WO2017148124A1 - 电池保护装置及电源组件 - Google Patents

电池保护装置及电源组件 Download PDF

Info

Publication number
WO2017148124A1
WO2017148124A1 PCT/CN2016/097967 CN2016097967W WO2017148124A1 WO 2017148124 A1 WO2017148124 A1 WO 2017148124A1 CN 2016097967 W CN2016097967 W CN 2016097967W WO 2017148124 A1 WO2017148124 A1 WO 2017148124A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
terminal
battery pack
switch component
temperature
Prior art date
Application number
PCT/CN2016/097967
Other languages
English (en)
French (fr)
Inventor
周燕飞
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201620153104.0U external-priority patent/CN205489483U/zh
Priority claimed from CN201610112997.9A external-priority patent/CN107134756A/zh
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2017148124A1 publication Critical patent/WO2017148124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators

Definitions

  • the present application relates to the field of batteries, and in particular to a battery protection device and a power supply assembly.
  • lithium-ion batteries are characterized by high energy density and light weight. Due to the product characteristics of lithium-ion batteries, the battery needs to be protected to ensure safety during use.
  • the temperature switch TCO In the existing battery protection device for a notebook computer, if it is desired to achieve over-temperature protection of the battery pack, the temperature switch TCO is usually connected in series at each battery of the battery pack, and the temperature switch TCO can sense the temperature of the battery. When this temperature reaches the trigger temperature of the temperature switch TCO, the temperature switch TCO is automatically activated to open the battery and achieve over-temperature protection.
  • the temperature switch TCO needs to be connected in series with the battery electrode.
  • the battery pack needs to be modified, which results in the installation of the temperature switch TCO. inconvenient.
  • the higher cost of the temperature switch TCO increases the overall cost of the battery protection device.
  • an embodiment of the present application provides a battery protection device for protecting a battery pack, the battery pack including N-cell batteries connected in series, wherein N ⁇ 1, the device includes: An output terminal and a negative output terminal for accessing an external device, the positive output terminal is further configured to connect a positive pole of the battery pack, and the negative output terminal is further configured to connect a negative pole of the battery pack; M fuses, For connecting with the N-cell battery, wherein M ⁇ 1; P thermistors are attached around the battery pack for detecting the temperature of the battery pack, wherein P ⁇ 1; the first switch An assembly including a controlled terminal, a first terminal, and a second terminal, wherein the first terminal and the electric The positive poles of the pool group are connected via at least one of the M fuses, the second terminal is connected to the negative pole of the battery pack; a first control module is coupled to the thermistor, and The controlled terminal connection of the first switch component is configured to acquire a temperature of the battery pack detected by the thermistor, and
  • An embodiment of the present application further provides a power supply assembly including: a battery pack including N-cell batteries connected in series, wherein N ⁇ 1; and a battery protection device, which is provided according to an embodiment of the present application Battery protection device.
  • the battery protection device provided by the embodiment of the present application has the characteristics of being simple, reliable, and easy to implement, and is suitable for use in a digital product requiring a simplified structure and reliable performance.
  • Figure 1 shows a partial circuit diagram of a prior art battery protection device for a notebook computer.
  • FIG. 2 shows a circuit diagram of a battery protection device in accordance with an embodiment of the present application.
  • FIG. 3 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 4 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 5 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 6 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 7 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 8 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 9 shows a circuit diagram of a battery protection device in accordance with another embodiment of the present application.
  • FIG. 10 shows a circuit diagram of a battery protection device according to another embodiment of the present application.
  • FIG. 11 shows a circuit diagram of a battery protection device according to another embodiment of the present application.
  • FIG. 12 shows a circuit diagram of a battery protection device according to another embodiment of the present application.
  • FIG. 13 shows a circuit diagram of a battery protection device according to another embodiment of the present application.
  • FIG. 1 shows a partial circuit diagram of a prior art battery protection device for a notebook computer.
  • the existing battery protection device may include temperature switches TCO1, TCO2, and TCO3.
  • the number of temperature switches is the same as the number of batteries in the battery pack.
  • the temperature switches ie, temperature switch TCO1, temperature switch TCO2, and temperature switch TCO3 are alternately connected in series with the battery cells in the battery pack (ie, battery B1, battery B2, and battery B3).
  • the so-called alternating series means that all the temperature switches and all the batteries are connected in series in the current direction according to one temperature switch and one battery.
  • the temperature switch needs to be connected to the battery electrode, when the temperature switch is connected in series between the batteries, the battery pack needs to be modified, which makes the installation of the temperature switch very inconvenient.
  • the cost of the temperature switch is higher, thereby increasing the overall cost of the battery protection device.
  • an embodiment of the present application provides a battery protection device.
  • the battery protection device can be applied to various digital products, such as notebook computers, tablet computers, smart phones, and the like.
  • FIG. 2 shows a circuit diagram of a battery protection device 20 in accordance with an embodiment of the present application.
  • the battery protection device 20 is used to protect the battery pack.
  • the battery pack may include N-cell batteries connected in series, where N ⁇ 1.
  • the battery pack includes three batteries connected in series, which are battery B1, battery B2, and battery B3, respectively. It should be understood that the battery pack may also include a smaller number or a greater number of batteries.
  • the battery included in the battery pack may be a lithium battery.
  • the exposed battery positive electrode can serve as the positive electrode of the entire battery pack
  • the exposed battery negative electrode can serve as the negative electrode of the entire battery pack.
  • the positive electrode of the battery B1 is exposed, and therefore, the positive electrode of the battery B1 serves as the positive electrode of the battery pack.
  • the negative electrode of the battery B3 is exposed, and therefore, the negative electrode of the battery B3 serves as the negative electrode of the battery pack.
  • the battery protection device 20 may include a positive output terminal 201 and a negative output terminal 202 for accessing an external device.
  • the positive output terminal 201 is also used to connect the positive pole of the battery pack
  • the negative output terminal 202 is also used to connect the negative pole of the battery pack.
  • the external device may be, for example, a charging device for charging the battery pack, or may be, for example, any electronic device that is powered by the battery pack to make it work electrically, for example, in a notebook computer. Load circuit.
  • the battery pack When the external device to which the positive output terminal 201 and the negative output terminal 202 are connected is a charging device, the battery pack is in the charging mode; when the external device connected to the positive output terminal 201 and the negative output terminal 202 supplies power to the battery pack The battery pack will be in discharge mode when the electronics are in use.
  • the battery protection device 20 can include M fuses for use in series with the N-cell battery, where M > For convenience of explanation, the battery protection device 20 is exemplarily shown in FIG. 2 to include a fuse F1.
  • the fuse F1 can For example, a current fuse.
  • the battery protection device 20 may further include a first switch assembly 203, which may include a controlled terminal 203a, a first terminal 203b, and a second terminal 203c.
  • the first terminal 203b and the positive electrode of the battery pack may be connected via at least one of the M fuses. As shown in FIG. 2, the first terminal 203b is connected to the positive electrode of the battery pack via the current fuse F1. Further, the second terminal 203c is connected to the negative electrode of the battery pack.
  • the battery protection device 20 may further include P thermistors attached to the periphery of the battery pack for detecting the temperature of the battery pack, wherein P ⁇ 1.
  • P thermistors attached to the periphery of the battery pack for detecting the temperature of the battery pack
  • the battery protection device 20 includes two thermistors, a thermistor TH1 and a thermistor TH2, respectively. It should be understood that a smaller number or a greater number of thermistors may be provided in consideration of the actual demand for temperature detection accuracy and cost requirements.
  • the battery protection device 20 may further include a first control module 204 connected to the P thermistors and connected to the controlled terminal 203a of the first switch assembly 203 for obtaining the thermistor detection.
  • the temperature of the battery pack is controlled, and when the temperature meets the preset temperature protection condition, the first switch assembly 203 is controlled to be turned on. Since the resistance value of the fuse is small in the case of normal operation of the battery pack, the partial pressure generated is negligible. Therefore, when the first switching component 203 is turned on, the positive voltage of the battery pack is substantially equal to the negative voltage of the battery pack, thereby causing the battery pack to be shorted. Since the battery pack is short-circuited, the instantaneous current in the circuit suddenly increases, thereby causing the current fuse F1 to be blown, thereby causing the battery pack to be disconnected, thereby achieving temperature protection of the battery pack.
  • the temperature protection condition may include that the temperature detected by the predetermined number of thermistors exceeds a preset temperature range.
  • the predetermined number may be 1, or is the total number P of the thermistors, or any value between 1 and P.
  • the temperature of the battery pack is detected by the thermistor, and when the temperature of the battery pack meets the preset temperature protection condition, the first control module controls the conduction of the first switch component, and the guide of the first switch component
  • the battery pack is shorted. Since the battery pack is shorted, the instantaneous current in the circuit suddenly increases, causing the fuse to blow, thereby causing the battery pack to be disconnected, thereby achieving temperature protection of the battery pack. Since it is only necessary to attach the thermistor around the battery pack, it is not necessary to connect it to the battery pack, so it is easy to install and does not involve modification of the battery pack. In addition, the cost of the thermistor is low, thereby reducing the overall cost of the battery protection device.
  • the battery protection device provided by the embodiment of the present application has the characteristics of being simple, reliable, and easy to implement, and is suitable for use in a digital product requiring a simplified structure and reliable performance.
  • the fuses used in the battery protection device 20 may all be current fuses, that is, the M fuses may include M current fuses.
  • FIG. 2 shows an example in which a current fuse F1 is included in the current protection device 20
  • FIG. 3 shows an example in which the current fuses 20 include two current fuses F1 and F2.
  • the current fuse has a low product cost, so the battery protection can be minimized. The cost of the guard 20.
  • the fuses employed in the battery protection device 20 may all be thermal fuses, ie, the M fuses may include M thermal fuses.
  • FIG. 4 shows an example in which a current fuse F3 is included in the current protection device 20.
  • double overtemperature protection of the battery pack can be achieved by thermistors and thermal fuses.
  • FIG. 5 shows an example in which the current protection device 20 includes a current fuse F1 and a temperature fuse F3.
  • the battery protection device may be in the form of a protection circuit board (eg, a PCBA (Printed Circuit Board Assembly) board).
  • a protection circuit board eg, a PCBA (Printed Circuit Board Assembly) board.
  • the first switch component 203 and the first control module 204 may be integrated on the protection circuit board.
  • the M fuses they may all be integrated on the protection circuit board.
  • the current fuse F1 is integrated with the first switch component 203 and the first control module 204 on the protection circuit board 205.
  • the M fuses may not be integrated on the protection circuit board and are separated from the protection circuit board. For example, as shown in FIG.
  • the temperature fuse F3 may be connected in series with the battery at a position adjacent to the battery, and is not It is integrated on the protection circuit board 205. Or alternatively, a part of the M fuses are integrated on the protection circuit board, and the remaining part is separated from the protection circuit board.
  • the current fuse F1 is together with the first switch component 203 and the first control module 204.
  • the current fuse F2 is not integrated on the protection circuit board 205; for example, as shown in FIG. 5, the current fuse F1 is integrated with the first switch component 203 and the first control module 204.
  • the temperature fuse F3 is connected in series with the battery at a position adjacent to the battery, and is not integrated on the protection circuit board 205.
  • the first control module 204 may include a first control chip 206, and the first control chip 206 may include a first control terminal CO1 and P temperature signal input terminals, wherein The P temperature signal input terminals are connected in one-to-one correspondence with the P thermistors.
  • the first control chip 206 includes two temperature signal input terminals, which are a temperature signal input terminal T1 and a temperature signal input terminal T2, respectively.
  • the temperature signal input terminal T1 is connected to the thermistor TH1, and the temperature signal input terminal T2 is connected to the thermistor TH2.
  • the first control terminal CO1 is connected to the controlled terminal 203a of the first switch component 203, and the first control chip 206 can be used to acquire P thermistor detection via P temperature signal input terminals.
  • the battery protection device provided by the embodiment of the present application can not only protect the battery pack from temperature, but also Realize protection against overcharging and overdischarging of the battery pack.
  • the battery protection device usually uses a three-terminal fuse to achieve overcharge protection of the lithium ion battery.
  • the structure of the three-terminal fuse is relatively complicated, and the product price is high, which results in a complicated circuit of the battery protection device and a high cost.
  • the embodiments of the present application provide a battery protection device that is simple in structure and low in cost, and performs overcharge and overdischarge protection on the battery pack, as described below.
  • FIG. 7 shows a circuit diagram of a battery protection device 20 in accordance with another embodiment of the present application.
  • the first control module 204 can also be configured to connect at least one battery in the battery pack, detect battery state information of the connected battery, and determine whether the battery status information meets preset battery protection.
  • the trigger condition controls the first switch component 203 to be turned on when it is determined that the battery state information satisfies the battery protection trigger condition.
  • the positive voltage of the battery pack is substantially equal to the negative voltage of the battery pack, thereby causing the battery pack to be shorted. Since the battery pack is short-circuited, the instantaneous current in the circuit suddenly increases, thereby causing the current fuse F1 to be blown, thereby causing the battery pack to be disconnected, thereby realizing protection of the battery pack.
  • the battery status information may include, but is not limited to, at least one of the following parameters: a voltage of the battery, a current of the battery, and a capacity of the battery.
  • the battery protection trigger condition may include, but is not limited to, at least one of the following conditions: a voltage of a predetermined number of batteries in the connected battery exceeds a preset first voltage range (by a preset first voltage threshold and a second voltage threshold is defined, wherein the first voltage threshold is greater than the second voltage threshold); a capacity of the predetermined number of batteries in the connected battery exceeds a preset first capacity range (by a preset first capacity threshold and The second capacity threshold is defined, wherein the first capacity threshold is greater than the second capacity threshold); the batteries are not balanced.
  • the predetermined number may be 1, or is the total number L of connected batteries, or any value between 1 and L, and L is a positive integer greater than 1.
  • the first control module 204 when the battery is in the charging mode, when the voltage of the battery collected by the first control module 204 is higher than the upper limit of the first voltage range (ie, the first voltage threshold) (or the battery If the capacity is higher than the upper limit of the first capacity range (ie, the first capacity threshold), the first control module 204 can determine that the battery is in an overcharge state at this time, and the battery needs to be overcharge protected. Subsequently, the first control module 204 shorts the battery pack by controlling the first switch component 203 to be turned on, so that the current fuse F1 is blown, thereby causing the battery pack to be disconnected, thereby achieving overcharge protection of the battery pack.
  • the first control module 204 can determine that the battery is in an over-discharge state at this time, and the battery needs to be over-discharged. Subsequently, the first control module 204 shorts the battery pack by controlling the first switch component 203 to be turned on, so that the current fuse F1 is blown, thereby causing the battery pack to be disconnected, thereby achieving over-discharge protection of the battery pack.
  • the first control module 204 can determine that the batteries in the battery pack are unbalanced at this time, and the battery needs to be balancedly protected. Subsequently, the first control module 204 shorts the battery pack by controlling the first switch component 203 to be turned on, so that the current fuse F1 is blown, thereby causing the battery pack to be disconnected, thereby achieving balanced protection of the battery pack.
  • the first control module 204 can control the first switch component 203 to remain when the battery is in normal operation (ie, when the detected battery state information does not satisfy the battery protection trigger condition, and the temperature of the battery pack does not satisfy the temperature protection condition) The off state, such that the first switch assembly 203 does not affect the operation of the battery pack.
  • the battery state information of the battery is collected by the first control module, and when the battery state information meets the preset battery protection trigger condition, the first switch component is controlled to be turned on, and the first switch component is turned on to make the battery pack Shorted. Since the battery pack is short-circuited, the instantaneous current in the circuit suddenly increases, so that the fuse is blown, thereby causing the battery pack to be disconnected, thereby realizing protection of the battery pack.
  • the battery pack can be quickly and effectively protected by using a single-function fuse without setting a complicated three-terminal fuse, thereby implementing the entire battery pack.
  • the protection of the orientation simplifies the circuit design, reduces the cost, is simple and reliable, and is easy to implement. It is suitable for digital products requiring simplified structure and reliable performance.
  • the first control module 204 can include a first control chip 206.
  • the first control chip 206 can include a first control terminal CO1, P temperature signal input terminals, and N first input terminals that are in one-to-one correspondence with the N cells.
  • the first control chip 206 may include three first input terminals corresponding to the three-cell batteries, respectively, a first input terminal I11, a first input terminal I12, and a first input terminal. I13, wherein each of the first input terminals is used to connect a positive electrode of a corresponding battery.
  • the first input terminal I11 corresponds to the battery B1 and is connected to the positive electrode of the battery B1.
  • the first input terminal I12 corresponds to the battery B2 and is connected to the positive electrode of the battery B2.
  • the first input terminal I13 corresponds to the battery B3 and is connected to the positive electrode of the battery B3.
  • the first control chip 206 includes two temperature signal input terminals, which are a temperature signal input terminal T1 and a temperature signal input terminal T2, respectively.
  • the temperature signal input terminal T1 is connected to the thermistor TH1, and the temperature signal input terminal T2 is connected to the thermistor TH2.
  • the first control terminal CO1 is connected to the controlled terminal 203a of the first switch component 203, and the first control chip 206 can be configured to acquire the temperature of the battery pack detected by the P thermistors via the P temperature signal input terminals, and The N first input terminals collect battery state information of each battery, and when the temperature meets a preset temperature protection condition, and/or when the battery state information satisfies the battery protection trigger condition, the first control terminal CO1 controls the first A switch assembly 203 is turned on.
  • the first input terminal I11 and the first input terminal I12 can be connected by a capacitor C1
  • the first input terminal I12 and the first input terminal I13 can be connected by a capacitor C2
  • the first control chip 206 may further include a first power terminal VDD1, which may be connected to the first input terminal I11 to be electrically operated from the battery pack.
  • the first control chip 206 may further include a first ground terminal VSS1 connected to the negative electrode (or ground) of the battery pack.
  • the use of a dedicated control chip as the first control module is not only easy to operate, but also easy to produce, reducing the workload of the technician.
  • FIG. 9 shows a circuit diagram of a battery protection device 20 in accordance with another embodiment of the present application.
  • the apparatus may further include: a second switch assembly 207 and a third switch assembly 208.
  • the second switch component 207 is connected in series between the positive output terminal 201 and the first terminal 203b of the first switch component 203
  • the third switch component 208 is connected in series between the positive output terminal 201 and the first terminal 203b of the first switch component 203.
  • the first control module 204 can also be connected to the second switch component 207 and connected to the third switch component 208.
  • the first control module 204 is further configured to connect at least one battery in the battery pack to detect The battery status information of the connected battery, and determining whether the battery status information satisfies the preset overcharge protection trigger condition and the over-discharge protection trigger condition, and controls the second switch component when determining that the battery status information satisfies the overcharge protection trigger condition 207 is disconnected to open the battery pack, and when it is determined that the battery status information satisfies the over-discharge protection trigger condition, the third switch assembly 208 is controlled to open to disconnect the battery pack.
  • the overcharge protection trigger condition may include at least one of the following conditions: a voltage of a predetermined number of batteries in the connected battery is higher than a preset third voltage threshold, in the connected battery The capacity of the predetermined number of batteries is higher than a preset third capacity threshold.
  • the third voltage threshold may be less than the first voltage threshold and greater than the second voltage threshold, and the third capacity threshold may be less than the first capacity threshold and greater than the second capacity threshold.
  • the over-discharge protection trigger condition may include at least one of the following conditions: a voltage of a predetermined number of batteries in the connected battery is lower than a preset fourth voltage threshold, and a predetermined number of batteries in the connected battery The capacity is below the preset fourth capacity threshold.
  • the fourth voltage threshold may be greater than the second voltage threshold and less than the third voltage threshold, and the fourth capacity threshold may be greater than the second capacity threshold and less than the third capacity threshold.
  • the third switch component 208 when in the charging mode, the third switch component 208 is in an on state, and if the battery state information is at a normal level (ie, the overcharge protection trigger condition is not met), the first control module 204 can control the first The two switch assemblies 207 remain conductive, thereby ensuring that charging continues. Once overcharge protection is required, the first control module 204 can control the second switch component 207 to open to disconnect the battery pack to achieve overcharge protection. When in the discharge mode, the second switch component 207 is in an on state if the battery status information is at a normal level (ie, not satisfied) The protection control trigger condition), the first control module 204 can control the third switch component 208 to remain conductive, thereby ensuring that the discharge continues. Once over-discharge protection is required, the first control module 204 can control the third switch component 208 to open to disconnect the battery pack to achieve over-discharge protection.
  • the first control module 204 may include a first control chip 206, and the first control chip 206 may include N first input terminals and P temperature signal inputs corresponding to the N-cell batteries.
  • the first control chip 206 may include three first input terminals corresponding to the three-cell batteries, respectively, a first input terminal I11, a first input terminal I12, and a first input terminal. I13, wherein each of the first input terminals is used to connect a positive electrode of a corresponding battery.
  • the first input terminal I11 corresponds to the battery B1 and is connected to the positive electrode of the battery B1.
  • the first input terminal I12 corresponds to the battery B2 and is connected to the positive electrode of the battery B2.
  • the first input terminal I13 corresponds to the battery B3 and is connected to the positive electrode of the battery B3.
  • the first control chip 206 includes two temperature signal input terminals, which are a temperature signal input terminal T1 and a temperature signal input terminal T2, respectively.
  • the temperature signal input terminal T1 is connected to the thermistor TH1, and the temperature signal input terminal T2 is connected to the thermistor TH2.
  • the first control terminal CO1 is connected to the controlled terminal 203a of the first switch component 203
  • the second control terminal CO2 is connected to the second switch component 207
  • the third control terminal CO3 is connected to the third switch component 208.
  • the first control chip 206 can be configured to acquire temperatures of the battery cells detected by the P thermistors via the P temperature signal input terminals, and collect battery state information of each of the battery cells via the N first input terminals, where the temperature is satisfied.
  • the first switch component is controlled to be turned on via the first control terminal CO1; and when the battery state information satisfies the overcharge protection trigger condition, the second switch component 207 is controlled to be disconnected via the second control terminal CO2;
  • the third switch component 208 is controlled to be turned off via the third control terminal CO3.
  • the first control module 204 can also control the first switch component 203 to be turned on to protect the battery pack when the battery state information satisfies the battery protection trigger condition.
  • the first control module 204, the second switch component 207, and the third switch component 208 one overcharge protection and one overdischarge protection of the battery pack can be achieved.
  • the circuit is abnormal, causing one protection to fail (for example, the voltage of the battery continues to rise, or the voltage of the battery continues to drop), the battery can still be realized by the first control module 204 and the first switch component 203.
  • Secondary protection including secondary overcharge protection, secondary over discharge protection, etc.). Thereby, double protection of the battery pack can be achieved.
  • the first switch component 203 can be formed as any type of switching device.
  • the first switch component 203 may include a MOS transistor, wherein the gate of the MOS transistor is connected to the controlled terminal 203a, and the source of the MOS transistor is connected to the second terminal 203c, MOS The drain of the tube is connected to the first terminal 203b.
  • the first control module 204 can output a high level signal to make the MOS transistor in an on state, thereby shorting the battery pack to protect the battery pack.
  • the first control module 204 can output a low level signal to keep the MOS tube in an off state, and at this time, does not affect the operation of the battery pack.
  • the first switch component 203 may further include a diode, the anode of the diode is connected to the source of the MOS transistor, and the cathode of the diode is connected to the drain of the MOS transistor. pole.
  • FIG. 11 shows a circuit diagram of a battery protection device 20 in accordance with another embodiment of the present application.
  • the apparatus may further include: a second control module 209 connected to the controlled terminal 203a of the first switch component 203, configured to connect at least one battery in the battery pack, and detect a battery of the connected battery Status information, and determining whether the battery status information satisfies a preset battery protection trigger condition, and when determining that the battery status information satisfies the battery protection trigger condition, controlling the first switch component 203 to be turned on, so that the battery pack is shorted, thereby The group is protected.
  • a second control module 209 connected to the controlled terminal 203a of the first switch component 203, configured to connect at least one battery in the battery pack, and detect a battery of the connected battery Status information, and determining whether the battery status information satisfies a preset battery protection trigger condition, and when determining that the battery status information satisfies the battery protection trigger condition, controlling the first switch component 203 to be turned on
  • the first switch component 203 As long as one of the first control module 204 and the second control module 209 controls the first switch component 203 to be turned on, the first switch component 203 is turned on, and the battery pack is Short-circuit, thus achieving double protection of the battery.
  • the second control module 209 may include a second control chip 210, which may include a fourth control terminal CO4 and N one-to-one corresponding to the N-cell battery.
  • the second input terminal for example, in the example shown in FIG.
  • the battery pack includes three batteries, which are batteries B1, B2, and B3, respectively, such that the second control chip 210 may include three second input terminals, respectively Two input terminals I21, I22 and I23, wherein each second input terminal is used for connecting the positive pole of the corresponding battery, for example, the second input terminal I21 corresponds to the battery B1, and the positive pole of the battery B1 is connected, the second input The terminal I22 corresponds to the battery B2, and is connected to the positive electrode of the battery B2, and the second input terminal I23 corresponds to the battery B3, and is connected to the positive electrode of the battery B3.
  • the fourth control terminal CO2 may be connected to the controlled terminal 203a of the first switch component 203, and the second control chip 210 may be configured to collect battery state information of each battery through the N second input terminals, and determine the battery state. Whether the information satisfies the preset battery protection trigger condition, and when it is determined that the battery status information satisfies the battery protection trigger condition, the first switch component 203 is controlled to be turned on via the fourth control terminal CO4.
  • the second input terminal I21 and the second input terminal I22 can be connected by a capacitor C4
  • the second input terminal I22 and the second input terminal I23 can be connected by a capacitor C5
  • the second input terminal I23 can be connected via a capacitor C6.
  • the second control chip 210 may further include a second power supply terminal VDD2, which may be connected to the positive electrode of the battery pack to be powered from the battery pack and operate normally.
  • the second control chip 210 may further include a second ground terminal VSS2 connected to the negative electrode (or ground) of the battery pack.
  • the use of a dedicated control chip as the second control module is not only easy to operate, but also easy to produce, reducing the workload of the technician.
  • the corresponding battery protection trigger conditions may be different depending on different battery requirements.
  • the voltage thresholds may be different for different batteries. If a dedicated control chip is used, it may not be possible to customize the overcharge protection requirements for different batteries. Once the applicable control chip cannot be found, the battery's overcharge protection requirements may not be met. Therefore, in another embodiment of the present application, as shown in FIG. 13, the second control module 209 may include a voltage collecting circuit 211 and a voltage comparing circuit 212, wherein the voltage collecting circuit 211 may include a first output terminal O1 and The N third input terminals corresponding to the N-cell batteries are, for example, in the example shown in FIG.
  • the second control module 209 includes three third input terminals, which are the third input terminals I31, I32, and I33, respectively. Wherein, each third input terminal is used to connect the positive pole of the corresponding battery.
  • the third input terminal I31 corresponds to the battery B1, and the positive pole of the battery B1 is connected, and the third input terminal I32 and the battery are connected.
  • the positive electrode of battery B2 is connected, and the third input terminal I33 corresponds to battery B3, and the positive electrode of battery B3 is connected.
  • the voltage collecting circuit 211 can be configured to collect voltages of the respective battery cells via the N third input terminals, and output a voltage signal through the first output terminal O1;
  • the voltage comparison circuit 212 includes a fourth input terminal I41 and a second output terminal O2, wherein The fourth input terminal I41 is connected to the first output terminal O1, the second output terminal O2 is connected to the controlled terminal 203a of the first switch component 203, and the voltage comparison circuit 212 is configured to receive the voltage signal received via the fourth input terminal I41.
  • the first switch component 203 is controlled to be turned on via the second output terminal O2.
  • the voltage comparison circuit 212 can control the first switch component 203 to be turned on via the second output terminal O2 when the voltage of the predetermined number of batteries in the battery connected to the voltage collection circuit 211 exceeds the voltage range, and the predetermined number can be 1 Or, the total number L of batteries connected to the voltage collecting circuit 211, or any value between 1 and L, L is a positive integer greater than 1.
  • the battery state information of the battery can be used to judge.
  • the voltage comparison circuit 212 can control the first switch component 203. Pass to overcharge the battery pack.
  • the voltage comparison circuit 212 can control the first switch component 203. Pass, so that the battery pack is over-discharged.
  • the voltage Comparison circuit 212 can control first switch component 203 to remain open.
  • the technician can design a corresponding voltage collecting circuit and a voltage comparison circuit according to the actual protection requirements of the battery, thereby meeting the protection requirements of different batteries, realizing customized battery protection and more flexible circuit design.
  • An embodiment of the present application further provides a power supply assembly, which may include: a battery pack including N-cell batteries connected in series, wherein N ⁇ 1; and a battery protection device, which is according to the present application The battery protection device provided by the embodiment.
  • the temperature of the battery pack is detected by the thermistor.
  • the first control module controls the conduction of the first switch component, and the first switch component is turned on.
  • the battery pack is shorted. Since the battery pack is shorted, the instantaneous current in the circuit suddenly increases, causing the fuse to blow, thereby causing the battery pack to be disconnected, thereby achieving temperature protection of the battery pack. Since it is only necessary to attach the thermistor around the battery pack, it is not necessary to connect it to the battery pack, so it is easy to install and does not involve modification of the battery pack. In addition, the cost of the thermistor is low, thereby reducing the overall cost of the battery protection device.
  • the battery protection device provided by the embodiment of the present application has the characteristics of being simple, reliable, and easy to implement, and is suitable for use in a digital product requiring a simplified structure and reliable performance.

Abstract

一种电池保护装置(20)及电源组件。该电池保护装置(20)用于对包括串联在一起的N节电池的电池组进行保护,该装置(20)包括:正输出端子(201)和负输出端子(202);M个保险丝,与N节电池串联;P个热敏电阻,附着在电池组的周围,用于检测电池组的温度;第一开关组件(203),包括受控端子(203a)、第一端子(203b)和第二端子(203c),第一端子(203b)与电池组的正极之间经由M个保险丝中的至少一个保险丝连接,第二端子(203c)与电池组的负极连接;第一控制模块(204),与热敏电阻连接,并与第一开关组件(203)的受控端子(203a)连接,用于获取电池组的温度,并在温度满足预设的温度保护条件时,控制第一开关组件(203)导通,以使电池组短接。

Description

电池保护装置及电源组件
相关申请的交叉引用
本申请要求中国专利申请号201610112997.9、申请日为2016年2月29日,及中国专利申请号201620153104.0、申请日为2016年2月29日的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电池领域,具体地,涉及一种电池保护装置及电源组件。
背景技术
数码产品(例如,笔记本电脑)通常使用锂离子电池作为电源,锂离子电池具有能量密度高、重量轻的特点。由于锂离子电池的产品特性,需要对电池进行保护,以确保使用过程中的安全性。
在现有的用于笔记本电脑的电池保护装置中,如果想要实现对电池组的过温保护,通常会在电池组的各节电池处串联温度开关TCO,温度开关TCO能够感应电池的温度。当这个温度达到温度开关TCO的触发温度时,温度开关TCO自动启动,将电池断路,实现过温保护。然而,在采用温度开关TCO进行温度保护时,需要将温度开关TCO与电池电极串联,当在电池之间串联温度开关TCO时,还需要对电池组进行改装,这就导致温度开关TCO的安装十分不便。另外,温度开关TCO的成本较高,会增加电池保护装置的总成本。
发明内容
本申请的目的是提供一种电池保护装置及电源组件,来以低成本实现对数码产品中的电池的高可靠性的保护。
为了实现上述目的,本申请的实施方式提供一种电池保护装置,用于对电池组进行保护,所述电池组包括串联在一起的N节电池,其中,N≥1,所述装置包括:正输出端子和负输出端子,用于接入外部设备,所述正输出端子还用于连接所述电池组的正极,所述负输出端子还用于连接所述电池组的负极;M个保险丝,用于与所述N节电池串联,其中,M≥1;P个热敏电阻,附着在所述电池组的周围,用于检测所述电池组的温度,其中,P≥1;第一开关组件,包括受控端子、第一端子和第二端子,其中,所述第一端子与所述电 池组的正极之间经由所述M个保险丝中的至少一个保险丝连接,所述第二端子与所述电池组的负极连接;第一控制模块,与所述热敏电阻连接,并与所述第一开关组件的所述受控端子连接,用于获取所述热敏电阻检测的电池组的温度,并在所述温度满足预设的温度保护条件时,控制所述第一开关组件导通,以使所述电池组短接。
本申请的实施方式还提供一种电源组件,包括:电池组,包括串联在一起的N节电池,其中,N≥1;以及电池保护装置,该电池保护装置为根据本申请实施方式提供的所述电池保护装置。
在上述技术方案中,由于仅需要将热敏电阻附着在电池组的周围,无需将其与电池组连接,因此,其安装十分方便,并且不涉及对电池组进行改装。另外,热敏电阻的成本较低,因而可以降低电池保护装置的总体成本。本申请的实施方式提供的电池保护装置具有简单可靠、易于实施的特点,适用于要求结构简化、性能可靠的数码产品中。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1示出了现有的用于笔记本电脑的电池保护装置的部分电路图。
图2示出了根据本申请的一实施方式的电池保护装置的电路图。
图3示出了根据本申请的另一实施方式的电池保护装置的电路图。
图4示出了根据本申请的另一实施方式的电池保护装置的电路图。
图5示出了根据本申请的另一实施方式的电池保护装置的电路图。
图6示出了根据本申请的另一实施方式的电池保护装置的电路图。
图7示出了根据本申请的另一实施方式的电池保护装置的电路图。
图8示出了根据本申请的另一实施方式的电池保护装置的电路图。
图9示出了根据本申请的另一实施方式的电池保护装置的电路图。
图10示出了根据本申请的另一实施方式的电池保护装置的电路图。
图11示出了根据本申请的另一实施方式的电池保护装置的电路图。
图12示出了根据本申请的另一实施方式的电池保护装置的电路图。
图13示出了根据本申请的另一实施方式的电池保护装置的电路图。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
图1示出了现有的用于笔记本电脑的电池保护装置的部分电路图。如图1所示,现有的电池保护装置中可以包括温度开关TCO1、TCO2和TCO3。温度开关的数量与电池组中的电池数量相同。如图1所示,温度开关(即,温度开关TCO1、温度开关TCO2和温度开关TCO3)与电池组中的各节电池(即,电池B1、电池B2和电池B3)交替式串联。所谓交替式串联是指在电流方向上,按照一个温度开关、再一节电池的顺序依次将全部温度开关和全部电池串联起来。由于需要将温度开关与电池电极连接,当在电池之间串联温度开关时,还需要对电池组进行改装,这就导致温度开关的安装十分不便。另外,温度开关的成本较高,从而增加电池保护装置的总成本。
为了解决这一问题,本申请的实施方式提供一种电池保护装置。该电池保护装置可以应用于各种数码产品中,例如,笔记本电脑、平板电脑、智能手机等。
图2示出了根据本申请的一种实施方式的电池保护装置20的电路图。该电池保护装置20用于对电池组进行保护。该电池组可以包括串联在一起的N节电池,其中,N≥1。为了方便阐述,在图2中示例性地示出了电池组包括串联在一起的三节电池,分别为电池B1、电池B2和电池B3。应当理解的是,电池组也可以包括更少数量的或者更多数量的电池。在本申请的至少一个实施方式中,电池组中包括的电池可以为锂电池。
当N节电池串联形成电池组时,位于电池组两端的电池中的一者会暴露自身的电池正极,另一者会暴露自身的电池负极。在本申请的实施方式中,该暴露的电池正极可以作为整个电池组的正极,该暴露的电池负极可以作为整个电池组的负极。例如,如图2所示,电池B1的正极被暴露,因此,电池B1的正极作为电池组的正极。同样,电池B3的负极被暴露,因此,电池B3的负极作为电池组的负极。
电池保护装置20可以包括正输出端子201和负输出端子202,用于接入外部设备。此外,正输出端子201还用于连接电池组的正极,负输出端子202还用于连接电池组的负极。
在本申请的实施方式中,外部设备可以例如是用于为电池组进行充电的充电设备,或者可以例如是由电池组向其供电以使其得电工作的任意电子设备,例如,笔记本电脑中的负载电路。当正输出端子201和负输出端子202所接入的外部设备为充电设备时,电池组会处于充电模式;当正输出端子201和负输出端子202所接入的外部设备为电池组向其供电的电子设备时,电池组会处于放电模式。
电池保护装置20可以包括M个保险丝,用于与N节电池串联,其中,M≥1。为了方便阐述,在图2中示例性地示出了电池保护装置20包括一个保险丝F1。该保险丝F1可以 例如为电流保险丝。此外,如图2所示,该电池保护装置20还可以包括第一开关组件203,其可以包括受控端子203a、第一端子203b和第二端子203c。第一端子203b与电池组的正极之间可以经由M个保险丝中的至少一个保险丝连接,以图2为例,第一端子203b与电池组的正极之间经由电流保险丝F1连接。此外,第二端子203c与电池组的负极连接。
此外,如图2所示,电池保护装置20还可以包括P个热敏电阻,附着在电池组的周围,用于检测电池组的温度,其中,P≥1。为了方便阐述,在图2中示例性地示出了电池保护装置20包括两个热敏电阻,分别为热敏电阻TH1和热敏电阻TH2。应当理解的是,可以综合考虑实际对温度检测精度的需求以及成本要求,设置更少数量或更多数量的热敏电阻。
此外,如图2所示,电池保护装置20还可以包括第一控制模块204,与P个热敏电阻连接,并与第一开关组件203的受控端子203a连接,用于获取热敏电阻检测的电池组的温度,并在温度满足预设的温度保护条件时,控制第一开关组件203导通。由于在电池组正常工作的情况下,保险丝的电阻值很小,其产生的分压可以忽略不计。因此,当第一开关组件203导通时,电池组的正极电压与电池组的负极电压基本上相等,从而造成电池组被短接。由于电池组被短接,导致电路中的瞬时电流突增,从而使得电流保险丝F1熔断,进而使得电池组断路,从而实现对电池组的温度保护。
在本申请的实施方式中,温度保护条件可以包括预定数量的热敏电阻所检测到的温度超出预设的温度范围。其中,该预定数量可以为1,或者为热敏电阻的总数P,或者为1到P之间的任一数值。
在上述技术方案中,通过热敏电阻来检测电池组的温度,当电池组的温度满足预设的温度保护条件时,第一控制模块会控制第一开关组件导通,第一开关组件的导通使得电池组被短接。由于电池组被短接,导致电路中的瞬时电流突增,从而使得保险丝熔断,进而使得电池组断路,从而实现对电池组的温度保护。由于仅需要将热敏电阻附着在电池组的周围,无需将其与电池组连接,因此,其安装十分方便,并且不涉及对电池组进行改装。另外,热敏电阻的成本较低,因而可以降低电池保护装置的总体成本。本申请实施方式提供的电池保护装置具有简单可靠、易于实施的特点,适用于要求结构简化、性能可靠的数码产品中。
在本申请的一个实施方式中,电池保护装置20中所采用的保险丝可以全部为电流保险丝,即,M个保险丝可以包括M个电流保险丝。例如,图2示出了电流保护装置20中包括一个电流保险丝F1的示例,图3示出了电流保护装置20中包括两个电流保险丝F1和F2的示例。这样,当电路中的电流过大时可导致电流保险丝熔断,从而使电池组断路,实现对电池组的保护。并且,电流保险丝的产品成本低,因此,可以最大程度地降低电池保 护装置20的成本。
或者,在另一个实施方式中,电池保护装置20中所采用的保险丝可以全部为温度保险丝,即,M个保险丝可以包括M个温度保险丝。例如,图4示出了电流保护装置20中包括一个温度保险丝F3的示例。在这种情况下,可以通过热敏电阻和温度保险丝来实现对电池组的双重过温保护。
再或者,在又一个实施方式中,电池保护装置20中所采用的保险丝可以包括电流保险丝和温度保险丝这两者,即,所述M个保险丝包括M1个电流保险丝和M2个温度保险丝,其中,M1+M2=M。例如,图5示出了电流保护装置20中包括一个电流保险丝F1和一个温度保险丝F3的示例。
在本申请的一个实施方式中,电池保护装置可以为保护电路板(例如,PCBA(Printed Circuit Board Assembly,印刷电路板组件)板)的形式。在这种情况下,至少第一开关组件203和第一控制模块204可以被集成在保护电路板上。至于M个保险丝,其可以全部被集成在保护电路板上,例如,如图2所示,电流保险丝F1同第一开关组件203以及第一控制模块204一起被集成在保护电路板205上。再或者,M个保险丝可以全部不被集成在保护电路板上,而与保护电路板相分离,例如,如图4所示,温度保险丝F3可以在邻近电池的位置处与电池串联,而并未被集成在保护电路板205上。又或者,M个保险丝中的一部分被集成在保护电路板上,其余部分与保护电路板相分离,例如,如图3所示,电流保险丝F1同第一开关组件203以及第一控制模块204一起被集成在保护电路板205上,而电流保险丝F2未被集成在保护电路板205上;再例如,如图5所示,电流保险丝F1同第一开关组件203以及第一控制模块204一起被集成在保护电路板205上,而温度保险丝F3在邻近电池的位置处与电池串联,并未被集成在保护电路板205上。
在本申请的一个实施方式中,如图6所示,第一控制模块204可以包括第一控制芯片206,该第一控制芯片206可以包括第一控制端子CO1和P个温度信号输入端子,其中,所述P个温度信号输入端子与P个热敏电阻一一对应连接。例如,在图6所示的示例中,第一控制芯片206包括两个温度信号输入端子,分别为温度信号输入端子T1和温度信号输入端子T2。温度信号输入端子T1与热敏电阻TH1连接,温度信号输入端子T2与热敏电阻TH2连接。另外,如图6所示,第一控制端子CO1与第一开关组件203的受控端子203a连接,该第一控制芯片206可以用于经由P个温度信号输入端子获取P个热敏电阻检测的电池组的温度,并在该温度满足温度保护条件时,经由第一控制端子CO1控制第一开关组件203导通。
本申请的实施方式提供的电池保护装置除了可以对电池组进行温度保护之外,还可以 实现对电池组的过充、过放等保护。在相关技术中,电池保护装置通常采用三端保险丝来实现对锂离子电池的过充保护。然而,三端保险丝的结构较为复杂,产品价格高,这就导致电池保护装置的电路较为复杂,且成本较高。为此,本申请的实施方式提供一种结构简单、成本较低的电池保护装置,来对电池组进行过充、过放保护,如下所述。
图7示出了根据本申请的另一种实施方式的电池保护装置20的电路图。如图7所示,所述第一控制模块204还可以用于连接电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断该电池状态信息是否满足预设的电池保护触发条件,在确定该电池状态信息满足电池保护触发条件时,控制第一开关组件203导通。当第一开关组件203导通时,电池组的正极电压与电池组的负极电压基本上相等,从而造成电池组被短接。由于电池组被短接,导致电路中的瞬时电流突增,从而使得电流保险丝F1熔断,进而使得电池组断路,从而实现对电池组的保护。
在本申请的实施方式中,电池状态信息可以包括但不限于以下参数中的至少一者:电池的电压、电池的电流、电池的容量。相应地,电池保护触发条件可以包括但不限于以下条件中的至少一者:所连接的电池中的预定数量的电池的电压超出预设的第一电压范围(由预设的第一电压阈值和第二电压阈值所限定,其中,第一电压阈值大于第二电压阈值);所连接的电池中的预定数量的电池的容量超出预设的第一容量范围(由预设的第一容量阈值和第二容量阈值所限定,其中,第一容量阈值大于第二容量阈值);电池之间不均衡。其中,该预定数量可以为1,或者为所连接的电池的总数L,或者为1到L之间的任一数值,L为大于1的正整数。
在本申请的至少一个实施方式中,在电池处于充电模式下,当第一控制模块204采集到的电池的电压高于第一电压范围的上限(即,第一电压阈值)时(或者电池的容量高于第一容量范围的上限(即,第一容量阈值)),则第一控制模块204可以确定此时电池处于过充状态,需要对电池进行过充保护。随后,第一控制模块204通过控制第一开关组件203导通来短接电池组,以使电流保险丝F1熔断,进而使得电池组断路,从而实现对电池组的过充保护。
再例如,在电池处于放电模式下,当第一控制模块204采集到的电池的电压低于第一电压范围的下限(即,第二电压阈值)时(或者电池的容量低于第一容量范围的下限(即,第二容量阈值)),则第一控制模块204可以确定此时电池处于过放状态,需要对电池进行过放保护。随后,第一控制模块204通过控制第一开关组件203导通来短接电池组,以使电流保险丝F1熔断,进而使得电池组断路,从而实现对电池组的过放保护。
又例如,当第一控制模块204采集到的各节电池的电压之间差异较大(例如,大于预 设的压差阈值)时,第一控制模块204可以确定此时电池组中的各节电池之间不均衡,需要对电池进行均衡保护。随后,第一控制模块204通过控制第一开关组件203导通来短接电池组,以使电流保险丝F1熔断,进而使得电池组断路,从而实现对电池组的均衡保护。
而在电池正常工作时(即,所检测到的电池状态信息不满足电池保护触发条件时,且电池组的温度不满足温度保护条件时),第一控制模块204可以控制第一开关组件203保持断开状态,这样,第一开关组件203不会影响电池组的工作。
综上所述,通过第一控制模块采集电池的电池状态信息,并在电池状态信息满足预设的电池保护触发条件时,控制第一开关组件导通,第一开关组件的导通使得电池组被短接。由于电池组被短接,导致电路中的瞬时电流突增,从而使得保险丝熔断,进而使得电池组断路,从而实现对电池组的保护。在本申请的实施方式提供的电池保护装置中,采用功能单一的保险丝即可实现对电池组的快速、有效地保护,而无需设置结构复杂的三端保险丝,因此,在实现对电池组进行全方位的保护的同时,简化了电路设计,降低了成本,简单可靠,易于实施,适用于要求结构简化、性能可靠的数码产品中。
具体地,如图8所示,第一控制模块204可以包括第一控制芯片206。该第一控制芯片206可以包括第一控制端子CO1、P个温度信号输入端子和与所述N节电池一一对应的N个第一输入端子。例如,在图8所示的示例中,第一控制芯片206可以包括与三节电池一一对应的三个第一输入端子,分别为第一输入端子I11、第一输入端子I12和第一输入端子I13,其中,每个第一输入端子用于连接相对应的电池的正极。例如,第一输入端子I11与电池B1相对应,连接该电池B1的正极。第一输入端子I12与电池B2相对应,连接该电池B2的正极。第一输入端子I13与电池B3相对应,连接该电池B3的正极。此外,在图8所示的示例中,第一控制芯片206包括两个温度信号输入端子,分别为温度信号输入端子T1和温度信号输入端子T2。温度信号输入端子T1与热敏电阻TH1连接,温度信号输入端子T2与热敏电阻TH2连接。此外,第一控制端子CO1与第一开关组件203的受控端子203a连接,第一控制芯片206可以用于经由P个温度信号输入端子获取P个热敏电阻检测的电池组的温度,并经由N个第一输入端子采集各节电池的电池状态信息,在所述温度满足预设的温度保护条件时,和/或在电池状态信息满足电池保护触发条件时,经由第一控制端子CO1控制第一开关组件203导通。
在本申请至少一个实施方式中,如图8所示,第一控制芯片206的每个第一输入端子可以经由一个电阻与各自对应的电池的正极连接,例如,图8中示出的电阻R1、R2和R3,并且示例地,R1=R2=R3=100Ω。此外,第一输入端子I11与第一输入端子I12之间可以通过电容C1连接,第一输入端子I12与第一输入端子I13之间可以通过电容C2连接,第一 输入端子I13可以经由电容C3与电池组的负极(或地)连接,并且示例地,C1=C2=C3=0.1μF。此外,如图8所示,第一控制芯片206还可以包括第一电源端子VDD1,该第一电源端子VDD1可以与第一输入端子I11连接,以从电池组得电工作。此外,如图8所示,第一控制芯片206还可以包括第一接地端子VSS1,该第一接地端子VSS1接电池组的负极(或地)。
采用专用的控制芯片作为第一控制模块,不仅操作方便,而且易于生产,减少技术人员的工作量。
图9示出了根据本申请的另一种实施方式的电池保护装置20的电路图。如图9所示,该装置还可以包括:第二开关组件207和第三开关组件208。第二开关组件207串联在正输出端子201与第一开关组件203的第一端子203b之间,第三开关组件208串联在正输出端子201与第一开关组件203的第一端子203b之间,并与第二开关组件209串联。在这种情况下,第一控制模块204还可以与第二开关组件207连接,并与第三开关组件208连接,该第一控制模块204还用于连接电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断电池状态信息是否满足预设的过充保护触发条件和过放保护触发条件,在确定该电池状态信息满足过充保护触发条件时,控制第二开关组件207断开,以使电池组断路,以及在确定电池状态信息满足过放保护触发条件时,控制第三开关组件208断开,以使电池组断路。
在本申请的实施方式中,过充保护触发条件可以包括以下条件中的至少一者:所连接的电池中的预定数量的电池的电压高于预设的第三电压阈值,所连接的电池中的预定数量的电池的容量高于预设的第三容量阈值。在本申请至少一个实施方式中,第三电压阈值可以小于第一电压阈值并大于第二电压阈值,第三容量阈值可以小于第一容量阈值并大于第二容量阈值。另外,过放保护触发条件可以包括以下条件中的至少一者:所连接的电池中的预定数量的电池的电压低于预设的第四电压阈值,所连接的电池中的预定数量的电池的容量低于预设的第四容量阈值。在本申请至少一个实施方式中,第四电压阈值可以大于第二电压阈值,并小于第三电压阈值,第四容量阈值可以大于第二容量阈值,并小于第三容量阈值。
如图9所示,当在充电模式下,第三开关组件208处于导通状态,如果电池状态信息处于正常水平(即,未满足过充保护触发条件),则第一控制模块204可以控制第二开关组件207保持导通,由此,确保充电的持续进行。一旦需要进行过充保护,则第一控制模块204可以控制第二开关组件207断开,以使电池组断路,从而实现过充保护。当在放电模式下,第二开关组件207处于导通状态,如果电池状态信息处于正常水平(即,未满足过 放保护触发条件),则第一控制模块204可以控制第三开关组件208保持导通,由此,确保放电的持续进行。一旦需要进行过放保护,则第一控制模块204可以控制第三开关组件208断开,以使电池组断路,从而实现过放保护。
具体地,如图10所示,第一控制模块204可以包括第一控制芯片206,该第一控制芯片206可以包括与N节电池一一对应的N个第一输入端子、P个温度信号输入端子、第一控制端子CO1、第二控制端子CO2和第三控制端子CO3。例如,在图10所示的示例中,第一控制芯片206可以包括与三节电池一一对应的三个第一输入端子,分别为第一输入端子I11、第一输入端子I12和第一输入端子I13,其中,每个第一输入端子用于连接相对应的电池的正极。例如,第一输入端子I11与电池B1相对应,连接该电池B1的正极。第一输入端子I12与电池B2相对应,连接该电池B2的正极。第一输入端子I13与电池B3相对应,连接该电池B3的正极。此外,在图10所示的示例中,第一控制芯片206包括两个温度信号输入端子,分别为温度信号输入端子T1和温度信号输入端子T2。温度信号输入端子T1与热敏电阻TH1连接,温度信号输入端子T2与热敏电阻TH2连接。此外,第一控制端子CO1与第一开关组件203的受控端子203a连接,第二控制端子CO2与第二开关组件207连接,第三控制端子CO3与第三开关组件208连接。第一控制芯片206可以用于经由P个温度信号输入端子获取P个热敏电阻检测的电池组的温度,并经由N个第一输入端子采集各节电池的电池状态信息,在所述温度满足预设的温度保护条件时,经由第一控制端子CO1控制第一开关组件导通;在电池状态信息满足过充保护触发条件时,经由第二控制端子CO2控制第二开关组件207断开;以及在电池状态信息满足过放保护触发条件时,经由第三控制端子CO3控制第三开关组件208断开。
此外,在图10所示的实施方式中,第一控制模块204还可以在电池状态信息满足电池保护触发条件时,控制第一开关组件203导通,以对电池组进行保护。这样,通过第一控制模块204、第二开关组件207和第三开关组件208,可以实现对电池组的一次过充保护和一次过放保护。当电路出现异常导致一次保护无法起作用(例如,电池的电压仍持续升高、或者电池的电压仍持续下降)时,通过第一控制模块204和第一开关组件203,仍可以实现对电池的二次保护(包括二次过充保护、二次过放保护等)。由此,可以实现对电池组的双重保护。
在本申请的实施方式中,第一开关组件203可以形成为任一形式的开关器件。示例地,如图2至图10所示,第一开关组件203可以包括MOS管,其中,该MOS管的栅极与受控端子203a连接,MOS管的源极与第二端子203c连接,MOS管的漏极与第一端子203b连接。这样,当电池状态信息满足预设的电池保护触发条件时,和/或当电池组的温度满足 预设的温度保护条件时,第一控制模块204可以输出高电平信号,以使MOS管处于导通的状态,从而短接电池组,以对电池组进行保护。而当电池为正常工作状态时,第一控制模块204可以输出低电平信号,以使MOS管处于断开的状态,此时,不影响电池组的工作。
此外,在本申请至少一个实施方式中,如图2至图10所示,第一开关组件203还可以包括二极管,该二极管的正极连接MOS管的源极,该二极管的负极连接MOS管的漏极。
图11示出了根据本申请的另一种实施方式的电池保护装置20的电路图。如图11所示,该装置还可以包括:第二控制模块209,与第一开关组件203的受控端子203a连接,用于连接电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断电池状态信息是否满足预设的电池保护触发条件,在确定该电池状态信息满足电池保护触发条件时,控制第一开关组件203导通,以使电池组短接,从而对电池组进行保护。对于第一开关组件203而言,只要第一控制模块204和第二控制模块209中的一个控制模块控制第一开关组件203导通,该第一开关组件203即被导通,电池组即被短接,从而实现电池的双重保护。
在一个示例实施方式中,如图12所示,第二控制模块209可以包括第二控制芯片210,该第二控制芯片210可以包括第四控制端子CO4和与N节电池一一对应的N个第二输入端子,例如,在图12所示的示例中,电池组包括三节电池,分别是电池B1、B2和B3,这样,第二控制芯片210可以包括三个第二输入端子,分别是第二输入端子I21、I22和I23,其中,每个第二输入端子用于连接相对应的电池的正极,例如,第二输入端子I21与电池B1相对应,连接该电池B1的正极,第二输入端子I22与电池B2相对应,连接该电池B2的正极,第二输入端子I23与电池B3相对应,连接该电池B3的正极。另外,第四控制端子CO2可以与第一开关组件203的受控端子203a连接,该第二控制芯片210可以用于经由N个第二输入端子采集各节电池的电池状态信息,并判断电池状态信息是否满足预设的电池保护触发条件,在确定电池状态信息满足电池保护触发条件时,经由第四控制端子CO4控制第一开关组件203导通。
在本申请至少一个实施方式中,如图12所示,第二控制芯片210的每个第二输入端子可以经由一个电阻与各自对应的电池的正极连接,例如,图12中示出的电阻R4、R5和R6,并且示例地,R4=R5=R6=1KΩ。此外,第二输入端子I21与第二输入端子I22之间可以通过电容C4连接,第二输入端子I22与第二输入端子I23之间可以通过电容C5连接,第二输入端子I23可以经由电容C6与电池组的负极(或地)连接,并且示例地,C4=C5=C6=0.1μF。此外,如图12所示,第二控制芯片210还可以包括第二电源端子VDD2,该第二电源端子VDD2可以与电池组的正极连接,以从电池组得电并正常工作。在本申请至少一个实施方式中,第二电源端子VDD2与电池组的正极之间可以通过电阻R7连接, 并且示例地,R7=100Ω。此外,第二电源端子VDD2与第二输入端子I21之间可以通过电容C7连接,并且示例地,C7=0.1μF。此外,如图12所示,第二控制芯片210还可以包括第二接地端子VSS2,该第二接地端子VSS2接电池组的负极(或地)。
采用专用的控制芯片作为第二控制模块,不仅操作方便,而且易于生产,减少技术人员的工作量。
在实际使用时,根据不同的电池需求,所对应的电池保护触发条件可能不同。例如,针对过充保护而言,对于不同的电池,其所对应的电压阈值可能不同,如果采用专用的控制芯片,可能无法实现针对不同的电池的过充保护需求进行定制。一旦无法找到适用的控制芯片,则可能无法满足电池的过充保护需求。因此,在本申请的另一个实施方式中,如图13所示,第二控制模块209可以包括电压采集电路211和电压比较电路212,其中,电压采集电路211可以包括第一输出端子O1和与N节电池一一对应的N个第三输入端子,例如,在图13所示的示例中,第二控制模块209包括三个第三输入端子,分别为第三输入端子I31、I32和I33。其中,每个第三输入端子用于连接相对应的电池的正极,例如,如图13所示,第三输入端子I31与电池B1相对应,连接电池B1的正极,第三输入端子I32与电池B2相对应,连接电池B2的正极,第三输入端子I33与电池B3相对应,连接电池B3的正极。电压采集电路211可以用于经由N个第三输入端子采集各节电池的电压,并通过第一输出端子O1输出电压信号;电压比较电路212包括第四输入端子I41和第二输出端子O2,其中,第四输入端子I41与第一输出端子O1连接,第二输出端子O2与第一开关组件203的受控端子203a连接,电压比较电路212用于将经由第四输入端子I41接收到的电压信号与预设的电压范围进行比较,并在电压信号超出电压范围时,经由第二输出端子O2控制第一开关组件203导通。其中,电压比较电路212可以在电压采集电路211所连接的电池中的预定数量的电池的电压超出电压范围时,经由第二输出端子O2控制第一开关组件203导通,该预定数量可以为1,或者为电压采集电路211所连接的电池的总数L,或者为1到L之间的任一数值,L为大于1的正整数。
在对电池组进行保护时,主要是针对过充和过放这两种情况,而针对过充和过放这两种情况,可以采用电池的电压这一电池状态信息来判断。当电压采集电路211所连接的电池中的预定数量的电池的电压高于预设的电压范围的上限值时,此时电池处于过充状态,电压比较电路212可以控制第一开关组件203导通,从而对电池组进行过充保护。当电压采集电路211所连接的电池中的预定数量的电池的电压低于预设的电压范围的下限值时,此时电池处于过放状态,电压比较电路212可以控制第一开关组件203导通,从而对电池组进行过放保护。当电池的电压处于正常水平时(即,处于该预设的电压范围内时),电压 比较电路212可以控制第一开关组件203保持断开。
通过上述方式,技术人员可以根据电池实际的保护需求,设计相应的电压采集电路和电压比较电路,从而满足不同电池的保护需求,实现电池保护的定制化及更灵活的电路设计。
本申请的实施方式还提供一种电源组件,该电源组件可以包括:电池组,包括串联在一起的N节电池,其中,N≥1;以及电池保护装置,该电池保护装置为根据本申请的实施方式提供的电池保护装置。
综上所述,通过热敏电阻来检测电池组的温度,当电池组的温度满足预设的温度保护条件时,第一控制模块会控制第一开关组件导通,第一开关组件的导通使得电池组被短接。由于电池组被短接,导致电路中的瞬时电流突增,从而使得保险丝熔断,进而使得电池组断路,从而实现对电池组的温度保护。由于仅需要将热敏电阻附着在电池组的周围,无需将其与电池组连接,因此,其安装十分方便,并且不涉及对电池组进行改装。另外,热敏电阻的成本较低,因而可以降低电池保护装置的总体成本。本申请的实施方式提供的电池保护装置具有简单可靠、易于实施的特点,适用于要求结构简化、性能可靠的数码产品中。
以上结合附图详细描述了本申请的实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (13)

  1. 一种电池保护装置,用于对电池组进行保护,所述电池组包括串联在一起的N节电池,其中,N≥1,其特征在于,所述装置包括:
    正输出端子和负输出端子,用于接入外部设备,所述正输出端子连接所述电池组的正极,所述负输出端子连接所述电池组的负极;
    M个保险丝,用于与所述N节电池串联,其中,M≥1;
    P个热敏电阻,附着在所述电池组的周围,用于检测所述电池组的温度,其中,P≥1;
    第一开关组件,包括受控端子、第一端子和第二端子,其中,所述第一端子通过所述M个保险丝中的至少一个保险丝连接所述电池组的正极,所述第二端子与所述电池组的负极连接;
    第一控制模块,分别与所述热敏电阻和所述第一开关组件的所述受控端子连接,用于获取所述热敏电阻检测的电池组的温度,并在所述温度满足预设的温度保护条件时,控制所述第一开关组件导通以使所述电池组短接。
  2. 根据权利要求1所述的装置,其特征在于,所述M个保险丝包括M个电流保险丝或者M个温度保险丝;或者
    所述M个保险丝包括M1个电流保险丝和M2个温度保险丝,其中,M1+M2=M。
  3. 根据权利要求1或2所述的装置,其特征在于,所述第一控制模块包括第一控制芯片,所述第一控制芯片包括第一控制端子和P个温度信号输入端子,其中,所述P个温度信号输入端子与所述P个热敏电阻一一对应连接,所述第一控制端子与所述第一开关组件的所述受控端子连接,所述第一控制芯片用于经由所述P个温度信号输入端子获取所述P个热敏电阻检测的电池组的温度,并在所述温度满足预设的温度保护条件时,经由所述第一控制端子控制所述第一开关组件导通。
  4. 根据权利要求1或2所述的装置,其特征在于,所述第一控制模块还用于连接所述电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断所述电池状态信息是否满足预设的电池保护触发条件,在确定所述电池状态信息满足所述电池保护触发条件时,控制所述第一开关组件导通,以使所述电池组短接。
  5. 根据权利要求4所述的装置,其特征在于,所述第一控制模块包括第一控制芯片, 所述第一控制芯片包括第一控制端子、P个温度信号输入端子和与所述N节电池一一对应的N个第一输入端子,其中,所述P个温度信号输入端子与所述P个热敏电阻一一对应连接,每个所述第一输入端子用于连接相对应的电池的正极,所述第一控制端子与所述第一开关组件的所述受控端子连接,所述第一控制芯片用于经由所述P个温度信号输入端子获取所述P个热敏电阻检测的电池组的温度,并经由所述N个第一输入端子采集各节电池的电池状态信息,在所述温度满足预设的温度保护条件时,和/或在所述电池状态信息满足所述电池保护触发条件时,经由所述第一控制端子控制所述第一开关组件导通。
  6. 根据权利要求1或2所述的装置,其特征在于,所述装置还包括:
    第二开关组件,串联在所述正输出端子与所述第一开关组件的所述第一端子之间;
    第三开关组件,串联在所述正输出端子与所述第一开关组件的所述第一端子之间,并与所述第二开关组件串联;
    所述第一控制模块,与所述第二开关组件连接,并与所述第三开关组件连接,所述第一控制模块还用于连接所述电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断所述电池状态信息是否满足预设的过充保护触发条件和过放保护触发条件,在确定所述电池状态信息满足所述过充保护触发条件时,控制所述第二开关组件断开以使所述电池组断路,以及在确定所述电池状态信息满足所述过放保护触发条件时,控制所述第三开关组件断开以使所述电池组断路。
  7. 根据权利要求6所述的装置,其特征在于,所述第一控制模块包括第一控制芯片,所述第一控制芯片包括与所述N节电池一一对应的N个第一输入端子、P个温度信号输入端子、第一控制端子、第二控制端子和第三控制端子,其中,每个所述第一输入端子用于连接相对应的电池的正极,所述P个温度信号输入端子与所述P个热敏电阻一一对应连接,所述第一控制端子与所述第一开关组件的所述受控端子连接,所述第二控制端子与所述第二开关组件连接,所述第三控制端子与所述第三开关组件连接,所述第一控制芯片用于经由所述P个温度信号输入端子获取所述P个热敏电阻检测的电池组的温度,并经由所述N个第一输入端子采集各节电池的电池状态信息,在所述温度满足预设的温度保护条件时,经由所述第一控制端子控制所述第一开关组件导通;在所述电池状态信息满足所述过充保护触发条件时,经由所述第二控制端子控制所述第二开关组件断开;以及在所述电池状态信息满足所述过放保护触发条件时,经由所述第三控制端子控制所述第三开关组件断开。
  8. 根据权利要求1-7中任一项所述的装置,其特征在于,所述第一开关组件包括MOS 管,其中,所述MOS管的栅极与所述受控端子连接,所述MOS管的源极与所述第二端子连接,所述MOS管的漏极与所述第一端子连接。
  9. 根据权利要求1-8中任一项所述的装置,其特征在于,所述电池组中的每节电池为锂离子电池。
  10. 根据权利要求1-9中任一项所述的装置,其特征在于,所述装置还包括:
    第二控制模块,与所述第一开关组件的所述受控端子连接,用于连接所述电池组中的至少一节电池,检测所连接的电池的电池状态信息,并判断所述电池状态信息是否满足预设的电池保护触发条件,在确定所述电池状态信息满足所述电池保护触发条件时,控制所述第一开关组件导通以使所述电池组短接。
  11. 根据权利要求10所述的装置,其特征在于,所述第二控制模块包括第二控制芯片,所述第二控制芯片包括第四控制端子和与所述N节电池一一对应的N个第二输入端子,其中,每个所述第二输入端子用于连接相对应的电池的正极,所述第四控制端子与所述第一开关组件的所述受控端子连接,所述第二控制芯片用于经由所述N个第二输入端子采集各节电池的电池状态信息,并判断所述电池状态信息是否满足预设的电池保护触发条件,在确定所述电池状态信息满足所述电池保护触发条件时,经由所述第四控制端子控制所述第一开关组件导通。
  12. 根据权利要求10或11所述的装置,其特征在于,所述电池状态信息包括电池的电压;以及,所述第二控制模块包括电压采集电路和电压比较电路,其中:
    所述电压采集电路包括第一输出端子和与所述N节电池一一对应的N个第三输入端子,其中,每个所述第三输入端子用于连接相对应的电池的正极,所述电压采集电路用于经由所述N个第三输入端子采集各节电池的电压,并通过所述第一输出端子输出电压信号;
    所述电压比较电路包括第四输入端子和第二输出端子,其中,所述第四输入端子与所述第一输出端子连接,所述第二输出端子与所述第一开关组件的所述受控端子连接,所述电压比较电路用于将经由所述第四输入端子接收到的电压信号与预设的电压范围进行比较,并在所述电压信号超出所述电压范围时,经由所述第二输出端子控制所述第一开关组件导通。
  13. 一种电源组件,其特征在于,包括:
    电池组,包括串联在一起的N节电池,其中,N≥1;以及
    电池保护装置,该电池保护装置为根据权利要求1-12中任一项所述的电池保护装置。
PCT/CN2016/097967 2016-02-29 2016-09-02 电池保护装置及电源组件 WO2017148124A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610112997.9 2016-02-29
CN201620153104.0U CN205489483U (zh) 2016-02-29 2016-02-29 电池保护装置及电源组件
CN201620153104.0 2016-02-29
CN201610112997.9A CN107134756A (zh) 2016-02-29 2016-02-29 电池保护装置及电源组件

Publications (1)

Publication Number Publication Date
WO2017148124A1 true WO2017148124A1 (zh) 2017-09-08

Family

ID=59743436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097967 WO2017148124A1 (zh) 2016-02-29 2016-09-02 电池保护装置及电源组件

Country Status (1)

Country Link
WO (1) WO2017148124A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135359A (ja) * 2005-11-11 2007-05-31 Sanyo Electric Co Ltd 保護素子とこの保護素子を備えるパック電池
US20070188148A1 (en) * 2006-02-08 2007-08-16 Atsushi Kawasumi Method for controlling battery pack
JP2008311106A (ja) * 2007-06-15 2008-12-25 Sanyo Electric Co Ltd パック電池
CN104218542A (zh) * 2014-09-12 2014-12-17 东莞新能德科技有限公司 电池保护电路
WO2015107629A1 (ja) * 2014-01-15 2015-07-23 デクセリアルズ株式会社 保護回路、及び保護回路の制御方法
CN204668925U (zh) * 2014-12-15 2015-09-23 东莞市百维科技有限公司 具有过热保护的锂电池保护电路
CN205489483U (zh) * 2016-02-29 2016-08-17 比亚迪股份有限公司 电池保护装置及电源组件
CN205489484U (zh) * 2016-02-29 2016-08-17 比亚迪股份有限公司 电池保护装置及电源组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007135359A (ja) * 2005-11-11 2007-05-31 Sanyo Electric Co Ltd 保護素子とこの保護素子を備えるパック電池
US20070188148A1 (en) * 2006-02-08 2007-08-16 Atsushi Kawasumi Method for controlling battery pack
JP2008311106A (ja) * 2007-06-15 2008-12-25 Sanyo Electric Co Ltd パック電池
WO2015107629A1 (ja) * 2014-01-15 2015-07-23 デクセリアルズ株式会社 保護回路、及び保護回路の制御方法
CN104218542A (zh) * 2014-09-12 2014-12-17 东莞新能德科技有限公司 电池保护电路
CN204668925U (zh) * 2014-12-15 2015-09-23 东莞市百维科技有限公司 具有过热保护的锂电池保护电路
CN205489483U (zh) * 2016-02-29 2016-08-17 比亚迪股份有限公司 电池保护装置及电源组件
CN205489484U (zh) * 2016-02-29 2016-08-17 比亚迪股份有限公司 电池保护装置及电源组件

Similar Documents

Publication Publication Date Title
US11962176B2 (en) Battery, terminal, and charging system
JP4241714B2 (ja) 電動工具用の電池パック
US6046575A (en) Fail safe circuit and battery pack using same
WO2017148123A1 (zh) 电池保护装置及电源组件
KR102614725B1 (ko) 배터리 보호 회로 및 이를 포함하는 배터리 팩
JP5219463B2 (ja) パック電池
KR20100096391A (ko) 배터리 팩 및 과방전 보호 방법
WO2017201740A1 (zh) 电池保护板、电池和移动终端
US7605565B2 (en) Battery pack with protection circuit
CN207926209U (zh) 锂电池包充放电保护电路
CN205489483U (zh) 电池保护装置及电源组件
EP3109927B1 (en) Electrical combination
CN107134757A (zh) 电池保护装置及电源组件
WO2004070908A1 (ja) バイパス抵抗付き二次電池と二次電池の保護方法
WO2017148124A1 (zh) 电池保护装置及电源组件
CN107134756A (zh) 电池保护装置及电源组件
KR100614392B1 (ko) 배터리팩
JP2010011574A (ja) 充放電制御回路
KR102320110B1 (ko) 하나의 전류 센싱 저항을 갖는 배터리 보호 회로
KR101429771B1 (ko) 배터리 팩
CN220156420U (zh) 一种具有低成本断电保护功能的控制电路
CN219287167U (zh) 充电器识别电池温度及过压保护电路
CN109217261B (zh) 锂电系统
KR101578707B1 (ko) 배터리 팩 및 이의 제어 방법
CN218414774U (zh) 一种电池加热电路、锂电池及电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16892309

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16892309

Country of ref document: EP

Kind code of ref document: A1