JP2007067004A - 印刷配線板及び半導体集積回路装置 - Google Patents

印刷配線板及び半導体集積回路装置 Download PDF

Info

Publication number
JP2007067004A
JP2007067004A JP2005248204A JP2005248204A JP2007067004A JP 2007067004 A JP2007067004 A JP 2007067004A JP 2005248204 A JP2005248204 A JP 2005248204A JP 2005248204 A JP2005248204 A JP 2005248204A JP 2007067004 A JP2007067004 A JP 2007067004A
Authority
JP
Japan
Prior art keywords
layer
conductor
loss
printed wiring
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005248204A
Other languages
English (en)
Other versions
JP4910335B2 (ja
Inventor
Hideo Kikuchi
秀雄 菊地
Mitsuaki Kamata
光昭 鎌田
Toshiyuki Kaneko
俊之 金子
Toshiya Suzuki
俊哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Circuit Solutions Inc
Original Assignee
NEC Toppan Circuit Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Inc filed Critical NEC Toppan Circuit Solutions Inc
Priority to JP2005248204A priority Critical patent/JP4910335B2/ja
Publication of JP2007067004A publication Critical patent/JP2007067004A/ja
Application granted granted Critical
Publication of JP4910335B2 publication Critical patent/JP4910335B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

【課題】 信号層の伝送損失を大きくすることなく、導体層の共振によるEMIを低減することが可能な印刷配線板及び半導体集積回路装置を提供すること。
【解決手段】 印刷配線板は、絶縁層を介して略平行に配された第1導体層、第2導体層、及び信号層を有し、第1導体層及び第2導体層のうち、信号層に隣接する一方の導体層は、低損失性導体と、損失性の面抵抗率を有する高損失性導体とを有する。低損失性導体は、信号層の配線パターンの少なくとも一部と重なり合うように配されている重複パターンを有する。
【選択図】 図7

Description

本発明は、不要な電磁干渉(EMI, Electromagnetic Interference)の発生を抑制した印刷配線板及び半導体集積回路装置に関する。
IC、LSI等の電子部品を搭載した携帯電話等の電子機器においては、電子機器内部において発生する電磁波ノイズ(EMI)が問題となっている。EMIの発生源の1つは、電子部品が実装されたプリント基板の電源面とグラウンド面の平行平板間における電磁界の共振現象である。
図1〜図2に、一般的な印刷配線板の概略図を示す。図1は印刷配線板51の上面図であり、図2は図1のA−A断面図である。図1に示す印刷配線板は、信号層52a、52b、電源層56及びグランド層57が積層された構造を有しており、各層間には絶縁層53が介在している。また、印刷配線板51には、各層間を電気的に接続するため、及び/又は電子部品55の端子と各層とを接続するために、スルーホール54が形成され、スルーホール54内に層間接続導体58が配置されている。
ここで、EMIの発生源として問題視されているのは、印刷配線板51上に配置された電子部品55に電力を供給する際に電源層56とグランド層57に流れ込むノイズ電流である。例えば、電子部品55に電流供給するために、層間接続導体58に電流が流れるとき、電源層56とグランド層57との間に電磁界が生じ、この電磁界が電源層56とグランド層57の平行平板の間で共振することで、大きなEMIが生じることになる。
そこで、EMIを低減する印刷配線板として、特許文献1〜3に示すような印刷配線板が知られている。特許文献1記載の印刷配線板においては、電源層及びグランド層の周辺部にニッケルメッキ層やクロムメッキ層を損失層として設けることによって、電源層とグランド層の周辺部間の共振による高周波電流を減衰させている。
特許文献2に記載の印刷配線板においては、電源層とグランド層で絶縁層を挟み込んだサンドイッチ構造において、電源層と絶縁層間、及びグランド層と絶縁層間にそれぞれ損失層を挿入すること、すなわち電源層、損失層、絶縁層、損失層、グランド層の順に積層することにより、高周波電流を減衰させている。
特許文献3に記載の印刷配線板においては、特許文献2に記載のような構造の他に、損失層(高抵抗導体)と電源層(低抵抗導体)とを積層するのではなく、同一層内において低抵抗導体の周囲に高抵抗導体を形成した印刷配線板を開示している。
また、別の問題として、印刷配線板の信号層は、近くの高電磁界発生源等の外来ノイズによってEMIを受けることもある。そこで、外来ノイズを遮蔽するために、図3に示すような、導体のベタパターンからなるシールド層59を配置した印刷配線板51も知られている。
特開平10−27987号公報 米国特許6873219号明細書 特開2003−283073号公報
特許文献1及び特許文献2に記載の印刷配線板においては、損失(抵抗)を与える高損失性導体(損失層)と良導電体である低損失性導体(電源層、グランド層)とが重ね合わせられているため、高損失性導体の損失効果が、低損失性導体の影響により無効化される。したがって、高損失性導体の厚さは、その表皮効果の表皮厚さの1.4倍以上に形成する必要がある。以下の数1の式は、表皮深さdを求める式である。例えば、高損失性導体にニッケル−リン合金を使用して平行平板の1GHz程度の共振を低減する場合、ニッケル−リン合金の表皮深さdは数1の式より49μmになる。したがって、この場合、十分な損失性を得るためには、高損失性導体の厚さを70μm以上にしなければならない。通常、低損失性導体の厚さは10μm程度であるので、この高損失性導体の厚さは、低損失性導体の厚さに対して厚くなりすぎる。したがって、特許文献1及び特許文献2に記載されたような印刷配線板においてEMI低減の効果の大きい高損失性導体を使用すると、表皮効果の表皮深さが深くなるので高損失性導体の必要な厚さが厚くなりすぎるという問題が生じる。
Figure 2007067004



d:表皮深さ(m)、f:周波数(Hz)、μ:真空の透磁率(H/m)、σ:導電率(Ω−1−1
特許文献3のように、高損失性導体を低損失性導体に隣接して形成し、高損失性導体にリターン電流を流す場合には、高損失性導体が大きな伝送損失を生じさせるという問題がある。
また、図3に示すような、シールド層59を用いて外来ノイズをシールドする印刷配線板においては、シールド層59を低損失性導体で形成すると、シールド層59とグランド層57とが平行平板を形成し、該平行平板の電磁界共振によりEMIが生じてしまう。そこで、EMIを生じる共振をなくすために、シールド層59を高損失性導体で形成すると、今度は信号層52の伝送損失が増大するという問題が生じる。
本発明は、信号層の伝送損失を大きくすることなく、導体層の共振によるEMIを低減する印刷配線板及び半導体集積回路装置を提供することを目的とする。
本発明の第1の視点によれば、絶縁層を介して略平行に配された第1導体層、第2導体層、及び信号層を有する印刷配線板において、第1導体層及び第2導体層のうち、信号層に隣接する一方の導体層は、低損失性導体と、損失性の面抵抗率を有する高損失性導体とを有し、低損失性導体は、信号層の配線パターンの少なくとも一部と重なり合うように配されている重複パターンを有する印刷配線板を提供する。
第1視点の好ましい形態によれば、各層間を電気的に接続するスルーホールを有する場合に、低損失性導体は、スルーホールを取り囲むような環状パターンを有する。
第1視点の好ましい形態によれば、重複パターンの幅は、信号層の配線パターンの幅と同じか、もしくはそれ以上である。
第1視点の好ましい形態によれば、一方の導体層の面積に対して占める低損失性導体の面積の割合は60%以下である。
第1視点の好ましい形態によれば、第1導体層又は第2導体層においてEMIが生じる共振電流方向の寸法をL、第1導体層と第2導体層との間隔をt、第1導体層と第2導体層間に介在する絶縁層の比誘電率をε、真空の透磁率をμ0=4π×10−7H/m、真空の誘電率をε0=8.84×10−12F/m、とするとき、高損失性導体の面抵抗率ρ(Ω/□)は、以下の数3の式を満たす。
第1視点の好ましい形態によれば、低損失性導体の面抵抗率は0.25Ω/□以下である。
第1視点の好ましい形態によれば、環状パターンの外径は、スルーホールの孔径の2〜7倍の範囲内にある。
第1視点の好ましい形態によれば、第1導体層及び第2導体層のうち、一方の導体層が、電源に接続された電源層であり、他方の導体層がグランド層である。別の好ましい形態によれば、第1導体層及び第2導体層のうち、一方の導体層が、外来ノイズから信号層を遮蔽するシールド層である。
第1視点の好ましい形態によれば、電子部品が搭載されている。さらに好ましい形態によれば、電子部品の下部領域に、信号層に隣接する一方の導体層が配されている。
第1視点の好ましい形態によれば、第1導体層と第2導体層との間に電子部品が内蔵されている。
本発明の第2の視点によれば、絶縁層を介して略平行に配された第1導体層、第2導体層、及び信号層を有する印刷配線板において、第1導体層及び第2導体層のうち、信号層に隣接する一方の導体層は、低損失性導体と、損失性の面抵抗率を有する高損失性導体とを有し、低損失性導体は、信号層の配線パターンの少なくとも一部と重なり合うように配されている重複パターンを有する半導体集積回路装置を提供する。
第2視点の好ましい形態によれば、各層間を電気的に接続するスルーホールを有する場合に、低損失性導体は、スルーホールを取り囲むような環状パターンを有する。
第2視点の好ましい形態によれば、重複パターンの幅は、信号層の配線パターンの幅と同じか、もしくはそれ以上である。
第2視点の好ましい形態によれば、一方の導体層の面積に対して占める低損失性導体の面積の割合は60%以下である。
第2視点の好ましい形態によれば、第1導体層又は第2導体層においてEMIが生じる共振電流方向の寸法をL、第1導体層と第2導体層との間隔をt、第1導体層と第2導体層間に介在する絶縁層の比誘電率をε、真空の透磁率をμ0=4π×10−7H/m、真空の誘電率をε0=8.84×10−12F/m、とするとき、高損失性導体の面抵抗率ρ(Ω/□)は、以下の数3の式を満たす。
第2視点の好ましい形態によれば、低損失性導体の面抵抗率は0.25Ω/□以下である。
第2視点の好ましい形態によれば、環状パターンの外径は、スルーホールの孔径の2〜7倍の範囲内にある。
本発明によれば、導体層に高損失性導体を配することにより導体層の共振によるEMIを低減できると共に、低損失性導体からなる重複パターンを配することにより信号層の伝送損失を低減することができる。また、環状パターンを配することにより層間接続導体の伝送損失を低減することもできる。
本発明の印刷配線板の第1の実施形態を図4〜図10に示す。図4は印刷配線板1の上面図を示し、図5は図4のB−B断面図を示し、そして図6〜図9は印刷配線板1の各層面の平面を示す。印刷配線板1は、第1信号層2a、電源層6、グランド層7、及び第2信号層2bを有し、各層間には絶縁層3が介在している(図4及び図5参照)。第1信号層2a上には、電子部品5が搭載されている。また、印刷配線板1には、各層間を電気的に接続するためのスルーホール4が形成されており、スルーホール4中には層間接続導体8が配置されている。クリアランス3aは絶縁層3の一部であり、電源層6又はグランド層7と層間接続導体8とを絶縁する部分に設けられている。
第1信号層2a及び第2信号層2bは、低損失性導体からなる所望の配線パターンを有し、該配線パターンは層間接続導体8と接続している(図6及び図9参照)。グランド層7は、周辺部、スルーホール4及びクリアランス3aを除く一面に延在した低損失性導体を有している(図8参照)。
電源層6は、低損失性導体6a及び高損失性導体6bから形成される(図7参照)。まず、グランド層7との共振によるEMIを低減するために、高損失性導体6bが、電源層6の下面側(グランド層7側)の一面(周辺部、スルーホール4及びクリアランス3aを除く)に延在している。次に、高損失性導体6b層上(電源層6の上面側(第1信号層2側))に低損失性導体6aが形成されている。低損失性導体6aは、3種のパターン、電源から電子部品5まで電流を供給する電流供給パターン6a(1)、第1信号層2aの配線パターンの形状及び位置と層間において重なり合う(一致する)ように配置されている重複パターン6a(2)、及びスルーホール4(及びクリアランス3a)を取り囲むように配置されている環状パターン6a(3)、から形成される。図10に、各パターン6a(1)〜(3)毎に模様分けした電源層6の低損失導体6a部分の図を示す。
重複パターン6a(2)は、隣接する信号層2aの配線パターンに流れる電流と逆方向の電流を流すためのパターンである。印刷配線板1の上方(又は下方)からみて信号層2aの配線パターンと重なる位置に重複パターン6a(2)を形成することにより、高損失性導体6bによる信号層2aの伝送損失を低減することができる。重複パターン6a(2)は、好ましくは、第1信号層2aの配線パターンと同じ形状になるように形成する。また、重複パターン6a(2)の幅は、好ましくは、少なくとも第1信号層2aの配線パターンと同じ幅にし、より好ましくは、第1信号層2aの配線パターンの幅より広くする。
環状パターン6a(3)は、高損失性導体6bによって生ずる、層間接続導体8を流れる電流の伝送損失を低減するために配置され、低損失性導体6aと層間接続導体8との電気的接続の有無(クリアランス3aの有無)にかかわらず配置することができる。環状パターン6a(3)は、スルーホール4(又は層間接続導体8)を部分的に囲むような形状でもよいが、好ましくは、完全に取り囲むことができるような環状の形状にする。環状パターン6a(3)の外径(又は外周の対角線)は、好ましくはスルーホール4の直径(又は対角線)の2〜7倍程度であり、より好ましくは4〜5倍程度である。環状パターン6a(3)の形状は、円状ないし楕円状に限らず、多角形状であってもよい。
電源層6を占める低損失性導体6aの好ましい割合は、電源層6の表面積に対して60%以下であり、低損失性導体6aの面積比率が小さくなるほどEMIの低減効果がよくなる傾向がある。したがって、電流供給パターン6a(1)、重複パターン6a(2)及び環状パターン6a(3)の長さ及び幅は、低損失性導体6aの合計面積に応じて適宜設定するようにする。例えば、第1信号層2aの配線パターンが高密度で配線されている場合は、重複パターン6a(2)の幅は、配線パターンの幅と同じ幅にして低損失性導体6aの面積を電源層6の60%以下にすることが好ましい。また、第1信号層2aの配線パターンが高密度で配線されている領域と低密度で配線されている領域とが混在している場合には、配線パターンが高密度で配線される配線束を成している領域と重なる電源領域に、その配線束とほぼ同じ幅の重複パターン6a(2)を形成し、それ以外の領域には低損失導体パターンの無い高損失性導体6bの領域を形成することで低損失性導体6aの面積を電源層6の60%以下にしても良い。なお、低損失性導体6aは、高損失性導体6bと重なるように配置することもできれば、重ならないように配置することもできる。図5に示すような形態の場合、電源層6において低損失性導体6aと高損失性導体6bとが重なっている部分は、低損失性導体6aとしてみなすことができる。
第1の実施形態においては高損失性導体6bを電源層6に配置したが、電源層の代わりにグランド層7に配置することもできる。この場合、重複パターン6a(2)及び環状パターン6a(3)はグランド層7の低損失性導体に設けるようにする。
次に、高損失性導体の好ましい面抵抗率を求める式について説明する。EMIを生じる導体層(電源層、グランド層)の共振電流方向の寸法をL、導体層間の距離(絶縁層の厚さ)をt、導体層間に介在する絶縁層の比誘電率をε、とするとき、一方の導体層に配する高損失性導体の最適な面抵抗率ρ(Ω/□)は、以下の数2の式により求められる。なお、μは真空の透磁率、εは真空の誘電率である。
Figure 2007067004
μ=4π×10−7H/m、ε=8.84×10−12F/m
例えば、ε=4.5、L=150mm、t=0.2mmのとき、高損失性導体の最適な面抵抗率は、約1.6Ω/□である。最適な面抵抗率が数2の式で与えられる根拠は、実施例において説明する。
導体層からなる平行平板が、1つの印刷配線板に複数存在する場合もあるが、その場合は個々の導体層の形状毎に、数2の式で与えられる高損失性導体の最適な面抵抗率が存在する。
また、高損失性導体の面抵抗率が上記数2の式から導かれる最適な面抵抗率の0.1〜160倍の範囲内にあれば、EMIを有効に低減することができる。したがって、本発明に印刷配線板において、高損失性導体の好ましい面抵抗率の範囲は、以下の数3の式から導くことができる。なお、「0.1〜160倍」の根拠は、電磁界シミュレーションから求められたものであり、該シミュレーションのモデル及び結果については、以下の実施例において説明する。
Figure 2007067004
ここで、印刷配線板に複数の導体層の平行平板が存在する場合に、例えば導体層が矩形面をなすとき、各導体層には短手方向の長さLsと長手方向の長さLnが存在するが、共振電流の方向としては短手方向も長手方向も可能である。各方向の電磁界共振の周波数がEMIを抑制すべき周波数帯に入る場合には、その共振を抑制する必要がある。この場合、好適な面抵抗率ρを求めるためには、EMIを発生させる周波数で共振する長さLs及び/又はLnを上記数2及び数3の式のLに代入する。このとき、最も低い共振周波数を抑制するほうが効果的であるので、好ましくは、導体層の最も低い共振周波数を与える長手方向の長さLnを数式のLに代入する。また、電源層の形状が矩形とは大きく異なる場合、例えばL字型、C字型等の場合、その形状の幅Ls及び/又は領域の長さLnをLとしてρを求めることができる。
例えば、t=1mm、√ε=2、矩形状の導体層においてLs=100mm、Ln=200mmの場合、短手方向の半波長共振周波数は750MHzであり、長手方向の半波長共振周波数は375MHzとなる。この場合、最も低い共振周波数を与えるLはLnとなるので、好適な面抵抗率ρの範囲は、数3の式より0.625Ω/□≦ρ≦1000Ω/□となる。両方向の共振ともに抑制する場合には、Lnから得られたρの範囲と、Lsを数3に代入して得られたρの範囲1.25Ω/□≦ρ≦2000Ω/□とを連立させることで、両方向の共振を抑制する好適な面抵抗率ρは、1.25Ω/□≦ρ≦1000Ω/□となる。なお、共振周波数(Hz)は、以下の数4の式から求められる。
Figure 2007067004
ここで、本発明において、「低損失性導体」とは、面抵抗率が0.25Ω/□以下の導体パターンのことを示し、「高損失性導体」とは、面抵抗率が0.25Ω/□を超える導体パターンのことを示している。また、面抵抗率(Ω/□)とは、厚さを持った導体面の単位長さ、単位幅当たりの抵抗率、すなわち厚さの影響を加味した抵抗率を示している。
低損失性導体の面抵抗率は、0.25Ω/□以下であるが、好ましくは0.1Ω/□以下、さらに好ましくは0.05Ω/□以下である。また、高損失性導体の面抵抗率は、0.25Ω/□超であるが、好ましくは、全導体層のうち最大寸法Lmaxを式3の左辺に代入した値以上であり、さらに好ましくは、全導体層のうち2番目におおきい寸法L2ndを式3の左辺に代入した値以上である。
信号層、電源層又はグランド層で使用する低損失性導体の材料には、導電性の良い金属、好ましくは銅、金、銀、アルミニウム、タングステン、モリブデン等、を使用する。また、高損失性導体の材料には、導電性の良い銅、金、銀、アルミニウム、タングステン、モリブデンも用いることができるが、好適には、銅の電気抵抗率の4倍から1000倍の金属で形成する。例えば、ニッケル、鉄、スズ、ニッケル−クロム合金、ニッケル−リン合金、銅−ニッケル合金、Pb−Sn共晶はんだ合金などを用いる。また、低損失性導体及び高損失性導体に使用する材料は金属に限定されず、ポリフェニレンビニレン、インジウムトリス2,4-ペンタンジオナート(あるいは、トリスアセトアセトナートインジウム)、インジウムトリスヘキサフルオロペンタンジオナート、メチルトリメチルアセトキシインジウム、等の有機金属化合物、あるいは、ITO(Indium Tin Oxide)やGaPやAlGaAs等の半導体材料を用いても良い。
絶縁層は、ガラスエポキシ樹脂、ポリイミド樹脂、ガラス、又はアルミナ、窒化珪素、炭化珪素もしくはムライト等を主成分とするセラミックス等、更にはシリコン基板等で形成することが可能であり、所望の比誘電率に応じて適宜最適な絶縁体を選択する。
上記数3の式を変形した数5の式によれば、使用する高損失性導体の面抵抗率ρから印刷配線板の寸法Lの適用可能範囲を求めることもできる。例えば、2μm厚のニッケル−リン合金を使用した面抵抗率ρ=5Ω/□の高損失性導体は、平行平板間隔t=0.02mmの場合、0.5mm≦L≦700mmの導体層に適用可能であり、t=0.4mmの場合では、9mm≦L≦15,000mmの導体層に適用可能である。
Figure 2007067004
ここで、数4及び数5の式より、使用する高損失性導体の面抵抗率から適用可能な共振周波数を算出することもできる。厚さ0.3μmの23%ニッケル−銅合金膜を使用した面抵抗率ρ=1Ω/□の高損失性導体は、平行平板間隔t=0.02mmの場合では、2.5mm≦L≦3500mmの導体層に適用可能であり、平行平板間隔t=0.1mmの場合では、11mm≦L≦19,000mmの導体層に適用可能である。ここで、ε=4.5、平行平板間隔t=0.1mm、導体層の寸法L=11mmのときの平行平板の共振周波数は6.4GHzである。すなわち11mm以下の寸法の平行平板が存在しても、それは6.4GHzより高い共振周波数を持つ。したがって、この条件において、面抵抗率ρ=1Ω/□の高損失性導体は、6.4GHz以下の周波数の共振を低減できるので、十分実用的に使えると考えられる。一方、面抵抗率ρ=50Ω/□の高損失性導体を使用する場合は、平行平板間隔t=0.02mmであれば、0.05mm≦l≦75mmのものまでが適用可能であり、平行平板間隔t=0.1mmであれば、0.25mm≦L≦350mmのものまで適用可能である。したがって、面抵抗率ρ=50Ω/□の高損失性導体も十分に実用可能であると考えられる。そのため、この条件においては、高損失性導体は、少なくとも1Ω/□≦ρ≦50Ω/□の範囲の面抵抗率を有すれば、幅広い周波数の共振に対応することができる。なお、好適な面抵抗率の範囲は、数3の式に示すように、絶縁層の比誘電率ε、導体層間の距離t、導体層の寸法Lに依存するので、条件に応じて数3の式から適宜設定する必要がある。
面抵抗率1〜50Ω/□を得るための各種金属の膜厚等のデータを表1示す。
Figure 2007067004
例えば、第1の実施形態において、低損失性導体6aに銅を用いているときに高損失性導体6bの面抵抗率を1Ω/□にするには、高損失性導体6bの材料に30質量%のリンを含むニッケル−リン合金を用いる場合、ニッケル−リン合金は、抵抗率10−5Ωmであるので、約10μmの厚さに形成することで1Ω/□の面抵抗率に形成することができる。ニッケル−リン合金は、後のエッチングで未溶解残渣(スマット)も生じずに溶解することができるなど、扱い易いという利点がある。また、高損失性導体6bの材料に23%ニッケル−銅合金を用いる場合、ニッケル−銅合金の抵抗率は、303nΩmであるので、厚さ約0.3μmに形成することで、約1Ω/□の面抵抗率にすることができる。また、高損失性導体6bの材料にニッケルを用いる場合、ニッケルの抵抗率78nΩmであるので、ニッケルの厚さを0.08μmに形成することで、約1Ω/□の面抵抗率を得ることができる。
また、高損失性導体6bは、低損失性導体6aと同じ材質で形成することにより、高損失性導体6bと低損失性導体6aとを一体にして形成することもできる。例えば、低損失性導体6aを10μm厚の銅メッキで形成する場合、高損失性導体6bを約0.02μm厚の銅メッキで形成することにより、約1Ω/□の面抵抗率を得ることができる。このように、両導体を銅で形成すれば、製造コストを抑えることができる。
第1の実施形態に係る図4〜図10に示すような印刷配線板1の製造方法を説明する。まず、電源層6とグランド層7間の絶縁層3をなす絶縁基板に高損失性導体6bを形成する。絶縁層3の材質は、所望の比誘電率となる材質を適宜選択する。次に、低損失性導体(電流供給パターン6a(1)、重複パターン6a(2)、環状パターン6a(3)、グランド層7)を銅の無電界メッキにより形成する。次に、金属箔付の絶縁基板を、プリプレグを介して、電源層6及びグランド層7にそれぞれ積層する。次に、スルーホール4を開け、スルーホール内面に銅等のメッキを施すこと又はスルーホール4内に導電体を充填することにより層間接続導体8を形成する。次に、積層体両面の金属箔をエッチングすることにより信号層2a、2bを形成する。
各導体層と絶縁層とは、アンカー効果を利用して密着性を高めることもできる。例えば、高損失性導体6bの材料に銅−ニッケル−リン合金を用いる場合は、針状金属を表面に析出させてアンカー効果を得ることができる。更に、高損失性導体6bにニッケルを用いる場合は、ヒドラジンを還元剤とし、グリシンを錯化剤として使用した無電解ニッケルメッキにより針状のニッケルを析出させ、そのアンカー効果を得ることができる。
本発明の印刷配線板の第2の実施形態を図11〜図13に示す。図11は印刷配線板1の上面図、図12は図11のC−C断面図、そして図13は図12に示す信号層面の平面図である。第1の実施形態においては、電源層とグランド層からなる平行平板の共振によるEMIを低減する印刷配線板を示したが、第2の実施形態においては、グランド層7とシールド層9からなる平行平板、すなわち2つのグランド層がなす平行平板、の共振によるEMIを低減する印刷配線板を示す。第2の実施形態の印刷配線板は、例えば、インサーキットエミュレータとCPU搭載ボードとを接続する配線パターンを有するフレキシブル印刷配線板に使用される。
第2の実施形態においては、ベタパターンのグランド層7と信号層2が絶縁層3を介して配置され、さらに、信号層2とシールド層9が絶縁層3を介して配置されている。これにより、グランド層7とシールド層9は、絶縁層3及び信号層2を介して平行平板を形成する構成になっている。シールド層9は、外来ノイズを遮蔽すると共にグランド層7との共振によるEMIを低減する高損失性導体9bと、高損失性導体9bによる信号層2の伝送損失を低減する低損失性導体9aとから構成されている。低損失性導体9aは、印刷配線板1の上方から見て、信号層2と形状及び位置が重なり合うように配置されており(図11〜13参照)、第1の実施形態でいう重複パターンを形成している。高損失性導体9bは、低損失性導体9a上にベタパターンで構成されている。高損失性導体9bは、スズメッキ、導電性接着剤、又は銀ペースト、銅ペーストなどの導電ペーストを印刷することにより形成することができる。
第2の実施形態によれば、信号層2がグランド層7とシールド層9の間に配置される場合であっても、シールド層9を高損失性導体9bと低損失性導体(重複パターン)9aから構成することにより、グランド層7とシールド層9との共振によるEMIを低減することができると共に、信号層2の伝送損失も低減することができる。また、第2の実施形態によれば、印刷配線板1中に2つの信号層が存在する場合(不図示)であっても、信号層間の相互の電磁ノイズを低減することもできる(実施例9参照)。
第2の実施形態の別の構造として、高損失性導体9bと低損失性導体9aとの間に接着剤等の中間物を介在させることもできる(不図示)。例えば、厚さ数十μm以下の粘着剤を介して高損失性導体9bと低損失性導体9aとを接着させた場合には、高損失性導体9bと低損失性導体9aとは直接的に電気接続しないが、粘着剤を介した容量結合により間接的に電気接続されることになる。
本発明の印刷配線板の第3の実施形態を図14〜図18に示す。第3の実施形態においては、第2の実施形態と同様に、印刷配線板1の上面に低損失性導体9a及び高損失性導体9bからなるシールド層9を有し、低損失性導体9aは、絶縁層3中に配された信号層2と重なり合うように配された重複パターンを構成している。第3の実施形態が第2の実施形態と異なる点は、シールド層9が印刷配線板1の全面ではなく一部の領域のみを覆っている点である。この第3の実施形態が用いられる場合は、例えば、幅の広い導体板5aを有する電子部品5を印刷配線板1に搭載する場合などである。図14〜図18に示す印刷配線板1においては、電子部品5の導体板5aが印刷配線板1の表面に近接して設置されると、導体板5aが信号層2の信号伝送特性に影響を及ぼすので、電子部品5の下部領域に、EMIのシールド効果を有する高損失性導体9bと伝送損失を低減する重複パターン9aからなるシールド層9が形成されている。第3の実施形態においては、重複パターン9aは、信号層2の全体と重なり合うのではなく、信号層2と部分的に重なり合うような構成となっている(図16及び図17参照)。
第2及び第3の実施形態に係る印刷配線板1は、例えば、印刷配線板1のアナログ回路の信号層2を外来ノイズからシールドする場合、あるいは、近くの高電磁界発生源から信号層2をシールドする場合にも使用することができる。
本発明の印刷配線板の第4の実施形態を図19に示す。第4の実施形態は、本発明の原理を半導体集積回路装置に適用した形態である。半導体集積回路装置21においても、外来ノイズから信号層22aをシールドするために、電源層32に高損失性導体23が配されている。そして、高損失性導体23の下側には、信号層22aと配置に対応するように重複パターン22cが配され、伝送損失の低減を抑制している。
図19に示す半導体集積回路装置においては、シリコン基板25上に、ソース用半導体膜26及びドレイン用半導体膜27が形成され、その間の電流通路28上に酸化膜絶縁層30で隔たれたゲート電極パターン29が形成されている。そして、ソース用半導体膜26及びドレイン用半導体膜27の上に層間接続導体22dが接続される。層間接続導体22dは、ポリイミド等からなる絶縁層24に埋め込んで形成され、信号層22a、電源層32、グランド層22bに接続される。
ここで、例えば、電源層32とグランド層22bの寸法が2mm程度の平行平板を構成する場合、この平行平板には周波数100GHz程度の共振が生じる。この場合、共振を低減させるためには、面抵抗率1Ω/□程度の高損失性導体23を電源層32に形成すれば良い。このためには、表1に示すように、厚さ17nmの銅で形成した面抵抗率1Ω/□の高損失性導体23を電源層32に形成するにする。そして、この電源層32に隣接する信号層22aが存在する場合には、厚さ70nm以上の銅で、信号層22aの配置に対応する重複パターン22cを電源層32に形成する。電源層32がアルミニウムで構成されている場合も、同様に表1に示すように厚さ27nmの高損失性導体23を形成すれば良い。
本発明の印刷配線板の第5の実施形態を図20〜図23に示す。図20は印刷配線板1の断面図であり、図21は電源層6面の平面図、図22はグランド層7面の平面図、図23は第2信号層2b面の平面図である。第5の実施形態においては、電子部品5は、電源層6とグランド層7の間の絶縁層中に内蔵されている。電子部品5と電源層6とグランド層7との接続方法は、適宜好適な形態を選択することができる。例えば、図20〜図22に示す形態においては、電子部品5のグランド端子5cは、グランド層7の低損失性導体7aと接合部33を介して金属結合している。また、電子部品5の電源端子5bは、電源層6の凹部と接続している。
また、第1の実施形態においては、EMIを低減するための高損失性導体6aを電源層6面に配置していたが(図5参照)、第5の実施形態においては、高損失性導体7bをグランド層7面に配置している。それに伴い、伝送損失の低減するための重複パターン7a(2)及び環状パターン7a(3)もグランド層7面に配置している。重複パターン7a(2)は、信号層2bの配線パターンに層に沿うように、少なくとも信号層2bの配線パターンと同じ幅で形成されている。また、環状パターン7a(3)は、スルーホール4(層間接続導体8、クリアランス3a)の周囲を取り囲むように形成されている。
次に、図20〜図23に示す印刷配線板1の第1の製造方法を、図24を用いて説明する。まず、図24(a)に示す工程においては、絶縁基板3b周縁部、低損失性導体7a部分、クリアランス3a及びスルーホール4を除く絶縁基板3b上の領域に、高損失性導体7bをメッキ等により形成する。その後、所定の位置に低損失性導体7aを形成する。次に、電子部品5を設置する低損失性導体7aの領域に、接合部33となる金属ペーストを配置する。この金属ペーストには、銀超微粒子等の金属粒子を、アルキルアミン等の分散剤を用いて、テトラデカン等の溶媒に分散させたものを使用することができ、金属ペーストは、インクジェット印刷等の方法により配置することができる。
次に、図24(b)に示す工程においては、金属ペースト上に電子部品5を設置する。例えば、図24に示す電子部品5は、上面の一部に電源端子5bと、電源端子5b付近を除く領域を覆うグランド端子5cとを有する。上記に例示した銀超微粒子の金属ペーストを使用する場合、グランド端子5c側の面と金属ペーストが接するように電子部品5を設置した後、全体を約200℃まで加熱することにより、金属ペースト中の分散剤を分解させ、溶媒を蒸発させ、そして銀超微粒子を焼結させることで、グランド端子5cと低損失性導体7aとを金属接合する。このように、接合部33を金属結合で形成すると、接合部33は、半田付けの加熱処理時に約300℃まで加熱されても耐えることができる。
次に、図24(c)〜(d)に示す工程においては、電子部品5を除く領域に絶縁層3を配置し、電子部品5の周囲に流体状の絶縁層3を供給することで、電子部品5を覆う絶縁層3を形成する。例えば、図24(c)に示すように、電子部品5の領域をくり貫いた銅箔等の金属箔35付の樹脂(絶縁層3)を絶縁基板3b上に配置する。次に、図24(d)に示すように、鏡板等の加熱・加圧手段36により、金属箔35を介して配置した絶縁層3を加熱及び加圧することで、電子部品5の周囲に流体状絶縁層3cを溶出させる。あるいは、電子部品5周囲には、ディスペンサ等により流体状絶縁層3cを充填することもできる。
次に、図24(e)に示す工程においては、流体状絶縁層3cが硬化した後、金属箔35をエッチング除去し、露出した絶縁層3を研磨することで、一定の厚さの絶縁層3を形成する。
次に、図24(f)に示す工程においては、炭酸ガスレーザ等によって、電子部品5の電源端子5bに達する孔を絶縁層3に形成する。その後、その孔内及び絶縁層3上の所定の領域に低損失性導体を、メッキ等により形成することで電源層6を形成する。
次に、電源層6上の絶縁層3、第1信号層2a、スルーホール4及び層間接続導体8を形成することで、図20に示すような印刷配線板1を形成する。スルーホールは、例えば、ドリル、レーザ等の手段によって開けることができ、層間接続導体8は、例えば、スルーホール内のメッキ、スルーホール内への金属材料の充填等によって形成することができる。また、必要に応じて、第1信号層2a上にソルダレジスト34を印刷する。
所望の印刷配線板1を複数個有する印刷配線板を1回の工程で製造し、さらに切断工程を追加することで、印刷配線板1を製造することもできる。
第5の実施形態に係る印刷配線板1の第2の製造方法を図25に示す。まず、図25(a)に示す工程においては、銅等の金属基板37上に、高損失性導体7b及び溶解性充填剤38を配置する。溶解性充填剤38は、無機溶液又は有機溶剤に可溶なもの、例えば酸性水溶液に可溶な炭酸カルシウム、であり、インクジェット印刷やディスペンサ印刷等により配置する。
図25(b)に示す工程においては、溶解性充填剤38上に電子部品5を配置すると共に、電子部品5の領域をくり貫いた金属箔35付の樹脂(絶縁層3)を配置する。また、電子部品5の電源端子5b上に溶解性充填剤38を配置する。
図25(c)に示す工程においては、金属箔35上から加熱・加圧手段36により樹脂を溶融させ、電子部品5の周囲に流体状絶縁層3cを供給し、硬化させる。
図25(d)に示す工程においては、金属箔35及び金属基板37をエッチング除去し、溶解性充填剤38を適当な液体により除去する。次に、露出した絶縁層3を機械研磨することで、所定の厚さの絶縁層3を形成する。
図25(e)に示す工程においては、電源層6及びグランド層7の低損失性導体をメッキ等により配置する。この時、電源層6及びグランド層7の低損失性導体と電子部品5とが接触するようにする。
図25(f)に示す工程においては、電源層6上側及びグランド層7下側に所定の厚さの絶縁層3を配置し、その後、第1信号層2a、第2信号層2b、スルーホール4、層間接続導体8を形成し、必要に応じて第1信号層上にソルダレジスト34を形成する。
第5の実施形態に係る印刷配線板1によれば、電子部品5と電源層6及びグランド層7とをほぼ直接的に接合しているので、電子部品5のインダクタンスを低減することができる。また、図24に示すような印刷配線板1の第1の製造方法によれば、電子部品5と電源層6又はグランド層7とを低温で金属結合させることができる。また、図25に示すような第2の製造方法によれば、電子部品5の両面から導体及び絶縁層を配置することができる。第2の製造方法によれば、第1の製造方法に比べて印刷配線板1を薄くすることもできる。
以下の実施例において、本発明の印刷配線板の電磁界シミュレーションについて説明する。電磁界シミュレーションにおいては、モーメント法の電磁界シミュレータであるSonnetを用いて印刷配線板のEMI又は伝送損失を計算した。
実施例1においては、高損失性導体の好適な面抵抗率の範囲を最適な面抵抗率から求める倍率を算出するための計算を行った。図26は、本発明の印刷配線板の電磁界シミュレーションのモデルである。図26のモデルは、a=150mm、b=150mmの高損失性導体43bに格子状の低損失性導体43aを組み込んだ電源層43を上面に有し、グランド層44を下面に有している。この他の条件は、低損失性導体の幅が10mm、電源層43とグランド層間の距離tが0.2mm、絶縁層42の比誘電率εが4.5、としている。図27及び図28に、このモデルに対して電磁界シミュレーションによりEMIを計算した結果を示す。図27は、高損失性導体43bの面抵抗率ρ(Ω/□)=0、0.16、0.4、0.8、1.6の場合の各EMIを示し、図28は、高損失性導体43bの面抵抗率ρ(Ω/□)=1.6、3.2、6.4、16、32、64、128、256、1000、>100×10の場合の各EMIを示す。図27によれば、EMIの最小値を与える面抵抗率ρは1.6Ω/□程度であることが認められる。また、図28によれば、EMIの最小値を与える面抵抗率ρは、1.6〜6.4Ω/□であることが認められる。したがって、実施例1の条件によれば、面抵抗率ρの最適値は1.6Ω/□と考えられる。また、図27及び図28において、EMIの最大値と最小値の差は約50dBである。すなわち、最小値の条件、例えば面抵抗率ρ=1.6Ω/□、においては、EMIを100,000分の1程度に低減することができている。
また、図27によれば、面抵抗率ρ=0.16Ω/□の場合でも、EMIが最大になる面抵抗率ρ=0Ω/□のEMIを約20dB低減できる。図28によれば、面抵抗率ρ=256Ω/□の場合でも、EMIが最大になる面抵抗率ρ>100×10Ω/□の場合のEMIを約20dB低減できる。したがって、図27及び図28によれば、面抵抗率が、1.6Ω/□の10分の1の0.16Ω/□から、160倍の256Ω/□までの範囲内の値であっても、EMIを低減する効果が十分にあることが分かる。
なお、このEMI計算は、電源領域の低損失性導体の電位の強さを観測することで得ており、高損失性導体の電位を考慮していない。そのため、面抵抗率の大きい場合、例えばρ=256Ω/□、おいては、EMIは高めに観測されている。したがって、低損失性導体と高損失性導体の電位を平均すれば、例えばρ=256Ω/□の時のEMIは、より低減されていると考えられる。
実施例2においては、共振電流の方向が好適な面抵抗率に及ぼす影響について検討した。図29は、実施例1のモデルよりも電源層43の長さaをおおよそ半分、a=70mm、b=150mmにしたモデルであり、これ以外の条件は、実施例1のモデルと同様である。図30及び図31に、このモデルに対して電磁界シミュレーションによりEMIを計算した結果を示す。図30は、面抵抗率ρ(Ω/□)=0、0.2、0.5、1、2、4の場合の各EMIを示し、図31は、面抵抗率ρ(Ω/□)=4、8、16、32、64、128、256、1000、>100×10の場合の各EMIを示す。図30によれば、ρ=0.2Ω/□のEMIは、450GHz付近においてρ=0Ω/□のEMIのピークよりも約20dBほど低く、グラフ全体もなだらかである。したがって、ρ=0.2Ω/□の場合であっても、EMI低減の効果があると考えられる。また、図31によれば、ρ=256Ω/□のEMIは、400GHz付近においてρ>100×10Ω/□のEMIのピークよりも約20dBほど低く、グラフ全体もなだらかである。したがって、ρ=256Ω/□の場合であってもEMI低減の効果があると考えられる。
したがって、EMIを低減する効果のある好適な面抵抗率の範囲は、実施例1の図26のモデルと同じ範囲になった。以上より、好適な面抵抗率ρは、電源層の共振電流方向の寸法L(この場合、長手方向の寸法Ln)に反比例し、その方向に垂直な方向の寸法Lsには影響されないことが分かった。
実施例3においては、電源層とグランド層間の絶縁層の厚さtが好適な面抵抗率に及ぼす影響について検討した。図32及び図33は、実施例1のモデルの絶縁層42の厚さtを10倍にし、それ以外の条件は実施例1と同一にしたモデルのシミュレーション結果である。図32は、面抵抗率ρ(Ω/□)=0、1.6、4、8、16の場合の各EMIを示し、図33は、面抵抗率ρ(Ω/□)=16、40、80、160、320、640、1280、2560、10×10、>100×10の場合の各EMIを示す。図32によれば、最小のEMIを示す面抵抗率ρは、16Ω/□である。一方、図33によれば、最小のEMIを示す面抵抗率ρは、16〜40Ω/□である。
したがって、本モデルにおいて、最適な面抵抗率は、ρ=16Ω/□であると考えられ、本モデルの最適な面抵抗率は、実施例1のモデルの最適な面抵抗率の10倍になった。これより、最適な面抵抗率ρは、絶縁層の厚さtに比例することが導かれた。
実施例4においては、絶縁層の比誘電率εが好適な面抵抗率に及ぼす影響について検討した。図34及び図35は、実施例1のモデルの絶縁層42の比誘電率εを4倍の18にし、それ以外の条件は実施例1と同一にしたモデルのシミュレーション結果である。図34は、面抵抗率ρ(Ω/□)=0、0.1、0.2、0.4、0.8の場合の各EMIを示し、図35は、面抵抗率ρ(Ω/□)=0.8、1.6、4、8、16、32、>100×10の場合の各EMIを示す。図34によれば、最小のEMIを示す面抵抗率ρは、0.8Ω/□である。一方、図35によれば、最小のEMIを示す面抵抗率ρは、0.8〜4Ω/□である。
したがって、本モデルにおいて、最適な面抵抗率は、ρ=0.8Ω/□と考えられ、本モデルの最適な面抵抗率は、実施例1のモデルの最適な面抵抗率の2分の1になった。これより、最適な面抵抗率は、絶縁層の比誘電率εの平方根に反比例することが導かれた。
実施例5においては、低損失性導体の面積の割合が好適な面抵抗率に及ぼす影響について検討した。図36(A)〜(F)は、図26に示すような電磁界シミュレーションのモデルであり、低損失性導体43a及び高損失性導体43b部分のみを示している。各モデルにおいて、電源層43の寸法はa=150mm、b=150mm、絶縁層42の厚さtは0.2mm、絶縁層42の比誘電率εは4.5、高損失性導体43bの面抵抗率ρは1.6Ω/□、低損失性導体43aは厚さ20μmの銅、低損失性導体43aの領域全体の一辺の長さは130mm、である。図36の(A)〜(C)のモデルは、幅5mmの低損失性導体43aを、5×5、7×7、13×13で格子状に組んだモデルであり、図の(D)〜(F)モデルは、幅10mmの低損失性導体43aを、3×3、5×5、7×7で格子状に組んだモデルである。図の(A)と(D)、(B)と(E)、(C)と(F)の組はそれぞれ、低損失性導体の面積が近い値になっている。
図37にモデル(A)〜(C)のEMI計算結果、図38にモデル(D)〜(F)のEMI計算結果を示す。また、図37及び図38には、(G)比較モデルとして、高損失性導体43bの面抵抗率ρが0Ω/□のときの計算結果も示す。図37と図38を比較すると、低損失性導体43aの面積が近い値のモデル同士は、ほぼ同様のEMIを示しており、低損失性導体43aの面積が大きいモデルほどEMIの低減効果が小さくなっている。これより、EMIを有効に低減可能な低損失性導体43aの面積の上限は、電源層43の面積に対する低損失性導体43aの最大面積の比で与えられる。低損失性導体43aの面積が大きい(C)及び(F)の両モデルは、EMIを20dB程度低減できており、モデル(C)及び(F)が有する低損失性導体43aの面積割合以下であれば、EMIを有効に低減することができると考えられる。両モデルの低損失性導体43aの面積は、約13,000mmであり、電源層43の面積は、150mm×150mm=22,500mmであるので、電源層43を占める低損失性導体43aの割合は、約58%である。したがって、EMIを効率よく低減するためには、低損失性導体43aの面積は、電源層43の面積の60%以下が好ましいと考えられる。
第1の実施形態に係る印刷配線板の重複パターンが信号層の伝送損失に及ぼす効果について電磁界シミュレーションを行った。印刷配線板のモデルは、電源層の寸法を長さ150mm×幅150mm、電源層と信号層の距離を0.2mm、電源層と信号層間の絶縁層の比誘電率を4.5とする。銅からなる信号層の配線パターンの幅は、特性インピーダンスが50Ωになるように0.374mmに設定する。
この条件の時に、信号層の配線パターンの長さが200mmの場合において、(i)重複パターンの幅が配線パターンの幅と同じ場合、(ii)重複パターンの幅が配線パターンの幅の3倍の場合、(iii)重複パターンが存在しない場合、について比較した結果を図39に示す。これによれば、重複パターンが存在することにより、信号層の配線パターンの伝送損失が大きく低減された。この理由は、重複パターンが存在しない場合は、配線パターンに流れる電流の作る磁界が、電磁誘導により高損失性導体内に渦電流を生じ、その渦電流が高損失性導体の抵抗によって熱エネルギーに変わるためと考えられる。また、信号の周波数が高いほど電磁誘導も大きいため、周波数が高くなるにつれて伝送損失が大きくなったと考えられる。一方、重複パターンが存在する場合は、信号層の配線パターンに流れる電流の作る磁界の電磁誘導は、重複パターン内に配線パターンの電流の逆方向のリターン電流を生じ、重複パターンの抵抗率が小さいことでそのリターン電流が損失せず、結果として伝送損失が低減されたものと考えられる。
実施例6の別の例として、電源層と信号層との間の間隔が実施例6の1/4の0.04mmであり、銅からなる配線パターンの幅が、特性インピーダンスが50Ωになるように0.076mmに設定し、それ以外の条件は実施例7と同じに設定した場合について、実施例6と同様の条件(i)〜(iii)の結果を図40に示す。これによれば、重複パターンが存在することにより、信号層の配線パターンの伝送損失が効果的に低減された。ここで、条件(ii)の伝送損失が条件(i)の伝送損失に比べて大きく低減されなかったが、この理由は、配線パターンの幅が0.076mmと細いため、配線パターン自身の抵抗値が大きくなり、これが主要な伝送損失を生じているためと考えられる。
本発明の第2の実施形態に係る印刷配線板について、信号層の伝送損失を電磁界シミュレーションによって算出した。印刷配線板のモデルを図41に示す。印刷配線板41は、図41に示すように、グランド層44、信号層45及びシールド層(低損失性導体46及び高損失性導体47)を有する。印刷配線板41の寸法は、a=200mm、b=190mm、c=1mmであり、グランド層44と信号層45間の距離t及び信号層45とシールド層間の距離は、それぞれ0.5mmである。シールド層は、長さlm、幅Wm、厚さ10〜20μmの銅からなる低損失性導体(重複パターン)46及び面抵抗率1Ω/□の高損失性導体47からなる。また、信号層45の幅はWs、絶縁層42の比誘電率は4.5である。
信号層45の幅Wsが10mm(特性インピーダンス4.2Ω)、かつ重複パターン46の長さlmが140mmのとき、(i)重複パターン46の幅Wm=0mm、すなわち重複パターン46が存在せずシールド層が高損失性導体47のみからなる場合、(ii)Wm=10mmの場合及び(iii)Wm=130mmの場合について、伝送損失の大きさを電磁界シミュレーションにより解析した。図42に信号層45の伝送損失の計算結果を示す。図42によれば、信号層45の伝送損失は、重複パターン46の幅が信号層45の幅と同じ10mmの場合に全体的に小さかった。重複パターン46の幅が130mmの場合は、シールド層に対する重複パターン46の面積割合は約48%であるが、重複パターン46が存在しない場合よりは伝送損失は小さかった。しかしながら、特定周波数において伝送損失が急激に大きくなっている。これは、信号層45を流れる電流がシールド層とグランド層44の作る平行平板に電磁界共振を生じ、そのエネルギーを供出するために生じたものであると考察される。
次に、信号層45の幅Wsが2mm(特性インピーダンス19Ω)のとき、(i)重複パターン46の幅Wm=0mm、すなわち重複パターン46が存在せず、シールド層が高損失性導体47のみからなる場合、(ii)重複パターン46の長さlm=140mm、幅Wm=2mmの場合、(iii)重複パターン46の長さlm=200mm、幅Wm=170mmの場合、及び(iv)シールド層の全面が銅パターンからなる場合について、伝送損失の大きさを電磁界シミュレーションにより解析した。図43に信号層45の伝送損失の計算結果を示す。図43によれば、条件(iv)の場合、すなわち高損失性導体47の無い場合、においては、信号層45を流れる電流がシールド層とグランド層44からなる平行平板に電磁界共振のエネルギーを供出するために特定周波数で大きな伝送損失を生じていた。しかしながら、条件(i)〜(iii)のグラフに示すように、シールド層に高損失性導体47を設置することで電磁界共振を抑制できた。条件(i)〜(iii)について比較すると、条件(ii)のとき、すなわち重複パターン46の幅が信号層45の幅と同じ2mmのときに、全体として最も伝送損失が少なかった。条件(iii)の場合、シールド層に対する重複パターン46の占める面積割合は約90%であるが、重複パターン46の割合が60%を越えているため、特定周波数で大きな伝送損失が生じていた。これは、信号層45を流れる電流がシールド層とグランド層44からなる平行平板に大きな電磁界共振を生じさせ、そのエネルギーが供出されたためであると考察される。
次に、信号層の伝送損失は、他の信号層が平行平板に電磁界共振を発生させることによっても生じることを電磁界シミュレーションにより示す。図44に印刷配線板のモデルを示す。このモデルにおいて、印刷配線板は、第1信号層45aと第2信号層45bを有し、シールド層(不図示)は、絶縁層42を介して第1信号層45a及び第2信号層45bを覆っている。そこで、このモデルの信号層45a、45b相互の影響を電磁界シミュレーションにより解析した。その結果、シールド層とグランド層44からなる平行平板の電磁界共振周波数が350MHzの場合において、第2信号層45bには、その終端抵抗Rs2の値に応じて図46に示すような電圧V3が誘導された。その等価回路を図45に示すが、電圧源には、第1信号層45aに伝送する電気信号の電圧V1に比例した電圧が生じる。重複パターンの幅Wmが2mmの場合のとき、この電圧源に生じる誘導電圧は、重複パターンの幅Wmが170mmの場合、すなわちシールド層に対して重複パターンの占める割合が90%の場合、に比べ、5分の1程度に小さくなった。このように、第1信号層45aが平行平板に電磁界共振を生じることで、第2信号層45bに電磁誘導ノイズが生じた。この電磁誘導ノイズは、平行平板のシールド層を、高損失性導体と低損失性導体(重複パターン)から形成し、シールド層に対する低損失性導体の占める割合を60%以下にすることで低減することができる。
本発明の第5の実施形態に係る印刷配線板について、電磁界シミュレーションによりEMIを算出した。電磁界シミュレーションに用いた(i)第5の実施形態に係るモデルは、図20〜図23を参照すると、絶縁層3の比誘電率が4.5、電源層6とグランド層7からなる平行平板の縦及び横の寸法が8mm、電源層6とグランド層7間の距離が0.24mm、低損失性導体の材質が銅、高損失性導体7bの面抵抗率が2Ω/□、電子部品2が180pFのコンデンサ、である。また、このモデルと比較する(ii)比較モデルとして、高損失性導体7bを有するグランド層7の代わりに、全面銅からなる8mm角のグランド層7を有するモデルについても電磁界シミュレーションを行った。シミュレーション結果を図47に示す。各モデルに共に、8.7GHz付近に平行平板のTM10モードの共振、及び4GHz付近に内蔵コンデンサ素子に起因する共振を生じているが、(i)第5の実施形態に係るモデルでは、(ii)比較モデルに比べて共振の強さをそれぞれ約30dB低減することができた。これより、本発明によれば、電子部品を内蔵した印刷配線板についても効果的にEMIを低減可能であることが示された。
以上において印刷配線板について説明した事項、例えば高損失性導体の好適な面効率範囲、低損失性導体の面積割合等、は、半導体集積回路装置についても同様に適用することができる。
高損失性導体を配してEMIを低減すると共に低損失性導体を配して伝送損失を低減する本発明の概念は、以上に示したような印刷配線板及び半導体集積回路装置のみならず、平行な導体層を有する他の機器・装置に適用できることは言うまでも無い。
背景技術を説明するための印刷配線板の概略図。 図1に示す印刷配線板のA−A断面図。 背景技術を説明するための印刷配線板の概略図。 本発明の第1の実施形態に係る印刷配線板の上面図。 図4に示す印刷配線板のB−B断面図。 図4及び図5に示す印刷配線板の第1信号層面の平面図。 図4及び図5に示す印刷配線板の電源層面の平面図。 図4及び図5に示す印刷配線板のグランド層面の平面図。 図4及び図5に示す印刷配線板の第2信号層面の平面図。 図7に示す電源層の低損失層導体をパターン別に模様分けした図。 本発明の第2の実施形態に係る印刷配線板の上面図。 図11に示す印刷配線板のC−C断面図。 図12に示す印刷配線板の信号層面の平面図。 本発明の第3の実施形態に係る印刷配線板の上面図。 図14に示す印刷配線板のD−D断面図。 図14及び図15に示す印刷配線板のシールド層面の平面図。 図15に示す印刷配線板の信号層面の平面図。 図15に示す印刷配線板のグランド層面の平面図。 本発明の第4の実施形態に係る半導体集積回路装置の断面図。 本発明の第5の実施形態に係る印刷配線板の上面図。 図20に示す印刷配線板の電源層面の平面図。 図20に示す印刷配線板のグランド層面の平面図。 図20に示す印刷配線板の第2信号層面の平面図。 本発明の第5の実施形態に係る印刷配線板の第1の製造方法を説明する図。 本発明の第5の実施形態に係る印刷配線板の第2の製造方法を説明する図。 実施例1における電磁界シミュレーションのモデルの上面図(上)とE−E断面図(下)。 実施例1におけるシミュレーション結果を示すグラフ。 実施例1におけるシミュレーション結果を示すグラフ。 実施例2における電磁界シミュレーションのモデルの上面図(上)とF−F断面図(下)。 実施例2におけるシミュレーション結果を示すグラフ。 実施例2におけるシミュレーション結果を示すグラフ。 実施例3におけるシミュレーション結果を示すグラフ。 実施例3におけるシミュレーション結果を示すグラフ。 実施例4におけるシミュレーション結果を示すグラフ。 実施例4におけるシミュレーション結果を示すグラフ。 実施例5における電磁界シミュレーションのモデルの部分上面図。 実施例5におけるシミュレーション結果を示すグラフ。 実施例5におけるシミュレーション結果を示すグラフ。 実施例6におけるシミュレーション結果を示すグラフ。 実施例7におけるシミュレーション結果を示すグラフ。 実施例8における電磁界シミュレーションのモデルの透視斜視図。 実施例8におけるシミュレーション結果を示すグラフ。 実施例8におけるシミュレーション結果を示すグラフ。 実施例9における電磁界シミュレーションのモデルの透視斜視図。 実施例9におけるシミュレーション結果を示す模式図。 実施例9におけるシミュレーション結果を示すグラフ。 実施例10におけるシミュレーション結果を示すグラフ。
符号の説明
1 印刷配線板
2a 第1信号層
2b 第2信号層
3 絶縁層
3a クリアランス
3b 絶縁基板
3c 流体状絶縁層
4 スルーホール
5 電子部品
5a 導体板
5b 電源端子
5c グランド端子
6 電源層
6a 低損失性導体
6a(1) 電流供給パターン
6a(2) 重複パターン
6a(3) 環状パターン
6b 高損失性導体
6c 凹部
7 グランド層
7a 低損失性導体
7a(2) 重複パターン
7a(3) 環状パターン
7b 高損失性導体
7c 凹部
8 層間接続導体
9 シールド層
9a 低損失性導体
9b 高損失性導体
10 導体
11 接合部
21 半導体集積回路装置
22 低損失性導体
22a 信号層
22b グランド層
22c 重複パターン
22d 層間接続導体
23 高損失性導体
24 絶縁層
25 シリコン基板
26 ソース用半導体膜
27 ドレイン用半導体膜
28 電流通路
29 ゲート電極パターン
30 酸化膜絶縁層
31 エッチングストッパ層
32 電源層
33 接合部
34 ソルダレジスト
35 金属箔
36 加熱・加圧手段
37 金属基板
38 溶解性充填剤
41 印刷配線板
42 絶縁層
43 電源層
43a 低損失性導体
43a(1) ポート1
43b(2) ポート2
43b 高損失性導体
44 グランド層
45 信号層
45a 第1信号層
45b 第2信号層
46 低損失性導体
47 高損失性導体
51 印刷配線板
52a、52b 信号層
53 絶縁層
54 スルーホール
55 電子部品
56 電源層
57 グランド層
58 層間接続導体
59 シールド層

Claims (19)

  1. 絶縁層を介して略平行に配された第1導体層、第2導体層、及び信号層を有する印刷配線板において、
    前記第1導体層及び前記第2導体層のうち、前記信号層に隣接する一方の導体層は、低損失性導体と、損失性の面抵抗率を有する高損失性導体とを有し、
    前記低損失性導体は、前記信号層の配線パターンの少なくとも一部と重なり合うように配されている重複パターンを有することを特徴とする印刷配線板。
  2. 各層間を電気的に接続するスルーホールを有する場合に、
    前記低損失性導体は、前記スルーホールを取り囲むような環状パターンを有することを特徴とする請求項1記載の印刷配線板。
  3. 前記重複パターンの幅は、前記信号層の前記配線パターンの幅と同じか、もしくはそれ以上であることを特徴とする請求項1又は2記載の印刷配線板。
  4. 前記一方の導体層の面積に対して占める前記低損失性導体の面積の割合は60%以下であることを特徴とする請求項1〜3のいずれか一項に記載の印刷配線板。
  5. 前記第1導体層又は前記第2導体層においてEMIが生じる共振電流方向の寸法をL、前記第1導体層と前記第2導体層との間隔をt、前記第1導体層と前記第2導体層間に介在する前記絶縁層の比誘電率をε、真空の透磁率をμ0=4π×10−7H/m、真空の誘電率をε0=8.84×10−12F/m、とするとき、
    前記高損失性導体の面抵抗率ρ(Ω/□)は、以下の数1の式を満たすことを特徴とする請求項1〜4のいずれか一項に記載の印刷配線板。
    Figure 2007067004
  6. 前記低損失性導体の面抵抗率は0.25Ω/□以下であることを特徴とする請求項1〜5のいずれか一項に記載の印刷配線板。
  7. 前記環状パターンの外径は、前記スルーホールの孔径の2〜7倍の範囲内にあることを特徴とする請求項2〜6のいずれか一項に記載の印刷配線板。
  8. 前記第1導体層及び前記第2導体層のうち、一方の導体層が、電源に接続された電源層であり、他方の導体層がグランド層であることを特徴とする請求項1〜7のいずれか一項に記載の印刷配線板。
  9. 前記第1導体層及び前記第2導体層のうち、一方の導体層が、外来ノイズから信号層を遮蔽するシールド層であることを特徴とする請求項1〜7のいずれか一項に記載の印刷配線板。
  10. 電子部品が搭載されていることを特徴とする請求項1〜9のいずれか一項に記載の印刷配線板。
  11. 前記電子部品の下部領域に、前記信号層に隣接する前記一方の導体層が配されていることを特徴とする請求項10記載の印刷配線板。
  12. 前記第1導体層と前記第2導体層との間に電子部品が内蔵されていることを特徴とする請求項1〜11のいずれか一項に記載の印刷配線板。
  13. 絶縁層を介して略平行に配された第1導体層、第2導体層、及び信号層を有する印刷配線板において、
    前記第1導体層及び前記第2導体層のうち、前記信号層に隣接する一方の導体層は、低損失性導体と、損失性の面抵抗率を有する高損失性導体とを有し、
    前記低損失性導体は、前記信号層の配線パターンの少なくとも一部と重なり合うように配されている重複パターンを有することを特徴とする半導体集積回路装置。
  14. 各層間を電気的に接続するスルーホールを有する場合に、
    前記低損失性導体は、前記スルーホールを取り囲むような環状パターンを有することを特徴とする請求項13記載の半導体集積回路装置。
  15. 前記重複パターンの幅は、前記信号層の前記配線パターンの幅と同じか、もしくはそれ以上であることを特徴とする請求項13又は14記載の半導体集積回路装置。
  16. 前記一方の導体層の面積に対して占める前記低損失性導体の面積の割合は60%以下であることを特徴とする請求項13〜15のいずれか一項に記載の半導体集積回路装置。
  17. 前記第1導体層又は前記第2導体層においてEMIが生じる共振電流方向の寸法をL、前記第1導体層と前記第2導体層との間隔をt、前記第1導体層と前記第2導体層間に介在する前記絶縁層の比誘電率をε、真空の透磁率をμ0=4π×10−7H/m、真空の誘電率をε0=8.84×10−12F/m、とするとき、
    前記高損失性導体の面抵抗率ρ(Ω/□)は、以下の数2の式を満たすことを特徴とする請求項13〜16のいずれか一項に記載の半導体集積回路装置。
    Figure 2007067004
  18. 前記低損失性導体の面抵抗率は0.25Ω/□以下であることを特徴とする請求項13〜17のいずれか一項に記載の半導体集積回路装置。
  19. 前記環状パターンの外径は、前記スルーホールの孔径の2〜7倍の範囲内にあることを特徴とする請求項13〜18のいずれか一項に記載の半導体集積回路装置。


JP2005248204A 2005-08-29 2005-08-29 印刷配線板及び半導体集積回路装置 Expired - Fee Related JP4910335B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248204A JP4910335B2 (ja) 2005-08-29 2005-08-29 印刷配線板及び半導体集積回路装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248204A JP4910335B2 (ja) 2005-08-29 2005-08-29 印刷配線板及び半導体集積回路装置

Publications (2)

Publication Number Publication Date
JP2007067004A true JP2007067004A (ja) 2007-03-15
JP4910335B2 JP4910335B2 (ja) 2012-04-04

Family

ID=37928880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248204A Expired - Fee Related JP4910335B2 (ja) 2005-08-29 2005-08-29 印刷配線板及び半導体集積回路装置

Country Status (1)

Country Link
JP (1) JP4910335B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111317A1 (ja) 2007-03-15 2008-09-18 Panasonic Corporation 無線送信装置及び無線送信方法
JP2009181804A (ja) * 2008-01-30 2009-08-13 Hitachi Cable Ltd シールド付き伝送線路
JP2010541155A (ja) * 2007-10-01 2010-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高圧電気接続線
JP2013138131A (ja) * 2011-12-28 2013-07-11 Nec Corp 配線回路基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10070547B2 (en) * 2014-02-26 2018-09-04 Sparton Corporation Control of electric field effects in a printed circuit board assembly using embedded nickel-metal composite materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714018A (ja) * 1990-08-02 1995-01-17 Internatl Business Mach Corp <Ibm> Emi抑制回路カード
JPH0846078A (ja) * 1994-07-26 1996-02-16 Toshiba Corp 多層配線構造の半導体装置
JPH1197810A (ja) * 1997-09-17 1999-04-09 Toshiba Corp 回路基板
JP2001102702A (ja) * 1999-09-29 2001-04-13 Kyocera Corp 配線基板
JP2002280749A (ja) * 2001-03-15 2002-09-27 Hitachi Ltd 電子回路
JP2003204163A (ja) * 2002-01-07 2003-07-18 Kyocera Corp 多層配線基板
JP2003283079A (ja) * 2002-03-27 2003-10-03 Kyocera Corp セラミック配線基板
JP2003283148A (ja) * 2002-03-27 2003-10-03 Kyocera Corp 配線基板
JP2003283073A (ja) * 2002-03-27 2003-10-03 Kyocera Corp 配線基板
JP2005123520A (ja) * 2003-10-20 2005-05-12 Nec Corp プリント配線板
JP2005175189A (ja) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd プリント配線基板

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714018A (ja) * 1990-08-02 1995-01-17 Internatl Business Mach Corp <Ibm> Emi抑制回路カード
JPH0846078A (ja) * 1994-07-26 1996-02-16 Toshiba Corp 多層配線構造の半導体装置
JPH1197810A (ja) * 1997-09-17 1999-04-09 Toshiba Corp 回路基板
JP2001102702A (ja) * 1999-09-29 2001-04-13 Kyocera Corp 配線基板
JP2002280749A (ja) * 2001-03-15 2002-09-27 Hitachi Ltd 電子回路
JP2003204163A (ja) * 2002-01-07 2003-07-18 Kyocera Corp 多層配線基板
JP2003283079A (ja) * 2002-03-27 2003-10-03 Kyocera Corp セラミック配線基板
JP2003283148A (ja) * 2002-03-27 2003-10-03 Kyocera Corp 配線基板
JP2003283073A (ja) * 2002-03-27 2003-10-03 Kyocera Corp 配線基板
JP2005123520A (ja) * 2003-10-20 2005-05-12 Nec Corp プリント配線板
JP2005175189A (ja) * 2003-12-11 2005-06-30 Fuji Xerox Co Ltd プリント配線基板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111317A1 (ja) 2007-03-15 2008-09-18 Panasonic Corporation 無線送信装置及び無線送信方法
JP2010541155A (ja) * 2007-10-01 2010-12-24 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高圧電気接続線
JP2009181804A (ja) * 2008-01-30 2009-08-13 Hitachi Cable Ltd シールド付き伝送線路
JP2013138131A (ja) * 2011-12-28 2013-07-11 Nec Corp 配線回路基板

Also Published As

Publication number Publication date
JP4910335B2 (ja) 2012-04-04

Similar Documents

Publication Publication Date Title
US7479013B2 (en) Printed board and manufacturing method thereof
JP6156610B2 (ja) 電子機器、およびアンテナ素子
JP6766740B2 (ja) プリント配線基板およびスイッチングレギュレータ
JP5063529B2 (ja) プリント回路板
WO2018173263A1 (ja) 回路基板
JP4910335B2 (ja) 印刷配線板及び半導体集積回路装置
JP5891585B2 (ja) 半導体装置及び配線基板
US11646273B2 (en) Module
JP5176736B2 (ja) プリント配線基板
JP6028297B2 (ja) 伝送線路構造、多層配線基板、半導体装置、および半導体システム
JP2005026263A (ja) 混成集積回路
JP5669499B2 (ja) プリント回路板
WO2018229978A1 (ja) プリント配線板
JP2007234715A (ja) 多層プリント回路基板
JP4494714B2 (ja) プリント配線板
JPH11298097A (ja) プリント配線板
JP2006344887A (ja) プリント配線板およびその製造方法
JP2005019730A (ja) 配線基板およびそれを用いた電子装置
JP2006049496A (ja) 印刷配線板
JP3796104B2 (ja) 多層配線基板
JP2009231480A (ja) 半導体装置
US20220077556A1 (en) Transmission line and electronic device
JP2005347287A (ja) 多層基板内シールド線、半導体チップ、電子回路素子、及びそれらの製造方法
JP2008181938A (ja) 導電性シートおよび導電性シートを用いた電子機器
JP2008078463A (ja) 印刷配線板及び半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees