JP2007096120A - ビアホール充填用導電性ペースト組成物 - Google Patents

ビアホール充填用導電性ペースト組成物 Download PDF

Info

Publication number
JP2007096120A
JP2007096120A JP2005285481A JP2005285481A JP2007096120A JP 2007096120 A JP2007096120 A JP 2007096120A JP 2005285481 A JP2005285481 A JP 2005285481A JP 2005285481 A JP2005285481 A JP 2005285481A JP 2007096120 A JP2007096120 A JP 2007096120A
Authority
JP
Japan
Prior art keywords
conductive paste
paste composition
wiring board
particles
binder component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005285481A
Other languages
English (en)
Other versions
JP4965102B2 (ja
JP2007096120A5 (ja
Inventor
Shingetsu Yamada
紳月 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2005285481A priority Critical patent/JP4965102B2/ja
Publication of JP2007096120A publication Critical patent/JP2007096120A/ja
Publication of JP2007096120A5 publication Critical patent/JP2007096120A5/ja
Application granted granted Critical
Publication of JP4965102B2 publication Critical patent/JP4965102B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】通常の印刷手法によってビアホールに充填でき、非鉛なので環境負荷低減の点から好ましく、また、多層配線基板に積層後におけるビアホールに欠陥がなく、接続信頼性が高く、抵抗値を非常に小さくできる、ビアホール充填用導電性ペースト組成物を提供する。
【解決手段】多層配線基板(200)におけるビアホール(30)に充填する導電性ペースト組成物(40)における、導電粉末およびバインダー成分の質量比を90/10以上98/2未満とし、導電粉末を、180℃以上260℃未満の融点を有する非鉛半田粒子である第1の合金粒子、Au,Ag,Cuからなる群から選ばれる少なくとも一種以上である第2の金属粒子とし、第1の合金粒子と第2の金属粒子との質量比を76/24以上90/10未満とし、バインダー成分を加熱により硬化する重合性単量体の混合物とし、非鉛半田粒子の融点を前記バインダー成分の硬化温度範囲に含まれるようにする。
【選択図】図1

Description

本発明は、ビアホール充填用導電性ペースト組成物に関し、特に、複数の配線基板同士を積層してなる多層配線基板のビアホールに充填する導電性ペースト組成物に関する。
高度情報化社会の進展により、電子機器の情報処理の高速化(動作周波数の高速化)、情報通信の周波数広帯域化(ブロードバンド)が進み、電子機器に搭載される基板としては、高密度な多層配線基板が求められている。また、その配線基板材料は、比誘電率、誘電正接が低いことが求められている。
この高密度な多層配線基板としては、90年代より、ガラスエポキシ基板からなるコア層の上下に感光性エポキシ樹脂からなるビルドアップ層を逐次積み上げたビルドアップ多層基板が提案されている。このビルドアップ多層基板は、従来の多層基板に比較して微細配線が容易なため、今日では、多くの電子機器に採用されている。
しかしながら、ビルドアップ多層配線基板においては、基板の絶縁信頼性を確保する必要上、コア基板の貫通スルーホール径や配線間隔がコア層の上下に積層されるビルドアップ層のビア径や配線間隔に比較して大きい点、また、各層間の接続をするビア配線が銅めっきで形成されているため、製造プロセス上、ビアの上にビアを形成することができない点、といった問題があった。よって、ビルドアップ多層配線基板においては、近年要求されている、更なる高密度化に対応するには限界が見えはじめていた。
これらの問題を解決するものとして、最近では、配線設計の自由度が高く、かつ、伝送特性に優れたコアレス全層IVH(Interstitial Via Hole)基板が注目されている。このコアレス全層IVH基板における各層間の接続をするビア配線は導電性ペースト組成物で形成されている。よって、ビアの上にビアを形成するビアオンビア構造、および、パッドオンビア構造を形成することが可能であり、近年の更なる高密度化の要求に十分対応するものである。
ビアホール充填用の導電性ペースト組成物は、一般的には、電粒子、樹脂および溶剤から構成される。ビアホール充填用の導電性ペースト組成物は、これらの各成分をプラネタリーミキサーで粗練し、3本ロールで混練し、さらにプラネタリーミキサーで脱泡して、製造される。
ビアホール充填用の導電性ペースト組成物としては、大別して、金属圧接ペーストと金属拡散ペーストがある。金属圧接ペーストは、溶剤揮発、樹脂の硬化収縮、積層圧力により金属粒子が接触して導通を図るものである。金属圧接ペーストにおける金属粒子としては、銀粉、銅粉、銀コート銅粉等が用いられる。
金属拡散ペーストは、積層温度よりも低温で融解し、導体パターンである銅箔に金属拡散する金属粒子を含有し、溶剤揮発、積層圧力により、この金属粒子が拡散アロイ化して導通を図るものである。このため、金属拡散ペーストにおいては、高接続信頼性が期待できる。
金属拡散ペーストにおいて用いられる金属粒子としては、共晶半田(Sn/Pb:mp183℃)、Pbフリー半田粉(例えば、Sn/Ag/Cu:mp220℃)、Snめっき(Sn:mp232℃)Cuコア、SnめっきAgコア等を挙げることができる。このうち、共晶半田はPbを含有しているため環境負荷が大きいため使えず、SnめっきCuコア、SnめっきAgコアはコストが高く好まれない。従って、金属拡散ペーストにおいて用いられる金属粒子としては、Pbフリー半田粉(無鉛半田粒子)が用いられることが多い。
金属拡散ペーストに関する従来の技術としては、特許文献1には、プリント基板における絶縁基材に設けられたビアホール中に充填される導電性組成物が記載されている。この導電性組成物は、錫と銀との合金からなっており、この錫がプリント基板における導体パターンを形成する金属と固相拡散相を形成し、電気的接続がなされる。この場合、導体パターン相互の電気的接続が接触導通により行われるものではないので、層間接続抵抗値が変化し難く、層間接続の信頼性低下を防止できる、と記載されている。
特許文献2には、絶縁基板、導体配線層、バイアホール導体を具備する配線基板が記載されている。このバイアホール導体を形成する導電性ペーストとして、特許文献2の実施例においては、銀被覆銅粉末、Pb−Sn合金、エポキシ樹脂、溶剤を含有する導電性ペーストが記載されている。この発明においては、配線基板作製時における加熱により、溶融した錫成分が銅成分と反応し、CuSn等の金属間化合物が生成される。そして、金属間化合物が銅粉末間、あるいは、銅粉末と導体配線層間とを強固に接合し、耐熱性、導電性を良好にすることができる、と記載されている。
特許文献3には、無鉛半田粉末および半田フラックスを混合してなる、無鉛半田ペーストが記載されている。
特許第3473601号公報 特許第3187373号公報 特許第3074649号公報
しかし、特許文献1に記載の導電性組成物は、錫および銀、場合によっては、有機溶剤を含むものであるが、樹脂を含むものではない。そのため、通常の印刷手段によってこの導電性組成物を歩留まり良くビアホールに充填することは難しく、特殊な印刷手法を採用する必要があった。
また、特許文献2に記載の導電性ペーストは、半田として鉛を含有したものを使用している。このような鉛含有半田は、鉛含有半田を使用した配線基板等を廃棄した際に、この基板から鉛が溶出して、地下水が汚染されるおそれがあり、環境負荷が大きいため問題があった。また、電子部品のPbフリー化の方向に逆行するものであった。
また、特許文献3に記載の無鉛半田ペーストは、樹脂を含むものではない。そのため、上記の特許文献1における場合と同様に、これをビアホールに充填する際には、特殊な印刷手法を採用する必要があった。
また、より高性能な配線基板を作製するという観点から、ビアホール中の導電性ペースト組成物は高度に金属拡散接合し、その抵抗値が非常に低いことが要求されている。
そこで、本発明は、通常の印刷手法(例えば、スクリーン印刷法)によってビアホールに充填することができ、鉛を含有していないので環境負荷を低減する点から好ましく、また、多層配線基板に積層後においてビアホールに欠陥の発生がなく、ビアホールの接続信頼性が高く、ビアホールの抵抗値を非常に小さくすることができる、ビアホール充填用導電性ペースト組成物を提供することを課題とする。
以下、本発明について説明する。なお、本発明の理解を容易にするために添付図面の参照符号を括弧書きにて付記するが、それにより本発明が図示の形態に限定されるものではない。
第一の本発明は、熱可塑性樹脂組成物からなる絶縁基材(10)、該絶縁基材上に設けられた導体パターン(20)を備え、該絶縁基材(10)に導電性ペースト組成物(40)が充填されたビアホール(30)が形成されてなる配線基板(100)を、該配線基板(100)同士を複数重ね合わせて、または、該配線基板(100)とは異なる、熱可塑性樹脂組成物以外からなる配線基板(300)と交互に重ね合わせて、熱融着により一括積層または逐次積層してなる多層配線基板(200)における、前記ビアホールに充填する導電性ペースト組成物(40)であって、導電粉末と、バインダー成分とを含み、該導電粉末および該バインダー成分の質量比が、90/10以上98/2未満であり、前記導電粉末が、第1の合金粒子と第2の金属粒子とからなり、前記第1の合金粒子が、180℃以上260℃未満の融点を有する非鉛半田粒子であり、前記第2の金属粒子が、Au,Ag,Cuからなる群から選ばれる少なくとも一種以上であり、前記第1の合金粒子と前記第2の金属粒子との質量比が、76/24以上90/10未満であり、前記バインダー成分が、加熱により硬化する重合性単量体の混合物であり、前記非鉛半田粒子の融点が、前記バインダー成分の硬化温度範囲に含まれている、ビアホール充填用導電性ペースト組成物である。
第一の本発明によれば、通常の印刷手法によってビアホール(30)に充填することができ、鉛を含有していないため環境負荷を低減する点から好ましい、ビアホール充填用導電性ペースト組成物を提供することができる。また、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれるような、非鉛半田粒子およびバインダー成分を使用することによって、半田成分が第2の金属粒子および導体パターン(20)を形成する金属との間で、高度に金属拡散接合する。これにより、本発明のビアホール充填用導電性ペースト組成物を用いた多層配線基板(200)は、ビアホールの抵抗値が非常に小さく、吸湿耐熱性、接続信頼性、および導体接着強度に優れたものとなる。ここで、「金属拡散接合」とは、非鉛半田粒子からなる合金の融点を超えた時点で、非鉛半田粒子中の錫が、第2の金属粒子、および/または、導体パターン(20)を形成する金属中に、拡散し、新たな合金を形成することをいう。
第一の本発明において、第1の合金粒子および第2の金属粒子の平均粒径は10μm以下であることが好ましい。こうすることで、導電性ペースト組成物をビアホール(30)に導入し易くなり、また、金属拡散接合を起こしやすくすることができる。また、第1の合金粒子と第2の金属粒子との平均粒径差は、2μm以下であることが好ましい。こうすることで、金属拡散接合を起こしやすくすることができる。
第一の本発明において、バインダー成分は、アルケニルフェノール化合物およびマレイミド類の混合物であることが好ましい。第一の本発明において、第1の合金粒子は、Sn−Cu、Sn−Sb、Sn−Ag−Cu、Sn−Ag−Cu−Bi、Sn−Ag−In、Sn−Ag−In−Bi、Sn−Zn、Sn−Zn−Bi、および、Sn−Ag−Biからなる群から選ばれる一種以上の非鉛半田粒子であることが好ましい。バインダー成分および非鉛半田粒子として、これら例示されたものを使用することによって、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれるようになり、半田成分と第2の金属粒子および導体パターン(20)を形成する金属との間で、金属拡散接合させることができる。
第一の本発明において、アルケニルフェノール化合物がジメタリルビスフェノールAで、マレイミド類がビスマレイミドであり、ジメタリルビスフェノールAおよびビスマレイミドのモル比が、30/70以上70/30未満であることが好ましい。このようなバインダー成分を使用することによって、導体接着力をより良好なものとすることができる。
本発明のビアホール充填用導電性ペースト組成物は、通常の印刷手法によってビアホールに充填することができ、鉛を含有していないため環境負荷を低減する点から好ましい。また、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれるような、非鉛半田粒子およびバインダー成分を使用することによって、半田成分が第2の金属粒子および導体パターンを形成する金属との間において、高度に金属拡散接合する。これにより、本発明のビアホール充填用導電性ペースト組成物を用いた多層配線基板を、そのビアホールの抵抗値を非常に小さいものとすることができると共に、吸湿耐熱性、接続信頼性、および導体接着強度に優れたものとすることができる。
以下本発明を図面に示す実施形態に基づき説明する。
<ビアホール充填用導電性ペースト組成物の用途>
図1に、本発明のビアホール充填用導電性ペースト組成物が使用される多層配線基板200の一般的な製造工程を模式的に示す。図1(a)〜(g)は、熱可塑性樹脂組成物からなる絶縁基材10を備えた配線基板100aを複数枚重ね合わせて、多層配線基板200aを製造する工程を示した図である。また、図1(h)〜(l)は、熱可塑性樹脂組成物からなる絶縁基材10を備えた配線基板100bおよび熱可塑性樹脂組成物以外からなる配線基板300を交互に重ね合わせて、多層配線基板200bを製造する工程を示した図である。本発明のビアホール充填用導電性ペースト組成物40は、これらの工程によって製造される多層配線基板200において、ビアホール30に充填することにより、多層配線基板200において、導体パターン20部を電気的に接続するビアホールを形成するものである。なお、図1に示した工程は、本発明のビアホール充填用導電性ペースト組成物40が使用される多層配線基板200の製法の一例であり、本発明のビアホール充填用導電性ペースト組成物40は、これらの製法により製造される多層配線基板200に限定されず、ビアホール充填用導電性ペースト組成物中の第1の合金粒子の融点より高い温度で加熱することにより熱圧着して積層される他の多層配線基板においても使用することもできる。
<ビアホール充填用導電性ペースト組成物>
本発明のビアホール充填用導電性ペースト組成物は、導電粉末、および、バインダー成分を含むものである。
(導電粉末)
本発明において使用する導電粉末は、第1の合金粒子と第2の金属粒子とから構成されるものである。
第1の合金粒子は、180℃以上260℃未満の融点を有する非鉛半田粒子である。このような非鉛半田粒子としては、例えば、Sn−Cu、Sn−Sb、Sn−Ag−Cu、Sn−Ag−Cu−Bi、Sn−Ag−In、Sn−Ag−In−Bi、Sn−Zn、Sn−Zn−Bi、および、Sn−Ag−Biを挙げることができる。これらの非鉛半田粒子は、錫を金属拡散させるという効果において信頼をおけるものである。また、第1の合金粒子としては、これらの非鉛半田粒子の二種以上の混合物を使用することもできる。
第2の金属粒子は、Au、Ag、Cuからなる群から選ばれる少なくとも一種以上の金属粒子である。第2の金属粒子は、電気抵抗値が低い金属から形成されている粒子であり、ビアホールの電気伝導性を担うものである。また、第2の金属粒子は、第1の合金粒子に比べて融点が高く、加熱時における導電性ペースト組成物の粘度を保持する役割を有する。
導電粉末における、第1の合金粒子および第2の金属粒子の混合割合は、質量比で、「76/24」以上「90/10」未満である(「第1の合金粒子」/「第2の金属粒子」)。この範囲を超えて、第1の合金粒子の量が多すぎると、基板を加熱積層する際に、導電性ペースト組成物の粘度の低下が大きく、導電性ペースト組成物40がビアホール30から流出してしまうおそれがある。
第1の合金粒子および第2の金属粒子の平均粒子径は、10μm以下であることが好ましい。第1の合金粒子をこのような粒径とすることによって、導電性ペースト組成物40をビアホール30に充填しやすくなり、また、金属拡散が生じやすくなる。また、第2の金属粒子をこのような粒径とすることによって、基板を加熱積層する際における導電性ペースト組成物の粘度を調整する効果が良好となる。
第1の合金粒子と第2の金属粒子の平均粒径差は、2μm以下であることが好ましい。このように粒径をなるべくそろえることによって、金属拡散接合を生じやすくすることができる。
(バインダー成分)
本発明において使用するバインダー成分は、加熱により硬化する重合性単量体の混合物である。このようなバインダー成分としては、アルケニルフェノール化合物およびマレイミド類の混合物を挙げることができる。なお、アルケニルフェノール化合物および/またはマレイミド類が、高分子化合物であっても、これらを加熱することにより、架橋反応して硬化するものであれば、本発明の重合性単量体に含まれるものとする。
アルケニルフェノール化合物としては、分子中に少なくとも2個のアルケニル基を有するアルケニルフェノール化合物、つまり、芳香環の水素原子の一部がアルケニル基に置換されたフェノール系化合物を挙げることができる。また、具体的には、このようなアルケニルフェノール化合物としては、ビスフェノールAまたはフェノール性水酸基含有ビフェニル骨格にアルケニル基が結合した化合物を挙げることができる。さらに具体的には、3,3´−ビス(2−プロペニル)−4,4´−ビフェニルジオール、3,3´−ビス(2−プロペニル)−2,2´−ビフェニルジオール、3,3´−ビス(2−メチル−2−プロペニル)−4,4´−ビフェニルジオール、3,3´−ビス(2−メチル−2−プロペニル)−2,2´−ビフェニルジオール等のジアルケニルビフェニルジオール化合物;2,2−ビス[4−ヒドロキシ−3−(2−プロペニル)フェニル]プロパン、2,2−ビス[4−ヒドロキシ−3−(2−メチル−2−プロペニル)フェニル]プロパン(以下、「ジメタリルビスフェノールA」という。)等のジアルケニルビスフェノール化合物を挙げることができる。この中でも、原料コストが安く、安定供給が可能であるという点から、アルケニルフェノール化合物としては、ジメタリルビスフェノールAを使用することが好ましい。ジメタリルビスフェノールAの構造式を式1に示す。
Figure 2007096120
マレイミド類としては、分子中に少なくとも2個のマレイミド基を有するマレイミド化合物を挙げることができ、具体的には、ビス(4−マレイミドフェニル)メタン等のビスマレイミド、トリス(4−マレイミドフェニル)メタン等のトリスマレイミド、ビス(3,4−ジマレイミドフェニル)メタン等のテトラキスマレイミドおよびポリ(4−マレイミドスチレン)等のポリマレイミド等を挙げることができる。この中でも、マレイミド類としては、原料コストが安く、安定供給可能であるという点から、ビス(4−マレイミドフェニル)メタンを使用することが好ましい。ビス(4−マレイミドフェニル)メタンの構造式を式2に示した。
Figure 2007096120
このバインダー成分において、アルケニルフェノール化合物およびマレイミド類の混合比は、モル比で、「30/70」以上「70/30」未満であることが好ましい(「アルケニルフェノール化合物」/「マレイミド類」)。この範囲を超えて、バインダー成分中のどちらかの成分が多すぎると、生成する樹脂が脆くなり、導電性ペースト組成物40と導体パターン20部との接着力が低下してしまう。
バインダー成分の硬化反応について、以下説明する。アルケニルフェノール化合物におけるアルケニル基は、マレイミド化合物のエチレン性不飽和基と交互共重合および/または付加反応し、またフェノール性水酸基もマレイミド基のエチレン性不飽和基と付加反応する。以下、バインダー成分として例示した、ジメタリルビスフェノールAおよびビス(4−マレイミドフェニル)メタンの硬化機構について、具体的に説明する。まず、120〜180℃に加熱した段階で、以下の式3で示される線状の重合体が得られる。
Figure 2007096120
さらに、200℃以上に加熱すると、例えば、以下の式4で示される三次元状に架橋した重合体が得られる。
Figure 2007096120
本発明においては、このようなバインダー成分の三次元架橋による硬化が、半田成分が第2の金属粒子および/または導体パターン20を形成する金属へ金属拡散することを促進し、これにより高度な金属拡散接合が形成されると考えられている。つまり、バインダー成分が硬化する時に、ビアホール30内の第1の合金粒子および第2の金属粒子に圧力がかかり、これにより、半田成分が、金属粒子および導体パターン20を形成する金属へ金属拡散することが促進されると考えられている。バインダー成分の弾性率が、温度によって変化する様子を図2に示す。単量体混合物の弾性率は、温度の上昇により小さくなっていく。しかし、120〜180℃において式3で示した線状の重合体が形成されることによって、弾性率が急に大きくなる(図2における、「単量体混合物」のグラフから、「架橋後」のグラフとなる。)。その後、線状の重合体は、200℃以上において、式4で示される三次元状に架橋した重合体に変化していくと考えられている。架橋後のグラフは、温度の上昇と共に小さくなる傾向はある。しかし、高温領域においても溶融することなく、一定の弾性率を保っている。
このように、180〜260℃において非鉛半田粒子が融解した時に、バインダー成分は硬化反応することにより、一定の弾性率を保持する。このように、融解した非鉛半田粒子に対して、バインダーが硬化することによる圧力がかかり、これにより本発明のビアホール充填用導電性ペースト組成物40において、金属拡散接合が生じると考えられる。そして、本発明の導電性ペースト組成物40を用いた多層配線基板200は、そのビアホールの抵抗値が非常に低いものとなり、吸湿耐熱性、接続信頼性、および、導体接着強度に優れたものになると考えられる。
このような観点から、半田粒子が溶解した段階で、バインダー成分が硬化する必要があり、非鉛半田粒子の融点が、バインダー成分の硬化温度範囲に含まれている必要がある。これに対して、バインダー成分の硬化温度範囲に比べて、非鉛半田粒子の融点が高すぎる場合は、バインダー成分が硬化する段階において、非鉛半田粒子は未だ融解していないため、金属拡散が促進されるという効果を享受することができない。また、バインダー成分の硬化温度範囲に比べて、非鉛半田粒子の融点が低すぎる場合は、溶解した半田成分がビアホールからはみ出してしまうおそれがある。
なお、バインダー成分の硬化温度範囲は、昇温速度10℃/分における示差走査熱量測定(DSC)により測定した発熱ピークの発生温度により、測定した。
上記したように、本発明のビアホール充填用導電性ペースト組成物40は、導電粉末およびバインダー成分を含有するものであるが、この導電粉末およびバインダー成分の混合比は、質量比で、「90/10」以上「98/2」未満である(「導電性粉末」/「バインダー成分」)。この範囲を超えて、導電性粉末の量が少なすぎるとビアホールに充填した導電性ペーストの電気抵抗値が増加してしまう。また、この範囲を超えて、導電性粉末の量が多すぎると、導電性ペースト組成物40をビアホール30に印刷充填する作業性が悪化し、また、導電性ペースト組成物40と導体パターン20部との接着強度が低下してしまう。
<熱可塑性樹脂組成物からなる絶縁基材10>
熱可塑性樹脂組成物からなる絶縁基材10を形成する熱可塑性樹脂組成物としては、260℃以上の結晶融解ピーク温度(Tm)を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物を用いることが好ましい。なお、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂は相溶系であり、これらの混合組成物は一つの結晶融解ピーク温度を有する。つまり、上記においては、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物が示す一つの結晶融解温度が260℃以上であることを意味している。
このポリアリールケトン樹脂は、その構造単位に芳香核結合、エーテル結合およびケトン結合を含む熱可塑性樹脂であり、その代表例としては、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン等があり、なかでも、ポリエーテルエーテルケトンが好ましい。なお、ポリエーテルエーテルケトンは、「PEEK151G」、「PEEK381G」、「PEEK450G」(いずれもVICTREX社の商品名)等として市販されている。
また、非晶性ポリエーテルイミド樹脂は、その構造単位に芳香核結合、エーテル結合およびイミド結合を含む非晶性熱可塑性樹脂であり、特に制限されるものではない。なお、ポリエーテルイミドは、「Ultem CRS5001」、「Ultem 1000」(いずれもゼネラルエレクトリック社の商品名)等として市販されている。
ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合割合としては、積層する他の配線基板100、300との密着性を考慮した場合、ポリアリールケトン樹脂を30質量%以上かつ70質量%以下含有し、残部を非晶性ポリエーテルイミド樹脂および不可避不純物とした混合組成物を用いることが好ましい。ここで、ポリアリールケトン樹脂の含有率を30質量%以上かつ70質量%以下と限定した理由は、ポリアリールケトン樹脂の含有率が高すぎると、熱可塑性樹脂組成物の結晶性が高いために多層化する際の積層性が低下するからであり、また、ポリアリールケトン樹脂の含有率が低すぎると、熱可塑性樹脂組成物全体としての結晶性自体が低くなり、結晶融解ピーク温度が260℃以上であってもリフロー耐熱性が低下するからである。
この熱可塑性樹脂組成物は無機充填材を含有していてもよい。無機充填材としては、特に制限はなく、公知のいかなるものも使用できる。例えば、タルク、マイカ、雲母、ガラスフレーク、窒化ホウ素(BN)、板状炭カル、板状水酸化アルミニウム、板状シリカ、板状チタン酸カリウム等が挙げられる。これらは1種類を単独で添加してもよく、2種類以上を組み合わせて添加してもよい。特に、平均粒径が15μm以下、アスペクト比(粒径/厚み)が30以上の鱗片状の無機充填材が、平面方向と厚み方向の線膨張係数比を低く抑えることができ、熱衝撃サイクル試験時の基板内のクラック発生を抑制することができるので、好ましい。
この無機充填材の添加量は、熱可塑性樹脂100質量部に対して20質量部以上かつ50質量部以下が好ましい。無機充填材の添加量が多すぎると、無機充填材の分散不良の問題が発生し、線膨張係数がばらつき易くなったり、強度低下を招き易くなったりするからである。また、無機充填材の添加量が少なすぎると、線膨張係数を低下させて寸法安定性を向上させる効果が小さく、リフロー工程において他の配線基板300や導電パターン20との線膨張係数差に起因する内部応力が発生し、基板にそりやねじれが発生するからである。
また、熱可塑性樹脂組成物は、その性質を損なわない程度に、他の樹脂や無機充填材以外の各種添加剤、例えば、安定剤、紫外線吸収剤、光安定剤、核剤、着色剤、滑剤、難燃剤等を適宜含有していてもよい。これら無機充填材を含めた各種添加剤を添加する方法としては、公知の方法、例えば下記に挙げる方法(a)、(b)を用いることができる。
(a)各種添加剤を、ポリアリールケトン樹脂および/または非晶性ポリエーテルイミド樹脂の基材(ベース樹脂)に高濃度(代表的な含有量としては10〜60質量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合し、ニーダーや押出機等を用いて機械的にブレンドする方法。(b)使用する樹脂に直接各種添加剤をニーダーや押出機等を用いて機械的にブレンドする方法。これらの方法の中では、(a)の方法が分散性や作業性の点から好ましい。さらに、熱可塑性樹脂組成物からなる絶縁基材10の表面には積層性を向上させる目的でコロナ処理等を適宜施しても構わない。
<熱可塑性樹脂組成物からなる絶縁基材10を備えた配線基板100aの製造方法>
図1(a)〜(e)に、単層の配線基板100aを製造する工程を示した。まず、図1(a)に示すように、熱可塑性樹脂組成物からなる絶縁基材10を用意する。絶縁基材10は、フィルム、薄板状またはシート状が好ましく、成形方法としては、公知の方法、例えばTダイを用いる押出キャスト法、あるいはカレンダー法等を採用することができ、特に限定されるものではないが、シートの製膜性や安定生産性等の点から、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、用いる樹脂の流動特性や製膜性等によって適宜調整されるが、概ね、260℃以上の結晶融解ピーク温度を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物の場合、360〜400℃である。また、押出キャスト製膜時に急冷製膜することにより非晶性フィルム化することが必要である。これにより、170〜230℃付近に弾性率が低下する領域を発現するので、この温度領域での熱成形、熱融着が可能となる。詳細には、170℃付近で弾性率が低下し始め、200℃付近において熱成形、熱融着が可能となる。また、図3に示したグラフは、昇温速度を3℃/分として弾性率を測定したものであるが、昇温速度を10℃/分とすると、非晶から結晶への転移が遅れて、230℃付近において弾性率がもっとも低くなる。
次いで、図1(b)に示すように、熱可塑性樹脂組成物からなる絶縁基材10の表面に金属箔が貼り付けられる。上記したように熱可塑性樹脂組成物からなる絶縁基材10は非晶性の状態であるため、熱可塑性樹脂の結晶化が大きく進行しないガラス転移温度の少し上の温度での比較的短時間での熱圧着により、絶縁基材の結晶化を進行させずに金属箔を貼り付けることができる。また、絶縁基材10を製膜する際に銅箔を同時にラミネートして図1(b)の段階にしても良い。
次いで、図1(c)に示すように、絶縁基材10の所定位置に、レーザー若しくは機械ドリル等を用いてビアホール30が形成される。次いで、図1(d)に示すように、金属箔の表面にレジストを回路パターン状に塗布して、エッチング、レジスト除去する等の通常の方法により、導体パターン20が形成される。なお、ビアホールを形成してから、銅箔を貼り付けて、導体パターン20を形成してもよいし、導体パターン20を形成してから、ビアホールを形成してもよく、各手順の順序は特に限定されない。次いで、ビアホール30に、スクリーン印刷等の通常の印刷手法によって、導電性ペースト組成物40が充填され、図1(e)に示すような単層の配線基板100aが作製される。
<熱可塑性樹脂組成物からなる絶縁基材10の温度に対する弾性率の挙動>
ここで、熱可塑性樹脂組成物からなる絶縁基材10の温度に対する弾性率の挙動について説明する。熱可塑性樹脂組成物として、260℃以上の結晶融解ピーク温度(Tm)を有する、ポリアリールケトン樹脂および非晶性ポリエーテルイミド樹脂の混合組成物であって、特に、ポリアリールケトン樹脂としてポリエーテルエーテルケトンを使用した場合における絶縁基材10の、温度に対する弾性率の挙動を図3に示した。
「積層前」と表示されているのが、多層配線基板200として積層する前における、絶縁基材10の温度に対する弾性率の挙動を示したグラフである。また、「積層後」と表示されているのが、所定の条件において加熱・加圧することによって多層配線基板200とした後における、絶縁基材10の温度に対する弾性率の挙動を示したグラフである。積層前の状態では、上記したように、絶縁基材10は急冷製膜することにより非晶性フィルム化されている。よって、200℃付近という比較的低温領域において弾性率が十分に低下する。これにより、積層前の絶縁基材10は、比較的低温において熱成形、熱融着することができる。
非晶性フィルム化されている絶縁基材10は、多層配線基材200を製造する際における所定の条件下での加熱・加圧成形によって、結晶性へと変化する。これに伴って絶縁基材10の弾性率は大きく変化して、図3における積層後のグラフで示されるような挙動を示すようになる。これにより、以下に説明するように金属拡散接合を促進するという効果を発揮して、多層配線基板200を、そのビアホールの抵抗値を非常に小さくすることができると共に、吸湿耐熱性、接続信頼性、および導体接着力に優れたものとすることができると考えられている。
次に、どのように金属拡散接合が促進されるかについて説明する。ここで、導電性ペースト組成物40中の非鉛半田粒子と熱可塑性樹脂組成物からなる絶縁基材10との関係が重要であり、非鉛半田粒子の融点における、熱可塑性樹脂組成物の貯蔵弾性率は、10MPa以上5GPa未満であることが好ましい。なお、熱可塑性樹脂組成物からなる絶縁基材10を形成する熱可塑性樹脂組成物として、上記した好ましい形態である、ポリエーテルエーテルケトンおよび非晶性ポリエーテルイミドの混合組成物を使用した場合は、図3に示すように、180℃以上260℃未満という非鉛半田粒子の融点における、熱可塑性樹脂組成物の貯蔵弾性率は、10MPa以上5GPa未満となっている。なお、熱可塑性樹脂組成物の貯蔵弾性率は、粘弾性評価装置を用い、測定周波数1Hzで昇温速度3℃/分で測定した値である。
上記のように非鉛半田粒子の融点において、熱可塑性樹脂組成物が10MPa以上5GPa未満の貯蔵弾性率を有するものとすることは、非鉛半田粒子の融点において、熱可塑性樹脂組成物にある程度の柔軟性を持たせると共に、溶融せずにある程度の弾性率を保持させていることを意味している。
このように、非鉛半田粒子の融点において、熱可塑性樹脂組成物にある程度の柔軟性を持たせることによって、導電性ペースト組成物40と熱可塑性樹脂組成物とが相互になじむことができ、導電性ペースト組成物40と熱可塑性樹脂組成物からなる絶縁基材10との接着性が向上する。また、非鉛半田粒子の融点において、熱可塑性樹脂組成物が溶融せずに、ある程度の弾性率を保持することによって、配線基板100を熱融着により積層する際に、導電性ペースト組成物40をビアホールの側面である熱可塑性樹脂組成物により締め付けることができ、導電性ペースト組成物40に圧力をかけることができる。これにより、非鉛半田粒子中の錫成分が第2の金属粒子および/または導体パターン20を形成する金属中に拡散し、金属拡散接合を形成させることができると考えられる。
<熱可塑性樹脂組成物以外からなる配線基板300>
熱可塑性樹脂組成物以外からなる配線基板300としては、ガラスエポキシ基板(FR4基板)、2層ポリイミド基板、擬似2層ポリイミド基板、3層ポリイミド基板、LCP(液晶ポリマー)基板、LTCC(低温焼成セラミック)基板を使用することができる。これらの配線基板300は、二種以上を併せて積層して多層基板200を形成してもよい。
ガラスエポキシ基板(FR4基板)の製造方法について説明する。まず、ガラスクロスに熱硬化性樹脂を含浸させ半硬化状態(Bステージ化)とした絶縁基材(プリブレグ)を用意する。次いで、絶縁基材の所定位置に、レーザー若しくは機械ドリル等を用いて絶縁基材を貫通する貫通孔を形成し、これをビアホールとする。次いで、スクリーン印刷等によりビアホール内に導電性ペーストを充填する。そして、必要により、加熱して溶剤を揮発させて導電性ペーストを固化させる。配線基板300に用いられる導電性ペーストとしては、特に限定されず、ビアホール充填用に使用される一般的な導電性ペーストを使用することができる。また、配線基板300に用いられる導電性ペーストとして、配線基材100において使用する導電性ペースト組成物40を使用することもできる。次いで、必要に応じて、絶縁基材の表面上にはみ出した導電性ペーストの乾燥固化物を機械的研磨等により除去して、そして、絶縁基材の一方の面あるいは両方の面に、銅箔を熱圧着すると同時に絶縁基材を完全に硬化する(Cステージ化)。次いで、銅箔をエッチングによりパターニングし、導体パターンを形成する。以上より、ガラスエポキシ基板を使用した熱可塑性樹脂組成物以外からなる配線基板300を製造することができる。
上記したエポキシ樹脂の「Bステージ」とは、樹脂、硬化剤を混合した場合において、反応がある程度進み、半硬化(Semi−cure)の状態をいう。この段階では、もはや大部分は溶剤に溶解しないが、加熱すると溶解してさらに反応が進む。また、「Cステージ」とは、反応の最終段階で不溶不融の完全硬化の状態をいう。
また、液晶ポリマー(LCP)基板の製造方法について説明する。まず、LCPからなる絶縁基板を用意する。LCPとしては、LCPI型(液晶転移温度:350℃)、LCPII型(液晶転移温度:300℃)等を使用することができる。LCPからなる絶縁基材としては、フィルム状、薄板状、またはシート状が好ましい。その成形方法としては、公知の方法、例えばTダイを用いる押出キャスト法、あるいはカレンダー法、インフレーション成形法等が好ましく、特に限定されるものではないが、シートの製膜性や安定生産性等を考慮すると、Tダイを用いる押出キャスト法が好ましい。Tダイを用いる押出キャスト法での成形温度は、用いる樹脂の流動性や製膜性等によって適宜調整されるが、概ね、LCPI型樹脂の場合、400〜420℃、LCPII型樹脂の場合、350〜370℃である。製膜時に銅箔を貼り付け、その後、絶縁基材にビアホールを形成し、パターニングして導体パターンを形成することについては、上記したガラスエポキシ基板の製造方法における場合と同様である。
銅箔上にキャスト法や流延法でポリイミド層を形成した2層ポリイミド基板や、ポリイミドフィルムと銅箔間に熱可塑性ポリイミド層を接着層として熱ラミネートした擬似2層ポリイミド基板や、ポリイミドフィルムと銅箔間に熱硬化型の接着剤を用いた3層ポリイミド基板についても、上記したガラスエポキシ基板、LCP基板と同様の製造方法により製造することができる。
LTCC(低温焼成セラミック)基板は、焼成前のLTCC(低温焼成セラミック)基板にビアホールを形成し、ビアホール中にAgペーストを充填し、また表層にもAgペースト配線を施し、焼成して作製した。
<多層配線基板200の製造方法>
図1(e)〜(g)に、多層配線基板200aの製造工程を示した。図1(f)に示すように、作製した単層の配線基板100aを複数枚重ね合わせる。図示した形態においては、単層配線基板100aを三つ重ね合わせている。また、最下層の基板をその方向を変えて重ね合わせて、多層基板の外側に導体パターン20が形成されるようにしている。具体的には、図4に示すように、ヒーター内蔵の積層治具50内に下側より弾性および離型性を有するクッションフィルム51、配線基材100aを三つ、その上に、クッションフィルム51を重ねて、その後、押圧治具52を、図中に示した矢印の方向に押し下げることで、三つの配線基材100aに熱圧着を施し、これらを積層一体化して多層配線基板200aとする。各層の積層条件としては、金属拡散接合を効果的に起こらしめる観点から、温度:200℃以上260℃未満、圧力:3MPa以上8MPa未満、プレス時間:10分以上40分未満とすることが好ましい。
図1(h)〜(l)は、熱可塑性樹脂組成物からなる絶縁基材10を備えた配線基板100b、および、熱可塑性樹脂組成物以外からなる配線基板300を交互に重ね合わせて、多層配線基板200bを製造する工程を示した図である。まず、図1(h)に示すように、熱可塑性樹脂組成物からなる絶縁基材10を用意する。成形方法については、図1(a)の場合と同様である。次いで、図1(i)に示すように、絶縁基材10の所定位置に、レーザー若しくは機械ドリル等を用いてビアホール30が形成される。そして、スクリーン印刷等の通常の印刷手法によって、形成されたビアホール30に導電性ペースト組成物40が充填され、図1(j)に示すような単層の配線基板100bが製造される。
次いで、図1(k)に示したように、製造した単層の配線基板100bと、この配線基板100bとは異なる熱可塑性樹脂組成物以外からなる配線基板300とを交互に重ね合わせる。図示した形態においては、配線基板100bを真ん中にして、その両側に、熱可塑性樹脂以外からなる配線基板300が配置されている。
そして、所定の条件において、各層が熱融着され、図1(l)に示すような多層配線基板200bが作製される。積層方法、積層条件は、上記の図1(g)において示した方法、条件と同様である。
なお、図1(a)〜(g)に示した製造方法においては、単層配線基板100aの片面に導体パターン20を形成しており、また、図1(h)〜(l)に示した製造方法においては、単層配線基板100bに導体パターン20を形成せずに、熱可塑性樹脂組成物以外からなる配線基板300の両面に導体パターン20を形成しているが、製造する多層配線基板200a、200bにおいて所望の位置に導体パターン20が形成されるのであれば、単層配線基板100a、100b、300における導体パターンを形成する箇所は特に限定されず、適宜変更することができる。
<実施例1>
(絶縁基材10の作製)
ポリエーテルエーテルケトン樹脂(PEEK450G、Tm=335℃)40質量%と、非晶性ポリエーテルイミド樹脂(Ultem 1000)60質量%とからなる樹脂混合物100質量部に対して、平均粒径5μm、平均アスペクト比50の合成マイカを39質量部混合して得られた熱可塑性樹脂組成物を溶融混練し、急冷製膜して100μm厚の非晶性フィルムからなる絶縁基材10を作製した。この非晶性フィルムを、示差走査熱量計を用いて10℃/分で昇温させながら測定した時の結晶融解ピーク温度(Tm)は、335℃であった。
(ビアホール充填用導電性ペースト組成物の作製)
Sn−Ag−Cu合金粒子(平均粒径5.55μm、融点220℃、Sn:Ag:Cu(質量比)=1:3:0.5)76質量%およびCu粒子(平均粒径5μm)24質量%の割合で混合した導電粉末97質量部に対して、ジメタリルビスフェノールA50質量%およびビス(4−マレイミドフェニル)メタン50質量%の割合で混合した重合性単量体の混合物3質量部、ならびに溶剤としてγブチロラクトン7.2質量部、を添加して、3本ロールで混練して導電性ペースト組成物を調製した。
(単層の配線基板100aの作製)
205℃、5MPa、10分間の熱圧着により、12μmの厚みの銅箔を上記で作製した絶縁基材10に貼り付けた。次いで、絶縁基材の所望の位置に、レーザーを使用して絶縁基材を貫通する直径100μmのビアホールを形成した。そして、上記で調製した導電性ペースト組成物を、このビアホールにスクリーン印刷により充填した。充填後、125℃、45分間加熱し、溶剤を揮発させて導電性ペーストを乾燥固化した。その後、フォトリソグラフ法によって、銅箔に導体パターンを形成して、単層の配線基板100aを作製した。
(多層配線基板200aの作製)
上記で得られ単層の配線基板100aを3枚用意し、ビア部の位置が合うように積み重ね、温度230℃、5MPa、30分間、真空プレスすることにより積層して、絶縁基材10が結晶化した層厚0.3mmの3層の多層配線基板200aを作製した。
<実施例2>
実施例1において導電性ペースト組成物中の導電粉末を95質量部、重合性単量体の混合物を5質量部とした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<実施例3>
実施例1において導電性ペースト組成物中の導電粉末を、Sn−Ag−Cu合金粒子85質量%、Cu粒子15質量%の割合で混合したものとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<実施例4>
(単層の配線基板100bの作製)
実施例1において、絶縁基材10に銅箔を貼り付けない以外は、実施例1と同様にして単層の配線基板100bを作製した。
(ガラスエポキシ基板(FR4)の作製)
ガラスクロスにエポキシ樹脂組成物を含浸させて、厚さ100μmの半硬化状態(Bステージ)のプリプレグを用意した。このプリプレグの所定の箇所にレーザーによりビアホールを形成し、このビアホールに実施例1において調製した導電性ペースト組成物をスクリーン印刷により充填した。充填後、125℃45分間加熱し、溶剤を揮発させて導電性ペーストを乾燥固化した。
そして、プリプレグの両面に12μmの厚さの銅箔を180℃、5MPa、30分間の熱圧着により貼り付け、これと同時にエポキシ樹脂を完全に硬化した(Cステージ)。次いで、フォトリソグラフ法によって、銅箔に導体パターンを形成して、ガラスエポキシ基板を作製した。
(多層配線基板200bの作製)
上記で得られ単層の配線基板100bを1枚、および、ガラスエポキシ基板を2枚用意して、これらを交互に、ビア部の位置が合うように積み重ね、温度230℃、5MPa、30分間、真空プレスすることにより積層して、絶縁基材10が結晶化した層厚0.3mmの3層の多層配線基板200bを製造した。
<実施例5>
実施例4において、ガラスエポキシ基板の代わりに、液晶ポリマー基板を用いた以外は、実施例4と同様にして、多層配線基板200bを製造した。液晶ポリマー基板の製造方法を以下に説明する。
(液晶ポリマー基板の製造方法)
Tダイを用いた押出キャスト法によって、LCPI型を420℃にて押し出すと同時に、12μmの厚さの銅箔を両面に貼り付けた。その後、上記のガラスエポキシ基板における場合と同様にして、ビアホールを形成し、導電性ペースト組成物を充填・乾燥し、導体パターンを形成して、厚さ0.1mmの液晶ポリマー基板を得た。
<実施例6>
実施例4において、ガラスエポキシ基板の代わりに、3層ポリイミド基板を用いた以外は、実施例4と同様にして、多層配線基板200bを得た。3層ポリイミド基板の製造方法を以下に説明する。
(3層ポリイミド基板の製造方法)
35μmのポリイミドフィルムの両面に、熱硬化型の接着層を薄くコーティングし、接着層の硬化が進まない程度に乾燥固化させ、この接着層付きポリイミドフィルムの所定の箇所にビアホールを形成し、このビアホールに実施例1において調製した導電性ペースト組成物をスクリーン印刷により充填した。充填後、さらに、接着層の硬化が進まない125℃45分間の条件で加熱乾燥し、溶剤を揮発させて導電性ペーストを乾燥固化した。
そして、ビアが形成された接着層付きポリイミドフィルムの両面に12μmの厚さの銅箔を180℃、5MPa、30分間の熱圧着により貼り付け、これと同時にエポキシ樹脂を完全に硬化した(Cステージ)。次いで、フォトリソグラフ法によって、銅箔に導体パターンを形成して、厚さ60μmの3層ポリイミド両面基板を作製した。
<実施例7>
実施例4において、ガラスエポキシ基板の代わりに、LTCCを用いた以外は、実施例4と同様にして、多層配線基板200bを得た。LTCCの製造方法を以下に説明する。
(LTCCの製造方法)
焼成前のLTCC(低温焼成セラミック)基板にビアホールを形成し、このビアホール中にAgペーストを充填し、焼成前の基板の表裏層にAgペースト配線を施し、焼成して、LTCC両面基板を作製した。
<比較例1>
実施例1において導電性ペースト組成物中の導電粉末を98質量部、重合性単量体の混合物を2質量部とした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<比較例2>
実施例1において導電性ペースト組成物中の導電粉末を89質量部、重合性単量体の混合物を11質量部とした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<比較例3>
実施例1において導電性ペースト組成物中の導電粉末を、Sn−Ag−Cu合金粒子75質量%、Cu粒子25質量%の割合で混合したものとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<比較例4>
実施例1において導電性ペースト組成物中の導電粉末を、Sn−Ag−Cu合金粒子91質量%、Cu粒子9質量%の割合で混合したものとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例1>
実施例1において導電性ペースト組成物中のSn−Ag−Cu合金粒子の平均粒径を、15μmとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例2>
実施例1において導電性ペースト組成物中のCu粒子の平均粒径を、15μmとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例3>
実施例1において導電性ペースト組成物中のCu粒子の平均粒径を、3.5μmとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例4>
実施例1において導電性ペースト組成物中のSn−Ag−Cu合金粒子の平均粒径を、8μmとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例5>
実施例1において導電性ペースト組成物中の重合性単量体の混合物を、ジメタリルビスフェノールA25質量%およびビス(4−マレイミドフェニル)メタン75質量%の割合で混合したものとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<参考例6>
実施例1において導電性ペースト組成物中の重合性単量体の混合物を、ジメタリルビスフェノールA75質量%およびビス(4−マレイミドフェニル)メタン25質量%の割合で混合したものとした以外は、実施例1と同様にして、導電性ペースト組成物を調製し、単層の配線基板100aおよび多層配線基板200aを作製した。
<比較例5>
比較のために、特許文献2に記載の導電性ペースト、多層配線基板を作製した。
(導電性ペーストの調製)
銀被覆銅粉末(平均粒径5μm、銀含有量6質量%)60質量%と、Pb−Sn合金(平均粒径10μm、Pb:Sn質量比=38:62、融点=約183℃)40質量%の割合で混合した金属成分96質量部に対して、エポキシ樹脂を4質量部、溶剤として2−オクタノールを2.0質量部添加し、3本ロールで混練して導電性ペーストを調製した。
(多層配線基板の作製)
ポリフェニレンエーテル樹脂40体積%と、シリカを60体積%からなるBステージの絶縁シートに対して、マイクロドリルによって直径が200μmのビアホールを形成し、このビアホール内に前記において調製した導電性ペースト組成物を充填した。そして、導電性ペーストを埋め込んだBステージ状態の絶縁シートの両面に、厚さ12μmの銅箔からなる導体配線層を転写法により前記ビアホール導体の両端を狭持するように貼りあわせた後、200℃、1時間の条件にて熱処理を施した。次いで、フォトリソグラフ法によって、銅箔に導体パターンを形成して、単層基板を作製した。この単層基板4枚を、ビア部の位置が合うように積み重ねて、温度200℃、5MPa、30分間、真空プレスすることにより積層し、4層の多層配線基板を製造した。
<比較例6>
(圧接ペーストの作製)
Ag粒子(平均粒径5μm)90質量部に対して、バインダー10質量部、溶剤としてγブチロラクトン7質量部、を添加して、3本ロールで混練して導電性ペースト組成物を調製した。なお、バインダーとしては、実施例1で使用したジメタリルビスフェノールA50質量%およびビス(4−マレイミドフェニル)メタン50質量%の割合で混合した重合性単量体の混合物を使用した。
(多層配線基板の作製)
上記の圧接ペーストを使用して、実施例1と同様にして単層の配線基板100a、多層配線基板200aを作製した。
<評価方法>
上記で作製した多層配線基板に対して、以下の評価を行った。それぞれの評価結果を表1に示す。
(ビア断面の外観)
得られた多層配線基板のビア部について、断面SEM観察を行い、以下の基準により評価した。
○:金属粒子が見あたらない。充填欠陥がない。
×:金属粒子が確認できる。または、金属粒子は見あたらないが充填欠陥が存在する。
(吸湿耐熱性)
得られた多層配線基板を、125℃で4時間乾燥する。そして、30℃、湿度85%の恒温恒湿槽に96時間おいて、その後、ピーク温度250℃のリフロー炉で加熱する処理を二度繰り返した。得られた多層配線基板を以下の基準により評価した。
○:基板間の積層界面に剥がれがなく、ビアホール中に膨れが生じていない。
×:基板間の積層界面に剥がれ生じ、および/または、ビアホール中に膨れが生じた。
(試験前抵抗値)
得られた多層配線基板の最上層から最下層まで配線が施されたテストパターン部において、以下の基準により評価した。
○:抵抗値が1×10−4Ωcm未満
×:抵抗値が1×10−5Ωcm以上
(接続信頼性)
上記の吸湿耐熱性における処理を施した多層配線基板に対して、以下の二つの接続信頼性試験を行った。
・耐マイグレーション試験
85℃、湿度85%の恒温恒湿槽中において、DC50Vを240時間印可した。得られた多層配線基板を以下の基準により評価した。なお、「マイグレーション」とは、例えば、銅からなる導体パターン間において、CuOが形成され、ショートしてしまう現象をいう。
○:絶縁抵抗値が低下しなかった。
×:絶縁抵抗値が低下した。
・熱衝撃試験
−25℃において9分、125℃において9分というサイクルを1000回繰り返した。
得られた多層配線基板を以下の基準により評価した。なお、抵抗変化率は、「|試験前抵抗値−試験後抵抗値|/試験前抵抗値」×100(%)で表される値である。
○:抵抗変化率が、常温時および恒温時(25℃)ともに、20%未満である。
×:抵抗変化率が、常温時あるいは恒温時(25℃)のいずれかにおいて、20%以上である。
(導体接着強度)
多層配線基板上に表出した導体パターン部に針金を半田付けし、この針金を上に引き上げ、導体パターン部を剥がした時の強度を測定した。
○:強度が1N/mm以上であった。
×:強度が1N/mm未満であった。
(評価結果)
Figure 2007096120
本発明のビアホール充填用導電性ペースト組成物を用いた多層配線基板は、すべての評価項目において良好な結果を示した(実施例1〜7)。これに対して、比較例1においては、導電性ペースト組成物中のバインダー成分の量が少ないため、ビア断面の外観、吸湿耐熱性、試験前抵抗値、および導体接着強度において劣った結果を示した。バインダー成分が少なく、ビア穴へのスクリーン印刷適性が悪く、ビア欠陥が多数発生し、また、金属拡散接合を促進する効果が少なかったためであると考えられる。
また、比較例2においては、導電性ペースト組成物中のバインダー成分の量が多すぎるため、試験前抵抗値、導体接着強度において劣った結果を示した。バインダー成分量が多すぎるため、金属拡散接合が十分に生じなかったためであると考えられる。
また、比較例3においては、導電性ペースト組成物中の導電粉末における、第1の合金粒子の割合が少ないため、ビア断面の外観、耐マイグレーション試験において、劣った結果を示した。第1の合金粒子は耐マイグレーション性が強く、この割合が少なくなって、第2の金属粒子のイオンマイグレーションが発生し易くなったためであると考えられる。
また、比較例4においては、導電性ペースト組成物中の導電粉末における、第1の合金粒子の割合が多いため、試験前抵抗値において、劣った結果を示した。第1の合金粒子は、第2の金属粒子と比較すると抵抗値が高く、これにより多層配線基板の抵抗値が高くなったと考えられる。
参考例1においては、第1の合金粒子の粒径が大きすぎるため、また、参考例2においては、第2の金属粒子の粒径が大きすぎるため、また、参考例3および4においては、第1の合金粒子と第2の金属粒子の粒径差が大きすぎるため、ビア断面の外観、試験前抵抗値において、劣った結果を示した。第1の合金粒子および第2の金属粒子の粒径および粒径差が本発明の好ましい範囲から外れている参考例1〜4においては、金属拡散接合が生じにくくなったと考えられる。
参考例5においては、バインダー成分中のマレイミド類の量が多すぎるため、参考例6においては、バインダー成分中のアルケニルフェノール化合物の量が多すぎるため、生成する樹脂が脆くなって、導体接着強度が劣っていた。
比較例5は、特許文献2に記載の導電性ペースト組成物を用いた例であるが、ビア断面の外観、吸湿耐熱性、および導体接着強度において劣っていた。これは、絶縁基材が熱硬化性PPE樹脂であるとともに、導電性ペースト組成物中のバインダー成分がエポキシ樹脂であることから、半田成分が金属粒子および導体パターン部に金属拡散するための圧力が十分にかからず、金属拡散接合が十分に生じなかったためであると考えられる。また、熱硬化性PPE樹脂の硬化温度が150〜200℃であるので、比較例5における半田成分を融点が200℃以上の無鉛半田に変更すると、さらに金属拡散が難しくなり、より劣った結果を示すことになると考えられる。
比較例6においては、金属拡散ペーストではなく、金属圧接ペーストを使用した例であるが、ビア断面の外観、耐マイグレーション試験、熱衝撃試験、および導体接着強度において劣っていた。
以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うビアホール充填用導電性ペースト組成物もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
本発明のビアホール充填用導電性ペースト組成物40を用いた多層配線基板200の製造方法の概要を示した図である。 バインダー成分の弾性率が、温度による変化する様子を示した図である。 絶縁基材10を構成する特定の熱可塑性樹脂組成物の弾性率が、温度により変化する様子を示した図である。 配線基板100を熱圧着することにより多層配線基板200を製造するための積層治具50の概念図である。
符号の説明
10 熱可塑性樹脂からなる絶縁基材
20 導体パターン
30 ビアホール
40 ビアホール充填用導電性ペースト組成物
100a、100b 単層配線基板
200a、200b 多層配線基板
50 積層治具
51 クッションフィルム
52 押圧治具

Claims (5)

  1. 熱可塑性樹脂組成物からなる絶縁基材、該絶縁基材上に設けられた導体パターンを備え、該絶縁基材に導電性ペースト組成物が充填されたビアホールが形成されてなる配線基板を、該配線基板同士を複数重ね合わせて、または、該配線基板とは異なる、熱可塑性樹脂組成物以外からなる配線基板と交互に重ね合わせて、熱融着により一括積層または逐次積層してなる多層配線基板における、前記ビアホールに充填する導電性ペースト組成物であって、
    導電粉末と、バインダー成分とを含み、該導電粉末および該バインダー成分の質量比が、90/10以上98/2未満であり、
    前記導電粉末が、第1の合金粒子と第2の金属粒子とからなり、
    前記第1の合金粒子が、180℃以上260℃未満の融点を有する非鉛半田粒子であり、
    前記第2の金属粒子が、Au,Ag,Cuからなる群から選ばれる少なくとも一種以上であり、前記第1の合金粒子と前記第2の金属粒子との質量比が、76/24以上90/10未満であり、
    前記バインダー成分が、加熱により硬化する重合性単量体の混合物であり、前記非鉛半田粒子の融点が、前記バインダー成分の硬化温度範囲に含まれている、
    ビアホール充填用導電性ペースト組成物。
  2. 前記バインダー成分が、アルケニルフェノール化合物およびマレイミド類の混合物である、請求項1に記載のビアホール充填用導電性ペースト組成物。
  3. 前記第1の合金粒子および前記第2の金属粒子の平均粒径が10μm以下であり、平均粒径差が2μm以下である、請求項1または2に記載のビアホール充填用導電性ペースト組成物。
  4. 前記第1の合金粒子が、Sn−Cu、Sn−Sb、Sn−Ag−Cu、Sn−Ag−Cu−Bi、Sn−Ag−In、Sn−Ag−In−Bi、Sn−Zn、Sn−Zn−Bi、および、Sn−Ag−Biからなる群から選ばれる一種以上の非鉛半田粒子である、請求項1〜3のいずれかに記載のビアホール充填用導電性ペースト組成物。
  5. 前記アルケニルフェノール化合物がジメタリルビスフェノールAで、
    前記マレイミド類がビス(4−マレイミドフェニル)メタンであり、
    前記ジメタリルビスフェノールAおよび前記ビス(4−マレイミドフェニル)メタンのモル比が、30/70以上70/30未満である、請求項1〜4のいずれかに記載のビアホール充填用導電性ペースト組成物。
JP2005285481A 2005-09-29 2005-09-29 ビアホール充填用導電性ペースト組成物 Expired - Fee Related JP4965102B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005285481A JP4965102B2 (ja) 2005-09-29 2005-09-29 ビアホール充填用導電性ペースト組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005285481A JP4965102B2 (ja) 2005-09-29 2005-09-29 ビアホール充填用導電性ペースト組成物

Publications (3)

Publication Number Publication Date
JP2007096120A true JP2007096120A (ja) 2007-04-12
JP2007096120A5 JP2007096120A5 (ja) 2007-07-12
JP4965102B2 JP4965102B2 (ja) 2012-07-04

Family

ID=37981437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005285481A Expired - Fee Related JP4965102B2 (ja) 2005-09-29 2005-09-29 ビアホール充填用導電性ペースト組成物

Country Status (1)

Country Link
JP (1) JP4965102B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027300A (ja) * 2008-07-16 2010-02-04 Mitsubishi Chemicals Corp 導電性ペースト、導電性ペーストの製造方法、および、多層配線基板
US20100154211A1 (en) * 2008-12-19 2010-06-24 Canon Kabushiki Kaisha Method for manufacturing wiring board and method for manufacturing inkjet printhead substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287680A (ja) * 1990-04-03 1991-12-18 Toagosei Chem Ind Co Ltd 有機厚膜ペースト組成物
JPH08302273A (ja) * 1995-05-12 1996-11-19 Toagosei Co Ltd ワニスおよびその応用
JP2000200976A (ja) * 1999-01-05 2000-07-18 Mitsubishi Plastics Ind Ltd 多層プリント配線板およびその製造方法
JP2000223836A (ja) * 1999-01-28 2000-08-11 Kyocera Corp 多層配線基板およびその製造方法
JP2000323804A (ja) * 1999-05-07 2000-11-24 Toagosei Co Ltd プリント配線板用銅張り積層板
JP2003092467A (ja) * 2001-09-19 2003-03-28 Tatsuta Electric Wire & Cable Co Ltd プリント配線基板およびその製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287680A (ja) * 1990-04-03 1991-12-18 Toagosei Chem Ind Co Ltd 有機厚膜ペースト組成物
JPH08302273A (ja) * 1995-05-12 1996-11-19 Toagosei Co Ltd ワニスおよびその応用
JP2000200976A (ja) * 1999-01-05 2000-07-18 Mitsubishi Plastics Ind Ltd 多層プリント配線板およびその製造方法
JP2000223836A (ja) * 1999-01-28 2000-08-11 Kyocera Corp 多層配線基板およびその製造方法
JP2000323804A (ja) * 1999-05-07 2000-11-24 Toagosei Co Ltd プリント配線板用銅張り積層板
JP2003092467A (ja) * 2001-09-19 2003-03-28 Tatsuta Electric Wire & Cable Co Ltd プリント配線基板およびその製法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010027300A (ja) * 2008-07-16 2010-02-04 Mitsubishi Chemicals Corp 導電性ペースト、導電性ペーストの製造方法、および、多層配線基板
US20100154211A1 (en) * 2008-12-19 2010-06-24 Canon Kabushiki Kaisha Method for manufacturing wiring board and method for manufacturing inkjet printhead substrate
JP2010147308A (ja) * 2008-12-19 2010-07-01 Canon Inc 配線基板の製造方法、およびインクジェット記録ヘッド用基板の製造方法
US8448333B2 (en) * 2008-12-19 2013-05-28 Canon Kabushiki Kaisha Method for manufacturing wiring board and method for manufacturing inkjet printhead substrate

Also Published As

Publication number Publication date
JP4965102B2 (ja) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4934334B2 (ja) 両面銅張板
US8044304B2 (en) Multilayer printed circuit board
JP4996838B2 (ja) 多層配線基板
JP2009065008A (ja) 導電性ペースト組成物
JP4787195B2 (ja) ビアホール充填用導電性ペースト組成物とそれを用いた多層配線基板
JP2008244091A (ja) 多層配線基板用層間接続ボンディングシート
JP2005071825A (ja) 導電性ペースト及び配線基板並びにその製造方法
JP4838606B2 (ja) 樹脂付き銅箔
JP4468080B2 (ja) 多層配線基板用導電性ペースト組成物
JP4965102B2 (ja) ビアホール充填用導電性ペースト組成物
JP5032205B2 (ja) キャビティー部を有する多層配線基板
JP4881193B2 (ja) 導電性ペースト組成物
JP4468081B2 (ja) 多層配線基板用導電性ペースト組成物
JP4774215B2 (ja) 多層プリント配線基板
JP4806279B2 (ja) ガラスクロス含有絶縁基材
JP4959966B2 (ja) 多層配線基板用層間接続ボンディングシート
JP2009065009A (ja) 多層配線基板
JP4422555B2 (ja) 多層配線基板用導電性ペースト組成物
JP4965286B2 (ja) 多層配線基板
JP4481734B2 (ja) 多層配線基板用導電性ペースト組成物
JP4481733B2 (ja) 多層配線基板用導電性ペースト組成物
JP4863543B2 (ja) 導体ペーストおよびそれを用いた配線基板の製造方法
JP2004349366A (ja) 多層配線基板及びその製造方法
JP2008235833A (ja) 多層配線基板用層間接続ボンディングシート
JP2008103427A (ja) 離型フィルム

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees