JP2007087866A - 透明導電性基板及びその製造方法並びに光電変換素子 - Google Patents

透明導電性基板及びその製造方法並びに光電変換素子 Download PDF

Info

Publication number
JP2007087866A
JP2007087866A JP2005277643A JP2005277643A JP2007087866A JP 2007087866 A JP2007087866 A JP 2007087866A JP 2005277643 A JP2005277643 A JP 2005277643A JP 2005277643 A JP2005277643 A JP 2005277643A JP 2007087866 A JP2007087866 A JP 2007087866A
Authority
JP
Japan
Prior art keywords
transparent conductive
substrate
transparent
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005277643A
Other languages
English (en)
Inventor
Tetsuya Ezure
哲也 江連
Takuya Kawashima
卓也 川島
Nobuo Tanabe
信夫 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005277643A priority Critical patent/JP2007087866A/ja
Publication of JP2007087866A publication Critical patent/JP2007087866A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】 入射した光を好適に散乱させることが可能な透明導電性基板及びその製造方法と、この透明導電性基板を備え、より高い光電変効率を有する光電変換素子を提供する。
【解決手段】 本発明に係る透明導電性基板は、透明基材と該透明基材の一方の面に透明導電膜を配してなり、前記透明導電膜のヘーズ率が9.7%以上61.0%以下であることを特徴とする。
【選択図】 図1

Description

本発明は、透明導電性基板及びその製造方法並びに光電変換素子に係り、より詳細には、透明導電性基板を構成する透明導電膜のヘーズ率を制御することによって、光電変換効率の向上をもたらす透明導電性基板及びその製造方法、並びにこの透明導電性基板を備えた光電変換素子に関する。
透明導電膜(TCO:Transparent Conductive oxide)は、絶縁体であるガラスの表面にスズドープ酸化インジウム(ITO)や酸化スズ(TO)、フッ素ドープ酸化スズ(FTO)などの半導体セラミックスの薄膜を形成することにより導電性を備えたガラスであり、光学的に透明な性質を保ちつつ、電気を流す性質も有する。これらの中で特にITOが透明導電膜として広く知られており、パソコン、テレビ、携帯電話などの液晶ディスプレイや太陽電池の透明電極に応用されている。
液晶表示素子に使用されるITO膜は、ヘーズ率が低いことが望ましく、優れた平坦性が求められる。これに対して、太陽電池に使用される透明電極は、入射光を逃がさないために表面を粗くしてヘーズ率を高くすることが望ましい。例えば非特許文献1には、光電変換素子の一つである太陽電池用の透明導電膜(TCO)の凹凸形状と光閉じ込め効果の関係、ヘーズ率、セル特性等に関する検討が記載されている。
従来からITO透明の成膜は、スパッタリング法が主流である。この製法で形成されたITO透明導電膜は、優れた平坦性を持ち液晶表示用として有用である。しかし、スパッタリング法では成膜速度が遅く、300nm以上の厚膜化が困難であり、一般的に得られる最上級の性能で、シート抵抗10Ω/cm前後、膜厚300nm以下、ヘーズ率2%以下、透過率90%程度であった。スパッタリング法によるITO膜は、色素増感型太陽電池などの光電変換素子の用途には表面粗性やヘーズ率が不十分であった。そのため、高い光電変効率を実現することが困難であった。
大木和樹、他8名、「高い光閉じ込め効果を有する透明導電膜基板上へ形成されたSi系薄膜太陽電池」、2002年(平成14年)春季 第49回応用物理学関係連合講演会 講演予稿集、No.2、第927頁、講演番号29a−X−10
本発明は、このような従来の実情に鑑みて考案されたものであり、高いヘーズ率を有する透明導電性基板及びその製造方法と、該透明導電性基板を備えることにより、光電変効率の向上を図った光電変換素子を提供することを目的とする。
本発明の請求項1に係る透明導電性基板は、透明基材と該透明基材の一方の面に透明導電膜を配してなる透明導電性基板であって、前記透明導電膜のヘーズ率が9.7%以上61.0%以下であることを特徴とする。
本発明の請求項2に係る透明導電性基板は、請求項1において、前記透明基材の前記透明導電膜と接する面は、粗面をなすことを特徴とする。
本発明の請求項3に係る透明導電性基板の製造方法は、透明基材と該透明基材の一方の面に透明導電膜を配してなる透明導電性基板の製造方法であって、透明基材の一面に透明導電膜を形成する工程αを少なくとも備え、前記工程αは、前記透明導電膜のヘーズ率が9.7%以上61.0%以下の範囲となるように、成膜条件を制御することを特徴とする透明導電性基板の製造方法。
本発明の請求項4に係る透明導電性基板の製造方法は、前記工程αは、前記透明導電膜の成膜方法としてスプレー熱分解法を用いることを特徴とする。
本発明の請求項5に係る光電変換素子は、透明基材と該透明基材の一方の面にヘーズ率が9.7%以上61.0%以下である透明導電膜を配してなる透明導電性基板を備えたことを特徴とする。
本発明の透明導電性基板では、透明導電膜のヘーズ率を規定することで、該透明導電膜に入射した光を好適に散乱させることができる。そして、この透明導電性基板を用いた本発明の光電変換素子は、光閉じ込め効果により、光電変換効率を向上することができる。
以下、本発明に係る透明導電性基板および光電変換素子の一実施形態を図面に基づいて説明する。
図1は、本発明に係る透明導電性基板の一実施形態を示す概略断面図である。
この透明導電性基板10は、透明基材11、および、その一方の面11aに形成された透明導電膜12から概略構成されている。
そして、本発明の透明導電性基板10は、前記透明導電膜12のヘーズ率が9.7%以上61.0%以下であることを特徴とする。透明導電膜12のヘーズ率を9.7%以上61.0%以下とすることにより、該透明導電膜12に入射した光を好適に散乱させることができる。そして、この透明導電性基板10を光電変換素子に用いた場合、光閉じ込め効果によって光路長が伸び、色素への入射光量が増加する。その結果、光電変換効率を向上することができる。
これに対し、前記透明導電膜12のヘーズ率が9.7%未満であると、高い光電変換効率が得られない。一方、前記透明導電膜12のヘーズ率が61.0%を超えると、却って光電変換効率が低下してしまう。
透明基材11としては、光透過性の素材からなる基板が用いられ、ガラス、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルスルホンなど、通常、光電変換素子の透明基材として用いられるものであればいかなるものでも用いることができる。透明基材11は、これらの中から電解液への耐性などを考慮して適宜選択される。また、透明基材11としては、用途上、できる限り光透過性に優れる基板が好ましく、透過率が90%以上の基板がより好ましい。
また、前記透明基材11の前記透明導電膜12と接する面11aは、粗面をなしていることが好ましい。前記透明基材11の前記透明導電膜12と接する面11aを粗面とすることで、ヘーズ率をより大きくすることができ、該透明導電膜12に入射した光をより散乱させることができる。その結果、この透明導電性基板10を光電変換素子に用いた場合、光閉じ込め効果によって光電変換効率をより向上することができる。
前記透明基材11の一面11a上をサンドブラスト等の方法により荒らすことにより、透明基材11の表面に微小凹凸を形成することができる。透明基材11が表面に凹凸を有することで、入射光の散乱による光閉じ込め効果の結果、光電変換素子の特性向上を図ることができる。この透明基材11上に透明導電膜12を成膜すると、下地の凹凸を反映したまま透明導電膜12が形成され、結果的に凹凸を有する透明導電性基板10を得ることができる。
透明導電膜12は、透明基材11に導電性を付与するために、その一方の面11aに形成された薄膜である。本発明では、透明導電性基板の透明性を著しく損なわない構造とするために、透明導電膜12は、導電性金属酸化物からなる薄膜であることが好ましい。
透明導電膜12を形成する導電性金属酸化物としては、例えば、スズ添加酸化インジウム(ITO)、フッ素添加酸化スズ(FTO)、酸化スズ(SnO)などが用いられる。これらの中でも、成膜が容易かつ製造コストが安価であるという観点から、ITO、FTOが好ましい。また、透明導電膜12は、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜であることが好ましい。
透明導電膜12を、ITOのみからなる単層の膜、または、ITOからなる膜にFTOからなる膜が積層されてなる積層膜とすることにより、可視域における光の吸収量が少なく、導電率が高い透明導電性基板を構成することができる。
そして、上述したように、透明導電膜12は、ヘーズ率が9.7%以上61.0%以下とされている。透明導電膜12のヘーズ率を9.7%以上61.0%以下とすることにより、該透明導電膜12に入射した光を好適に散乱させることができる。そして、この透明導電性基板10を光電変換素子に用いた場合、光閉じ込め効果によって光路長が伸び、色素への入射光量が増加する。その結果、光電変換効率を向上することができる。
また、前記透明導電膜12は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜12を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、減圧システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。
図2は、本発明に係る光電変換素子の一実施形態を示す概略断面図である。
図2において、符号10は透明導電性基板、11は透明基材、12は透明導電膜、13は多孔質酸化物半導体層、14は作用極、15は電解質層、16は他の基材、17は導電膜、18は対極、19は封止部材、20は積層体、30は色素増感型光電変換素子をそれぞれ示している。
この光電変換素子30は、作用極14と、対極18と、これらの間に封入された電解質からなる電解質層15と、から概略構成されている。
作用極14は、透明導電性基板10をなす透明導電膜12の一方の面に形成され、増感色素を担持させた多孔質酸化物半導体層13とから構成されている。
対極18は、他の基材16と、この一方の面上に形成された導電膜17とから構成されている。
光電変換素子30において、電解質層15を作用極14と対極18で挟んでなる積層体20が、その外周部が封止部材19によって接着、一体化されて光電変換素子として機能する。
多孔質酸化物半導体層13は、透明導電膜12の上に設けられており、その表面には増感色素が担持されている。多孔質酸化物半導体層13を形成する半導体としては特に限定されず、通常、光電変換素子用の多孔質酸化物半導体を形成するのに用いられるものであれば、いかなるものでも用いることができる。このような半導体としては、例えば、酸化チタン(TiO)、酸化スズ(SnO)、酸化タングステン(WO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)などを用いることができる。
多孔質酸化物半導体層13を形成する方法としては、例えば、市販の酸化物半導体微粒子を所望の分散媒に分散させた分散液、あるいは、ゾル−ゲル法により調製できるコロイド溶液を、必要に応じて所望の添加剤を添加した後、スクリーンプリント法、インクジェットプリント法、ロールコート法、ドクターブレード法、スプレー塗布法など公知の塗布方法により塗布した後、このポリマーマイクロビーズを加熱処理や化学処理により除去して空隙を形成させ多孔質化する方法などを適用することができる。
増感色素としては、ピピリジン構造、ターピリジン構造などを配位子に含むルテニウム錯体、ポリフィリン、フタロシアニンなどの含金属錯体、エオニン、ローダミン、モロシアンなどの有機色素などを適用することができ、これらの中から、用途、使用半導体に適した挙動を示すものを特に限定なく選ぶことができる。
電解質層15は、多孔質酸化物半導体層13内に電解液を含浸させてなるものか、または、多孔質酸化物半導体層13内に電解液を含浸させた後に、この電解液を適当なゲル化剤を用いてゲル化(擬固体化)して、多孔質酸化物半導体層13と一体に形成されてなるもの、あるいは、イオン性液体、酸化物半導体粒子および導電性粒子を含むゲル状の電解質が用いられる。
上記電解液としては、ヨウ素、ヨウ化物イオン、ターシャリ−ブチルピリジンなどの電解質成分が、エチレンカーボネートやメトキシアセトニトリルなどの有機溶媒に溶解されてなるものが用いられる。
この電解液をゲル化する際に用いられるゲル化剤としては、ポリフッ化ビニリデン、ポリエチレンオキサイド誘導体、アミノ酸誘導体などが挙げられる。
上記イオン性液体としては、特に限定されるものではないが、室温で液体であり、四級化された窒素原子を有する化合物をカチオンまたはアニオンとした常温溶融性塩が挙げられる。
常温溶融性塩のカチオンとしては、四級化イミダゾリウム誘導体、四級化ピリジニウム誘導体、四級化アンモニウム誘導体などが挙げられる。
常温溶融塩のアニオンとしては、BF 、PF 、F(HF) 、ビストリフルオロメチルスルホニルイミド[N(CFSO ]、ヨウ化物イオンなどが挙げられる。
イオン性液体の具体例としては、四級化イミダゾリウム系カチオンとヨウ化物イオンまたはビストリフルオロメチルスルホニルイミドイオンなどからなる塩類を挙げることができる。
上記酸化物半導体粒子としては、物質の種類や粒子サイズなどが特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化させるようなものが用いられる。また、酸化物半導体粒子は、電解質の導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合であっても、酸化物半導体粒子は、酸化反応による劣化を生じないものが好ましい。
このような酸化物半導体粒子としては、TiO、SnO、WO、ZnO、Nb、In、ZrO、Ta、La、SrTiO、Y、Ho、Bi、CeO、Alからなる群から選択される1種または2種以上の混合物が好ましく、二酸化チタン微粒子(ナノ粒子)が特に好ましい。この二酸化チタンの平均粒径は2nm〜1000nm程度が好ましい。
上記導電性微粒子としては、導電体や半導体など、導電性を有する粒子が用いられる。この導電性粒子の比抵抗の範囲は、好ましくは1.0×10−2Ω・cm以下であり、より好ましくは、1.0×10−3Ω・cm以下である。また、導電性粒子の種類や粒子サイズなどは特に限定されないが、イオン性液体を主体とする電解液との混和性に優れ、この電解液をゲル化するようなものが用いられる。さらに、電解質中で酸化被膜(絶縁被膜)などを形成して導電性を低下させることがなく、電解質に含まれる他の共存成分に対する化学的安定性に優れることが必要である。特に、電解質がヨウ素/ヨウ化物イオンや、臭素/臭化物イオンなどの酸化還元対を含む場合でも、酸化反応による劣化を生じないものが好ましい。
このような導電性微粒子としては、カーボンを主体とする物質からなるものが挙げられ、具体例としては、カーボンナノチューブ、カーボンファイバ、カーボンブラックなどの粒子を例示できる。これらの物質の製造方法はいずれも公知であり、また、市販品を用いることもできる。
他の基材16としては、透明基材11と同様のものや、特に光透過性をもつ必要がないことから金属板、合成樹脂板などが用いられる。
導電膜17は、他の基材16に導電性を付与するために、その一方の面に形成された金属、炭素などからなる薄膜である。導電膜17としては、例えば炭素や白金などの層を、蒸着、スパッタ、塩化白金酸塗布後に熱処理を行ったものが好適に用いられるが、電極として機能するものであれば特に限定されるものではない。
封止部材19としては、対極18をなす他の基材16に対する接着性に優れるものであれば特に限定されないが、例えば、分子鎖中にカルボン酸基を有する熱可塑性樹脂からなる接着剤などが望ましく、具体的には、ハイミラン(三井デュポンポリケミカル社製)、バイネル(三井デュポンポリケミカル社製)、アロンアルファ(東亞合成社製)などが挙げられる。
次に、この実施形態の光電変換素子30の製造方法を、図2を参照して説明する。
この実施形態では、まず、透明基材11の一方の面11aの全域を覆うように透明導電膜12を形成し、透明導電性基板10を作製する。
透明導電膜12を形成する方法としては、特に限定されるものではなく、例えば、スパッタリング法、CVD(化学気相成長)法、スプレー熱分解法(SPD法)、蒸着法などの薄膜形成法が挙げられる。
その中でも、前記透明導電膜12は、スプレー熱分解法により形成されたものであることが好ましい。透明導電膜12を、スプレー熱分解法により形成することで、容易にヘーズ率を制御することができる。また、スプレー熱分解法は、減圧システムが不要なため、製造工程の簡素化低コスト化を図ることができるので好適である。
スプレー熱分解法を用いて透明導電膜12を第一基板1上に成膜するとき、成膜条件を制御することにより、基板表面での結晶成長速度を調節し、ヘーズ率の異なる透明導電膜12を成膜する。
スプレー熱分解法における成膜条件のうち、特に、出発原料の濃度を0.4mol/L〜1.5mol/Lとすることにより、透明導電膜12のヘーズ率を9.7%以上61.0%以下の範囲に制御することができる。
次いで、透明導電膜12を覆うように、多孔質酸化物半導体層13を形成する。この多孔質酸化物半導体層13の形成は、主に塗布工程と乾燥・焼成工程からなる。
塗布工程とは、例えばTiO粉末と界面活性剤を所定の比率で混ぜ合わせてなるTiOコロイドのペーストを、親水性化を図った透明導電膜12の表面に塗布するものである。その際、親水性化を図った透明導電膜12の表面に塗布するものである。その際、塗布法としては、加圧手段(例えば、ガラス棒)を用いて前記コロイドを透明導電膜12上に押し付けながら、塗布されたコロイドが均一な厚さを保つように、加圧手段を透明導電膜12の上空を移動させる方法が挙げられる。
乾燥・焼成工程とは、例えば大気雰囲気中におよそ30分間、室温にて放置し、塗布されたコロイドを乾燥させた後、電気炉を用いおよそ60分間、450℃の温度にて焼成する方法が挙げられる。
次に、この塗布工程と乾燥・焼成工程により形成された多孔質酸化物半導体層13に対して色素担持を行う。
色素担持用の色素溶液は、例えばアセトニトリルとt−ブタノールを容積比で1:1とした溶媒に対して極微量のN3粉末を加えて調整したものを予め準備しておく。
シャーレ状の容器内に入れた色素溶媒に、別途電気炉にて120〜150℃程度に加熱処理した多孔質酸化物半導体層13を浸した状態とし、暗所にて一昼夜(およそ20時間)浸漬する。その後、色素溶液から取り出した多孔質酸化物半導体層13は、アセトニトリルとt−ブタノールからなる混合溶液を用い洗浄する。
上述した工程により、色素担持したTiO薄膜からなる多孔質酸化物半導体層13を透明基板上に設けてなる作用極14(窓極とも呼ぶ)を得る。
一方、別の基材(必ずしも透明である必要はない)の一方の面に、例えば白金からなる導電膜17を蒸着法などにより形成してなる対極18を設ける。この対極18には、その厚み方向に貫通する穴を少なくとも2ヶ所設ける。この穴は、後述する電解液を注入する際の注入口である。
色素担持させたTiO薄膜からなる多孔質酸化物半導体層13が上方をなすように作用極14を配置し、この多孔質酸化物半導体層13と導電膜17が対向するように、対極18を作用極14に重ねて設けることにより積層体20が形成される。その後、積層体20の側部、すなわち作用極14と対極18の重なった外周付近を、例えばハイミランからなる封止部材19で封止する。
封止部材19が固化した後、積層体20の空隙、すなわち作用極14と対極18と封止部材19で囲まれた空間内に、対極18に設けた注入口から電解質溶液を注入する。これにより色素増感型の光電変換素子30が形成される。
この光電変換素子30は、透明導電膜12のヘーズ率が9.7%以上61.0%以下である透明導電性基板10を備えているので、該透明導電膜に入射した光を好適に散乱させることができるため、光閉じ込め効果によって光路長が伸び、色素への入射光量が増加する。その結果、光電変換効率が向上する。
以上、本発明の成膜装置について説明してきたが、本発明は上記の例に限定されるものではなく、必要に応じて適宜変更が可能である。
図3は、本実施例で用いた成膜装置の一例を示す模式図である。
この成膜装置50は、スプレー熱分解法により被処理体(透明基材11)上に薄膜(透明導電膜12)を形成する成膜装置であって、前記被処理体を載置する支持手段51と、前記被処理体の一面に向けて、前記薄膜の原料溶液からなるミスト53を噴霧する吐出手段54と、吐出手段54と対向する位置に配される被処理体との間の空間55を包み込むように配置されるフード56とを少なくとも備える。
支持手段51は、透明基材11の被成膜面11aを所定の温度に保ちながら薄膜を形成するため、被処理体2の加熱・保持・冷却機能を備えた温度制御手段52を内蔵している。温度制御手段52は、例えばヒータである。
成膜装置50では、フード56が吐出手段54と対向する位置に配される被処理体との間の空間を包み込むように配置されているので、吐出手段54の吐出口54aからスプレー状に噴射された原料溶液は外気の影響を受けることなく、吐出口54aから被処理体に向かう放射状空間に噴霧された状態を安定に保つことができる。換言すると、フード56はその内部空間から装置への外部へ原料溶液が飛散し、無駄な使用量が増加するのも防ぐ働きもする、これにより、原料溶液は薄膜の形成に有効に使われる。
ここで、上記構成からなる成膜装置50を用いて、透明導電性基板を製造した。全ての工程は、大気雰囲気中にて行った。
<サンプル1〜サンプル7>
まず、ITO透明導電膜を形成するための出発原料を、次のようにして調製した。
塩化インジウム(III)四水和物(InCl・4HO,Fw:293.24)3と塩化スズ(II)二水和物(SnCl・2HO,Fw:225.65)とを、インジウムとスズのモル比が95:5となるように調製し、0.2〜1.8mol/Lの各濃度になるようにエタノールを加えて溶解させた。
上記原料溶液を用いて、スプレー熱分解法(Spray Pyrolysis Deposition;SPD)法によりITO透明導電膜を700nmの厚さに成膜した。
なお、このときの成膜条件としては、ノズル口径が0.3mm、ノズル−基板間距離が600mm、噴霧圧力が約0.06MPa、基板表面温度が350℃であった。
サンプル1〜サンプル7では、原料溶液濃度を変えたこと以外は同様にしてITO透明導電膜を成膜した。
また、得られた透明導電性基板を用いて、色素増感型の光電変換素子を作製した。
透明導電性基板の透明導電層上に、酸化チタン微粒子多孔質層(面積5×9mm)を約6μmの厚さに形成した。そして該酸化チタン微粒子多孔質膜にN3色素(Ru(2,2’-bipyridine-4,4’-dicarboxylic acid)(NCS))を担持させることで多孔質酸化物半導体層を形成し、作用極を得た。
対極は、ガラス基板上にFTO(フッ素ドープ酸化スズ)を成膜し、さらにその上に白金をスパッタリング法により成膜することで作製した。
得られた作用極と対極との間に電解質を介在させて積層し、色素増感型の光電変換素子を作製した。電解質には、メトキシアセトニトリルを溶媒とした揮発系電解液を用いた。
以上のようにして得られた透明導電性基板について、透明導電膜の光学特性として、ヘーズ率および全光線透過率を測定した。ヘーズ値はヘーズメータを用いて測定した。また、光電変換素子について、光電変換効率を測定した。その結果を表1に示す。
Figure 2007087866
以上の結果より、透明導電膜のヘーズ率が9.7%以上61.0%以下の範囲のときに、光電変換効率が向上することがわかった。その向上は主に短絡電流密度の上昇による。これは、入射光により発生する電子の数が増加していることを意味している。すなわち、入射光が好適に散乱した結果、光路長が伸び色素への入射光量が増加したためであると考えられる。
<サンプル8、サンプル9>
サンプル8およびサンプル9では、表面粗さを変えた透明基材を用いて、透明導電性基板および光電変換素子を作製した。
前記透明基材の一面上をサンドブラスト等の方法により荒らすことにより、透明基材の表面に微小凹凸を形成した。
サンプル8およびサンプル9では、原料溶液濃度を0.6mol/Lとし、透明基板の表面粗さを変えたこと以外は、上記方法と同様にしてITO透明導電膜を成膜した。また、得られた透明導電性基板を用いて、色素増感型の光電変換素子を作製した。
以上のようにして得られた透明導電性基板について、透明導電膜のヘーズ率および全光線透過率を測定した。また、光電変換素子について、光電変換効率を測定した。その結果を表2に示す。なお、表2には、比較のために、上述したサンプル4の結果も合わせて示した。
Figure 2007087866
以上の結果より、透明基材の透明導電膜と接する面が粗面をなしているときに、ヘーズ率をより大きくすることができ、光電変換効率が向上することがわかった。
なお、上述した実施例では、透明導電膜をITO単層膜から構成した場合を例として挙げたが、透明導電膜をITO膜と、ITO膜に比較して極めて薄いFTO膜との積層膜から構成したような場合にも本発明の作用、効果は同様に得ることができる。
本発明は、透明導電性基板および該透明導電性基板を備えた光電変換素子に適用可能である。
本発明に係る透明導電性基板の一例を示す概略断面図である。 本発明に係る光電変換素子の一例を示す概略断面図である。 透明導電性基板の製造に用いた成膜装置の一例を示す概略断面図である。
符号の説明
10 透明導電性基板、11 透明基材、12 透明導電膜、13 多孔質酸化物半導体層、14 作用極(窓極)、15 電解質層、16 他の基材、17 導電膜、18 対極、19 封止部材、20 積層体、30 光電変換素子。

Claims (5)

  1. 透明基材と該透明基材の一方の面に透明導電膜を配してなる透明導電性基板であって、
    前記透明導電膜のヘーズ率が9.7%以上61.0%以下であることを特徴とする透明導電性基板。
  2. 前記透明基材の前記透明導電膜と接する面は、粗面をなすことを特徴とする請求項1記載の透明導電性基板。
  3. 透明基材と該透明基材の一方の面に透明導電膜を配してなる透明導電性基板の製造方法であって、
    透明基材の一面に透明導電膜を形成する工程αを少なくとも備え、
    前記工程αは、前記透明導電膜のヘーズ率が9.7%以上61.0%以下の範囲となるように、成膜条件を制御することを特徴とする透明導電性基板の製造方法。
  4. 前記工程αは、前記透明導電膜の成膜方法としてスプレー熱分解法を用いることを特徴とする請求項3記載の透明導電性基板の製造方法。
  5. 透明基材と該透明基材の一方の面にヘーズ率が9.7%以上61.0%以下である透明導電膜を配してなる透明導電性基板を備えたことを特徴とする光電変換素子。
JP2005277643A 2005-09-26 2005-09-26 透明導電性基板及びその製造方法並びに光電変換素子 Pending JP2007087866A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005277643A JP2007087866A (ja) 2005-09-26 2005-09-26 透明導電性基板及びその製造方法並びに光電変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005277643A JP2007087866A (ja) 2005-09-26 2005-09-26 透明導電性基板及びその製造方法並びに光電変換素子

Publications (1)

Publication Number Publication Date
JP2007087866A true JP2007087866A (ja) 2007-04-05

Family

ID=37974627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005277643A Pending JP2007087866A (ja) 2005-09-26 2005-09-26 透明導電性基板及びその製造方法並びに光電変換素子

Country Status (1)

Country Link
JP (1) JP2007087866A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103208A (ja) * 2006-10-19 2008-05-01 Fujikura Ltd 透明導電性基板の製造方法および電極基板の製造方法
JP2010082561A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 積層体の製造方法
JP2013206901A (ja) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc 太陽電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039738A (ja) * 1999-05-27 2001-02-13 Nippon Sheet Glass Co Ltd 導電膜付きガラス板とその製造方法、およびこれを用いた光電変換装置
JP2003217689A (ja) * 2002-01-18 2003-07-31 Sharp Corp 多孔質半導体層を用いた色素増感型太陽電池およびその製造方法
WO2004102677A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 太陽電池用透明導電性基板およびその製造方法
JP2004362842A (ja) * 2003-06-02 2004-12-24 Nippon Sheet Glass Co Ltd 透明導電膜付き透明基体、その製造方法、および光電変換素子用基板ならびに光電変換素子
WO2005050675A1 (ja) * 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited 透明導電膜付き透明基体とその製造方法、およびこの基体を含む光電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039738A (ja) * 1999-05-27 2001-02-13 Nippon Sheet Glass Co Ltd 導電膜付きガラス板とその製造方法、およびこれを用いた光電変換装置
JP2003217689A (ja) * 2002-01-18 2003-07-31 Sharp Corp 多孔質半導体層を用いた色素増感型太陽電池およびその製造方法
WO2004102677A1 (ja) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited 太陽電池用透明導電性基板およびその製造方法
JP2004362842A (ja) * 2003-06-02 2004-12-24 Nippon Sheet Glass Co Ltd 透明導電膜付き透明基体、その製造方法、および光電変換素子用基板ならびに光電変換素子
WO2005050675A1 (ja) * 2003-11-18 2005-06-02 Nippon Sheet Glass Company, Limited 透明導電膜付き透明基体とその製造方法、およびこの基体を含む光電変換素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103208A (ja) * 2006-10-19 2008-05-01 Fujikura Ltd 透明導電性基板の製造方法および電極基板の製造方法
JP2010082561A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd 積層体の製造方法
JP2013206901A (ja) * 2012-03-27 2013-10-07 Toyota Central R&D Labs Inc 太陽電池

Similar Documents

Publication Publication Date Title
JP5029015B2 (ja) 色素増感型金属酸化物半導体電極及びその製造方法並びに色素増感型太陽電池
JP4260494B2 (ja) 透明電極用基材の製法、光電変換素子の製法、及び色素増感太陽電池の製法
JP5275346B2 (ja) 色素増感太陽電池
EP1783793A2 (en) Solar cell and manufacturing method thereof
JP5591353B2 (ja) 色素増感太陽電池
JP5095126B2 (ja) 光電変換素子
JP4948815B2 (ja) 色素増感太陽電池の製造方法
JP5005206B2 (ja) 色素増感太陽電池の作用極及びそれを備えた色素増感太陽電池並びに色素増感太陽電池の作用極の製造方法
JP4777592B2 (ja) 対極及びこれを備えた色素増感型太陽電池
JP2008077942A (ja) 透明導電性基板及びその製造方法並びに光電変換素子
JP2007087866A (ja) 透明導電性基板及びその製造方法並びに光電変換素子
JP5160045B2 (ja) 光電変換素子
JP5465446B2 (ja) 光電変換素子
JP2007172916A (ja) 光電変換素子
JP2008181691A (ja) 光電変換素子及びこれに用いる第一電極
JP5128076B2 (ja) 色素増感型太陽電池及びその製造方法
JP4657664B2 (ja) 光電変換素子の製造方法
JP4628728B2 (ja) 透明導電性基板及びこれを備えた色素増感型太陽電池
JP5191631B2 (ja) 対極の製造方法及び光電変換素子の製造方法
WO2008032016A2 (en) Dye sensitized solar cell
JP5160051B2 (ja) 光電変換素子
EP1654746A1 (en) Photoelectrochemical solar cell made from nanocomposite organic-inorganic materials
JP2008041258A (ja) 作用極用基板及び光電変換素子
JP5225570B2 (ja) 電極基板の製造方法
KR101152562B1 (ko) 염료감응 태양전지의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417