TWI702765B - 熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體 - Google Patents

熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體 Download PDF

Info

Publication number
TWI702765B
TWI702765B TW104117705A TW104117705A TWI702765B TW I702765 B TWI702765 B TW I702765B TW 104117705 A TW104117705 A TW 104117705A TW 104117705 A TW104117705 A TW 104117705A TW I702765 B TWI702765 B TW I702765B
Authority
TW
Taiwan
Prior art keywords
fuse
soluble conductor
current
patent application
scope
Prior art date
Application number
TW104117705A
Other languages
English (en)
Other versions
TW201611456A (zh
Inventor
端谷雄介
古內裕治
小森千智
荒木利顕
榊原和征
Original Assignee
日商迪睿合股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商迪睿合股份有限公司 filed Critical 日商迪睿合股份有限公司
Publication of TW201611456A publication Critical patent/TW201611456A/zh
Application granted granted Critical
Publication of TWI702765B publication Critical patent/TWI702765B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Fuses (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)

Abstract

不論熔絲元件的額定電流為何,利用所期望之電流值將熔絲阻斷。熔絲元件具備:可熔導體31、32,其因特定電流而熔斷;發熱電阻體33,其對可熔導體31、32的加熱量進行調整;第1發熱電阻體33,其對可熔導體31、32的加熱量進行調整;冷卻元件34,其對可熔導體31、32的冷卻量進行調整;以及IC22,其使用第1之FET23及第2之FET24而控制第1發熱電阻體33或冷卻元件34,藉此,控制可熔導體31、32的電流阻斷特性。IC22使用檢測電阻器21而對電流值進行檢測,根據電流值,將調整了工作比之脈衝訊號輸入至第1之FET23或第2之FET24。

Description

熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體
本發明係關於一種成為保護電路之熔絲電路,尤其係關於能夠對熔絲元件的電流阻斷特性進行調整之熔絲電路、熔絲調整電路及熔絲調整方法。本申請案係以2014年6月3日在日本提出申請之日本專利申請案號特願2014-114597為基礎而主張優先權,該申請案藉由參照而被援用於本申請案。
能夠充電後反覆使用的二次電池大多被加工為電池組而提供給用戶。尤其對於重量能量密度高之鋰離子二次電池而言,為了確保用戶及電子機器的安全,一般於電池組中內置有過充電保護、過放保護等若干個保護電路,該保護電路具有於特性情形時阻斷電池組的輸出之功能。
於此種保護電路中,已存在使用內置於電池組之FET(Field Effect Transistor,場效電晶體)開關而進行輸出或停止輸出,藉此,進行對於電池組之過充保護或過放保護動作者。然而,於FET開關因某些原因而短路損壞之情形時,於被施加雷電突波等而流動有瞬間大電流之情形時,或者於輸出電壓由於單電池(battery cell)的壽命而異常地降低,或相反地輸出過大之異常電壓之情形時,均必須保護電池組或電子機器不會發生起火等事故。因此,為了於如上所述的可想到之任何異常狀態下,均安全地阻斷單電池的輸出,使用由熔絲元件構成之保護電路,該熔絲元件具有根據來自 外部之訊號而阻斷電流路徑之功能。
作為如上所述之面向鋰離子二次電池等之保護電路的保護元件,如專利文獻1所揭示,已存在如下保護元件,該保護元件中,遍及電流路徑上的第1電極、連接於發熱體之導體層、及第2電極之間而連接可熔導體,形成電流路徑的一部分,藉由過電流所引起之自行發熱、或設置於保護元件內部之發熱體而熔斷該電流路徑上的可熔導體。於此種保護元件中,已熔融之液體狀的可熔導體集中於連接於發熱體之導體層上,藉此阻斷電流路徑。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2006-109596號公報
近年來,使用電池與馬達之EV(Electric Vehicle,電動車輛)或HEV(Hybrid Electric Vehicle,混合電動車輛)迅速普及。考慮到能量密度與輸出特性,逐漸使用鋰離子二次電池作為HEV或EV的動力源。於汽車應用上,需要高電壓、大電流。又,無線電動工具或電動助力自行車等需要高電壓、大電流之製品亦逐漸增加。隨之,對於用於保護電路之熔絲元件,亦希望出現對應於大電流之製品。
然而,若過大之電流流經熔絲元件,則作為熔絲單元之可熔導體會自行發熱而熔斷,因此,對應於大電流之額定電流越大之可熔導體,其熔斷部分的體積越大,熔斷需要時間。
具體而言,於使用有相同材料之可熔導體之情形時,若額定電流(以下亦稱為可通過電流)增大,則存在熔融時間變長,阻斷特性惡化之傾向。因此,使用大電流用的可熔導體之熔絲元件存在如下問題:於流經有過電流(overcurrent)之情形時,阻斷電路所耗費之時間變長,難以迅速地阻斷電路。
又,於機器設計方面,在可通入至作為保護對象之機器之電流與熔斷時間的特性與可熔導體的阻斷特性不一致之情形時,需要降低熔絲元件的額定電流來應對該情形。
然而,於降低了熔絲元件的額定電流之情形時,存在如下問題:可熔導體的電阻值升高,能量損失增大,並且只要流動有並非為雷電突波般之大電流的小突波等瞬間超過額定電流之電流,即使為不會引起機器故障之安全的通電時間,亦會導致可熔導體熔斷,從而難以繼續使用機器。
本發明係解決上述問題之發明,其目的在於提供即使為額定電流大之熔絲元件,亦能夠迅速將可熔導體熔斷之熔絲電路、熔絲調整電路及熔絲調整方法。
為了解決上述問題,本發明的熔絲電路包括:可熔導體,其因特定電流而熔斷;調溫部,其對可熔導體的加熱量或冷卻量進行調整;以及控制部,其藉由控制調溫部而控制可熔導體的電流阻斷特性。
又,本發明的熔絲調整電路包括:調溫部,其對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整;以及控制部,其與調溫部 連接,對施加至調溫部之電流進行控制,藉此,控制可熔導體的電流阻斷特性。
又,本發明的熔絲調整方法對施加至調溫部之電流進行控制,藉此,控制可熔導體的電流阻斷特性,上述調溫部對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整。
又,本發明的程式使電腦執行如下處理,該處理係指對施加至調溫部之電流進行控制,藉此,控制可熔導體的電流阻斷特性,上述調溫部對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整,而且,本發明的記錄媒體記錄有上述程式。
根據本發明,能夠對由熔絲元件的額定電流決定之可熔導體的熔斷時間進行調整,即使為額定電流大之熔絲元件,亦能夠迅速將可熔導體熔斷,並且於機器設計方面,亦能夠不降低額定電流地選擇熔絲元件。
1:電池單元
11:電池
12:熔絲電路
20:熔絲調整電路
21:檢測電阻體
22:IC
23:第1之FET
24:第2之FET
25:保護元件
31:第1可熔導體
32:第2可熔導體
33:第1發熱電阻體
34:冷卻元件
41:第3可熔導體
42:第2發熱電阻體
43:第3之FET
44:第3發熱電阻體
45:第4之FET
100:電腦
101:CPU
102:ROM
103:RAM
圖1係對熔絲電路進行說明之電路圖。
圖2係對熔絲單元的電流阻斷特性進行說明之曲線圖。
圖3係對脈衝訊號之工作比的變化進行說明之曲線圖。
圖4係對脈衝訊號之工作比的變化進行說明之曲線圖。
圖5係對其他熔絲電路進行說明之電路圖。
圖6係對其他熔絲電路進行說明之電路圖。
圖7係對執行處理之電腦的構成進行說明之方塊圖。
圖8係對電腦所執行之程式及熔絲調整方法進行說明之流程圖。
圖9係表示實施例1的評估結果之曲線圖。
圖10係表示實施例2的評估結果之曲線圖。
圖11係表示實施例3的評估結果之曲線圖。
以下,一面參照圖式,一面詳細地說明應用有本發明之熔絲電路、熔絲調整電路、熔絲調整方法、程式及記錄媒體。再者,本發明並非僅限定於以下之實施形態,當然能夠於不脫離本發明的宗旨之範圍內進行各種變更。又,圖式為模式化之圖式,各尺寸之比率等有時與現實不同。具體之尺寸等應考慮以下之說明而加以判斷。又,圖式相互之間當然亦包含彼此的尺寸關係或比率不同之部分。
以下,如圖1所示,例舉電池單元1進行說明,該電池單元1串聯配置有鋰離子電池11的複數個單電池。
電池單元1具備鋰離子電池11、與作為該鋰離子電池11的保護電路之熔絲電路12。鋰離子電池11與熔絲電路12串聯地配置。熔絲電路12係以如下方式進行動作,即,當流經有過大電流時,阻斷鋰離子電池11與電池單元1外部的機器。再者,於本例中,並不限定於鋰離子電池,亦可為能夠輸出大電流之各種電池。
[熔絲電路的例1]
熔絲電路12係由與鋰離子電池11串聯地連接之檢測電阻體21、並聯連接於檢測電阻體21兩端之IC(Integrated Circuit,積體電路)22、與IC22連接之第1之FET(Field effect transistor)23及第2之FET24、以及與檢測電阻體 21、第1之FET23及第2之FET24連接之保護元件25構成。
熔絲電路12係由IC22使用檢測電阻體21而檢測自鋰離子電池11輸出之電流值,且基於IC22所檢測出之電流值,使第1之FET23及第2之FET24中的至少一方進行動作而使保護元件25作動,以阻斷鋰離子電池11的輸出電路。
檢測電阻體21係用以藉由IC22而對鋰離子電池11的輸出電路上的電流進行監視之電阻器,該檢測電阻體21之電阻值被設定為能夠檢測出超過保護元件25的額定電流之大電流。
IC22係內建有如下程式之控制部,該程式一面對鋰離子電池11的輸出電路上的電流進行監視,一面基於檢測出之電流值而使第1之FET23及第2之FET24進行動作。再者,IC22亦可並非為內建型集合電路,而是藉由電腦程式進行動作。以下,對程式的例子進行詳細說明。
第1之FET23及第2之FET24係對流向保護元件25內部的調溫部之電流進行控制之開關元件。第1之FET23及第2之FET24係以基於自IC22輸入之訊號而進行動作之方式構成。利用保護元件25的構成,對調溫部進行詳細說明。
保護元件25具有串聯配置於鋰離子電池11的輸出電路上之第1可熔導體31及第2可熔導體32、與第1之FET23連接之第1發熱電阻體33、及與第2之FET24連接之冷卻元件34。
第1可熔導體31係由因第1發熱電阻體33發熱而迅速熔斷之低熔點金屬構成,例如能夠較佳地使用以Sn為主成分之無Pb焊錫。
第2可熔導體32與第1可熔導體31同樣地係由因第1發熱 電阻體33發熱而迅速熔斷之低熔點金屬構成,例如能夠較佳地使用以Sn為主成分之無Pb焊錫。
再者,第1可熔導體31及第2可熔導體32於使用相同材料之情形時,能夠一體地成形。於該情形時,第1可熔導體31及第2可熔導體32能夠作為一個熔絲單元,因此,能夠削減保護元件25的零件數。又,第1可熔導體31及第2可熔導體32當然亦能夠設為彼此不同之材料。
第1發熱電阻體33係電阻零件,其構成調溫部,且以與第1可熔導體31及第2可熔導體32熱接觸之方式,配置於未圖示之絕緣基板上。第1發熱電阻體33於流經有電流之後,因電阻而發熱,能夠對第1可熔導體31及第2可熔導體32進行加熱。
冷卻元件34係電氣冷卻零件,其構成調溫部,且以與第1可熔導體31及第2可熔導體32熱接觸之方式,配置於未圖示之絕緣基板上。冷卻元件34例如係如帕爾帖元件等之能夠因流經有電流而吸熱,即可進行冷卻之元件。冷卻元件34於流經有電流之後,能夠對熱接觸之第1可熔導體31及第2可熔導體32進行冷卻。
此處,保護元件25係由成為鋰離子電池11的輸出路徑之第1端子a及第2端子b、連接第1之FET23與第1發熱電阻體33之第3端子c、及連接第2之FET24與冷卻元件34之第4端子d構成之4端子元件。第1可熔導體31、第2可熔導體32、第1發熱電阻體33及冷卻元件34各自的一端連接於第1端子a、第2端子b、第3端子c及第4端子d,另一端於電路中央連接。
保護元件25於流經有過大之電流之後,第1可熔導體31及 第2可熔導體32因自身的電阻而發熱,並且第1之FET23根據IC22之控制而導通,藉此,電流流動至第1發熱電阻體33,對第1可熔導體31及第2可熔導體32進行加熱。
另一方面,保護元件25於流經有過大之電流之後,第1可熔導體31及第2可熔導體32因自身的電阻而發熱,並且第2之FET24因IC22之控制而導通,藉此,電流流動至冷卻元件34,對第1可熔導體31及第2可熔導體32進行冷卻。
此處,使用圖2簡單地說明作為熔絲單元之第1可熔導體31及第2可熔導體32的熔斷時間(s)。
作為基準之第1可熔導體31及第2可熔導體32的熔斷時間(s)如圖2的上段曲線圖所示,電流阻斷特性能夠由L1的曲線表示。一方面,額定電流較第1可熔導體31及第2可熔導體32更小之熔絲單元的熔斷時間(s)如圖2的上段曲線圖所示,電流阻斷特性能夠由L2的曲線表示。另一方面,額定電流較第1可熔導體31及第2可熔導體32更大之熔絲單元的熔斷時間(s)如圖2的上段曲線圖所示,電流阻斷特性能夠由L3的曲線表示。
如此,已知熔絲單元的熔斷時間如圖2的上段曲線圖所示,額定電流越小,則成為越向左偏移之特性,額定電流越大,則成為越向右偏移之特性。
其次,使用圖2說明使保護元件25的第1發熱電阻體33作動時之第1可熔導體31及第2可熔導體32的熔斷時間(s)。
第1可熔導體31及第2可熔導體32自身的發熱量如圖2的下段曲線圖所示,具有隨著電流的增大而增加之如曲線H1般之特徵。相對 於此,第1發熱電阻體33例如具有如曲線H2般之特性,即,將特定之電流值設為I1,以使電流值為I1時所發出之熱量最多之方式控制第1之FET23,隨著電流值的增加而逐步減少發熱量,於電流值為I2時,發熱量變為0。亦即,利用IC22對於第1之FET23之控制,使其具有如曲線H2般之特性。
於進行使電流流動至第1發熱電阻體33之控制之情形時,保護元件25的總發熱量係合成第1可熔導體31及第2可熔導體32的發熱量與第1發熱電阻體33的發熱量,大致成為如曲線H1'般之特性。再者,第1發熱電阻體33的發熱量能夠藉由IC22之控制而任意地設定,藉由設為如曲線H2般之特性,使後述之第1可熔導體31及第2可熔導體32的電流阻斷特性最佳。
於藉由IC22之控制而使第1發熱電阻體33的發熱量具有如曲線H2般之特性之情形下,在電流值為小於額定電流之I1時,開始預加熱而施加熱量,因此,第1可熔導體31及第2可熔導體32的電流阻斷特性以L1'所示之曲線之方式發生變化,即,熔斷開始電流向左側偏移,使得即使為額定電流以下之電流I1,亦會熔斷。
亦即,藉由IC22對於第1之FET23之控制,能夠控制向第1發熱電阻體33供給之電流,使第1可熔導體31及第2可熔導體32的電流阻斷特性向額定電流小之熔絲單元的曲線L2側偏移。
藉此,不僅能夠利用額定電流以下之電流來熔斷第1可熔導體31及第2可熔導體32,而且亦能夠縮短熔斷時間。
例如,以熔斷時間T3進行比較之後,可知加熱後之L1'較未 加熱之L1利用更小之電流進行熔斷。以較熔斷時間T3更短之時間T2進行比較之後,同樣可知加熱後之L1'較未加熱之L1利用更小之電流進行熔斷。
然而,於以較熔斷時間T2更短之時間T1進行比較之情形時,幾乎無法發現其差異。亦即,於流動有如I2般之大電流之情形時,短熔斷時間T1無差異地維持了第1可熔導體31及第2可熔導體32所具有之電流阻斷特性,可謂於電流值小於I2且大於I1之範圍內縮短了熔斷時間。
其次,使用圖2說明使保護元件25的冷卻元件34作動時之第1可熔導體31及第2可熔導體32的熔斷時間(s)。
第1可熔導體31及第2可熔導體32自身的發熱量如圖2的下段曲線圖所示,具有隨著電流的增大而增加之如曲線H1般之特徵。相對於此,冷卻元件34例如具有如曲線H3般之特性,即,將特定之電流值設為I3,以使此時最冷卻之方式控制第2之FET24,隨著電流值的增加而逐步減少發熱量(冷卻),於電流值為I4時,發熱量變為0。亦即,利用IC22對於第2之FET24之控制,使其具有如曲線H3般之特性。
於進行了使電流流動至冷卻元件34之控制之情形時,保護元件25的總發熱量係合成第1可熔導體31及第2可熔導體32的發熱量與冷卻元件34的發熱量(冷卻),大致成為如曲線H1"般之特性。再者,冷卻元件34的發熱量(冷卻)能夠藉由IC22之控制而任意地設定,藉由設為如曲線H3般之特性,使後述之第1可熔導體31及第2可熔導體32的電流阻斷特性最佳。
於藉由IC22之控制而使冷卻元件34的發熱量(冷卻)具有如曲線H3般之特性之情形時,自額定電流附近開始進行冷卻,因此,第1可 熔導體31及第2可熔導體32的電流阻斷特性以L1"所示之曲線之方式發生變化,即,以使自額定電流附近之電流I3至電流I4之熔斷時間延長之方式向右側偏移。
亦即,藉由IC22對於第2之FET24之控制,能夠控制向冷卻元件34供給之電流,使第1可熔導體31及第2可熔導體32的電流阻斷特性向額定電流大之熔絲單元的曲線L3側偏移。
藉此,能夠延長如下時間,該時間係指於較額定電流更大之電流下,熔斷第1可熔導體31及第2可熔導體32之時間,從而能夠抑制因突波等短暫之過電流而導致第1可熔導體31及第2可熔導體32熔斷之情況。
例如,以熔斷時間T3進行比較之後,可知加熱後之L1"較未冷卻之L1利用更大之電流進行熔斷。以較熔斷時間T3更短之時間T2進行比較之後,同樣可知加熱後之L1"較未冷卻之L1利用更大之電流進行熔斷。以較熔斷時間T2更短之時間T1進行比較之後,同樣可知加熱後之L1"較未冷卻之L1利用更大之電流進行熔斷。亦即,可謂藉由冷卻元件34之冷卻,向額定電流大之一方,對第1可熔導體31及第2可熔導體32所具有之電流阻斷特性進行調整。
其次,使用圖3及圖4,簡單地說明由IC22對第1之FET23進行控制時之訊號。
IC22使用脈衝訊號控制第1之FET23。亦即,IC22對脈衝訊號的導通/斷開之比即脈衝工作比(pulse duty ratio)進行調整,藉此,對第1之FET23進行導通/斷開控制,從而控制流動至第1發熱電阻體33之電流。
具體而言,如圖3所示,若檢測出之電流值超過I1,則IC22 將工作比為50%之脈衝訊號輸出至第1之FET23。接著,IC22將脈衝訊號輸出至第1之FET23,以便連續地逐步降低工作比,直至檢測出之電流值達到I2為止。最後,IC22於檢測出之電流值達到I2之後,將工作比設為0,即,不將脈衝訊號輸出至第1之FET23。
以上述方式將脈衝訊號輸出至第1之FET23,藉此,電流對應於工作比而流動至第1發熱電阻體33,因此,能夠將圖2的下段曲線圖所示之曲線H2所表示的熱量施加至第1可熔導體31及第2可熔導體32。
再者,亦可如圖4所示,若檢測出之電流值超過I1,則IC22將工作比為50%之脈衝訊號輸出至第1之FET23,接著,IC22將脈衝訊號輸出至第1之FET23,以便階段性地降低工作比,直至檢測出之電流值達到I2為止,於檢測出之電流值達到I2之後,將工作比設為0。亦即,只要能夠對第1發熱電阻體33的發熱量進行控制,以獲得所期望之電流阻斷特性即可。
其次,簡單地說明由IC22對第2之FET24進行控制時之訊號。
IC22使用脈衝訊號控制第2之FET24。亦即,IC22對脈衝訊號的導通/斷開之比即脈衝工作比進行調整,藉此,對第2之FET24進行導通/斷開控制,從而控制流動至冷卻元件34之電流。
以上述方式將脈衝訊號輸出至第2之FET24,藉此,電流對應於工作比而流動至冷卻元件34,因此,能夠將圖2的下段曲線圖所示之曲線H3所表示的熱量(冷卻)施加至第1可熔導體31及第2可熔導體32。再者,具體的控制之設定可與對第1之FET23進行控制之訊號相同,因此省 略詳細說明。
此處,如圖1所示,檢測電阻體21及IC22構成熔絲調整電路20。亦即,於本構成中,將熔絲調整電路串聯配置於保護元件25與鋰離子電池11之間。熔絲調整電路20藉由將第1之FET23導通而利用第1發熱電阻體33進行加熱,藉由將第2之FET24導通而進行冷卻,從而能夠調整對於第1可熔導體31及第2可熔導體32之加熱量,且能夠使第1可熔導體31及第2可熔導體32獲得任意之電流阻斷特性。
[熔絲電路的例2]
其次,使用圖5對不同構成之熔絲電路1進行說明。再者,於本例中,對與圖1的構成大致同等之構成標記相同符號且省略說明。
本例係未如保護元件25般內置有調溫部,而使用外部加熱器之構成。具體而言,熔絲電路12係由與鋰離子電池11串聯地連接之檢測電阻體21、並聯連接於檢測電阻體21的兩端之IC(Integrated Circuit)22、與鋰離子電池11串聯地連接之第3可熔導體41、以與第3可熔導體41熱連接之方式而配置之第2發熱電阻體42、以及與IC22及第2發熱電阻體42連接之第3之FET43構成。
圖5所示之熔絲電路12未如內置有調溫部,即加熱器之保護元件25般使用特殊元件,該熔絲電路12為將設定了任意電阻值之第2發熱電阻體42作為調溫部,並附加至僅包含第3可熔導體41的簡單之熔絲構成所得之構成,其通用性高,且能夠根據用途自由地改變電阻值,因此易於使用。
[熔絲電路的例3]
其次,使用圖6對不同構成之熔絲電路1進行說明。再者,於本例中,對與圖1及圖5的構成大致同等之構成標記相同符號且省略說明。
本例係未如保護元件25般內置有調溫部,而使用外部加熱器之構成。具體而言,熔絲電路12係由與鋰離子電池11串聯地連接之檢測電阻體21、並聯連接於檢測電阻體21的兩端之IC(Integrated Circuit)22、與鋰離子電池11串聯地連接之第3可熔導體41、以與第3可熔導體41熱連接之方式而配置之第2發熱電阻體42、與IC22及第2發熱電阻體42連接之第3之FET43、以與第3可熔導體41熱連接之方式而配置之第3發熱電阻體44、以及與IC22及第3發熱電阻體44連接之第4之FET45構成。
圖6所示之熔絲電路12未如內置有調溫部,即加熱器之保護元件25般使用特殊元件,該熔絲電路12為將設定了任意電阻值之第2發熱電阻體42及第3發熱電阻體44作為調溫部,並附加至僅包含第3可熔導體41的簡單之熔絲構成所得之構成,其通用性高,且能夠根據用途而自由地改變各自的電阻值為其優點。
又,第2發熱電阻體42及第3發熱電阻體44較佳為預先分別設有不同之電阻值。透過發熱電阻體的組合可調整發熱量,例如當僅使第2發熱電阻體42進行動作時、僅使第3發熱電阻體44進行動作時、及使第2發熱電阻體42及第3發熱電阻體44雙方進行動作時,即使於自IC22輸出了相同脈衝訊號之情形下,發熱量亦不同,藉由增加發熱電阻體的數量,能夠與IC的脈衝訊號控制組合而獲得複雜之電流阻斷特性。
再者,於本發明中,並不限定於如上述圖1、圖5及圖6所示之熔絲電路的構成,當然能夠適當地將複數個發熱電阻體或冷卻元件加 以組合作為調溫部。
[IC的控制與程式]
圖7係表示利用電腦程式來執行本實施形態的IC22的功能時之構成之方塊圖。本程式可內建於IC22,亦可使用外部的電腦資源進行控制。
如圖7所示,電腦100係由進行程式執行處理之CPU(Central Processing Unit,中央處理單元)101、儲存CPU101所執行之程式之ROM(Read Only Memory,唯讀記憶體)102、及將程式或資料解壓縮之RAM(Random Access Memory,隨機存取記憶體)103構成,其能夠經由介面控制各FET。
CPU101對電腦100所具有之各區塊的動作進行控制。具體而言,CPU101讀出例如ROM102中所記錄之對熔絲進行調整之程式,將該程式於RAM103中解壓縮且加以執行,藉此,控制各區塊的動作。
ROM102例如為可覆寫之非揮發性記憶體,RAM103為揮發性記憶體。
其次,針對電腦100中所執行之對熔絲進行調整之處理,使用圖8的流程圖具體說明。由CPU101讀出例如ROM102中所記錄之對應之處理程式,將該處理程式於RAM103中解壓縮且加以執行,藉此,能夠實現對應於該流程圖之處理。
於步驟S101中,CPU101自檢測電阻體21的兩端測定電流值,且使處理流程向步驟S102前進。
於步驟S102中,CPU101判斷測定出之電流值是否大於特定值。此處,特定值例如設為圖2所示之I1。CPU101於判斷測定出之電流值大於特定值之情形時,使處理流程前進至步驟S103,於判斷測定出之電流 值為特定值以下之情形時,反覆進行步驟S101的處理。
於步驟S103中,CPU101將與測定出之電流值相對應之脈衝訊號輸出至各FET。關於輸出之脈衝訊號,能夠使用上述說明之對各種工作比進行了調整之脈衝訊號。
於步驟S104中,CPU101自檢測電阻體21的兩端測定電流值,對計時器-計數器進行累計(count up)。此處,測定電流值之原因在於:於上述步驟S103中,輸出與電流值相對應之脈衝訊號。
於步驟S105中,CPU101判斷測定出之電流值是否為0,或判斷計時器-計數器的計數值是否已達到特定時間。CPU101於判斷測定出之電流值為0之情形時,使處理流程前進至步驟S106,於判斷測定出之電流值並非為0之情形時,返回至步驟S103,且反覆地進行處理。又,CPU101於判斷計時器-計數器的計數值已達到特定時間之情形時,使處理流程前進至步驟S106,於判斷計時器-計數器的計數值尚未達到特定時間之情形時,返回至步驟S103,且反覆地進行處理。
於步驟S106中,CPU101進行停止將脈衝訊號輸出至各FET或將脈衝工作比設為0%之處理,本處理結束。
[實施例]
以下,對本發明的實施例進行說明。於本實施例中,對調溫部進行調整而評估熔絲元件的電流阻斷特性。再者,本發明並不限定於該等實施例。
[實施例1]
使用內置有加熱器之熔絲(SFK-30A:Dexerials公司製造)作為保護元件 來進行測試。保護元件的額定電流為30A,加熱器的電阻值為50.0Ω,將電池電壓設為40V,流動至保護元件之電流分為30A、60A、80A、100A等4個階段進行評估。
Figure 104117705-A0305-02-0019-1
評估結果如表1及圖9所示,對於額定電流即30A之電流,於加熱器並未對保護元件進行加熱之情形時,熔絲單元不會熔斷,電路未切斷。使工作比為50%之脈衝訊號流入至保護元件,藉由加熱器進行16W之加熱之後,即使為30A之額定電流,亦會於4.0秒時切斷電路。
其次,對於超過額定電流之60A之電流,於加熱器並未對保護元件進行加熱之情形時,於15.0秒時切斷電路。使工作比為50%之脈衝訊號流入至保護元件,藉由加熱器進行16W之加熱之後,於1.7秒時切斷電路。
其次,對於超過額定電流之80A之電流,於加熱器並未對保護元件進行加熱之情形時,於3.0秒時切斷電路。使工作比為30%之脈衝訊號流入至保護元件,藉由加熱器進行10W之加熱之後,於1.0秒時切斷電路。
其次,對於超過額定電流之100A之電流,於加熱器並未對保護元件進行加熱之情形時,於0.8秒時切斷電路。再者,對於100A電流,未使脈衝訊號流入至保護元件。
如上所述,已知於實施例1中,根據脈衝訊號而對保護元件進行加熱,藉此,能夠任意地控制熔絲單元的熔斷時間。尤其,因加熱而使熔斷時間縮短之效果顯著,並且即使為額定電流,亦能夠將熔絲單元熔斷。
[實施例2]
使用未搭載加熱器之熔絲(SFK-30A:Dexerials公司製造)作為保護元件來進行測試。保護元件的額定電流設為30A,使用電阻值為19Ω之發熱電阻體R1與電阻值為26Ω之發熱電阻體R2作為保護元件外部的加熱器,將電池電壓設為12V,流動至保護元件之電流分為30A、60A、80A、100A等4個階段進行評估。再者,外部加熱器與保護元件內的熔絲單元熱連接。
Figure 104117705-A0305-02-0020-3
評估結果如表2及圖10所示,對於額定電流即30A之電流,於加熱器並為對保護元件進行加熱之情形時,熔絲單元不會熔斷,電路未切斷。使電流流動至發熱電阻體R1與發熱電阻體R2,進行合計13.1W之加熱之後,即使為額定電流即30A,亦會於18.0秒時切斷電路。
其次,對於超過額定電流之60A之電流,於加熱器並未對保護元件進行加熱之情形時,於15.0秒時切斷電路。使電流僅流動至發熱電阻體R1,藉由加熱器進行7.6W之加熱之後,於8.0秒時切斷電路。
其次,對於超過額定電流之80A之電流,於加熱器並未對 保護元件進行加熱之情形時,於3.0秒時切斷電路。使電流僅流動至發熱電阻體R2,藉由加熱器進行5.5W之加熱之後,於2.0秒時切斷電路。
其次,對於超過額定電流之100A之電流,於加熱器並未對保護元件進行加熱之情形時,於0.8秒時切斷電路。再者,對於100A之電流,加熱器並未對保護元件進行加熱。
如上所述,已知於實施例2中,使用電阻值不同之複數個外部加熱器對保護元件進行加熱,藉此,能夠根據電阻值的組合而任意地控制熔絲單元的熔斷時間。尤其,因加熱而使熔斷時間縮短之效果顯著,並且即使為額定電流,亦能夠將熔絲單元熔斷。
[實施例3]
使用內置有加熱器之熔絲(SFK-30A:Dexerials公司製造)作為保護元件來進行測試。保護元件的額定電流為30A,加熱器的電阻值為50.0Ω,將電池電壓設為40V,流動至保護元件之電流分為29A、30A、60A、80A等4個階段進行評估。
Figure 104117705-A0305-02-0021-4
評估結果如表3及圖11所示,對於額定電流以下之29A之電流,於加熱器並未對保護元件進行加熱之情形時,熔絲單元不會熔斷,電路未切斷。使工作比為0%之脈衝訊號流入至保護元件,藉由加熱器進行0W之加熱之後,電路未切斷。
其次,對於額定電流即30A之電流,於加熱器並未對保護元件進行加熱之情形時,熔絲單元不會熔斷,電路未切斷。使工作比為50%之脈衝訊號流入至保護元件,藉由加熱器進行16W之加熱之後,即使為額定電流即30A,亦會於4.0秒時切斷電路。
其次,對於超過額定電流之60A之電流,於加熱器並未對保護元件進行加熱之情形時,於15.0秒時切斷電路。使工作比為50%之脈衝訊號流入至保護元件,藉由加熱器進行16W之加熱之後,於1.7秒時切斷電路。
其次,對於超過額定電流之80A之電流,於加熱器並未對保護元件進行加熱之情形時,於3.0秒時切斷電路。使工作比為30%之脈衝訊號流入至保護元件,藉由加熱器進行10W之加熱之後,於1.0秒時切斷電路。
如上所述,已知於實施例3中,根據脈衝訊號而對保護元件進行加熱,藉此,能夠任意地控制熔絲單元的熔斷時間。尤其,根據29A與30A之比較可知:即使是1A單位之電流,亦能夠對熔絲單元之熔斷進行控制。具體而言,已知:不藉由加熱器進行加熱,或進行冷卻,藉此,能夠調整為使熔絲單元不會於29A下熔斷,並且藉由加熱器進行加熱而不進行冷卻,藉此,能夠於30A下實現任意的特性。
如上所述,藉由使用本發明的例子的熔絲調整電路,即使為較熔絲元件的額定電流更低之電流,亦能夠將電路阻斷,於欲利用額定電流以下之電流將電路阻斷之情形時,能夠不變更熔絲元件的額定電流而應對該情形。
又,藉由使用本發明的例子的熔絲調整電路,即使為具有特定的電流阻斷特性之熔絲元件,亦能夠任意地調整其電流阻斷特性。藉此,即使為額定電流大之熔絲元件,亦能夠縮短熔斷時間。又,根據用途,亦能夠藉由使用冷卻元件而延長熔斷時間或不熔斷。
又,藉由使用本發明的例子的熔絲調整電路,即使為稍微超過特定之額定電流之電流,亦能夠縮短熔斷時間,因此,即使為如行動機器等之可通電時間有限之用途,亦能夠將電路阻斷。
又,藉由使用本發明的例子的熔絲調整電路,能夠使用有較機器的電路構成上所要求之額定電流更大之額定電流之熔絲元件。換言之,能夠獲得所期望之電流阻斷特性,且亦能夠降低熔絲電阻值,因此,能夠避免能量損失,且能夠保護作為保護電路而連接之機器。
1‧‧‧電池單元
11‧‧‧電池
12‧‧‧熔絲電路
20‧‧‧熔絲調整電路
21‧‧‧檢測電阻體
22‧‧‧IC
23‧‧‧第1之FET
24‧‧‧第2之FET
25‧‧‧保護元件
31‧‧‧第1可熔導體
32‧‧‧第2可熔導體
33‧‧‧第1發熱電阻體
34‧‧‧冷卻元件
a‧‧‧第1端子
b‧‧‧第2端子
c‧‧‧第3端子
d‧‧‧第4端子

Claims (46)

  1. 一種熔絲電路,其包括:可熔導體,其因特定電流而熔斷;調溫部,其對上述可熔導體的加熱量或冷卻量進行調整;以及控制部,其藉由控制上述調溫部而控制上述可熔導體的表示相對於通電電流值之熔斷時間之電流阻斷特性。
  2. 如申請專利範圍第1項之熔絲電路,其中,上述控制部根據上述可熔導體的通電電流值控制上述電流阻斷特性。
  3. 如申請專利範圍第1或2項之熔絲電路,其中,上述調溫部為發熱電阻體或冷卻元件;上述控制部藉由控制流動至上述發熱電阻體或上述冷卻元件之電流,使上述發熱電阻體或上述冷卻元件之電流-發熱量特性變化,控制上述電流阻斷特性。
  4. 如申請專利範圍第1或2項之熔絲電路,其中,上述調溫部係複數個發熱電阻體或複數個冷卻元件或者發熱電阻體與冷卻元件的組合。
  5. 如申請專利範圍第3項之熔絲電路,其中,上述調溫部係由加熱或冷卻特性各不相同之上述發熱電阻體或上述冷卻元件構成。
  6. 如申請專利範圍第3項之熔絲電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  7. 如申請專利範圍第5項之熔絲電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  8. 如申請專利範圍第4項之熔絲電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  9. 如申請專利範圍第6項之熔絲電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  10. 如申請專利範圍第8項之熔絲電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  11. 如申請專利範圍第9項之熔絲電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,基於流動至上述可熔導體之電流值而使工作比可變化。
  12. 如申請專利範圍第10項之熔絲電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,基於流動至上述可熔導體之電流值而使工作比可變化。
  13. 如申請專利範圍第1或2項之熔絲電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,當流動至上述可熔導體之電流值超過特定值時,開始上述調溫部之控制。
  14. 如申請專利範圍第1或2項之熔絲電路,其中, 上述控制部於自上述調溫部之控制開始後經過了特定時間時,中止上述調溫部之控制。
  15. 如申請專利範圍第1或2項之熔絲電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,於上述調溫部之控制開始之後,流動至上述可熔導體之電流值大致為0時,中止上述調溫部之控制。
  16. 一種熔絲調整電路,其包括:調溫部,其對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整;以及控制部,其與上述調溫部連接,對施加至上述調溫部之電流進行控制,藉此,控制上述可熔導體的表示相對於通電電流值之熔斷時間之電流阻斷特性。
  17. 如申請專利範圍第16項之熔絲調整電路,其中,上述控制部根據上述可熔導體的通電電流值控制上述電流阻斷特性。
  18. 如申請專利範圍第16或17項之熔絲調整電路,其中,上述調溫部為發熱電阻體或冷卻元件;上述控制部藉由控制流動至上述發熱電阻體或上述冷卻元件之電流,使上述發熱電阻體或上述冷卻元件之電流-發熱量特性變化,控制上述電流阻斷特性。
  19. 如申請專利範圍第16或17項之熔絲調整電路,其中,上述調溫部係複數個發熱電阻體或複數個冷卻元件或者發熱電阻體與冷卻元件的組合。
  20. 如申請專利範圍第18項之熔絲調整電路,其中,上述調溫部係上述複數個發熱電阻體或複數個冷卻元件或者發熱電阻體與冷卻元件的組合,且由加熱或冷卻特性各不相同之元件構成。
  21. 如申請專利範圍第18項之熔絲調整電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  22. 如申請專利範圍第20項之熔絲調整電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  23. 如申請專利範圍第19項之熔絲調整電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  24. 如申請專利範圍第21項之熔絲調整電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  25. 如申請專利範圍第23項之熔絲調整電路,其中,上述控制部對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  26. 如申請專利範圍第24項之熔絲調整電路,其中,上述控制部基於流動至上述可熔導體之電流值而使工作比可變化。
  27. 如申請專利範圍第25項之熔絲調整電路,其中,上述控制部基於流動至上述可熔導體之電流值而使工作比可變化。
  28. 如申請專利範圍第16或17項之熔絲調整電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,當流動至上述可熔導體之電流值超過特定值時,開始上述調溫部之控制。
  29. 如申請專利範圍第16或17項之熔絲調整電路,其中,上述控制部於自上述調溫部之控制開始後經過了特定時間時,中止上述調溫部之控制。
  30. 如申請專利範圍第16或17項之熔絲調整電路,其中,上述控制部具有與上述可熔導體串聯配置之檢測電阻體,於上述調溫部之控制開始之後,流動至上述可熔導體之電流值大致為0時,中止上述調溫部之控制。
  31. 一種熔絲調整方法,其以控制部對施加至調溫部之電流進行控制,藉此,控制上述可熔導體的表示相對於通電電流值之熔斷時間之電流阻斷特性,上述調溫部對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整。
  32. 如申請專利範圍第31項之熔絲調整方法,其中,上述控制部根據上述可熔導體的通電電流值控制上述電流阻斷特性。
  33. 如申請專利範圍第31或32項之熔絲調整方法,其中,上述調溫部為發熱電阻體或冷卻元件;藉由控制流動至上述發熱電阻體或上述冷卻元件之電流,使上述發熱電阻體或上述冷卻元件之電流-發熱量特性變化,控制上述電流阻斷特性。
  34. 如申請專利範圍第31或32項之熔絲調整方法,其中,上述調溫部係複數個發熱電阻體或複數個冷卻元件或者發熱電阻體與 冷卻元件的組合。
  35. 如申請專利範圍第33項之熔絲調整方法,其中,上述調溫部係上述複數個發熱電阻體或複數個冷卻元件或者發熱電阻體與冷卻元件的組合,且由加熱或冷卻特性各不相同之元件構成。
  36. 如申請專利範圍第33項之熔絲調整方法,其中,對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  37. 如申請專利範圍第35項之熔絲調整方法,其中,對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  38. 如申請專利範圍第34項之熔絲調整方法,其中,對流動至上述發熱電阻體或上述冷卻元件之電流進行控制,藉此,對施加至上述可熔導體之熱量進行調整。
  39. 如申請專利範圍第36項之熔絲調整方法,其中,對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  40. 如申請專利範圍第38項之熔絲調整方法,其中,對流動至上述發熱電阻體或上述冷卻元件之電流進行脈衝控制,藉此,對施加至上述可熔導體之熱量進行調整。
  41. 如申請專利範圍第39項之熔絲調整方法,其中,基於流動至上述可熔導體之電流值而使工作比可變化。
  42. 如申請專利範圍第40項之熔絲調整方法,其中, 基於流動至上述可熔導體之電流值而使工作比可變化。
  43. 如申請專利範圍第31或32項之熔絲調整方法,其中,使用與上述可熔導體串聯配置之檢測電阻體,對流動至上述可熔導體之電流值進行檢測,當上述電流值超過特定值時,開始上述調溫部之控制。
  44. 如申請專利範圍第31或32項之熔絲調整方法,其中,於自上述調溫部之控制開始後,對經過時間進行計時,於經過了特定時間時,中止上述調溫部之控制。
  45. 如申請專利範圍第31或32項之熔絲調整方法,其中,於上述調溫部之控制開始之後,使用與上述可熔導體串聯配置之檢測電阻體,對流動至上述可熔導體之電流值進行檢測,當上述電流值大致為0時,中止上述調溫部之控制。
  46. 一種記錄媒體,其記錄有使電腦執行如下處理之程式,該處理係指對施加至調溫部之電流進行控制,藉此,控制上述可熔導體的表示相對於通電電流值之熔斷時間之電流阻斷特性,上述調溫部對因特定電流而熔斷之可熔導體的加熱量或冷卻量進行調整。
TW104117705A 2014-06-03 2015-06-02 熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體 TWI702765B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2014-114597 2014-06-03
JP2014114597A JP6501457B2 (ja) 2014-06-03 2014-06-03 ヒューズ回路、ヒューズ調整回路、ヒューズ調整方法、プログラム及び記録媒体

Publications (2)

Publication Number Publication Date
TW201611456A TW201611456A (zh) 2016-03-16
TWI702765B true TWI702765B (zh) 2020-08-21

Family

ID=54887436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104117705A TWI702765B (zh) 2014-06-03 2015-06-02 熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體

Country Status (3)

Country Link
JP (1) JP6501457B2 (zh)
KR (1) KR102496388B1 (zh)
TW (1) TWI702765B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102390002B1 (ko) 2018-08-31 2022-04-22 주식회사 엘지에너지솔루션 불량 모드 감지를 통한 퓨즈 제어 시스템 및 방법
CN209993563U (zh) * 2019-01-16 2020-01-24 厦门赛尔特电子有限公司 一种高压熔断装置
CN110994561B (zh) * 2019-04-30 2021-10-08 宁德时代新能源科技股份有限公司 电池安全保护系统和处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023317A (ja) * 2009-07-21 2011-02-03 Lenovo Singapore Pte Ltd 蓄電池用保護素子および保護システム
TW201140986A (en) * 2010-02-19 2011-11-16 Sony Chemical & Inf Device Protection circuit, battery control device, and battery pack
TWM449728U (zh) * 2012-10-11 2013-04-01 China Motor Corp 電池電源管理系統
TW201351833A (zh) * 2012-04-06 2013-12-16 Semiconductor Energy Lab 保護電路模塊及電池組

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126304A (ja) * 1994-10-28 1996-05-17 Toshiba Emi Ltd スイッチング電源
DE19735546A1 (de) * 1997-08-16 1999-02-18 Daimler Benz Ag Sicherungselement für elektrische Anlagen
JP4611644B2 (ja) 2004-01-26 2011-01-12 レンゴー株式会社 包装用仕切
JP6249600B2 (ja) * 2012-03-29 2017-12-20 デクセリアルズ株式会社 保護素子
JP2014053232A (ja) * 2012-09-10 2014-03-20 Panasonic Corp 温度ヒューズの溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023317A (ja) * 2009-07-21 2011-02-03 Lenovo Singapore Pte Ltd 蓄電池用保護素子および保護システム
TW201140986A (en) * 2010-02-19 2011-11-16 Sony Chemical & Inf Device Protection circuit, battery control device, and battery pack
TW201351833A (zh) * 2012-04-06 2013-12-16 Semiconductor Energy Lab 保護電路模塊及電池組
TWM449728U (zh) * 2012-10-11 2013-04-01 China Motor Corp 電池電源管理系統

Also Published As

Publication number Publication date
KR20150139451A (ko) 2015-12-11
JP2015230740A (ja) 2015-12-21
KR102496388B1 (ko) 2023-02-06
TW201611456A (zh) 2016-03-16
JP6501457B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
KR101014939B1 (ko) 보호 회로가 부착된 2차 전지
JP4637001B2 (ja) 保護素子とこの保護素子を備えるパック電池
US9923362B2 (en) Protective device
JP2022141710A (ja) 回路遮断器
JP5219463B2 (ja) パック電池
JP6490583B2 (ja) 保護デバイス
JP2016127769A (ja) 電池パック
KR20170053129A (ko) 급속 방전 유닛을 구비한 배터리 셀 및 상기 배터리 셀용 급속 방전 방법
JP2007135359A (ja) 保護素子とこの保護素子を備えるパック電池
TWI702765B (zh) 熔絲電路、熔絲調整電路、熔絲調整方法及記錄媒體
JP7216047B2 (ja) 過度の過熱に対する保護のための回路装置
JP2010115070A (ja) 二次電池の過充電保護回路
TW201519728A (zh) 保護元件
TW201611069A (zh) 保護元件及保護電路
JP6468142B2 (ja) 車載リレーの温度検出システム
JP2007207940A (ja) 保護素子とこの保護素子を備えるパック電池
JP6733581B2 (ja) 電池パック
JP7321731B2 (ja) バッテリパック、保護回路
KR102176943B1 (ko) 배터리팩
JP7181295B2 (ja) 電気化学的エネルギー貯蔵モジュールおよび車両
JP2008027840A (ja) パック電池
JP4368039B2 (ja) 自己発熱素子を有する温度ヒューズとこの温度ヒューズを内蔵するパック電池
JP2007259656A (ja) 保護装置および充電装置
KR102135271B1 (ko) 배터리 보호 회로 장치
JP2021077589A (ja) 保護回路