JP2007132992A - ベルト駆動装置および画像形成装置 - Google Patents

ベルト駆動装置および画像形成装置 Download PDF

Info

Publication number
JP2007132992A
JP2007132992A JP2005323459A JP2005323459A JP2007132992A JP 2007132992 A JP2007132992 A JP 2007132992A JP 2005323459 A JP2005323459 A JP 2005323459A JP 2005323459 A JP2005323459 A JP 2005323459A JP 2007132992 A JP2007132992 A JP 2007132992A
Authority
JP
Japan
Prior art keywords
belt
angular displacement
frequency
endless belt
mark
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005323459A
Other languages
English (en)
Inventor
Yuji Matsuda
雄二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005323459A priority Critical patent/JP2007132992A/ja
Publication of JP2007132992A publication Critical patent/JP2007132992A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

【課題】 ベルト厚み変動により発生するエンドレスベルトの回動速度変動の安定化を簡易な構成で確実に行えるようにする。
【解決手段】 目標角変位生成部30は、予め計測した転写搬送ベルト60の厚み変動で生じる検出角変位誤差を不揮発生メモリ301に保持しておき、マークセンサ35によるマーク検出タイミングで不揮発生メモリ301から検出角変位誤差値を読み出し、それをベルト1周の周波数で補正した値を目標角変位に加算して新たな目標角変位Ref(n)とする。制御コントローラ部40は、目標角変位生成部30からの目標角変位Ref(n)とエンコーダ31からの検出角変位P(n−1)との差e(n)をとり、その差e(n)を比例増幅して補正量(rad)Hzとし、それを一定の定常駆動パルス周波数(Refpc)Hzに加算して駆動パルス周波数f(n)を決定する。
【選択図】 図1

Description

この発明は、転写装置等に用いられる転写搬送ベルト等のエンドレスベルトを回動させるベルト駆動装置、およびそのベルト駆動装置を備えたカラープリンタやカラー複写機等の画像形成装置に関する。
カラー画像形成装置におけるカラー画像形成の一般的な方法としては、複数の感光体上にそれぞれ異なる色で形成されるトナー画像を直接転写紙に重ねながら転写させる直接転写方式と、同じく色の異なるトナー画像を中間転写体に重ねながら転写させ、その後に転写紙に一括して転写させる中間転写方式がある。これらの方式は、共通して複数の感光体を転写紙または中間転写体に対向させて並べて配置するのでタンデム方式と呼ばれ、感光体毎にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色に対して、静電潜像の形成および現像などの電子写真プロセスを実行させ、直接転写方式では走行中の転写紙上に、中間転写方式においては走行中の中間転写体上に転写する。
これらの各方式を用いたタンデム方式のカラー画像形成装置では、直接転写方式にあっては、転写紙を担持しながら走行するエンドレスベルト(無端ベルト)を、中間転写方式にあっては、感光体から画像を受け取り担持するエンドレスベルト(以下単に「ベルト」ともいう)を採用するのが一般的である。そして、4個の感光体をそれぞれ含む作像ユニットをベルトの一方の走行辺に沿って並設している。
上記タンデム方式のカラー画像形成装置では、各色のトナー画像を精度よく重ねることが色ズレの発生を防止する上で重要である。そのため、いずれの転写方式においても転写ベルトの速度変動による色ズレを回避するために、転写ユニットを構成する複数個の従動軸のうちの1つにエンコーダを取り付け、そのエンコーダの回転速度変動に応じて駆動ローラの回転速度をフィードバック制御(従動軸フィードバック制御)するのが有効な手段となっている。
このようなフィードバック制御を実現する最も一般的な方法として、比例制御(PI制御)がある。これはまず、エンコーダの目標角変位Ref(n)とエンコーダの検出角変位P(n−1)との差から位置偏差e(n)を演算する。そして、その演算結果の位置偏差e(n)にローパスフィルタをかけて高周波ノイズを除去すると共に、制御ゲインをかけ、更に一定の標準駆動パルス周波数を加える。これにより得られた駆動パルス周波数により、駆動ローラを駆動する駆動モータを制御することによって、常にエンコーダ出力が目標角変位で駆動されるように制御することができる。
しかし、このようなフィードバック制御では、ベルトの微小な厚み変動によって転写紙の搬送速度に変化が生じ、画像が理想位置からずれるという画像品質の低下を招くと共に、複数の転写紙間においても画像に変動が発生し、転写紙間における画像形成位置の繰り返し再現性が劣化するという問題があった。
これは、ベルトが一定速度で搬送されていても、その厚み変動により従動軸の回転角変位(エンコーダの角変位)の検出では、あたかもベルトが速度変動しているように検出され、従来の従動軸フィードバック制御ではこの変動成分を制御で増幅してしまい、逆にベルト搬送速度を悪化させてしまうためである。つまり、従来の従動軸フィードバック制御では、ベルトの厚み変動をも考慮した高精度な制御を行うことができなかった。
そこで、このようなベルト厚み変動による問題を解決するため、例えば特許文献1に記載された画像形成装置が提案されている。
この画像形成装置では、まずベルトマークによって検知される位置を基準として、転写ベルトの全周方向にわたる厚さプロファイルを予め計測しておき、一定のパルスレートで駆動ローラを駆動した場合に、転写ベルトの厚さプロファイルによって発生する速度変動Vhを打ち消す速度プロファイルを算出しておく。そして、この速度プロファイルによりパルスレートを変調した駆動モータ制御信号で駆動モータを制御し、駆動ローラを介して転写ベルトを駆動することにより、最終的に転写ベルトの速度Vbを変動のないものとする。
特開2000−310897号公報
一方、本出願人は先に、エンコーダがベルトの厚みの影響で受ける検出角変位誤差を制御パラメータとし、それを通常の従動軸フィードバック制御の制御目標値に加算することにより、誤検出されているように従動軸フィードバック制御を行い、ベルトの搬送速度を一定にするようにしたベルト駆動装置を提案している(特開2004−378545号)。
ここで、このベルト駆動装置について、もう少し詳細に説明する。
このベルト駆動装置は、ベルトの厚み変動で発生するエンコーダの検出角変位誤差を検出する角変位誤差検出手段の他に、ベルトの基準位置となるベルトマークを検出するベルトマーク検出手段を備え、それらを用いて従動軸フィードバック制御を行う。
すなわち、まず、予め駆動モータを一定速度で駆動し、その時のエンコーダの出力結果から、そのエンコーダがベルトの厚みで受ける角変位誤差成分のみを抽出する。その厚みのむらは、ほとんどの場合、正弦波一周期成分となっていることから、角変位誤差成分からベルトマーク検出手段によるマーク検出(ベルトマークの検出)時点での位相値と最大振幅値を算出し、これらを制御パラメータとする。
そして、実際に制御を行う時には、位相値と最大振幅値からSIN関数もしくは近似式を用いてベルトマーク検出手段によるマーク検出時点からの経過時間(ベルト移動位置)に応じて制御パラメータを展開し(補正データを生成し)、その制御パラメータを制御目標値に加算しながらフィードバック制御を行う。このとき、ベルトマークの検出タイミングで制御パラメータを更新するように制御を行う。
しかしながら、前者(特許文献1に記載)の画像形成装置では、速度プロファイルデータは制御周期毎のデータを必要とするため、制御周期を短周期で行う場合は大容量のメモリが必要となり、また制御周期を長周期にするとフィードバック制御自体が十分な効果が得られなくなる問題がある。例えば、ベルト周長が815mmで、ベルト駆動速度が125mm/s、制御周期が1msであった場合には、次式で求められるように、ベルト1周あたり6520回の制御が必要になる。
815mm/(125mm/s×1ms)=6520回
また、1ポイント当たりのベルト厚みのデータを16bitのサイズ表現にしようとすると、次のように100Kbit以上のメモリが必要になる。
6520回×16bit=104320bit
そのため上記制御を実用機で行う場合には、ベルト厚みプロファイル格納用メモリとして不揮発性メモリを新たに用意する必要があり、仮にデータを圧縮して格納し、電源投入時に揮発性メモリに解凍するとしても、大容量のメモリが必要となる。そのため、通常のワークエリアとして使用しているメモリの他に別途大容量のメモリが必要となり、大幅なコストアップを招く要因となって現実的ではない。
さらに、特許文献1の手法では、ベルトの厚みプロファイルデータとして、ベルトの厚みそのものを全周にわたって計測する必要があり、そのための手段としてレーザー変位計で厚さを計測している。また、計測したデータは、製品出荷時もしくはサービスマンにより操作パネル等の入力手段から入力するとしている。しかし、数μmのベルト厚み変動を計測するには、高精度の計測手段が必要となると共に、その計測結果のデータ管理の手間がかかり、且つそのデータ量が多いため、入力ミスが発生する恐れがある。
一方、後者のベルト駆動装置における制御の場合、以下に示すような問題がある。
マーク検出時点での位相値と最大振幅値からベルトの移動位置に応じた制御パラメータを展開する時に、ベルト搬送速度とベルト周長等の固定の定数を用いて展開を行っているが、ベルト搬送速度およびベルト周長は機械個々に交差をもっており、以下の(1)〜(4)に示すような要因により実際のベルトの移動位置とずれて展開される場合がある。
(1)ベルトの搬送速度は、従動軸の回転速度が制御目標値と同じなるように制御されるため、従動軸(従動ローラ)のローラ径がばらつくと検出速度がばらつき、理想値とはローラ径の交差分ずれて制御されてしまう。
(2)制御目標値を生成しているCPUのCLK(クロック)周期の交差により、制御目標値が理想とずれてしまうため、この交差分ずれて制御される。
(3)ベルト周長も実際には交差を持っているため、ベルトの一周の距離は個々によって異なる。
(4)定着熱および機械使用環境によりベルトの収縮が発生するため、同一ベルトであっても経時的にベルトの周長が変化する。
そのため、固定の定数でマーク検出時点での位相値と最大振幅値によりマーク検出時点からのベルト移動位置に応じた制御パラメータを展開すると、周回毎のマーク検出時点で、ベルトの搬送速度が遅いもしくはベルトの周長が長い場合には、例えば図23の(a)に示すように制御目標値に段差が生じる。また、ベルトの搬送速度が早いもしくはベルトの周長が短い場合には、例えば図23の(b)に示すように制御目標値に段差が生じる。
この段差は、マーク検出により制御目標値が更新されるタイミングで発生し、これが最終的な制御目標値となってしまうため、この制御目標値に追随するようにフィードバック制御がなされる。結果としてマーク検出時にベルトの速度変動が発生し、数十umの色ずれが発生する場合があった。
この発明は、このような問題を解決するためになされたものであり、画像形成装置等に用いられるエンドレスベルトを駆動するベルト駆動装置において、ベルト厚み変動により発生するエンドレスベルトの回動速度変動の安定化を簡易な構成で確実に実現できるようにすることを目的とする。
この発明は、上記の目的を達成するため、以下のベルト駆動装置およびそれを備えた画像形成装置を提供する。
請求項1の発明によるベルト駆動装置は、エンドレスベルトを回動させる駆動ローラあるいは該エンドレスベルトの回動により従動回転する従動ローラの周動を検出するエンコーダと、上記駆動ローラを回転駆動する駆動モータとを備え、上記エンコーダの単位時間当りの角変位量が一定となるように制御目標値を設定し、該制御目標値に一致させるように上記駆動モータを駆動制御するベルト駆動装置であって、第1メモリと、複数の第2メモリと、上記エンドレスベルトの基準位置となるベルトマークを検出するベルトマーク検出手段と、上記エンドレスベルトの厚み変動で発生する上記エンコーダの検出角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる上記エンコーダの検出角変位誤差を制御パラメータとして上記第1メモリに書き込む第1書込手段と、上記ベルトマーク検出手段による上記ベルトマークの検出時点からの上記エンドレスベルトの回動時間を計測する回動時間計測手段と、該回動時間計測手段によって計測された上記エンドレスベルトが1周するのに要する時間から該1周の周波数を算出する周波数算出手段と、上記ベルトマーク検出手段による上記ベルトマークの検出後に、上記第1メモリに記憶された制御パラメータから上記周波数算出手段によって算出された上記エンドレスベルトの前周回の周波数を用いて上記制御目標値に加算すべき補正値を算出する補正値算出手段と、該補正値算出手段によって上記エンドレスベルトの前周回の周波数を用いて算出された補正値を上記複数の第2メモリに選択的に書き込む第2書込手段と、上記複数の第2メモリのいずれかに記憶されている上記エンドレスベルトの前周回の周波数を用いて算出された補正値を上記制御目標値に加算する加算手段とを設けたものである。
請求項2の発明によるベルト駆動装置は、エンドレスベルトを回動させる駆動ローラあるいは該エンドレスベルトの回動により従動回転する従動ローラの周動を検出するエンコーダと、上記駆動ローラを回転駆動する駆動モータとを備え、上記エンコーダの単位時間当りの角変位量が一定となるように制御目標値を設定し、該制御目標値に一致させるように上記駆動モータを駆動制御するベルト駆動装置であって、第1メモリと、複数の第2メモリと、上記エンドレスベルトの基準位置となるベルトマークを検出するベルトマーク検出手段と、上記エンドレスベルトの厚み変動で発生する上記エンコーダの検出角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる上記エンコーダの検出角変位誤差から上記ベルトマーク検出手段による上記ベルトマークの検出時点での位相値と最大振幅値を算出する位相値・最大振幅値算出手段と、該位相値・最大振幅値算出手段による算出結果を制御パラメータとして上記第1メモリに書き込む第1書込手段と、上記ベルトマーク検出手段による上記ベルトマークの検出時点からの上記エンドレスベルトの回動時間を計測する回動時間計測手段と、該回動時間計測手段によって計測された上記エンドレスベルトが1周するのに要する時間から該1周の周波数を算出する周波数算出手段と、上記ベルトマーク検出手段による上記ベルトマークの検出後に、上記第1メモリに記憶された制御パラメータから上記周波数算出手段によって算出された上記エンドレスベルトの前周回の周波数を用いて上記制御目標値に加算すべき補正値を算出する補正値算出手段と、該補正値算出手段によって上記エンドレスベルトの前周回の周波数を用いて算出された補正値を上記複数の第2メモリに選択的に書き込む第2書込手段と、上記複数の第2メモリのいずれかに記憶されている上記エンドレスベルトの前周回の周波数を用いて算出された補正値を上記制御目標値に加算する加算手段とを設けたものである。
請求項3の発明によるベルト駆動装置は、請求項2のベルト駆動装置において、上記補正値算出手段を、上記第1メモリに記憶された制御パラメータから上記エンドレスベルトの前周回の周波数およびSIN関数もしくは近似式を用いて上記回動時間計測手段による計測時間に応じた補正値を算出する手段としたものである。
請求項4の発明によるベルト駆動装置は、請求項1〜3のいずれかのベルト駆動装置において、上記第2書込手段を、上記エンドレスベルトの前周回の周波数を用いて算出された補正値を前々周回の周波数を用いて算出された補正値を書き込んだ第2メモリとは異なる第2メモリに書き込む手段としたものである。
請求項5の発明による画像形成装置は、請求項1〜4のいずれかのベルト駆動装置を備え、上記エンドレスベルトを画像形成用のエンドレスベルトとしたものである。
請求項6の発明による画像形成装置は、請求項5の画像形成装置において、上記画像形成用のエンドレスベルトを、感光体ベルト,転写ベルト,中間転写ベルト,画像記録媒体搬送用ベルトのうちのいずれか一つ以上としたものである。
この発明のベルト駆動装置によれば、エンドレスベルトの基準位置となるベルトマークを検出するベルトマーク検出手段と、エンドレスベルトの厚み変動で発生するエンコーダの検出角変位誤差を検出する角変位誤差検出手段とを設け、角変位誤差検出手段から得られるエンコーダの検出角変位誤差を制御パラメータとして第1メモリに書き込んで記憶保持しておき、ベルトマーク検出手段によるベルトマークの検出時点からのエンドレスベルトの回動時間を計測し、エンドレスベルトが1周するのに要する時間からその1周の周波数を算出して、第1メモリに記憶されている制御パラメータからその算出したエンドレスベルトの前周回の周波数を用いて制御目標値に加算すべき補正値を算出し、その補正値を複数の第2メモリに選択的に書き込み、その後複数の第2メモリのいずれかに記憶されているエンドレスベルトの前周回の周波数を用いて算出された補正値を制御目標値に加算して駆動モータ(エンドレスベルトを回動させる駆動ローラを回転駆動するモータ)を駆動制御する。
あるいは、角変位誤差検出手段から得られるエンコーダの検出角変位誤差からベルトマーク検出手段によるベルトマークの検出時点での位相値と最大振幅値を算出し、その算出結果を制御パラメータ(位相・振幅パラメータ)として第1メモリに書き込んで記憶保持しておき、ベルトマーク検出手段によるベルトマークの検出時点からのエンドレスベルトの回動時間を計測し、エンドレスベルトが1周するのに要する時間からその1周の周波数を算出して、第1メモリに記憶されている制御パラメータからその算出したエンドレスベルトの前周回の周波数を用いて制御目標値に加算すべき補正値を算出し、その補正値を複数の第2メモリに選択的に書き込み、その後複数の第2メモリのいずれかに記憶されているエンドレスベルトの前周回の周波数を用いて算出された補正値を制御目標値に加算して駆動モータを駆動制御する。
したがって、ベルト厚み変動によって発生するエンドレスベルトの回動速度変動の安定化を簡易な構成で確実に実現することができる。
この発明の画像形成装置によれば、上記ベルト駆動装置を備えることにより、低コストで画像品位に応じた適切な処理を行うことが可能になる。
以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する。
まず、図2および図3によって、この発明によるベルト駆動装置を備えた画像形成装置の構成例について説明する。この画像形成装置は、直接転写方式の電子写真方式によりカラー画像を形成するカラーレーザプリンタ(以下「レーザプリンタ」という)であり、図2はそのレーザプリンタ全体の概略構成図である。
このレーザプリンタは、図2に示すように、Y(イエロー)、M(マゼンタ)、C(シアン)、K(ブラック)の各色の画像を形成するための4組のトナー像形成部1(1Y,1M,1C,1K)が、図中の矢印Aに沿って転写搬送ベルト60が走行することによって転写紙Pが移動する方向における上流側(図で右下側)から順に配置されている。
この各トナー像形成部1はそれぞれ、像担持体としての感光体ドラム11(11Y,11M,11C,11K)と、現像ユニット12とを備えている。また、各トナー像形成部1の配置は、各感光体ドラム11の回転軸が平行になるように且つ転写紙移動方向に所定のピッチで配列するように、設定されている。
また、このレーザプリンタは、トナー像形成部1のほかに、光書込ユニット2、給紙カセット3,4、レジストローラ対5、転写紙(画像記録媒体)Pを担持して各トナー像形成部の転写位置を通過するように搬送するエンドレスベルトとしての転写搬送ベルト(転写ベルトと画像記録媒体搬送用ベルトの機能を併せたもの)60を備えたベルト駆動装置6、ベルト定着方式の定着ユニット7、および排紙トレイ8等を備えている。なお、ベルト駆動装置6は、後述する制御系(駆動制御装置)を併せたものであり、また転写ユニットとしても機能するものである。
このレーザプリンタはさらに、手差しトレイ14、トナー補給容器22も備え、図示していない廃トナーボトル、両面・反転ユニット、電源ユニットなども二点鎖線で示したスペースSの中に備えている。
光書込ユニット2は、光源、ポリゴンミラー、f−θレンズ、反射ミラー等を備えており、画像データに基づいて各感光体ドラム11の表面(外周面)にレーザ光を走査しながら照射する。
図3は、上述したベルト駆動装置6の概略構成を示す拡大図である。
このベルト駆動装置6で使用する転写搬送ベルト60は、体積抵抗率が10〜1011Ωcmである高抵抗の無端状単層エンドレスベルト(無端状のベルト部材)であり、その材質は例えばPVDF(ポリフッ化ビニリデン)である。この転写搬送ベルト60は、各トナー像形成部1の感光体ドラム11に接触対向する各転写位置を通過するように、支持ローラ61〜66に張架されている。
これら支持ローラ61〜66のうちの転写紙移動方向の上流側に位置する入口ローラ61に対し、転写搬送ベルト60を挟んでその外周面側で対向するように静電吸着ローラ80が設けられている。この静電吸着ローラ80には電源18によって所定電圧が印加されており、2つのローラ61,80の間を通過した転写紙Pは帯電して転写搬送ベルト60上に静電吸着される。63は転写搬送ベルト60を摩擦駆動する駆動ローラであり、駆動源である駆動モータ(後述)によって矢印Dの方向に回転される。
各感光体ドラム11に対向する各転写位置において、転写電界を形成する転写電界形成手段としての転写バイアス印加部材27(27Y,27M,27C,27K)が転写搬送ベルト60の裏面に接触するように設けられている。これらの転写バイアス印加部材27はスポンジ等を外周に設けたバイアスローラであり、各転写バイアス電源9(9Y,9M,9C,9K)からローラ心金に転写バイアス電圧が印加される。この印加された転写バイアス電圧の作用により、転写搬送ベルト60に転写電荷が付与され、各転写位置において該転写搬送ベルト60の表面と感光体ドラム11の表面との間に所定強度の転写電界が形成される。また上記転写が行なわれる領域での転写紙と感光体ドラム11の接触を適切に保ち、最良の転写ニップを得るために、バックアップローラ68を備えている。
各転写バイアス印加部材27とそれらの近傍にそれぞれ配置されるバックアップローラ68は、それぞれ回転可能に揺動ブラケット93に一体的に保持され、回動軸94を中心として回動可能である。この回動は、カム軸97に固定されたカム96が矢印Eの方向に回動することによって時計方向に回動する。
前述した入口ローラ61と静電吸着ローラ80は一体的に、入口ローラブラケット90に支持され、軸91を回動中心として、図3の状態から時計方向に回動可能である。そして、揺動ブラケット93に設けられた孔95に、入口ローラブラケット90に突設されたピン92が嵌入しており、揺動ブラケット93の回動と連動して入口ローラブラケット90も回動する。これらのブラケット90、93の時計方向の回動により、各転写バイアス印加部材27とそれらの近傍にそれぞれ配置されるバックアップローラ68は感光体ドラム11から離され、入口ローラ61と静電吸着ローラ80も下方に移動する。これにより、黒(ブラック)トナーのみで画像を形成する時に、感光体ドラム11Y,11M,11Cと転写搬送ベルト60の接触を避けることが可能になっている。
一方、転写バイアス印加部材27Kとその隣のバックアップローラ68は出口ブラケット98に回転可能に支持され、出口ローラ62と同軸の軸99を中心に回動可能になっている。このベルト駆動装置6をレーザプリンタ本体に着脱する際に、図示していないハンドルの操作により出口ブラケット98を時計方向に回動させ、転写バイアス印加部材27Kおよびバックアップローラ68とともに転写搬送ベルト60を、ブラック画像形成用の感光体ドラム11Kから離間させることができる。
転写搬送ベルト60の駆動ローラ63に巻きつけられた部分の外周面には、図2に示すように、ブラシローラとクリーニングブレードから構成されたクリーニング装置85が接触するように配置されている。このクリーニング装置85により転写搬送ベルト60上に付着した残留トナー等の異物が除去される。
その転写搬送ベルト60の走行方向で駆動ローラ63のすぐ下流側に、転写搬送ベルト60の外周面を押し込むようにローラ64を設け、駆動ローラ63に対する転写搬送ベルト60の巻き付け角を大きく確保している。また、ローラ64のすぐ下流側には、転写搬送ベルト60の内周面に接触し、押圧部材であるばね69の付勢力により外側へ押圧して転写搬送ベルト60にテンションを与えるテンションローラ65が配設されている。
次に、このレーザプリンタによる画像形成動作について説明する。
このレーザプリンタによる画像形成時には、図2に示す給紙カセット3,4および手差しトレイ14のいずれかより転写紙Pが給紙されて、図示しない搬送ガイドにガイドされながら一点鎖線で示す搬送経路に沿って搬送ローラによって搬送され、レジストローラ対5が設けられている一時停止位置に送られる。
一方、カラー画像形成時には4組のトナー像形成部1(1Y、1M、1C、1K)の各感光体ドラム11(11Y、11M、11C、11K)は、図2で時計方向に回転しており、それぞれ図示していない帯電部材によって表面が均一に帯電された後、その表面に光書込ユニット2によって、形成すべき画像の各色のデータによって変調されたレーザ光が照射走査され、それぞれ静電潜像が書き込まれる。その後現像ユニットによって各色のトナーによって現像され、各感光体ドラム11の表面に各色のトナー像が形成される。
前述のようにレジストローラ対5に挟持されて一時停止された転写紙Pは、レジストローラ対5により所定のタイミングで送り出され、転写搬送ベルト60に担持されて各トナー像形成部1に向けて順次搬送され、その各転写ニップを通過する。各トナー像形成部1の感光体ドラム11上に形成される各色のトナー像は、それぞれ各転写ニップにおいて転写紙P上で重ね合わされるように順次作像タイミングをずらして作像されており、転写紙Pが各転写ニップを通過する際に上記転写電界やニップ圧の作用を受けて転写紙P上に転写される。この重ね合わせの転写により、転写紙P上にはフルカラートナー像が形成される。
このトナー像転写後の各感光体ドラム11の表面はクリーニング装置13によりクリーニングされ、更に除電されて次の静電潜像の形成に備えられる。
一方、フルカラートナー像が形成された転写紙Pは、定着ユニット7でこのフルカラートナー像が定着された後、切換ガイド21の回動姿勢に対応して、第1の排紙方向Bまたは第2の排紙方向Cに向かう。第1の排紙方向Bから排紙トレイ8上に排出される場合、画像面が下となった、いわゆるフェースダウンの状態でスタックされる。一方、第2の排紙方向Cに排出される場合には、図示していない別の後処理装置(ソータ、綴じ装置など)に向け搬送させるか、またはスイッチバック部を経て両面プリントのために再度レジストローラ対5に搬送される。
以上のようにして、このレーザプリンタは転写紙Pにフルカラー画像を形成する。
このようなタンデム方式の画像形成装置では、各色のトナー画像を高い位置精度で重ね合わせることが色ズレの発生を防止する上で重要である。しかしながら、ベルト駆動装置6で使用している駆動ローラ63、入口ローラ61、出口ローラ62、転写搬送ベルト60は、部品製造時に数十μm単位の製造誤差が発生する。この誤差により各部品が一回転した際に発生する変動成分が転写搬送ベルト60に伝達され、転写紙の搬送速度に変動が生じてしまう。
この転写紙の搬送速度(転写搬送ベルト60の回動速度)の変動により、各感光体ドラム11上のトナー像を転写紙Pに転写する際に、それぞれタイミングに微妙なズレが生じ、副走査方向(転写紙の搬送方向)に色ズレが発生してしまう。特に1200×1200DPI等の微小ドットで画像を形成する装置では、数μmのタイミングのズレが色ズレとして認識される。
そこで、この実施形態におけるベルト駆動装置6(駆動制御装置を含む)では、図3で右下部の従動ローラ(「右下ローラ」という)66の軸上に設けたエンコーダの検出信号(出力パルス信号)によって右下ローラ66の回転速度を検出し、駆動ローラ63の回転をフィードバック制御することにより、転写搬送ベルト60を一定速度で走行させるようにする。
図4は、転写搬送ベルト60を透視してベルト駆動装置6の全体構成を示す斜視図である。
駆動ローラ63はタイミングベルト33を介して駆動モータ32に連結しており、駆動モータ32の回転速度に比例して回転駆動される。そして、この駆動ローラ63の回転によって転写搬送ベルト60が摩擦駆動され、転写搬送ベルト60が駆動されることによって右下ローラ66が摩擦回転する。前述したように、この実施形態では、右下ローラ66(対象ローラ)の軸上にエンコーダ31を設けており、このエンコーダ31の検出信号から検出した右下ローラ66の回転速度に基づいて駆動モータ32の速度制御を行っている。これは、前述したように、転写搬送ベルト60の位置変動(回動変動)で色ズレが発生するため、それを抑制するために行っている。
図5は、図4の右下ローラ66とエンコーダ31の構成例を示す斜視図である。
エンコーダ31は、例えば図5に示すように、ディスク311,発光素子312,受光素子313,圧入ブッシュ314,315を備えている。
ディスク311は、右下ローラ66の軸に圧入ブッシュ314,315を圧入することによって固定され、右下ローラ66の回転と同時に回転するようになっている。
また、このディスク311には、その円周方向に数百単位の分解能で光を透過する放射状のスリットが形成されており、その両側にエンコーダセンサを構成する発光素子312と受光素子313を配置しており、その受光素子313によって右下ローラ66の回転角度に応じた数のパルス信号(パルス状のON/OFF信号)を発生する。そのパルス信号を用いて右下ローラ66の移動角(以下「角変位」と称す)を検出することにより、駆動モータ32の駆動量を制御する。
さらに、転写搬送ベルト60の表面の非画像形成領域には、図4に示すように転写搬送ベルト60の基準位置を管理するためのマーク(「ベルトマーク」ともいう)34が取り付けられており、そのマーク34の通過経路の対向位置にマークセンサ35(ベルトマーク検出手段)が配設されている。そして、そのマークセンサ35によって、マーク34の通過タイミングを検出している。これは、前述した駆動ローラ63のフィードバック制御を行う際に、転写搬送ベルト60の厚みムラ(ベルト厚み変動)によって、右下ローラ66の実行駆動半径が変化してしまい、転写搬送ベルト60の実際の搬送速度が一定であるにもかかわらず、エンコーダ31が速度変動しているように検出してしまうのを防止するために、予め計測しておいたベルト厚み変動で生じる検出角変位誤差を制御目標値に加算し、その加算結果を制御目標値としてフィードバック制御をすることで、転写搬送ベルト60を一定速度で搬送させる。このときの実際のベルト位置と検出角変位誤差の位置とを対応させるためにマーク34を取り付けている。
ところで、一般に駆動モータ32のフィードバック制御に用いられる比例制御演算では、制御周期毎の目標角変位と検出角変位の差に制御ゲインをかけて、駆動モータ32の駆動速度を制御するため、転写搬送ベルト60(以下単に「ベルト」ともいう)の厚みによる検出角変位誤差が大きいと、より増幅して駆動モータ32を駆動してしまう。
そのため、ベルト厚み量によって転写搬送ベルト60の速度変動が発生し、色ずれが発生してしまう。
例えば、図6の(a)(b)に示すように、駆動モータ32を一定速度で駆動した時に、転写搬送ベルト60が理想的に速度変動なく搬送されていても、転写搬送ベルト60の厚い部分が右下ローラ66(従動ローラ)に巻き付いていると、転写搬送ベルト60の従動実効半径rが増加して、一定時間あたりの右下ローラ66の回転角変位量は低下する。これは、ベルト搬送速度の低下として検出される。また、転写搬送ベルト60の薄い部分が巻き付いていると、右下ローラ66の回転角変位量は増加し、ベルト搬送速度の増加として検出される。
上述の説明は、駆動モータ32を一定速度で駆動した時の挙動についてであるが、言い換えると、転写搬送ベルト60の厚み変動がベルト1周分を周期とした正弦波状になっているものとみなした場合、エンコーダ31の出力パルスのカウント値を一定タイミングでサンプリングした結果が、図7に示すようになるように動作していると、右下ローラ66は一定速度で回転していることになる。
そのため、この実施形態では、制御周期毎の目標角変位(実際にはエンコーダ31の単位時間当りの角変位が一定となるような制御目標値である目標角変位に検出角変位誤差を加算したもの)を生成して記憶設定し、その目標角変位に一致させるように(目標角変位でエンコーダ31のディスクが回転するように)、転写搬送ベルト60の厚み変動で発生するエンコーダ31の検出角変位誤差を計測(検出)し、その厚み変動の影響を受けない比例制御演算を行って駆動モータ32を制御することにより、転写搬送ベルト60の回動速度を一定に保持することを特徴としている。
ここで、μm単位の実際の転写搬送ベルト60の厚みを計測してそれを制御パラメータにするのではなく、転写搬送ベルト60の厚みの影響で発生するrad単位のエンコーダ31の検出角変位誤差を制御パラメータとする。
また、転写搬送ベルト60の厚みは、殆どの場合、製法により、正弦波状の特性になるため、外部治具での計測結果からマーク検出時点での位相値と最大振幅値を算出し、これらを制御パラメータ(位相・振幅パラメータ)として、実機上の操作パネルから入力して後述する不揮発生メモリに保持することができる。
あるいは、作像プロセスを実行しない時、例えば電源ON時もしくは駆動モータ32の起動(駆動開始)時に、駆動モータ32を一定速度で駆動し、マークセンサ35によるマーク検出(以下単に「マーク検出」ともいう)時点からのベルト1周期分の検出角変位誤差データを計測し、その計測結果であるベルト1周期分の検出角変位誤差データを図示しないRAM上に展開し、その検出角変位誤差データから位相・振幅パラメータを算出して不揮発生メモリに保持することもできる。
なお、実際のエンコーダ31の出力結果には、転写搬送ベルト60の厚み変動による検出角変位誤差だけではなく、駆動ローラ63およびその他の構成要素の変動や回転偏芯成分が重畳して出力される。そのため、その中から右下ローラ66(従動ローラ)の影響成分のみを抽出する処理を行い、その抽出した結果を検出角変位誤差の制御パラメータとする。
図1は、この発明によるベルト駆動装置を構成する駆動制御装置の一実施例の機能を説明するための構成を示す模式的な機能ブロック図である。この実施例は、この発明を上述したベルト駆動装置6の制御に適用した場合の例を示す。
この図1において、この制御コントローラ部40は、減算回路41と、高周波ノイズを除去するためのローパスフィルタ42と、比例演算部(ゲインKp)43と、定常駆動パルス周波数設定部44と、加算回路45とによって構成されている。
目標角変位生成部30は、予め計測した(作像プロセスを実行しないで駆動モータ32を一定速度で駆動した時に計測した)転写搬送ベルト60の厚み変動で発生するエンコーダ31の検出角変位誤差値(検出角変位誤差データ)からマーク検出時点での位相値と最大振幅値を算出し、それらを制御パラメータ(位相・振幅パラメータ)として不揮発生メモリ(第1メモリ)301に保持しておく。
そして、作像プロセス時に、マークセンサ35によって転写搬送ベルト60のマーク34(基準位置)が検出され、マークセンサ35から出力されるマーク検出信号が入力されるタイミングに応じて不揮発生メモリ301から位相・振幅パラメータを順次読み出す。つまり、マークセンサ35による転写搬送ベルト60の基準位置の検出タイミングから順次不揮発生メモリ301の参照アドレスを切り替えることによって位相・振幅パラメータを読み出す。そして、その位相・振幅パラメータから検出角変位誤差値を算出し(後述する)、その算出値を制御目標値である目標角変位に加算して新たな目標角変位Ref(n)とし、それを制御コントローラ部40に入力させる。
ここで、検出角変位誤差値と目標角変位の加算は、マークセンサ35によってベルト1周毎にマーク34が検出され、そのマークセンサ35から出力されるマーク検出信号(ベルトマークの検出信号)が入力されるタイミングに応じて、周期的に繰り返されるように行われる。
なお、目標角変位生成部30が、予め計測した転写搬送ベルト60の厚み変動で発生するエンコーダ31の検出角変位誤差値をそのまま不揮発生メモリ301に保持しておき、作像プロセス時に、マークセンサ35によるマーク検出タイミングから順次不揮発生メモリ301の参照アドレスを切り替えることによって検出角変位誤差値を読み出し、それを補正した値(後述するベルト周波数を考慮した値)を目標角変位に加算して新たな目標角変位Ref(n)とし、それを制御コントローラ部40に入力させるようにしてもよい。
あるいは、目標角変位生成部30が、予め計測した転写搬送ベルト60の厚み変動で発生するエンコーダ31の検出角変位誤差値を補正した値を加算した目標角変位Ref(n)を不揮発生メモリ301に保持しておき、作像プロセス時に、マークセンサ35によるマーク検出タイミングから順次不揮発生メモリ301の参照アドレスを切り替えることによって目標角変位Ref(n)を読み出し、それを制御コントローラ部40に入力させるようにしてもよい。
制御コントローラ部40は、目標角変位生成部30から入力される制御目標値である目標角変位Ref(n)と、エンコーダ31からの検出角変位P(n−1)とを減算回路41に入力してその差e(n)をとる。つまり、差分の変位量の演算を行う。なお、検出角変位P(n−1)は実際にはエンコーダ31の出力パルス信号に基づいて算出されるが、それについては追って詳細に説明する。
その差e(n)はローパスフィルタ42を通ることによって高周波ノイズが除去された後、比例演算部43に入力される。
比例演算部43は、ローパスフィルタ42からの差e(n)をゲインKpで比例増幅し、補正量(rad)Hzとして加算回路45に与える。
加算回路45は、定常駆動パルス周波数設定部44からの一定の定常駆動パルス周波数(Refpc)Hzに比例演算部43からの補正量(rad)Hzを加算して駆動パルス周波数f(n)を決定し、それをパルス出力器37へ出力する。
パルス出力器37は、加算回路45から受けた駆動パルス周波数f(n)の駆動パルス信号を生成し、それを駆動モータ32へ出力する。
ここで、転写搬送ベルト60の厚み変動で発生するエンコーダ31の検出角変位誤差値(従動軸の回転角速度変動値)は、前述したように事前に計測して不揮発生メモリ301に保持されている検出角変位誤差の制御パラメータである位相・振幅パラメータを用い、以下の演算式により、マーク検出時点からのベルト移動時間(経過時間)に応じて生成(算出)する。
b×sin(2×π×ft+τ)
なお、bは振幅値、τは位相値、fはベルト1周の周波数(ベルト周波数)、tはマーク検出時点からのベルト移動時間を示していて、これらにより演算した値である検出角変位誤差値を用い、マーク検出時点からのベルト移動時間(経過時間)に応じて検出角変位誤差値(検出角変位誤差データ)を制御目標値に加算する。このとき、ベルト周波数fはメカレイアウトで一意に決まっている固定値を用いて演算する。
しかし、実際には以下の(1)〜(5)に示すような要因により、上記演算で使用しているベルト周波数fが機械毎もしくは同一機械でも経時的に変化してしまうため、理想値とのずれが生じてしまっている。
(1)ベルト周長は、機械個々で異なる。
(2)ベルト搬送速度は、従動軸の回転速度によって決定されるため、従動軸(右下ローラ66)のローラ径の交差によりベルト搬送速度が機械個々で異なる。
(3)機械の機内温度の変化によりベルトの伸縮が発生し、同一機であってもベルト周長が異なる。
(4)機械の機内温度の変化により従動軸の膨張が発生し、同一機であってもベルト搬送速度が異なる。
(5)制御目標値を生成しているCPUのCLK周期の交差により、制御目標値が理想とずれてしまうため、機械個々にこの交差分ずれて制御される。
上記のようにベルト周波数fがずれると、ベルトの周回毎のマーク検出位置で、ベルトの搬送速度が遅いもしくはベルトの周長が長い場合には、例えば図23の(a)に示したように制御目標値に段差が生じる。また、ベルトの搬送速度が早いもしくはベルトの周長が短い場合には、例えば図23の(b)に示したように制御目標値に段差が生じる。
この段差は、マーク検出により制御目標値が更新されるタイミングで発生し、これが最終的な制御目標値となってしまうため、この制御目標値に追随するようにフィードバック制御がなされる。結果としてマーク検出時にベルトの速度変動が発生し、数十umの色ずれが発生する場合があった。
そのため、この実施形態では、常に、ベルト1周の周波数に合わせて、検出角変位誤差値の展開(生成)を行うことにより、上記の問題を改善するようにしている。検出角変位誤差値の展開は、実際には、ベルト1周の経過時間を周回ごとに計測し、その計測時間からベルト1周の周波数を算出して、常にベルト1周前もしくは直前数周分の平均周波数の値を用いて行う。
上述の動作は、この発明に関わる特徴部分であるので、図8以降を参照して更に詳細に説明する。
図8は、このレーザプリンタにおける上述したベルト駆動装置6の駆動モータ制御部(駆動制御装置)を含む制御部のハードウェア構成例を示すブロック図である。
ベルト駆動装置6の駆動モータ制御部は、エンコーダ31(発光素子312と受光素子313とからなる)の出力パルス信号の出力パルス信号に基づいて駆動モータ32の駆動パルスをデジタル制御する。
その駆動モータ制御部を含む制御部600は、CPU601,RAM602,ROM603,IO制御部604,駆動モータIF606,ドライバ607,検出IO部608,RAM609,610,EEPROM611,およびバス612によって構成されている。
CPU601は、ROM603内のプログラムに基づいてパーソナルコンピュータ等の外部装置38からの画像データの受信、およびその外部装置38との間の制御コマンドの送受信の制御をはじめ、このレーザプリンタ全体の制御を行う中央処理装置である。
このCPU601は、ROM603内のプログラムに従って動作し、エンコーダ31およびマークセンサ35,検出IO部608等を使用することにより、この発明による各手段、つまり角変位誤差検出手段,位相値・最大振幅値算出手段,第1書込手段,回動時間計測手段,周波数算出手段,補正値算出手段,第2書込手段,および加算手段としての機能を果たすことができる。
このCPU601には、RAM602,ROM603,IO制御部604,駆動モータIF606,検出IO部608,RAM609,610,およびEEPROM611がバス612を介して相互に接続されている。
RAM602は、CPU601が制御(処理)を行う際に利用するワークメモリや、画像データを展開する際の画像メモリとして使用される読み書き可能なメモリ(記憶手段)である。
ROM603は、CPU601が実行する(CPU601が動作するための)プログラム等の固定データを格納している読み出し専用のメモリである。
IO制御部604は、CPU601からの指示により、モータ,クラッチ,ソレノイド,センサ等の各負荷39との間の信号の入出力を制御する。
駆動モータIF606は、CPU601からの駆動指令により、ドライバ607を介して転写搬送ベルト60を回動させるための駆動モータ32(駆動ローラ63)へ駆動パルス信号を出力することにより、駆動モータ32の回転駆動を制御する。この回転駆動は、駆動パルス信号の周波数に応じて行われるため、転写搬送ベルト60の回動速度の可変制御が可能となる。
エンコーダ31の出力パルス信号は、検出IO部608に入力される。
検出IO部608は、エンコーダ31の出力パルスを処理してデジタル値に変換する。また、この検出IO部608は、エンコーダ31の出力パルスを計数(カウント)するカウンタを含む複数のカウンタ(後述する)を備えている。そして、そのカウンタの値(エンコーダ31の出力パルス数)に予め定められたパルス数対角変位の変換定数をかけて、右下ローラ66の軸(図5)の角変位に対応するデジタル値に変換する。このエンコーダ31のディスク311(図5)の角変位に対応するデジタル値の信号は、バス612を介してCPU601に送られる。
RAM609,610は、転写搬送ベルト60の1周期(回転)分の検出角変位誤差データを展開するためのデータメモリとして使用される読み書き可能なメモリ(第2メモリ)である。
EEPROM611は、図1の不揮発生メモリ(第1メモリ)301に相当するものであり、図9に示すような転写搬送ベルト60の位相・振幅パラメータを格納している。図9には、マークセンサ35によって転写搬送ベルト60の1周期(1回動)毎に検出されるベルトマーク34(図4参照)の検出パルスであるマーク検出信号も示されている。
なお、CPU601がROM603内のプログラムを実行し、駆動モータIF606,ドライバ607,および検出IO部608を使用することにより、図1に示した制御コントローラ部40,目標角変位生成部30,およびパルス出力器37の機能を実現することができる。
ここで、CPU601,駆動モータIF606,ドライバ607,RAM609,610,およびEEPROM611について、もう少し詳しく説明する。
CPU601は、内部に駆動モータ32をフィードバック制御するための制御間隔を決定するためのタイマを有しており、そのタイマ間隔に応じて右下ローラ66の軸の目標角変位値(制御目標値)を随時演算する。この制御目標値と右下ローラ66の軸の検出角変位との差から駆動モータ32の制御量を決定する。この実施形態では、1msの制御周期でタイマを動作させている。
CPU601は更に、そのタイマの値から転写搬送ベルト60の1周毎の制御回数を計測し、且つマークセンサ35によって転写搬送ベルト60のマーク34を検知したタイミングに応じて、ゼロクリアされる制御周期カウンタを有している。この制御周期カウンタにより、転写搬送ベルト60の1周の時間と周波数を算出することが可能となっている。
駆動モータIF606は、CPU601からバス612を介して駆動指令(駆動周波数の指示を含む)を受けると、その駆動指令に基づいて指示された駆動周波数を有するパルス状の制御信号を生成し、それをドライバ607へ出力する。
ドライバ607は、パワー半導体素子(例えばトランジスタ)等によって構成されている。このドライバ607は、駆動モータIF606から入力されるパルス状の制御信号に基づいて動作し、駆動モータ32に駆動パルス信号を出力する(パルス状の駆動電圧を印加する)。その結果、駆動モータ32は、CPU601の駆動指令によって指示された駆動周波数に比例する速度で駆動制御される。これにより、エンコーダ31のディスク311の角変位が目標角変位になるように追値制御され、右下ローラ66が所定の角速度で等角速度回転する。このディスク311の角変位は、エンコーダ31と検出IO部608により検出され、CPU601に取り込まれて制御が繰り返される。
EEPROM611には、図9に示したような転写搬送ベルト60の位相・振幅パラメータが格納されており、作像プロセスを行うための駆動モータ32の駆動時に、CPU601が、SIN関数もしくは近似式を用いて、随時、マーク検出時点からのベルト1周期分の検出角変位誤差データ(一定周期毎にサンプリングしたデータ)を生成してRAM609又はRAM610上に展開する。
ここで、実際のベルト厚みは、その製造工程に左右される要素が大きいが、殆どの場合SIN状(正弦波状)となっていて、必ずしもベルト1周分の全ての検出角変位誤差データ(検出角変位誤差値)を持っておく必要もなく、計測時にマーク検出時点での位相値と最大振幅値を算出して位相・振幅パラメータとしてEEPROM611に保持しておき、この位相・振幅パラメータから検出角変位誤差データを算出しても十分同等のデータとして扱える。
作像プロセスを実行すべく駆動モータ32を駆動する時には、マークセンサ35によりマーク34を検出したタイミングに応じて、RAM609又は610の参照アドレスを切り替えて検出角変位誤差データを読み出し、その読み出した検出角変位誤差データを前述の制御目標角変位(制御目標値)に加算することにより、ベルト厚みの影響を受けずにフィードバック制御を行うこともできる。
しかし、前述したように、実際には上述したようにベルト1周の周波数(ベルト周波数)fは機械毎もしくは同一機械でも経時的に変化してしまうことがある。
そのため、常に、ベルト1周の周波数に合わせて、検出角変位誤差データの展開を行うために、例えば図10に示すように、ベルト1周の制御周期タイマカウンタ値を用いてベルト1周の周波数fを算出し、前周回のベルト周波数fを用いてEEPROM611に保持されている位相・振幅パラメータから検出角変位誤差データ(制御目標値に加算すべき補正値)を生成してRAM609とRAM610に交互に展開するようにしている。このように、2つのデータ展開用のメモリエリアを持つことで、常に前周回(直前の周回)のベルト周波数fで検出角変位誤差データを生成することが可能となる。
これは、以下の演算式のベルト周波数fを変更することにより、例えば図11の(a)又は(b)に示すようにマーク検出時点(マーク検出位置)での制御パラメータに段差がなくなるように制御目標値を変更するものである。
Δθ[rad]:従動軸の回転角速度変動値〔=b×sin(2×π×ft+τ)〕
そのため、ベルトの伸びおよびベルトの駆動周波数が変動しても、マーク検出時点での制御パラメータのつながりが滑らかになり、制御目標値が急激に変動することがなくなる。
なお、この実施形態では、ベルト1周の周波数を変更することにより、制御目標値を変える方法を示したが、メモリ上のデータを参照するタイミングを変えることでも同等の効果が得られる。この場合、メモリ上に展開するパラメータ自体は従来の制御手法と変わりはない。
また、この実施形態では、ベルトの前周回の周波数を用いて生成した検出角変位誤差データを展開する(書き込む)ためのメモリ(第2メモリ)として、2つのRAM609,RAM610を備えたが、3つ以上のRAMを備えるようにしても構わない。この場合、検出角変位誤差データを各RAMに選択的に展開する。つまり、ベルトの前周回の周波数を用いて生成した検出角変位誤差データを前々周回の周波数を用いて生成した検出角変位誤差データを展開したRAMとは異なるRAMに展開する。
ベルト厚みによる速度変動(位置変動)のピーク値のみ下げる場合には、制御周期毎のベルト厚みによる検出角変位誤差データは必要ない。そのため、メモリエリアを削減するために、例えば図12に示すようにベルト1周あたり50ポイント程度のプロファイルデータを生成し、各ポイントに転写搬送ベルト60が到達した時に厚みプロファイルデータを更新することによっても、速度変動のピーク値を十分に低下させることが可能である。この場合、ベルト1周あたり50回制御目標値を変えることになる。図中のAは1回の目標値変化量を示す。
そのため、上記50ポイントのデータのメモリの参照タイミングを前周回のベルト周波数に合わせて切り替えることるとよい。この場合、展開用のメモリエリアは2つ必要ではなく、従来通り1つのメモリエリアで制御タイミングを変えていく。
図13および図14に、この発明に関わるベルト駆動制御を実現する上でのタイミングチャートの例を示す。なお、図8には、図示を省略したが、制御部600には、時間計測を行なう制御周期タイマが設けられているものとする。また、検出IO部608には、後述するエンコーダパルスカウンタおよび2つの制御周期タイマカウンタ(1)(2)が備えられている。
まず、図13において、エンコーダ31の出力パルス(エンコーダパルス)をカウントするエンコーダパルスカウンタのカウント値は、エンコーダパルスのA相出力の立上りエッジによりインクリメント(+1)される。また、この制御の制御周期は1msであり、制御周期タイマによるCPU601への割込みがかかる毎に制御周期タイマカウンタ(1)のカウント値がインクリメント(+1)される。
制御周期タイマの時間計測のスタートは、駆動モータ32のスルーアップおよびセトリング終了後に初めてエンコーダパルスの立上りエッジが検出された時点で行われ、且つ制御周期タイマカウンタ(1)のカウント値を「0」にリセット(ゼロクリア)する。
また、制御周期タイマによるCPU601への割込みがかかる毎に、エンコーダパルスカウンタのカウント値:neの取得および制御周期タイマカウンタ(1)のカウント値:qの取得およびインクリメント(+1)を行う。
制御周期タイマカウンタ(2)は、前述の制御周期タイマカウンタ(1)と同様に、図14に示すように、制御周期タイマによるCPU601への割込みによりインクリメント(+1)され、マークセンサ35によってベルトマーク34が検出されている時(マークセンサ35からマーク検出信号が入力されている時)の最初の制御周期タイマによるCPU601への割込みにより「0」にリセットされる。そのため、制御周期タイマカウンタ(2)は実質的にベルトマーク34の検出時点からの移動距離をカウントしていて、この値に応じてベルト1周期分の制御目標プロファイルのデータ(検出角変位誤差データ)が格納されたRAM609又は610の参照アドレスを切り替える。
RAM609とRAM610の切り替えは、マークセンサ35からのマーク検出信号のの入力毎に行う。これは、RAM609に対して制御周期タイマカウンタ(2)のカウント値を用いてデータを展開中の場合には、既に展開が終わっているRAM610のデータを参照してΔθの取得を行い、次のマーク検出信号の入力時にはRAM610に対して制御周期タイマカウンタ(2)のカウント値を用いてデータを展開し、既に展開が終わっているRAM609のデータを参照してΔθの取得を行う。
これらの各制御周期タイマカウンタ(1,2)のカウント値をもとに、次に示すように位置偏差の演算を行う。
E(n)=θ0×q +Δθ− θ1×ne (単位:rad)
ここで、上式中の各記号の意味は次の通りである。
e(n)[rad]:今回のサンプリングにて演算された位置偏差
θ0[rad]:制御周期1[ms]あたりの移動角度(=2π×V×10−3/Lπ[rad])
Δθ[rad]:従動軸の回転角速度変動値〔=b×sin(2×π×ft+τ)〕(テーブル参照値)
θ1[rad]:エンコーダパルスの1パルスあたりの移動角度(=2π/p[rad])
q:制御周期タイマのカウント値
V:ベルト線速[mm/s]
L:右下ローラ(従動軸)66の径[mm]
b:ベルト厚みで変動する振幅[rad]
τ:ベルト厚み変動のマーク検出時点での位相[rad]
f:ベルト厚み変動の周期[Hz]
この実施形態においては、エンコーダ31を取り付けてある従動ローラ(従動軸)である右下ローラ66の径はφ15.515[mm]であり、かつ転写搬送ベルト60の厚みは0.1[mm]である。右下ローラ66は転写搬送ベルト60との摩擦力により回転駆動されるが、実質ベルト厚みの約1/2の厚みがこの右下ローラ66を回転させる際の芯線位置であるとすると、右下ローラ66の実質駆動径Lは次のようになる。
L′=15.515+0.1=15.615[mm]
また、この実施形態では、エンコーダ31の分解能pは、1回転当たり300パルスのものとする。
次に、急激な位置変動に応答してしまうことを避けるため、演算された偏差に対して、以下の仕様のフィルタ演算を行うとよい。
フィルタタイプ:Butterworth IIR ローパスフィルタ
サンプリング周波数:1KHz(=制御周期と等しい)
パスバンドリップル(Rp):0.01dB
ストップバンド端減衰量(Rs):2dB
パスバンド端周波数(Fp):50Hz
ストップバンド端周波数(Fs):100Hz
そのフィルタ演算のブロック図を図15に、フィルタ係数一覧を図16に示す。同じ構成のフィルタを2段カスケード接続し、各段における中間ノードをそれぞれu1(n),u1(n−1),u1(n−2)およびu2(n),u2(n−1),u2(n−2)と定める。ここで、インデックスの示す意味は次のとおりである。
(n):現在のサンプリング
(n−1):1つ前のサンプリング
(n−2):2つ前のサンプリング
以下のプログラム演算をフィードバック実行中に制御タイマ割込みがかかる度に行う。
u1(n)=a11×u1(n−1)+a21×u1(n−2)+e(n)×ISF
e1(n)=b01×u1(n)+b11×u1(n−1)+b21×u1(n−2)
u1(n−2)=u1(n−1)
u1(n−1)=u1(n)
u2(n)=a12×u2(n−1)+a22×u2(n−2)+e1(n)
e′(n)=b02×u2(n)+b12×u2(n−1)+b22×u2(n−2)
u2(n−2)=u2(n−1)
u2(n−1)=u2(n)
図17にこのフィルタの振幅特性を、図18に位相特性を示す。
次に、制御対象に対する制御量を求める。制御ブロック図において、まず位置コントローラとしてPID制御を考えると、
F(S)=G(S)×E′(S)=Kp×E′(S)+Ki×E′(S)/S+Kd×S×E′(S) ……(1)
ただし、Kp:比例ゲイン、Ki:積分ゲイン、Kd:微分ゲイン である。
G(S)=F(S)/E′(S)=Kp+Ki/S+Kd×S ……(1)
ここで、(1)式を双一次変換(S=(2/T)×(1−Z−1)/(1+Z−1))を行うと、次式を得る。
G(Z)=(b0+b1×Z−1+b2×Z−2)/(1−a1×Z−1−a2×Z−2) ……(2)
ただし、a1=0
a2=1
b0=Kp+T×Ki/2+2×Kd/T
b1=T×Ki−4×Kd/T
b2=−Kp+T×Ki/2+2×Kd/T
(2)式をブロック図として表すと、図19のようになる。ここで、e′(n)、f(n)は、E′(S)、F(S)をそれぞれ離散データとして扱うことを示している。図19において、中間ノードとしてそれぞれw(n)、w(n−1)、w(n−2)を定めると、差分方程式は次式のようになる(PID制御の一般式)。
w(n)=a1×w(n−1)+a2×w(n−2)+e′(n) ………(3)
f(n)=b0×w(n)+b1×w(n−1)+b2×w(n−2) …(4)
ここで、インデックスの示す意味は次のとおりである。
(n):現在のサンプリング
(n−1):1つ前のサンプリング
(n−2):2つ前のサンプリング
今、位置コントローラとして比例制御を考えると、積分ゲイン、微分ゲインはゼロとなる。従って、図19における各係数は以下のようになり、(3)式および(4)式は次の(5)式のように簡略化される。
a1=0 a2=1 b0=Kp b1=0 b2=−Kp
w(n)=w(n−2)+e′(n)
f(n)=Kp×w(n)−Kp×w(n−2)
→∴f(n)=Kp×e′(n) ……(5)
また、F0(S)に対応する離散データf0(n)は、この実施形態の場合、一定であり、
f0(n)=6105[Hz]
である。よって、駆動モータ32に設定するパルス周波数は、最終的に次の(6)式により計算する。
f′(n)=f(n)+f0(n)=Kp×e′(n)+6105[Hz]…(6)
図20に前述したエンコーダパルスカウンタの動作フローチャートを示す。この図20のフローチャートおよび以下に説明するフローチャートにおいて、各ステップを「S」と略記している。
まず、スルーアップ&セトリング後の最初のパルス入力かどうかを判定し(S1)、YESならば、エンコーダパルスカウンタをゼロクリアし(S2)、制御周期タイマカウンタ(1)をゼロクリアし(S3)、制御周期タイマによる割込みを許可し(S4)、制御周期タイマをスタートして(S5)、図示していないメインルーチンへリターンする。また、ステップ1の判定でNOであった場合は、エンコーダパルスカウンタをインクリメントして(S6)、メインルーチンへリターンする。
図21に前述した制御周期タイマカウンタ(2)の動作フローチャートを示す。
まず、エンコーダパルスが入力した時に、マークセンサ(ベルトマーク検知センサ)35の状態を判定し(S11)、マークセンサ35の出力が“H”から“L”に変化した時(マークセンサ35からマーク検出信号が入力されている時)には制御周期タイマカウンタ(2)をゼロクリアする(S12)。また、ステップ11の判定でマークセンサ35の出力が“H”のままであった場合(マークセンサ35からマーク検出信号が入力されていない場合)には、制御周期タイマカウンタ(2)をインクリメントし(S13)、メインルーチンへリターンする。
さらに、図22に制御周期タイマによる割込み処理のフローチャートを示す。
まず、制御周期タイマカウンタ(1)をインクリメントし(S21)、次いでエンコーダパルスカウント値neを取得する(S22)。さらに、テーブルデータを参照してΔθの値を取得し(S23)、テーブルデータ参照アドレスをインクリメントする(S24)。次いで、これらの値を用いて位置偏差演算を行い(S25)、得られた位置偏差に対してフィルタ演算を行い(S26)、そのフィルタ演算の結果をもとに制御量の演算(比例演算)を行う(S27)。そして、実際に駆動モータ32(ステッピングモータ)の駆動パルスの周波数を変更して(S28)、メインルーチンへリターンする。
以上の制御によって、転写搬送ベルトの厚み変動によって発生するベルト搬送速度の変動を安定化する制御を、安価に且つ画像品位に応じて適切に行うことが可能になる。
なお、上述の実施形態では、転写搬送ベルトの回動により従動回転する従動ローラのうちの右下ローラ66をエンコーダを取り付けた対象ローラとしたが、他の従動ローラ又は転写搬送ベルトを回動させる駆動ローラを対象ローラとしてもよい。
以上、この発明を、転写搬送ベルトを駆動制御する駆動制御装置(ベルト駆動装置)に適用した実施形態について説明したが、この発明はこれに限らず、画像形成用の他のエンドレスベルト(感光体ベルト,転写ベルト,中間転写ベルト,又は画像記録媒体搬送用ベルト)を駆動制御する駆動制御装置にも適用可能である。
すなわち、転写搬送ベルト60上に感光体ドラム11Y,11M,11C,11Kが複数並べて配設されるタンデム式のレーザプリンタにおけるベルト駆動装置にこの発明を適用した例について説明したが、この発明が適用可能な画像形成装置およびベルト駆動装置はこの構成に限るものではない。
複数のローラに張架された無端状ベルトをそのローラのうちの少なくとも1以上のローラ(対象ローラ)によって回転駆動するベルト駆動装置を有する画像形成装置であれば、そのいずれのベルト駆動装置にも適用可能である。
また、前述の実施形態では、転写搬送ベルト60によって転写紙を搬送し、その転写紙上で感光体ドラムからの4色のトナー像を順次転写する直接転写方式のカラープリンタにこの発明を適用したが、中間転写ベルト上に4色のトナー像を転写して、4色重ね合わせた後に転写紙に一括して転写する間接転写方式のカラープリンタ等における中間転写ベルト駆動装置にも、この発明を適用可能である。
さらに、前述の実施形態では露光光源としてはレーザー光を使用しているが、これに限ったものではなく、例えばLEDアレイ等を光源として使用するものでもよい。
以上の説明から明らかなように、この発明のベルト駆動装置によれば、ベルト厚み変動によって発生するエンドレスベルトの回動速度変動の安定化を簡易な構成で確実に実現することが可能になり、良好なフィードバック制御を行うことができる。したがって、この発明を利用すれば、エンドレスベルトの回動速度の安定化を低コストで実現可能な駆動制御装置を提供することができる。
この発明の画像形成装置によれば、上記ベルト駆動装置を用いることにより、ベルト厚み変動によって発生するエンドレスベルト(感光体ベルト,転写ベルト,中間転写ベルト,又は画像記録媒体搬送用ベルト)の回動速度変動の安定化を低コストで実現することが可能になる。したがって、この発明を利用すれば、高品位の画像を低コストで取得可能な画像形成装置を提供することができる。
この発明によるベルト駆動装置を構成する駆動制御装置の一実施例の機能を説明するための構成を示す模式的な機能ブロック図である。 この発明によるベルト駆動装置を備えた画像形成装置の一例を示すレーザプリンタ全体の概略構成図である。 図2に示したベルト駆動装置6の概略構成を示す拡大図である。 同じくそのベルト駆動装置6における転写搬送ベルト60を透視してその構成を示す斜視図である。
図4に示した右下ローラ66とエンコーダ31の構成例を示す斜視図である。 図4の駆動モータ32を一定速度で駆動した場合の転写搬送ベルト60の1周にわたるベルト厚み変動と右下ローラ66の回転角変位量との関係を説明するための説明図である。 図4の駆動モータ32を一定速度で駆動してエンコーダ31の出力パルスのカウント値を一定タイミングでサンプリングしたときのサンプリング結果の一例を示す線図である。 図2に示したレーザプリンタにおけるベルト駆動装置6の駆動モータ制御部を含む制御部のハードウェア構成例を示すブロック図である。
図5に示したエンコーダ31のディスク回転に応じた位相・振幅パラメータとマーク検出信号との関係例を示す線図である。 図4の転写搬送ベルト60の1周の周波数を用いて位相・振幅パラメータから検出角変位誤差データを生成・展開する処理を説明するための説明図である。 同じく他の説明図である。 図4の転写搬送ベルト60の1周あたり50回制御目標値を変える場合の制御目標値の例を示す線図である。
この発明に関わるベルト駆動制御を説明するためのタイミングチャートである。 同じく別のタイミングチャートである。 この発明に使用するフィルタ演算の構成を示すブロック図である。 同じくそのフィルタ係数一覧を示すテーブル図である。
同じくそのフィルタの振幅特性を示す線図である。 同じくそのフィルタの位相特性を示す線図である。 図17における1段のフィルタ演算の構成を示すブロック図である。 エンコーダパルスカウンタ(1)の動作フローチャートである。 エンコーダパルスカウンタ(2)の動作フローチャートである。 制御周期タイマ割り込み処理のフローチャートである。 従来のベルト駆動装置において周回毎のマーク検出時点でベルトの搬送速度もしくは周長が変化した場合の回制御目標値の段差の異なる例を示す線図である。
符号の説明
1Y,1M,1C,1K:トナー像形成部 6:ベルト駆動装置
30:目標角変位生成部 31:エンコーダ 32:駆動モータ
35:マークセンサ 37:パルス出力器 40:制御コントローラ部
60:転写搬送ベルト 63:駆動ローラ 66:右下ローラ(従動ローラ)
301:不揮発生メモリ 311:ディスク 600:制御部 601:CPU
602,609,610:RAM 603:ROM 604:IO制御部
606:駆動モータIF 607:ドライバ 608:検出IO部
611:EEPROM 612:バス

Claims (6)

  1. エンドレスベルトを回動させる駆動ローラあるいは該エンドレスベルトの回動により従動回転する従動ローラの周動を検出するエンコーダと、前記駆動ローラを回転駆動する駆動モータとを備え、前記エンコーダの単位時間当りの角変位量が一定となるように制御目標値を設定し、該制御目標値に一致させるように前記駆動モータを駆動制御するベルト駆動装置であって、
    第1メモリと、複数の第2メモリと、前記エンドレスベルトの基準位置となるベルトマークを検出するベルトマーク検出手段と、前記エンドレスベルトの厚み変動で発生する前記エンコーダの検出角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる前記エンコーダの検出角変位誤差を制御パラメータとして前記第1メモリに書き込む第1書込手段と、前記ベルトマーク検出手段による前記ベルトマークの検出時点からの前記エンドレスベルトの回動時間を計測する回動時間計測手段と、該回動時間計測手段によって計測された前記エンドレスベルトが1周するのに要する時間から該1周の周波数を算出する周波数算出手段と、前記ベルトマーク検出手段による前記ベルトマークの検出後に、前記第1メモリに記憶された制御パラメータから前記周波数算出手段によって算出された前記エンドレスベルトの前周回の周波数を用いて前記制御目標値に加算すべき補正値を算出する補正値算出手段と、該補正値算出手段によって前記エンドレスベルトの前周回の周波数を用いて算出された補正値を前記複数の第2メモリに選択的に書き込む第2書込手段と、前記複数の第2メモリのいずれかに記憶されている前記エンドレスベルトの前周回の周波数を用いて算出された補正値を前記制御目標値に加算する加算手段とを設けたことを特徴とするベルト駆動装置。
  2. エンドレスベルトを回動させる駆動ローラあるいは該エンドレスベルトの回動により従動回転する従動ローラの周動を検出するエンコーダと、前記駆動ローラを回転駆動する駆動モータとを備え、前記エンコーダの単位時間当りの角変位量が一定となるように制御目標値を設定し、該制御目標値に一致させるように前記駆動モータを駆動制御するベルト駆動装置であって、
    第1メモリと、複数の第2メモリと、前記エンドレスベルトの基準位置となるベルトマークを検出するベルトマーク検出手段と、前記エンドレスベルトの厚み変動で発生する前記エンコーダの検出角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる前記エンコーダの検出角変位誤差から前記ベルトマーク検出手段による前記ベルトマークの検出時点での位相値と最大振幅値を算出する位相値・最大振幅値算出手段と、該位相値・最大振幅値算出手段による算出結果を制御パラメータとして前記第1メモリに書き込む第1書込手段と、前記ベルトマーク検出手段による前記ベルトマークの検出時点からの前記エンドレスベルトの回動時間を計測する回動時間計測手段と、該回動時間計測手段によって計測された前記エンドレスベルトが1周するのに要する時間から該1周の周波数を算出する周波数算出手段と、前記ベルトマーク検出手段による前記ベルトマークの検出後に、前記第1メモリに記憶された制御パラメータから前記周波数算出手段によって算出された前記エンドレスベルトの前周回の周波数を用いて前記制御目標値に加算すべき補正値を算出する補正値算出手段と、該補正値算出手段によって前記エンドレスベルトの前周回の周波数を用いて算出された補正値を前記複数の第2メモリに選択的に書き込む第2書込手段と、前記複数の第2メモリのいずれかに記憶されている前記エンドレスベルトの前周回の周波数を用いて算出された補正値を前記制御目標値に加算する加算手段とを設けたことを特徴とするベルト駆動装置。
  3. 請求項2記載のベルト駆動装置において、
    前記補正値算出手段は、前記第1メモリに記憶された制御パラメータから前記エンドレスベルトの前周回の周波数およびSIN関数もしくは近似式を用いて前記回動時間計測手段による計測時間に応じた補正値を算出する手段であることを特徴とするベルト駆動装置。
  4. 請求項1乃至3のいずれか一項に記載のベルト駆動装置において、
    前記第2書込手段は、前記エンドレスベルトの前周回の周波数を用いて算出された補正値を前々周回の周波数を用いて算出された補正値を書き込んだ第2メモリとは異なる第2メモリに書き込む手段であることを特徴とするベルト駆動装置。
  5. 請求項1乃至4のいずれか一項に記載のベルト駆動装置を備え、前記エンドレスベルトが画像形成用のエンドレスベルトであることを特徴とする画像形成装置。
  6. 請求項5記載の画像形成装置において、
    前記画像形成用のエンドレスベルトが、感光体ベルト,転写ベルト,中間転写ベルト,画像記録媒体搬送用ベルトのうちのいずれか一つ以上であることを特徴とする画像形成装置。
JP2005323459A 2005-11-08 2005-11-08 ベルト駆動装置および画像形成装置 Pending JP2007132992A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005323459A JP2007132992A (ja) 2005-11-08 2005-11-08 ベルト駆動装置および画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005323459A JP2007132992A (ja) 2005-11-08 2005-11-08 ベルト駆動装置および画像形成装置

Publications (1)

Publication Number Publication Date
JP2007132992A true JP2007132992A (ja) 2007-05-31

Family

ID=38154733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005323459A Pending JP2007132992A (ja) 2005-11-08 2005-11-08 ベルト駆動装置および画像形成装置

Country Status (1)

Country Link
JP (1) JP2007132992A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103869A (ja) * 2007-10-23 2009-05-14 Kyocera Mita Corp 転写ベルトユニットおよびそれを備えた画像形成装置
JP2010009006A (ja) * 2008-01-30 2010-01-14 Ricoh Co Ltd ベルト駆動制御装置、ベルト駆動制御方法、ベルト駆動制御プログラム、及び画像形成装置
US8800160B2 (en) 2011-05-19 2014-08-12 Ricoh Company, Limited Sheet length measuring device and image forming apparatus
JP2017019624A (ja) * 2015-07-10 2017-01-26 セイコーエプソン株式会社 印刷装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103869A (ja) * 2007-10-23 2009-05-14 Kyocera Mita Corp 転写ベルトユニットおよびそれを備えた画像形成装置
JP2010009006A (ja) * 2008-01-30 2010-01-14 Ricoh Co Ltd ベルト駆動制御装置、ベルト駆動制御方法、ベルト駆動制御プログラム、及び画像形成装置
US8800160B2 (en) 2011-05-19 2014-08-12 Ricoh Company, Limited Sheet length measuring device and image forming apparatus
JP2017019624A (ja) * 2015-07-10 2017-01-26 セイコーエプソン株式会社 印刷装置

Similar Documents

Publication Publication Date Title
JP2006209042A (ja) ベルト駆動制御装置及び画像形成装置
US7251444B2 (en) Apparatus for controlling driving of endless belt, and image forming apparatus
JP4945485B2 (ja) 画像形成装置
JP4272565B2 (ja) ベルト駆動制御装置及び画像形成装置
JP5013858B2 (ja) 画像形成装置
JP5229615B2 (ja) 画像形成装置
JP4676790B2 (ja) 駆動制御装置および画像形成装置
JP2005300953A (ja) カラー画像形成装置、その駆動制御方法及び駆動制御用プログラム
JP4533198B2 (ja) 駆動制御装置及び画像形成装置
JP2006243547A (ja) 駆動制御装置および画像形成装置
US7499667B2 (en) Endless belt drive controlling apparatus including angular displacement error calculation and associated image forming apparatus
JP5528239B2 (ja) 画像形成装置
JP2011185977A (ja) 画像形成装置
JP2007132992A (ja) ベルト駆動装置および画像形成装置
JP4719043B2 (ja) 駆動制御装置および画像形成装置
JP2006240854A (ja) 駆動制御装置および画像形成装置
JP2007206120A (ja) 駆動制御装置および画像形成装置
JP4680585B2 (ja) エンドレスベルトの駆動制御装置および画像形成装置
JP2006259152A (ja) 駆動制御装置および駆動制御方法および画像形成装置およびプログラムおよび記録媒体
JP2006243548A (ja) 駆動制御装置および画像形成装置
JP2006244314A (ja) 駆動制御装置および画像形成装置
JP2007199433A (ja) 転写装置及び画像形成装置
JP2015115981A (ja) 回転制御装置及び画像形成装置
JP2013029630A (ja) 画像形成装置
JP2008181018A (ja) 画像形成装置