば、分流回路44Aを3回路とする保護素子42は、抵抗素子47A、47B、47Cの電気抵抗を5Ω、10Ω、20Ωとして、抵抗素子47A、47B、47Cに供給される電圧範囲を、5V〜17.3Vと広くできる。ただし、この保護素子42は、5Ωと10Ωの抵抗素子47A、47Bには、電流制御素子48のPTC48Aを直列に接続している。PTC48Aは、直列に接続している抵抗素子47A、47Bの消費電力が焼損する前にトリップする。トリップしたPTC48Aは、電気抵抗が大きくなって、直列に接続している抵抗素子47A、47Bの電流を実質的に遮断する。
以上の保護素子42は、複数の分流回路44Aを備えて、最も電気抵抗の大きい抵抗素子47Cには電流制御素子を接続していないが、全ての抵抗素子に直列に電流制御素子を接続することもできる。各々の電流制御素子は、直列に接続している抵抗素子が焼損する前に電気抵抗を大きくして、抵抗素子の電流を実質的に遮断する。
以上の保護素子2、42は、各々の抵抗素子7、47が低融点金属5、45を加熱して溶断できる消費電力範囲を、5W〜15Wの一定とするが、各々の抵抗素子は、低融点金属を溶断できる消費電力範囲を全て一定とする必要はない。たとえば、各々の抵抗素子は、低融点金属を溶断できる消費電力範囲を異なるようにすることもできるからである。たとえば、抵抗素子は、低融点金属との熱結合状態によって、低融点金属を溶断できる消費電力範囲が変化する。熱結合が少なく、抵抗素子から低融点金属への熱伝導率の小さい抵抗素子は、低融点金属を溶断できる消費電力が大きくなる。反対に熱結合が大きく、抵抗素子から低融点金属への熱伝導率が大きい抵抗素子は、小さい消費電力で低融点金属を溶断できるからである。
保護素子は、分流回路の数を多くして、使用できる供給電圧範囲、すなわち加熱抵抗で低融点金属を溶断できる電圧範囲を大きくできる。保護素子は、並列に接続する分流回路の数を、直列に接続される電池の個数に対応することができる。ただ、保護素子は、必ずしも、並列に接続する分流回路の数と、直列に接続される電池の個数とを等しくする必要はない。たとえば、抵抗素子に、低融点金属を溶断できる電圧範囲が広いものを使用して、ひとつの分流回路に複数の電池を対応させることもできる。すなわち、並列接続する分流回路の数を、直列接続される電池の個数より少なくすることができる。
図5と図6の保護素子52、62は、電流制御素子58、68にPTCに代わってヒューズ58B、68Bを使用する。ヒューズ58B、68Bは、所定の所定の電流が流れると溶断して電流を遮断する。電流制御素子58、68をヒューズ58B、68Bとする保護素子52、62は、図3と図4の保護素子2、42のPTC8A、48Aがトリップする電圧で、ヒューズ58B、68Bを溶断して、これと直列に接続された抵抗素子の電流を遮断する。この保護素子52、62は、ヒューズ58B、68Bを溶断して抵抗素子57A、67A、67Bの電流を遮断するので、供給電圧が高くなっても、抵抗素子57A、67A、67Bを焼損しない。
また、図7と図8の保護素子72、82は、電流制御素子78、88としてPTCに代わってブレーカ78C、88Cを使用する。ブレーカ78C、88Cは、所定の電流が流れると電流を遮断する。したがって、電流制御素子78、88をブレーカ78C、88Cとする保護素子72、82は、図3と図4の保護素子2、42のPTC8A、48Aがトリップする電圧で、ブレーカ78C、88Cで抵抗素子77A、87A、87Bの電流を遮断するので、供給電圧が高くなっても、抵抗素子77A、87A、87Bを焼損することがない。
さらに、図9と図10の保護素子92、102は、図3と図4の保護素子2、42の電流制御素子8、48としてPTCに代わってNTC98D、108Dを使用する。NTC98D、108Dは、PTCとは反対に、温度が高くなると電気抵抗が減少する。したがって、図9の保護素子2は、供給電圧が高くなると、NTC98Dの電気抵抗が減少して、これと直列に接続している抵抗素子97Aの電流を増加させ、NTC98Dと直列に接続している抵抗素子97Aを確実に焼損させる。さらに、焼損しない抵抗素子97Cで低融点金属95を加熱して溶断する。また、図10の保護素子102は、供給電圧が高くなると、NTC108Dの電気抵抗が減少して、これと直列に接続している抵抗素子107の電流を増加させる。さらに、この保護素子は102、抵抗素子107を順に焼損させながら、焼損されない抵抗素子107、すなわち供給電圧に最適な抵抗素子107で低融点金属105を加熱して溶断する。
以上の保護素子を内蔵するパック電池は、電池1が正常な状態にあるときに、制御回路6がスイッチング素子3をオフに保持する。スイッチング素子3がオフ状態にあると、加熱抵抗4には電流が流れない。したがって、低融点金属5が加熱抵抗4に加熱されることがなく、低融点金属5が溶断されることはない。したがって、電池1は低融点金属5を介してパック電池の出力端子10に接続される。この状態で、パック電池は充電され、あるいは放電される。
電池1が異常に状態になると、制御回路6はスイッチング素子3をオフからオンに切り換える。オンになったスイッチング素子3は、加熱抵抗4に加熱電流を流す。加熱抵抗4は、加熱電流によるジュール熱で加熱される。加熱された加熱抵抗4は、低融点金属5を加熱して溶断する。低融点金属5が溶断されると、電池1はパック電池の出力端子10から切り離されて、電流が遮断される。
保護素子2は、供給電圧が高いと、電流制御素子8が抵抗素子7の電流を制御して、残りの抵抗素子7で低融点金属5を加熱して溶断する。電流制御素子8で電流制御される抵抗素子7の個数は、供給電圧によって変化する。いいかえると、パック電池に内蔵される電池1の個数や種類によって電流制御する抵抗素子7の個数が変化する。複数の電池1を直列に接続しているパック電池は、直列接続する電池1の個数が多くなって、電圧が高くなると、電流制御される抵抗素子7の個数が多くなる。
直列に接続する電池1の個数が多くなって出力電圧を高くしているパック電池は、スイッチング素子3がオンになる状態で、電気抵抗の小さい抵抗素子7が低融点金属5を加熱し、供給電圧が高いときには、電流制御素子8がこれと直列に接続している抵抗素子7の電流を制御して、最適な電気抵抗の抵抗素子7が低融点金属5を加熱して溶断する。
図11の回路図は、本発明の他の実施例のパック電池を示す。この図のパック電池は、パック電池の出力端子1110と電池111との間に、ひとつの低融点金属115を接続している。このパック電池は、電池111が異常な状態になると、スイッチング素子113がオンになって、加熱抵抗114に加熱電流が流れる。加熱電流が流れる加熱抵抗114は、ジュール熱で加熱されて、低融点金属115を熱溶断して電流を遮断する。このパック電池も、直列に接続する電池111の個数を多くして、出力電圧を高くしているものにあっては、電気抵抗の小さい抵抗素子117に流れる電流を電流制御素子118が制御して、電気抵抗の大きい抵抗素子117で低融点金属115を加熱して溶断する。電流制御される抵抗素子117の個数は、直列に接続する電池111の個数、いいかえると加熱抵抗114の供給電圧により変化し、供給電圧が高くなると、電流制御する抵抗素子117の個数が多く、供給電圧が低いと電流制御する抵抗素子117の個数は少なくなる。
なお、図11に示す実施例において、前述の実施例と同じ構成要素については、上2桁を除く下桁に同符号を付して、その説明を省略している。
従来のパック電池の回路図である。 本発明の一実施例にかかるパック電池の回路図である。 図2に示すパック電池の保護素子の回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 保護素子の他の一例を示す回路図である。 本発明の他の実施例にかかるパック電池の回路図である。 従来の保護素子を示す回路図である。
符号の説明
1、111…電池
2、42、52、62、72、82、92、102、112…保護素子
3、113…スイッチング素子
4、44、54、64、74、84、94、104、114…加熱抵抗 4A、44A、54A、64A、74A、84A、94A、104A、114A…分流回路
5、45、55、65、75、85、95、105、115…低融点金属
6、116…制御回路
7、47、57、67、77、87、97、107、117…抵抗素子 7A、47A、57A、67A、77A、87A、97A、107A…抵抗素子
47B、67B、87B、107B…抵抗素子
7C、47C、57C、67C、77C、87C、97C、107C…抵抗素子
8、48、58、68、78、88、98、108、118…電流制御素子 8A、48A…PTC
58B、68B…ヒューズ
78C、88C…ブレーカ
98D、108D…NTC
10、1110…出力端子
11、411、511、611、711、811、911、1011、1111…電池端子
12、412、512、612、712、812、912、1012、1112…充電端子
13、413、513、613、713、813、913、1013、1113…スイッチ端子
18、418、518、618、718、818、918、1018…中間接続点
182…保護素子
184…加熱抵抗
185…低融点金属
187…抵抗素子
191…電池
192…保護素子
193…スイッチング素子
194…加熱抵抗
195…ヒューズ
196…制御回路

Claims (14)

  1. 加熱すると溶断される低融点金属と、この低融点金属に熱結合されて、通電される電流で発生するジュール熱で低融点金属を加熱する加熱抵抗とを備える保護素子であって、
    加熱抵抗が、複数の分流回路を並列に接続しており、各々の分流回路は電気抵抗が異なる抵抗素子を備えると共に、少なくともひとつの分流回路には抵抗素子と直列に電流制御素子を接続しており、
    電流制御素子は、温度又は電流で電気抵抗が変化して分流回路の電流を制御する素子であり、
    加熱抵抗に所定の供給電圧が供給されると、電流制御素子が分流回路に流れる電流を制御して、抵抗素子のジュール熱で低融点金属を加熱して溶断するようにしてなる保護素子。
  2. 請求項1に記載される保護素子であって、
    電流制御素子が、温度が高くなると電気抵抗が増加するPTCで、PTCは、流れる電流のジュール熱に加熱されて設定温度よりも高温になると電気抵抗が増加して、PTCを直列に接続している抵抗素子の電流を減少させるようにしてなる保護素子。
  3. 請求項1に記載される保護素子であって、
    電流制御素子が、温度が高くなると電気抵抗が減少するNTCで、NTCは、流れる電流のジュール熱に加熱されて設定温度よりも高温になると、NTCを直列に接続している抵抗素子の電流を増加させるようにしてなる保護素子。
  4. 請求項1に記載される保護素子であって、
    電流制御素子が、所定の電流が流れると電流を遮断するブレーカで、ブレーカに流れる電流が設定電流よりも大きくなると、ブレーカが電流を遮断して、ブレーカを直列に接続している抵抗素子の電流を遮断するようにしてなる保護素子。
  5. 請求項1に記載される保護素子であって、
    電流制御素子が、所定の電流が流れると電流を遮断するヒューズで、ヒューズに流れる電流が設定電流よりも大きくなると、ヒューズが電流を遮断して、ヒューズを直列に接続している抵抗素子の電流を遮断するようにしてなる保護素子。
  6. 請求項1に記載される保護素子であって、
    加熱抵抗が、ひとつの分流回路を除く分流回路に電流制御素子を接続してなる保護素子。
  7. 請求項1に記載される保護素子であって、
    加熱抵抗の一端を、低融点金属の中間に接続してなる保護素子。
  8. 電池と、この電池に直列に接続してなる保護素子とを備えるパック電池であって、
    保護素子が、加熱すると溶断される低融点金属と、この低融点金属に熱結合されて、通電される電流で発生するジュール熱で低融点金属を加熱する加熱抵抗とを備え、
    加熱抵抗が、複数の分流回路を並列に接続しており、各々の分流回路は電気抵抗が異なる抵抗素子を備えると共に、少なくともひとつの分流回路には抵抗素子と直列に電流制御素子を接続しており、
    電流制御素子は、温度又は電流で電気抵抗が変化して分流回路の電流を制御する素子であり、
    加熱抵抗に所定の供給電圧が供給されると、電流制御素子が分流回路に流れる電流を制御して、抵抗素子のジュール熱で低融点金属を加熱して溶断するようにしてなる保護素子を備えるパック電池。
  9. 請求項8に記載するパック電池であって、
    保護素子の電流制御素子が、温度が高くなると電気抵抗が増加するPTCで、PTCは、流れる電流のジュール熱に加熱されて設定温度よりも高温になると電気抵抗が増加して、PTCを直列に接続している抵抗素子の電流を減少させるようにしてなる保護素子を備えるパック電池。
  10. 請求項8に記載するパック電池であって、
    保護素子の電流制御素子が、温度が高くなると電気抵抗が減少するNTCで、NTCは、流れる電流のジュール熱に加熱されて設定温度よりも高温になると、NTCを直列に接続している抵抗素子の電流を増加させるようにしてなる保護素子を備えるパック電池。
  11. 請求項8に記載するパック電池であって、
    保護素子の電流制御素子が、所定の電流が流れると電流を遮断するブレーカで、ブレーカに流れる電流が設定電流よりも大きくなると、ブレーカが電流を遮断して、ブレーカを直列に接続している抵抗素子の電流を遮断するようにしてなる保護素子を備えるパック電池。
  12. 請求項8に記載するパック電池であって、
    保護素子の電流制御素子が、所定の電流が流れると電流を遮断するヒューズで、ヒューズに流れる電流が設定電流よりも大きくなると、ヒューズが電流を遮断して、ヒューズを直列に接続している抵抗素子の電流を遮断するようにしてなる保護素子を備えるパック電池。
  13. 請求項8に記載するパック電池であって、
    保護素子の加熱抵抗が、ひとつの分流回路を除く分流回路に電流制御素子を接続してなる保護素子を備えるパック電池。
  14. 請求項8に記載するパック電池であって、
    保護素子が、加熱抵抗の一端を、低融点金属の中間に接続してなる保護素子を備えるパック電池。
JP2005328122A 2005-11-11 2005-11-11 保護素子とこの保護素子を備えるパック電池 Expired - Fee Related JP4511449B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005328122A JP4511449B2 (ja) 2005-11-11 2005-11-11 保護素子とこの保護素子を備えるパック電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005328122A JP4511449B2 (ja) 2005-11-11 2005-11-11 保護素子とこの保護素子を備えるパック電池

Publications (2)

Publication Number Publication Date
JP2007135359A true JP2007135359A (ja) 2007-05-31
JP4511449B2 JP4511449B2 (ja) 2010-07-28

Family

ID=38156570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005328122A Expired - Fee Related JP4511449B2 (ja) 2005-11-11 2005-11-11 保護素子とこの保護素子を備えるパック電池

Country Status (1)

Country Link
JP (1) JP4511449B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311106A (ja) * 2007-06-15 2008-12-25 Sanyo Electric Co Ltd パック電池
JP2010186639A (ja) * 2009-02-12 2010-08-26 Chin-Chi Yang ヒューズ装置及びそれに用いる高密度導電性合金線
EP2260521A2 (en) * 2008-02-28 2010-12-15 Electronics and Telecommunications Research Institute High current control circuit including metal-insulator transition device, and system including the high current control circuit
WO2011102067A1 (ja) 2010-02-19 2011-08-25 ソニーケミカル&インフォメーションデバイス株式会社 保護回路、バッテリ制御装置、及び、バッテリパック
WO2012147598A1 (ja) 2011-04-27 2012-11-01 ソニーケミカル&インフォメーションデバイス株式会社 充放電制御装置、バッテリパック、電気機器及び充放電制御方法
WO2015030020A1 (ja) * 2013-08-28 2015-03-05 デクセリアルズ株式会社 遮断素子、及び遮断素子回路
WO2017148124A1 (zh) * 2016-02-29 2017-09-08 比亚迪股份有限公司 电池保护装置及电源组件
JP2018060659A (ja) * 2016-10-05 2018-04-12 ショット日本株式会社 保護回路
CN110828254A (zh) * 2018-08-07 2020-02-21 聚鼎科技股份有限公司 保护元件
WO2021095617A1 (ja) * 2019-11-13 2021-05-20 デクセリアルズ株式会社 保護回路
CN114600328A (zh) * 2019-11-08 2022-06-07 迪睿合株式会社 保护电路、电池组以及保护电路的工作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI657472B (zh) * 2015-02-16 2019-04-21 陳莎莉 複合式保護元件、保護電路、可充放電電池包
CN106960772B (zh) * 2016-01-11 2019-05-21 陈葆萱 保护元件与可充放电电池包

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198219A (ja) * 1988-01-29 1989-08-09 Tokyo Electric Co Ltd 電動機の保護装置
JPH08236305A (ja) * 1995-02-28 1996-09-13 Sony Chem Corp 保護回路及び保護素子
JPH1056742A (ja) * 1996-08-06 1998-02-24 Matsushita Electric Ind Co Ltd 二次電池の過充電保護回路
JP2000340267A (ja) * 1999-05-28 2000-12-08 Sanyo Electric Co Ltd パック電池
JP2001006518A (ja) * 1999-04-23 2001-01-12 Sony Chem Corp 過電流保護装置
JP2001052903A (ja) * 1999-08-04 2001-02-23 Sony Chem Corp 保護素子
JP2001325869A (ja) * 2000-05-17 2001-11-22 Sony Chem Corp 保護素子
JP2002233048A (ja) * 2001-02-06 2002-08-16 Sony Chem Corp 保護回路付き二次電池
JP2004127532A (ja) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd バッテリーパック

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198219A (ja) * 1988-01-29 1989-08-09 Tokyo Electric Co Ltd 電動機の保護装置
JPH08236305A (ja) * 1995-02-28 1996-09-13 Sony Chem Corp 保護回路及び保護素子
JPH1056742A (ja) * 1996-08-06 1998-02-24 Matsushita Electric Ind Co Ltd 二次電池の過充電保護回路
JP2001006518A (ja) * 1999-04-23 2001-01-12 Sony Chem Corp 過電流保護装置
JP2000340267A (ja) * 1999-05-28 2000-12-08 Sanyo Electric Co Ltd パック電池
JP2001052903A (ja) * 1999-08-04 2001-02-23 Sony Chem Corp 保護素子
JP2001325869A (ja) * 2000-05-17 2001-11-22 Sony Chem Corp 保護素子
JP2002233048A (ja) * 2001-02-06 2002-08-16 Sony Chem Corp 保護回路付き二次電池
JP2004127532A (ja) * 2002-09-30 2004-04-22 Sanyo Electric Co Ltd バッテリーパック

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008311106A (ja) * 2007-06-15 2008-12-25 Sanyo Electric Co Ltd パック電池
EP2260521A2 (en) * 2008-02-28 2010-12-15 Electronics and Telecommunications Research Institute High current control circuit including metal-insulator transition device, and system including the high current control circuit
EP2260521A4 (en) * 2008-02-28 2013-08-21 Korea Electronics Telecomm HIGH CURRENT CONTROL CIRCUIT COMPRISING A METAL-INSULATION TRANSITION DEVICE AND SYSTEM COMPRISING THE HIGH CURRENT CONTROL CIRCUIT
JP2010186639A (ja) * 2009-02-12 2010-08-26 Chin-Chi Yang ヒューズ装置及びそれに用いる高密度導電性合金線
US8873212B2 (en) 2010-02-19 2014-10-28 Dexerials Corporation Protection circuit, battery control device, and battery pack
WO2011102067A1 (ja) 2010-02-19 2011-08-25 ソニーケミカル&インフォメーションデバイス株式会社 保護回路、バッテリ制御装置、及び、バッテリパック
KR101828617B1 (ko) * 2010-02-19 2018-02-12 데쿠세리아루즈 가부시키가이샤 보호 회로, 배터리 제어 장치 및 배터리 팩
CN102870305A (zh) * 2010-02-19 2013-01-09 索尼化学&信息部件株式会社 保护电路、电池控制装置及电池组
US9130383B2 (en) 2011-04-27 2015-09-08 Dexerials Corporation Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method
CN103493330A (zh) * 2011-04-27 2014-01-01 迪睿合电子材料有限公司 充放电控制装置、电池组、电气设备及充放电控制方法
CN103493330B (zh) * 2011-04-27 2016-07-06 迪睿合电子材料有限公司 充放电控制装置、电池组、电气设备及充放电控制方法
WO2012147598A1 (ja) 2011-04-27 2012-11-01 ソニーケミカル&インフォメーションデバイス株式会社 充放電制御装置、バッテリパック、電気機器及び充放電制御方法
WO2015030020A1 (ja) * 2013-08-28 2015-03-05 デクセリアルズ株式会社 遮断素子、及び遮断素子回路
CN105493219A (zh) * 2013-08-28 2016-04-13 迪睿合株式会社 切断元件和切断元件电路
WO2017148124A1 (zh) * 2016-02-29 2017-09-08 比亚迪股份有限公司 电池保护装置及电源组件
JP2018060659A (ja) * 2016-10-05 2018-04-12 ショット日本株式会社 保護回路
CN110828254A (zh) * 2018-08-07 2020-02-21 聚鼎科技股份有限公司 保护元件
CN110828254B (zh) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 保护元件
CN114600328A (zh) * 2019-11-08 2022-06-07 迪睿合株式会社 保护电路、电池组以及保护电路的工作方法
CN114600328B (zh) * 2019-11-08 2023-08-25 迪睿合株式会社 保护电路、电池组以及保护电路的工作方法
WO2021095617A1 (ja) * 2019-11-13 2021-05-20 デクセリアルズ株式会社 保護回路
JP7396866B2 (ja) 2019-11-13 2023-12-12 デクセリアルズ株式会社 保護回路

Also Published As

Publication number Publication date
JP4511449B2 (ja) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4511449B2 (ja) 保護素子とこの保護素子を備えるパック電池
JP4637001B2 (ja) 保護素子とこの保護素子を備えるパック電池
KR101014939B1 (ko) 보호 회로가 부착된 2차 전지
JP2000340267A (ja) パック電池
JP4514669B2 (ja) 温度ヒューズを用いた保護装置
WO2012147598A1 (ja) 充放電制御装置、バッテリパック、電気機器及び充放電制御方法
JP5219463B2 (ja) パック電池
JP2016127769A (ja) 電池パック
WO2005046017A1 (ja) 過熱防止デバイスおよびこれを備える電気装置
KR101136707B1 (ko) 2차 전지 장치
JP5030429B2 (ja) 保護素子とこの保護素子を備えるパック電池
JP2008311106A (ja) パック電池
KR20160035588A (ko) 보호 디바이스
TW202133524A (zh) 保護電路、電池組及保護電路之動作方法
TWI702765B (zh) 熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體
JP2002330540A (ja) パック電池
JP2015056960A (ja) 切替回路
JP2004266882A (ja) バイパス抵抗付き二次電池と二次電池の保護方法
JP6656834B2 (ja) パック電池
JP2008027840A (ja) パック電池
JP4368039B2 (ja) 自己発熱素子を有する温度ヒューズとこの温度ヒューズを内蔵するパック電池
WO2022181600A1 (ja) 電池ユニットを備える電源
JP4171657B2 (ja) 二次電池の充電装置
TWI813352B (zh) 保護電路、電池組以及電子設備
JP7396866B2 (ja) 保護回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees