JP2007127500A - キャスク貯蔵施設 - Google Patents

キャスク貯蔵施設 Download PDF

Info

Publication number
JP2007127500A
JP2007127500A JP2005319862A JP2005319862A JP2007127500A JP 2007127500 A JP2007127500 A JP 2007127500A JP 2005319862 A JP2005319862 A JP 2005319862A JP 2005319862 A JP2005319862 A JP 2005319862A JP 2007127500 A JP2007127500 A JP 2007127500A
Authority
JP
Japan
Prior art keywords
cask
storage facility
cask storage
wall surface
storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005319862A
Other languages
English (en)
Inventor
Masahiko Mitsuda
正彦 満田
Hiroshi Akamatsu
博史 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005319862A priority Critical patent/JP2007127500A/ja
Publication of JP2007127500A publication Critical patent/JP2007127500A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

【課題】キャスク貯蔵施設内の保管場所で容積効率を上げるため、キャスクとキャスク間の間隔やキャスクとコンクリート内壁面の間隔を、キャスク直径の1.5倍程度以内となるよう比較的密にキャスクを配置した場合でも、前記コンクリート内壁面がキャスク表面からの熱放射により加熱されて、高温に至ることのないキャスク貯蔵施設を提供する。
【解決手段】 使用済み核燃料を収納したキャスク1を貯蔵するキャスク貯蔵施設2において、前記キャスク1を保管するキャスク保管室3の内壁面4aに、略連続した多数の突起面を配列する。前記突起面は、横断面が台形形状であることが好ましい。
【選択図】図1

Description

本発明は、使用済み核燃料を収納したキャスクを貯蔵するキャスク貯蔵施設に関する。
原子力発電所において発生した使用済み核燃料は、再処理によりプルトニウムやウラン等の有用物質を抽出して再利用することができるため、通常、これを収納する容器であるキャスクに収納した後、取り出し可能な状態でキャスク貯蔵施設に貯蔵される。
この際、使用済み核燃料の崩壊熱によりキャスクが加熱されて高温になる。従って、貯蔵施設内のキャスクを比較的密になるように配置した場合、貯蔵施設内面のコンクリート壁等が、キャスク表面からの熱放射で加熱されて高温に至る。このような状態になると、キャスク自体や貯蔵施設が早期に劣化するため、長期に渡る貯蔵が困難になる。これを回避するため、キャスク貯蔵施設は、貯蔵時においてキャスクを除熱しかつ貯蔵施設内壁の昇温も抑制される構造であることが要求される。
そのため、従来のキャスク貯蔵施設は、使用済み核燃料から放出される放射線を遮蔽するため鉄筋コンクリートで作られた建屋で構成され、その建屋内床面上に多数のキャスクを竪置きに配置している。そして、これらのキャスクにより加熱された周囲の空気が浮力により上昇し、キャスク貯蔵施設に設けられた排気口より外部に排出され、その排気量に見合う外部の空気が吸気口より吸気されて、貯蔵施設内に空気の循環流を形成する。このような空気の流れによりキャスクが冷却される除熱設計がなされている。
即ち、従来のキャスク貯蔵施設は、キャスク保管場所に空気のよどみ領域(ホットスポット)ができないこと、キャスク周囲には十分に冷たい空気が供給されること、コンクリート内壁面が必要以上に昇温しないこと、等を考慮した除熱設計がなされている。
このような従来のキャスク貯蔵施設として、その概略構成図である図6に示すキャスク貯蔵施設がある(特許文献1参照)。
このキャスク貯蔵施設は、空気を自然循環させるように、吸気口19aおよび排気口19bを一方端側および他方端側に夫々有している。そして、放射性物質を収納したキャスク23を保管するキャスク保管室18と、前記排気口19bに設けられ、前記キャスク保管室18内の空気を高い位置に排気する排気塔21とを有する。
同時に、前記キャスク保管室18の上方において前記排気塔21を避けて移動可能に設けられ、前記キャスク保管室18の任意の保管場所に対して前記キャスク23の搬入出を行う搬送クレーン20とを有するとともに、前記キャスク保管室18の天井高さが、キャスクの高さの1.5〜2倍の範囲に設定されている。
このような従来のキャスク貯蔵施設によれば、排気塔の煙突効果によりキャスク保管室内の空気を高所に排気し、空気の循環量を増大させてキャスクの冷却を促進させるのである。また、キャスク保管室の天井高さを高くすることによって、高温の上昇空気による天井の劣化を防止する構成としている。しかしながら、このような構造を採用することによって、キャスク保管室の容積効率が悪くなるという欠点を有していた。
このような問題点を解決するための他の従来のキャスク貯蔵施設として、その水平断面図である図7に示す放射性物質貯蔵施設34の貯蔵建屋30がある(特許文献2参照)。
この従来の放射性物質貯蔵施設34によれば、夫々の放射性物質貯蔵室31に対応して設けられた空気供給通路33を相互に連通して形成された空気供給側キャスク搬送通路38、および夫々の放射性物質貯蔵室31に対応して設けられた空気排出通路32を相互に連通して形成された空気排出側キャスク搬送通路35,38の少なくとも一方を備えている。
上記従来のキャスク貯蔵施設によれば、空気通路とキャスク搬送通路とを連通することによりキャスク保管室の多少のコンパクト化は図られるが、キャスク保管室の冷却能力の向上が期待される訳ではない。
特開2000−180586号公報 特開2004−45230号公報
キャスク貯蔵施設内の保管場所で容積効率を上げるため、キャスクを比較的密に配置すると、キャスクとキャスク間の間隔やキャスクとコンクリート内壁面の間隔が、キャスク直径の1.5倍程度以下となる。このように、比較的密にキャスクを配置した場合でも、コンクリート内壁面はキャスク表面からの熱放射で加熱されて高温に至り、キャスク貯蔵施設の熱劣化を促進するという問題を生じる。
従って、本発明の目的は、キャスク貯蔵施設内の保管場所で容積効率を上げるため、キャスクとキャスク間の間隔やキャスクとコンクリート内壁面の間隔を、キャスク直径の1.5倍程度以内となるよう比較的密にキャスクを配置した場合でも、コンクリート内壁面が前記キャスク表面からの熱放射により加熱されて、高温に至ることのないキャスク貯蔵施設を提供することにある。
前記目的を達成するために、本発明の請求項1に係るキャスク貯蔵施設が採用した手段は、使用済み核燃料を収納したキャスクを貯蔵するキャスク貯蔵施設において、前記キャスクを保管するキャスク保管室の内壁面に、略連続した多数の突起面が配列されたことを特徴とするものである。
本発明の請求項2に係るキャスク貯蔵施設が採用した手段は、請求項1に記載のキャスク貯蔵施設において、前記突起面が前記内壁面の上下方向に沿って略連続して配列されたことを特徴とするものである。
本発明の請求項3に係るキャスク貯蔵施設が採用した手段は、使用済み核燃料を収納したキャスクを貯蔵するキャスク貯蔵施設において、外部の空気を取り込む吸気口と内部の空気を排出する排気口とが設けられるとともに、前記キャスクを保管するキャスク保管室の床面に、略連続した多数の突起面が配列されたことを特徴とするものである。
本発明の請求項4に係るキャスク貯蔵施設が採用した手段は、請求項3に記載のキャスク貯蔵施設において、前記突起面が、前記吸気口から排気口に沿った方向に略連続して配列されたことを特徴とするものである。
本発明の請求項5に係るキャスク貯蔵施設が採用した手段は、請求項1乃至4のうちの何れか一つの項に記載のキャスク貯蔵施設において、前記突起面の横断面が台形形状であることを特徴とするものである。
本発明の請求項6に係るキャスク貯蔵施設が採用した手段は、請求項5に記載のキャスク貯蔵施設において、前記台形形状の上底長さまたは下底長さ、あるいは上底長さおよび下底長さの両者とも、キャスク直径の1乃至10%の範囲内であることを特徴とするものである。
本発明の請求項7に係るキャスク貯蔵施設が採用した手段は、請求項1乃至6のうちの何れか一つの項に記載のキャスク貯蔵施設において、前記突起面の配列ピッチがキャスク直径の1乃至10%の範囲内であることを特徴とするものである。
本発明の請求項8に係るキャスク貯蔵施設が採用した手段は、請求項1乃至7のうちの何れか一つの項に記載のキャスク貯蔵施設において、前記突起面の高さが25mm以上であることを特徴とするものである。
本発明の請求項1に係るキャスク貯蔵施設によれば、前記キャスクを保管するキャスク保管室の内壁面に略連続した多数の突起面が配列されて前記内壁面の表面積を増大させたので、放射伝熱および対流伝熱による放熱が促進されて、前記キャスクおよび壁面の温度上昇が抑制される。
また、本発明の請求項3に係るキャスク貯蔵施設によれば、前記キャスクを保管するキャスク保管室の床面に、略連続した多数の突起面を配列して前記床面の表面積が増大させたので、放射伝熱および対流伝熱による放熱が更に促進されて、前記キャスクおよび床面の温度上昇が抑制される。
更に、本発明の請求項2あるいは4に係るキャスク貯蔵施設によれば、前記突起面の配列方向を適切にしたので、前記キャスクや内壁面の熱伝達率が向上して放熱効果が更に促進される。
更にまた、本発明の請求項5に係るキャスク貯蔵施設によれば、前記突起面の形状を台形形状に特定することによって、前記キャスクや内壁面の表面積を効果的に増大させ得る単純な横断面形状をより具体化した。
また、本発明の請求項6乃至8に係るキャスク貯蔵施設によれば、前記台形形状の寸法や突起面の配列ピッチを特定することによって、効果的に冷却効果の得られる条件をより具体化した。
本発明の実施の形態に係るキャスク貯蔵施設を、図1乃至図3を用いて以下説明する。図1は本発明の実施の形態に係るキャスク貯蔵施設のキャスク保管室の一部縦断面を模式的に示した部分縦断面図、図2は図1のA−A矢視の一部を示す部分矢視図、図3は図2のX部詳細図を夫々示している。
図1において、符号2はキャスク貯蔵施設を示す。このキャスク貯蔵施設内のキャスク保管室3に、使用済み核燃料を収納した直径2500mm,高さ5500mmのキャスク1が保管されている。前記キャスク貯蔵施設2およびキャスク保管室3を形成する壁面は、厚さ1000mmのコンクリート壁4により構成され、これによって前記核燃料から放射される放射線を遮蔽して、前記キャスク貯蔵施設2外に漏洩させない構造としている。
そして、前記キャスク1は、キャスク貯蔵施設2内に設置された図示しない走行クレーン等によってキャスク保管室3に搬送され、例えば図1のように、キャスク1間ピッチ4000mm,コンクリート内壁面4aからのキャスク1中心位置3000mmに配列して保管される。
また、前記キャスク保管室3を形成するコンクリート壁4の内壁面4aには、図2に示すような略連続した多数の突起面5が配列されている。この多数の突起面5によって、内壁面4aの外表面積を増大させ、キャスク1外表面からの放射熱量を増加させて除熱効率を向上させるのである。
前記突起面5の詳細は、その突起面5が自然対流による空気の流れ方向、即ち、図1に示した内壁面4aの上下方向(図2および3においては、紙面に垂直方向)に沿って略連続して配列されるのが、冷却効率上好ましい。前記突起面5を内壁面4aの上下方向に沿って略連続して配列することによって、自然対流による上昇気流がスムースに上方に導かれ流速が増加する結果、熱伝達率が向上して対流による冷却効果が向上するからである。
ここで、前記内壁面とは、図1に示したように前記キャスク保管室3を構成する建屋の内壁面4aに限定するものではなく、前記キャスク保管室3を区画するための隔壁面も含まれる。また、前述の略連続とは、突起面5が、必ずしも内壁面4aの最上端から最下端まで連続して配列されていなくとも、途中で何回か不連続になる構成も含むことを示す。
更に、前記突起面5の横断面は、キャスク1からの放射熱を受けて熱放散する効率から、図3に示すような台形形状が最も好ましい。前記突起面5の横断面を台形形状とするのが、壁面の外表面積を最も増大できる単純形状であるからである。前記台形形状には、長方形や正方形も含まれる。
また、前記キャスク貯蔵施設2は、使用済み核燃料の崩壊熱を空気を自然循環させて施設外へ放熱させるように、図示しない吸気口および排気口を、その一方端側および他方端側に夫々設けられている。そして、図には示さないが、前記キャスク保管室3内の床面7にも、内壁面4aと同様に、略連続した多数の突起面を配列したのである。この突起面は、前記吸気口から排気口に沿った空気の流れ方向に略連続して床面上に配列されるのが、内壁面4aにおける冷却メカニズムと同様に熱伝達率が向上する点で好ましい。
上記の如き構成をなし、受熱面でありかつ放熱面である前記内壁面4aや床面7の表面積を増大することによって、キャスク1外表面からの放射熱量は増大するが、多数の突起面に沿う上昇気流の自然対流伝熱による除熱効果により総伝熱量は減少し、結果として前記内壁面4aや床面7の表面温度を低減させる効果がある。
更にまた、図3に示す前記突起面5の台形形状は、上底長さaがキャスク直径の1乃至10%の範囲内にあるのが好ましい。即ち、キャスク直径が2500mmであれば、25mm≦a≦250mmであるのが冷却効率上好ましい。同様に、前記突起面5の台形形状は、下底長さbについても、キャスク直径の1乃至10%の範囲内にあるのが好ましい。即ち、キャスク直径が2500mmであれば、25mm≦b≦250mmであるのが冷却効率上好ましい。
前記台形形状の上底長さa、下底長さbの何れかまたは両者がキャスク直径の1%未満であれば、コンクリート壁の製作が困難になる。または冷却効率が悪くなる。一方、前記上底長さa、下底長さbの何れかまたは両者がキャスク直径の10%を越えれば、突起形状が相対的に大きくなり、局所的には平面状のコンクリート壁の表面積と大差がなくなって冷却効率が悪くなるからである。
また、このような突起面5の配列ピッチpの寸法は、突起面形状に関係なく、キャスク直径の1乃至10%の範囲内にあるのが好ましい。即ち、キャスク直径が2500mmであれば、25mm≦p≦250mmであるのが冷却効率上好ましい。また、この突起面5の高さhの寸法は、突起面形状に関係なく、25mm以上であるのが冷却効率上好ましいのである。
前記突起面5の配列ピッチpの寸法がキャスク直径の1%未満であれば、コンクリート壁の製作が困難になる一方、キャスク直径の10%を越えれば突起形状が相対的に大きくなり、局所的には平面状のコンクリート壁の表面積と大差がなくなって冷却効率が悪くなるからである。また、前記突起面5の高さhが25mm未満の場合は、十分な冷却に必要なコンクリート壁面積が確保できないからである。
〔実施例1〕
先ず、図1に示したキャスク保管室の配置例をもとに、数値シミュレーションを実施するための計算モデルについて、以下図4および図5を用いて説明する。図4は、本発明の実施例に係る計算モデルを平面断面で示した計算モデル平面図、図5は、前記計算モデルを縦断面方向から見た計算モデル縦断面図である。
そして、二点鎖線で囲み斜線で示した図4中の幅方向計算領域10aと、図5中の高さ方向計算領域10bとによって囲まれた領域を計算領域10とした。即ち、図4の平面図上の、キャスク保管室3内に保管された直径2500mmのキャスク1表面からコンクリート内壁面4a、外壁面4bに至る幅100mmの幅方向計算領域10aと、図5の縦断面図上の、前記キャスク1表面からコンクリート内壁面4a、外壁面4bに至る高さ500mmの高さ方向計算領域10bとによって囲まれた三次元的な領域が計算領域10である。
そして、前記計算領域10内において、使用済み核燃料の崩壊熱によるキャスク1表面からの放射熱および対流熱が、その間に介在する空間領域を経てコンクリート内壁面4aに至り、熱伝導によりコンクリート壁4内部を伝熱し、このコンクリート外壁面4bより対流伝熱によってキャスク貯蔵施設外部に熱放散される計算がなされるのである。
同時に、前記キャスク1表面とコンクリート内壁面4aとの間に介在する空間の計算領域では、図5に示すように、両者により加熱された空気の浮力により上昇気流11の入出があり、この自然対流によってもキャスク1表面やコンクリート内壁面4aから除熱されることも、計算上当然考慮されなくてはならない。
以上のような計算モデルにおいて、下記のような計算条件にて、コンクリート内壁面4aが上下方向に沿って連続して配列された図3に示す台形状の突起面5を有する実施例1と突起面の存在しない比較例1とについて、数値シミュレーションを実施した。実施例1における台形等の寸法は、図3において、上底長さa=30mm,下底長さb=50mm,高さh=50mm,非突起面長さc=50mm,ピッチp=100mmである。
比較例1は、コンクリート内壁面4aがフラットな壁面であること以外は、上述した本発明の実施例に係る計算モデルと全く同一条件とした。尚、本実施例の数値シミュレーションに用いたプログラムは、fluent version6.2(フルーエント・ジャパン株式会社製)である。
<計算条件>
(1)キャスク
発熱量:24.4kW
表面熱流束:565W/m
輻射率:0.9
(2)コンクリート壁、床面
輻射率:0.9
熱伝導率:1.2W/mK
外壁面熱伝達率:5W/m
外気温度:30℃
上昇気流11による空気流速が0.5m/sの場合と0.1m/sの場合の内壁面4a温度、およびキャスク1表面温度のシミュレーション結果を表1および表2に示す。何れの空気流速の場合も、本発明に係る実施例1−1および1−2の場合の方が、比較例1−1および1−2より、内壁面4a温度およびキャスク1表面温度とも低減することが認められる。尚、空気流速が高い方が表面温度は低下し、また、キャスク1表面より内壁面4aの方が降温効果が大きい。
Figure 2007127500
Figure 2007127500
また、空気流速が0.5m/sの場合と0.1m/sの場合における、計算領域で内壁面4aが受熱する受熱量を分析した計算結果を、表3および表4に示す。空気流速が0.5m/sの場合、比較例1−3ではキャスク1から内壁面4aへ放射熱量7.91Wの受熱があるが、対流によって6.84W除熱されて、差し引き1.06Wの受熱量となる。
一方、本実施例1−3においては、内壁面4aの表面積が増大したため放射熱による受熱量は8.57Wに増加するが、対流による除熱量も7.86Wに増加する結果、総受熱量は0.71Wとなり、比較例1−3の約2/3まで低減される。その結果、表1に示したように、実施例1−1の内壁面温度が比較例1−1より、6.9℃も低下するのである。空気流速が0.1m/sの場合についても、表2の比較例1−2と実施例1−2とを比較すれば、上記と全く同様な傾向が認められる。
Figure 2007127500
Figure 2007127500
〔実施例2〕
次に、台形形状の突起面寸法およびその配列ピッチpを変化させた場合、内壁面4a温度がどのように変化するか数値シミュレーションした実施例2の結果について、表5−1〜3を参照しながら以下説明する。本数値シミュレーション上の空気流速は0.5m/sとした。その他の計算条件は実施例1と全く同一であるので説明を省略する。
先ず、台形形状の上底長さa=25mm、下底長さb=50mm、配列ピッチp=100mmとして、高さhのみ25〜200mmに変化させて数値シミュレーションした結果を表5−1の実施例2−1〜5に示す。台形高さhを高くするほど受熱および放熱面積が広がり、内壁面温度を低減させる効果があることが認められる。
Figure 2007127500
次に、台形形状の上底長さa、下底長さbを上記と同一値、高さhを50mmの一定値とし、配列ピッチpのみを100〜500mmに変化させて数値シミュレーションした。結果は、表5−2の実施例2−6〜8に示す如く、配列ピッチpを大きくするに従って内壁面温度が上昇する。配列ピッチpが大きくなるに従い、内壁面の形状が限りなく平面に近づく傾向にあるからである。
Figure 2007127500
また次に、上底長さa、配列ピッチp、高さhを上記と同一値とし、下底長さbを25〜250mmに変えた場合について数値シミュレーションを行った。内壁面温度の計算結果は、表5−3の実施例2−9〜11に示す通り、下底長さbの増加に伴って高くなる。この場合、下底長さbの増加とともに配列ピッチpの増加も伴う条件のため、上記実施例2−6〜8の場合より更に限りなく平面に近づく傾向にあるからである。
Figure 2007127500
以上、本発明に係るキャスク貯蔵施設の実施例1および実施例2によれば、前記キャスク保管室の内壁面に略連続した多数の突起面を配列したことによって、キャスク保管室内壁面の表面積を増大させ、収納された使用済み核燃料の崩壊熱により加熱された前記キャスクの放射冷却と、このキャスク表面からの放射熱を受けて昇温したキャスク保管室内壁面の周囲空気の上昇気流による対流冷却とを促進することが、数値シミュレーションによって確認された。
上記実施例1および実施例2においては、全てコンクリート内壁面に配列された実施例について述べてきたが、この突起面を床面に配列された場合についても、その効果は前記内壁面に配列された場合と同一である。
以上、本発明に係るキャスク貯蔵施設によれば、前記キャスクを保管するキャスク保管室の内壁面や床面に略連続した多数の突起面を配列して内壁面や床面の表面積を増大させたので、放射伝熱および対流伝熱による放熱が促進されて、前記内壁面や床面の温度上昇が抑制される。
また、本発明に係るキャスク貯蔵施設によれば、前記突起面の配列方向や形状、寸法を最適化することによって、前記内壁面や床面の放熱が更に促進されて、これらの温度上昇を効果的に低減する効果をなす。
本発明の実施の形態に係るキャスク貯蔵施設のキャスク保管室の一部縦断面を模式的に示した部分縦断面図である。 図1のA−A矢視の一部を示す部分矢視図である。 図2のX部詳細図である。 計算モデルを平面断面視した計算モデル平面図である。 計算モデルを縦断面視した計算モデル縦断面図である。 従来のキャスク貯蔵施設を正面視した概略構成図である。 他の従来の放射線物質貯蔵施設の貯蔵建屋の水平断面図である。
符号の説明
1…キャスク, 2…キャスク貯蔵施設, 3…キャスク保管室,
4…コンクリート壁,4a…内壁面,4b…外壁面,
5…突起面, 6…非突起面, 7…床面,
10…計算領域,10a…幅方向計算領域,10b…高さ方向計算領域,
11…上昇気流

Claims (8)

  1. 使用済み核燃料を収納したキャスクを貯蔵するキャスク貯蔵施設において、前記キャスクを保管するキャスク保管室の内壁面に、略連続した多数の突起面が配列されたことを特徴とするキャスク貯蔵施設。
  2. 前記突起面が、前記内壁面の上下方向に沿って略連続して配列されたことを特徴とする請求項1に記載のキャスク貯蔵施設。
  3. 使用済み核燃料を収納したキャスクを貯蔵するキャスク貯蔵施設において、外部の空気を取り込む吸気口と内部の空気を排出する排気口とが設けられるとともに、前記キャスクを保管するキャスク保管室の床面に、略連続した多数の突起面が配列されたことを特徴とするキャスク貯蔵施設。
  4. 前記突起面が、前記吸気口から排気口に沿う方向に略連続して配列されたことを特徴とする請求項3に記載のキャスク貯蔵施設。
  5. 前記突起面の横断面が、台形形状であることを特徴とする請求項1乃至4のうちの何れか一つの項に記載のキャスク貯蔵施設。
  6. 前記台形形状の上底長さおよび/または下底長さが、キャスク直径の1乃至10%の範囲内であることを特徴とする請求項5に記載のキャスク貯蔵施設。
  7. 前記突起面の配列ピッチが、キャスク直径の1乃至10%の範囲内であることを特徴とする請求項1乃至6のうちの何れか一つの項に記載のキャスク貯蔵施設。
  8. 前記突起面の高さが、25mm以上であることを特徴とする請求項1乃至7のうちの何れか一つの項に記載のキャスク貯蔵施設。
JP2005319862A 2005-11-02 2005-11-02 キャスク貯蔵施設 Pending JP2007127500A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319862A JP2007127500A (ja) 2005-11-02 2005-11-02 キャスク貯蔵施設

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319862A JP2007127500A (ja) 2005-11-02 2005-11-02 キャスク貯蔵施設

Publications (1)

Publication Number Publication Date
JP2007127500A true JP2007127500A (ja) 2007-05-24

Family

ID=38150277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319862A Pending JP2007127500A (ja) 2005-11-02 2005-11-02 キャスク貯蔵施設

Country Status (1)

Country Link
JP (1) JP2007127500A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210412A (ja) * 2008-03-04 2009-09-17 Ihi Corp 発熱体貯蔵施設
JP2019117149A (ja) * 2017-12-27 2019-07-18 三菱重工業株式会社 キャスクの貯蔵方法および放射性物質貯蔵施設

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180586A (ja) * 1998-12-14 2000-06-30 Tokyo Electric Power Co Inc:The キャスク貯蔵施設
JP2001141891A (ja) * 1999-11-10 2001-05-25 Mitsubishi Heavy Ind Ltd コンクリート製貯蔵容器、およびコンクリート製貯蔵容器の保管庫
JP2001141885A (ja) * 1999-11-16 2001-05-25 Mitsubishi Heavy Ind Ltd キャニスタおよびこれを備えたコンクリート製貯蔵容器
JP2004226217A (ja) * 2003-01-22 2004-08-12 Toshiba Corp 放射性物質乾式貯蔵施設

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180586A (ja) * 1998-12-14 2000-06-30 Tokyo Electric Power Co Inc:The キャスク貯蔵施設
JP2001141891A (ja) * 1999-11-10 2001-05-25 Mitsubishi Heavy Ind Ltd コンクリート製貯蔵容器、およびコンクリート製貯蔵容器の保管庫
JP2001141885A (ja) * 1999-11-16 2001-05-25 Mitsubishi Heavy Ind Ltd キャニスタおよびこれを備えたコンクリート製貯蔵容器
JP2004226217A (ja) * 2003-01-22 2004-08-12 Toshiba Corp 放射性物質乾式貯蔵施設

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009210412A (ja) * 2008-03-04 2009-09-17 Ihi Corp 発熱体貯蔵施設
JP2019117149A (ja) * 2017-12-27 2019-07-18 三菱重工業株式会社 キャスクの貯蔵方法および放射性物質貯蔵施設

Similar Documents

Publication Publication Date Title
JPH0318793A (ja) 液体金属冷却形原子炉用の受動形冷却システム
KR102544946B1 (ko) 사용 후 핵연료 저장을 위한 홍수 및 바람 저항성 환기식 모듈
JPH0318792A (ja) 受動形冷却装置
JP2007127500A (ja) キャスク貯蔵施設
JP2009210412A (ja) 発熱体貯蔵施設
JP5106740B2 (ja) 使用済み核燃料または放射性材料のための貯蔵設備
KR101333066B1 (ko) 사용후핵연료 수송 또는 저장용 콘크리트 용기
US20180358134A1 (en) Passive cooling of a nuclear reactor
JP2003167095A (ja) キャスク貯蔵施設
JP2001235582A (ja) 使用済燃料等の乾式輸送,貯蔵用キャスク
JP6302264B2 (ja) 冷却装置および原子力設備
JP2005291796A (ja) 放射性物質乾式貯蔵施設および方法
JP5936365B2 (ja) 放射性物質の貯蔵施設
JP4630878B2 (ja) 放射性廃棄物の貯蔵設備
JP4857202B2 (ja) 放射性物質貯蔵方法
JP3060704B2 (ja) 使用済核燃料貯蔵庫
CN213583135U (zh) 小型反应堆安全壳系统
JP2001235583A (ja) 使用済燃料用キャスク
JPH09292489A (ja) 使用済核燃料用貯蔵庫
JPH032692A (ja) 自然通風冷却型崩壊熱除去装置
JP2013250198A (ja) 放射性廃棄体の冷却貯蔵設備
JP2013104793A (ja) キャスク貯蔵架台
JP5346893B2 (ja) 放射性物質貯蔵施設
JP2007071771A (ja) 放射性物質貯蔵施設
JP2004340888A (ja) 使用済み燃料貯蔵施設

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601