JP2006331752A - 赤外線放射素子 - Google Patents

赤外線放射素子 Download PDF

Info

Publication number
JP2006331752A
JP2006331752A JP2005151731A JP2005151731A JP2006331752A JP 2006331752 A JP2006331752 A JP 2006331752A JP 2005151731 A JP2005151731 A JP 2005151731A JP 2005151731 A JP2005151731 A JP 2005151731A JP 2006331752 A JP2006331752 A JP 2006331752A
Authority
JP
Japan
Prior art keywords
layer
heating element
infrared radiation
silicon
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151731A
Other languages
English (en)
Inventor
Takashi Hatai
崇 幡井
Hirotaka Jomi
弘高 上ミ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005151731A priority Critical patent/JP2006331752A/ja
Publication of JP2006331752A publication Critical patent/JP2006331752A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

【課題】断熱層の断熱性を向上して赤外線の放射効率を高めると共に、製造を容易にする赤外線放射素子を提供する。
【解決手段】 シリコンからなる支持基板の一方の表面からシリコンを多孔質化することにより支持基板よりも熱伝導率の小さな断熱層2を形成するとともに、前記支持基板の他方の表面には多孔質化されていないシリコンが発熱体層3として存在し、該発熱体層3の表面に一対のパッド4が形成されてなる。これにより、断熱層の断熱性を向上して赤外線の放射効率を高めると共に、製造を容易にした。
【選択図】 図1

Description

本発明は、赤外線放射素子に関し、特に、放射効率を改善した赤外線放射素子に関するものである。
従来から、赤外放射源を利用した各種の分析装置(例えば、赤外線ガス分析計など)が提供されている。これらの分析装置で用いられている赤外放射源として代表的なものは、ハロゲンランプであって、大型で且つ寿命が比較的短いので、赤外線を利用してガスを検出する小型のガスセンサへの適用は難しい。なお、透光性の気密容器内に放射体としてのフィラメントを収納したハロゲンランプのような赤外放射源においては、フィラメントの形状や放射特性などを工夫することにより小型化を図ったものもあるが、気密容器を必要とするから、小型のガスセンサへの適用は難しいのが現状である。
そこで、小型化が可能な赤外放射源として、シリコン基板などをマイクロマシンニング技術により加工して形成した矩形枠状の支持基板の一表面側において2点間に線状の発熱体を架け渡した所謂マイクロブリッジ構造の赤外線放射素子が提案されている(例えば、特許文献1)。なお、この種のマイクロブリッジ構造の赤外線放射素子は、線状の発熱体への通電に伴うジュール熱により発熱体から赤外線を放射させるものである。
ところで、赤外線の吸収を利用してガスを検出するガスセンサにおいて検出精度を高くするためには、赤外線放射素子から放射される赤外線の放射量を安定させ短時間で計測することが望ましい。
このような要求に沿うように、上記特許文献1に開示された赤外線放射素子は、線状の発熱体の両端に設けたパッド間へ印加する電圧のオンオフに伴う応答速度を向上させるために、発熱体の周囲を空気または真空として発熱体と周囲との熱容量の差を大きくしてある。そのため、発熱体へ流す電流のオンオフに高速で応答するようになっている。
しかしながら、この特許文献1に開示された赤外線放射素子は、発熱体が線状の形状に形成されており両端部が支持基板に支持されているだけなので、発熱体が破損したり熱により溶断したりして寿命が短くなってしまうことがあった。
そこで、赤外線放射素子を間欠的に駆動する場合において、赤外線放射素子の断熱層の断熱性が高いほど高周波とすることができるという知見に基づいて、本願特許出願人は、特願2005−18710号において、断熱層の断熱性を高めて応答速度を速くしながらワイヤボンディングする際の衝撃によって断熱層が破損するのを防止できる赤外線放射素子を提案している。
特開平9−153640号公報
しかしながら、上記出願の赤外線放射素子では、断熱層が半導体基板の中に孤立した状態で存在しているのみであり、放熱が多く、断熱性を向上して赤外線の放射効率を高める余地があった。
本発明は上記事由に鑑みて為されたものであり、その目的は、断熱性を向上して赤外線の放射効率を高めると共に、製造を容易にする赤外線放射素子を提供することにある。
上記の目的を達成するために、本願に係る赤外線放射素子は、シリコンからなる支持基板の一方の表面からシリコンを多孔質化することにより支持基板よりも熱伝導率の小さな断熱層を形成するとともに、支持基板の他方の表面には多孔質化されていないシリコンが発熱体層として存在し、該発熱体層の表面に一対のパッドが形成されてなることを特徴とする。
請求項2の発明に係る赤外線放射素子は、請求項1記載の発明において、前記一方の表面の断熱層の多孔度の方が、前記発熱体層側の断熱層の多孔度よりも低いものであることを特徴とする。
請求項3の発明に係る赤外線放射素子は、請求項1または2記載の発明において、前記支持基板の側面に多孔質化されていないシリコンが存在していることを特徴とする。
請求項4の発明に係る赤外線放射素子は、請求項3記載の発明において、前記一方の表面が全面にわたって多孔質化されていることを特徴とする。
請求項5の発明に係る赤外線放射素子は、請求項1ないし4のいずれかに記載の発明において、前記発熱体層のシリコンに電気抵抗を調整させる添加元素を導入させたことを特徴とする。
本願請求項1記載の発明に係る赤外線放射素子によれば、断熱層を厚くできるので断熱性が向上し、効率が向上するとともに、支持基板を発熱体層として用いるので、別途、発熱体層を形成する必要がなく、製造が容易となる。
請求項2記載の発明に係る赤外線放射素子は、請求項1記載の赤外線放射素子の効果に加えて、断熱特性を維持しつつ、強度の向上が図れるという効果が得られる。
請求項3記載の発明に係る赤外線放射素子は、側面の多孔質化されていないシリコンにより、強度の向上が図れる。特に、パッド部にワイヤボンドによってリード線を接続する場合は、ボンディング時の衝撃によって断熱層が破壊されるのを防ぐことができる。
請求項4記載の発明に係る赤外線放射素子は、側面の多孔質化されていない部分を通じて、熱が台座などに逃げるのを防ぐことができるので、放射特性が一層向上する。
請求項5記載の発明に係る赤外線放射素子は、シリコンを多孔質化するときに、残存させるシリコンの厚さ制御が容易となる。また、導入する添加元素の濃度等を調整することにより、赤外線放射素子を駆動した時の電圧、電流等が最適になるように、発熱体層の抵抗値を自由に調整することができる。
以下、本発明の実施の形態を添付図面に基づいて詳細に説明する。
(実施例1)図1は本発明の赤外線放射素子の一実施例を示す断面図である。図1に示すように、赤外線放射素子1は、半導体基板の厚み方向の一表面(図1における下面)側に半導体基板よりも熱伝導率が十分に小さな断熱層2が形成され、断熱層2よりも熱伝導率および導電率それぞれが大きな発熱体層3が断熱層2上に形成されている。発熱体層3上に通電用の一対のパッド(電極)4,4が形成されている。赤外線放射素子1は、発熱体層3への通電により発熱体層3を発熱させることで発熱体層3から赤外線が放射される。
半導体基板は、本実施例では、単結晶のシリコン基板が用いられ、支持基板を構成し、その平面形状は矩形に形成されている。断熱層2は多孔度が略70%の多孔質シリコン層により構成され、高多孔度断熱層となっている。断熱層2の平面形状は矩形状としてあり、また、発熱体層3の平面形状も矩形状としてある。
ここで、発熱体層3は多孔質化していない単結晶のままのシリコン層により構成している。また、断熱層2は、例えば、シリコン基板を50wt%のフッ化水素水溶液とエタノールとを1:1で混合した電解液に浸し、電解液中でシリコン基板の一表面(図1における下面)と対向する位置に白金電極の陰極を配置して、シリコン基板の他表面側(図1における上面)に接して陽極を配置して、陰極と陽極との間に電流を通電することにより陽極酸化処理を施して、シリコン基板を厚み方向の一表面(図1における下面)側から多孔質化することによって形成している。さらに、各パッド4,4は、金属材料(例えば、アルミニウム、白金、金など)により、発熱体層3の両端部それぞれの上に発熱体層3と接する形でスパッター法等によって形成している。ここに、発熱体層3は、本実施例では、パッド4,4の並設方向における寸法を同じ方向における断熱層2の寸法よりも大きく設定してある。
本実施例の場合、断熱層形成前のシリコン基板の厚さを350μm、 断熱層の厚さを345μm、発熱体層の厚さを5μm、パッドの厚さを0.1μmとしている。この厚さの例は一例であって特に限定されない。なお、発熱体層の厚さは熱容量があまり大きくならないように10μ以下とすることが望ましい。
多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が168[W/(m・K)]、熱容量が1.67×106 [ J/(m3・K)]の単結晶のシリコン基板を陽極酸化処理にて多孔質化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1[W/(m・K)]、熱容量が0.7×106[J/(m3・K)]であることが知られている。
上述の半導体基板として用いるシリコン基板の導電形はp形、n形のいずれでもよいが、p形のシリコン基板の方が陽極酸化処理により多孔質化を行った際に多孔度が大きくなりやすい傾向にあるので、半導体基板としてはp形のシリコン基板を用いることが好ましい。また、抵抗率、面方位など特に制限はないが、シリコン基板の条件によって多孔質化した際の孔のサイズや形状、多孔度などが異なると共に、発熱体層の抵抗率も変わってくるので、断熱層及び発熱体層として必要な性能に応じてシリコン基板の条件を選択する必要がある。なお、支持基板として用いる半導体基板の一部を陽極酸化処理にて多孔質化する際の電流密度やフッ化水素水溶液の濃度は半導体基板の導電形および導電率に応じて適宜設定すればよい。
本実施例の赤外線放射素子では、シリコン基板の厚み方向において、発熱体層となる部分以外が全て多孔質化されて断熱層となっているので、従来のように基板の一部のみが断熱層となっている場合に比べて断熱層の断熱性能が向上する。このため、発熱体層に通電を行うと、発熱体層だけが効率的に発熱するために、熱応答速度が速く発光効率の高い赤外線放射素子を得ることができる。さらに、本実施例の赤外線放射素子では、多孔質化されなかったシリコン基板が、そのまま発熱体層として機能するため、従来のように発熱体層を別途形成する必要がなく、工程の簡略化が図れる。
また、断熱層の上に形成され、断熱層よりも多孔度の小さい多孔質シリコン層を発熱体層として用いる場合と比べると、本実施例の赤外線放射素子では発熱体層が多孔質化されていないため、発熱体層の抵抗値を小さくすることができるので、発熱体層に印加する電圧を小さくすることができる。
(実施例2)図2は本発明に係る赤外線放射素子の他の実施例を示す断面図である。本実施例の赤外線放射素子の構成は上記実施例1と略同じであり、図2に示すように、シリコン基板の厚さ方向において、発熱体層3に近い部分の断熱層2は多孔度が高い高多孔度断熱層となり、遠い部分の低多孔度断熱層2aは多孔度が低くなっている点で上記実施例1と相違する。上記実施例と同様な作用をなす部分については同一の符号を付して詳細な説明は省略する。
本実施例の赤外線放射素子1では、発熱体層3に近い部分の断熱層2は高多孔度であるため高い断熱性を有している。一方、発熱層3に遠い部分の低多孔度断熱層2aは低多孔度であるため、ある程度の断熱性は有しながら、高多孔度領域に比べて高い機械的強度を有している。このため、素子全体としては、高い断熱性と機械的強度を併せ持った構造となっており、製造途中や実装時の破壊を防ぐことができるため、歩留まりの向上を図ることができる。
本実施例のように厚さ方向で多孔度が異なる多孔質シリコン層は、陽極酸化の途中で通電する電流値を変化させて、シリコン基板中の電流密度を変化させることにより容易に作製することができる。すなわち、電流密度が高いほど多孔度は高くなるため、陽極酸化の初期は電流密度を小さくしておき、途中から電流密度を大きくすれば良い。
なお、図2では多孔度の異なる断熱層2、2aの2層となっている例で示したが、さらに多層の構造にしても良い。また、多孔度がステップ状に変化するのではなく、連続的に変化するようにしても良い。
上記のように構成してなる、本実施例の赤外線放射素子は、製造途中やパッケージヘの実装時に素子が破壊するのを少なくすことができる。実施例1の赤外線放射素子では断然層全体が高多孔度となっているために、断熱層の機械的強度が弱く、製造途中やパッケージヘの実装時に素子が破壊するおそれがあったが、本実施例のように構成することで、それを改善できる。
(実施例3)図3は本発明に係る赤外線放射素子の他の実施例を示す断面図である。本実施例の赤外線放射素子1は、図3に示すように、シリコン基板の一表面(図3における下面)側において所定領域のみに多孔質シリコン層からなる断熱層2を形成している点で相違する。概略構成においては、上記実施例1と略同じであるが、上記所定領域の周辺部分のシリコン基板の厚み方向において、各パッドそれぞれと重複する部位は陽極酸化されずに単結晶シリコンのまま残った構造をしている点で、上記実施例と相違している。上記実施例と同様な作用の部分については詳細な説明は省略する。
すなわち、本実施例の赤外線放射素子1では、シリコン基板の上記一表面側において各パッド4,4それぞれと重複する部位である側部に、断熱層2に比べで機械的強度が高い高強度構造部3aを有している。本実施例の赤外線放射素子1は、断熱層2を構成する多孔質シリコン層の多孔度を大きくすることで応答速度の向上を図りながらも、上記高強度構造部3aを有していることにより、素子の機械的強度を強くすることができる。その結果、各パッドへボンディングワイヤをボンディングする際の衝撃によって断熱層が破損するのを防止することができる。このような構造は、高強度構造部の表面部分をフッ素樹脂等によりマスキングした状態で、陽極酸化をすることにより容易に作製することができる。
なお、シリコン基板の上記一表面側において断熱層が形成されていない上記周辺部分は、必ずしも各パッドの全域に重複している必要はない。また、本実施例においては、赤外線放射素子1を、例えばキャンパッケージの金属製ベースやリードフレームなどのベース部材にダイボンディングした場合、発熱体層3で発生した熱の一部が陽極酸化されていない高強度構造部3aを通じてベース部材に放熱されてしまうことがあり、発熱体層3への通電時の応答速度の低下につながってしまうおそれがある。
(実施例4)図4は本発明に係る赤外線放射素子のさらに他の実施例を示す図で、図4(a)はその断面図、図4(b)はその変形例を示す断面図である。本案施例の赤外線放射素子は、図4(a)、図4(b)に示すように、シリコン基板の厚み方向の一表面(図における下面)側から発熱体層3側にかけては多孔質化の厚みが変わっている点で上記実施例と相違する。同様な作用の部分については詳細な説明は省略する。
図4(a)に示す実施例の赤外線放射素子1は、シリコン基板の下面は全面が多孔質化され、発熱体層3側には多孔質化されていない高強度構造部3a部分が存在している。図4(b)に示す実施例の赤外線放射素子1は、シリコン基板の下面は全面が多孔質化され、発熱体層3側に順次多孔質化されていない高強度構造部3a部分が順次広くなって存在している。このため、本案施例の赤外線放射素子では、半導体基板の厚み方向の一表面側から熱が放熱されにくくなるので、応答速度が向上する。
なお、本実施例の構造は、図4(a)に示すように多孔質化されている領域が階段状の構造でもよいし、図4(b)に示すように連続的に変化している構造でもよい。図4(a)に示すような構造は、高強度構造部の表面部分にマスキング(図示せず)を施して途中まで陽極酸化をした後に、このマスキングをはずしてさらに陽極酸化をすることによって作製することができる。また、図4(b)に示すような構造は、例えば、大きさの異なる陽極と陰極を用いて陽極酸化処理をすることにより、シリコン基板中を流れる電流密度を不均一とした状態で多孔質化をすることによって作製することができる。
本実施例の赤外線放射素子は、キャンバッケージの金属製ベースやリードフレームなどのベース部材にダイボンディングした場合でも、発熱体層で発生した熱の一部が多孔質化されていない高強度構造部を通じてベース部材に放熱されることを良好に減らすことができる。発熱体層への通電時の応答速度の低下を防ぐことができる。
(実施例5)図5は本発明に係る赤外線放射素子のさらに他の実施例を示す断面図である。本実施例の赤外線放射素子1は、図5に示すように、発熱体層3bを単結晶シリコンより電気抵抗を低減させて形成している点で上記実施例と相違する。概略構成においては、上記各実施例と略同じである。同様な作用の部分については詳細な説明は省略する。
図5に示すように、本実施例の赤外線放射素子は、パッドそれぞれと重複する部位は陽極酸化されずに単結晶シリコンのまま残った単結晶層3aが形成され、単結晶層3aを架け渡す形で発熱体層3bがシリコン基板の電気抵抗を低減させる添加元素が導入されて形成されている。なお、単結晶層3aについては有無、形状等特に限定されない。シリコン基板の電気抵抗を低下させるには、リン、ヒ素、アンチモン、ホウ素などの元素をイオン注入すればよい。また、イオン注入法ではなく熱拡散法を用いてもよい。
なお、シリコンは通常、抵抗温度係数が負であるため、温度上昇とともに低抗値が低くなって、パッド間を流れる電流が急激に増加し、制御性があまり良くないという問題がある。そこで、発熱体層部分に添加元素を導入する際に、発熱体層が金属と同様に抵抗温度係数が正となるようなレベルまで高濃度に添加元素を導入するようにすれば、発熱体層の温度が上昇するにつれて発熱体層の抵抗値が高くなって発熱体層へ流れる電流の電流値が減少するので、発熱体層の温度制御が容易になる。ここで、発熱体層を抵抗温度係数が正になるレベルまで低抵抗化しない場合には、電源として電流源を用いてパッド間に一定電流を流すようにすれば、発熱体層が温度上昇し発熱体層の抵抗値が低くなるとともにパッド間の電圧値も低下するので、温度制御性が向上する。
赤外線放射素子の特性ばらつきを小さくするためには、発熱体層の厚みのばらつきを小さくする必要がある。言い換えると、多孔質化する深さのばらつきを小さくする必要がある。陽極酸化による多孔質化の深さは、フッ化水素水溶液の濃度、温度、電流密度、時間などの条件を管理することにより高精度に制御することができるが、これらの条件を一定に保っても、シリコン基板の抵抗率のばらつきなどのために深さがばらつくことがある。
そこで、本実施例のように、発熱体層とする部分の電気抵抗を小さくしておくことにより、発熱体層の厚みのばらつきを小さくすることができる。すなわち、多孔質化を行う際に、陽極と陰極との間の電圧をモニターしながら定電流で陽極酸化を行うと、多孔質化が進むに従って電圧が上昇していくが、抵抗値が小さくなっている部分まで多孔質化が進行すると、電圧の上昇速度が緩やかになるか、または、電圧が低下に転じるようになる。したがって、この時点で陽極酸化のための通電を停止すれば、発熱体層の厚みが電気抵抗を低減している部分の厚みで決まるために、発熱体層の厚みのばらつきを小さくすることができる。
(実施例6)図6は本発明に係る赤外線放射素子のさらに他の実施例を示す断面図である。本実施例の赤外線放射素子は、図6に示すように、発熱体層を単結晶シリコンより電気抵抗を増加させて形成している点で上記実施例と相違する。概略構成においては、上記実施例3と略同じである。上記実施例と同様な作用の部分については詳細な説明は省略する。
図6に示すように、本実施例の赤外線放射素子1は、パッドそれぞれと重複する部位は陽極酸化されずに単結晶シリコンのまま残った単結晶層3aが形成され、単結晶層3aを架け渡す形で高抵抗層3cがシリコン基板の電気抵抗を増加させる添加元素が導入されて形成されている。また、高抵抗層3cは、本来のシリコン基板と比較すると電気抵抗値が増加しているので、発熱体としての効率が低下するおそれがある。そこで、この高抵抗層3cの上面にシリコンからなる発熱体層3をスパッター法等により別途形成している。なお、高抵抗層3cについては有無、形状等特に限定されない。シリコン基板の電気抵抗を増加させるには、酸素や窒素などの元素をイオン注入すればよい。あるいは、基板として、高抵抗層が挿入されたSOI(Si1icon on Insulator)基板を用いることによって、高抵抗層と発熱体層とをあらかじめ形成することもできる。
このようなシリコン基板を多孔質化する際に、陽極と陰極との間の電圧をモニターしながら定電流で陽極酸化を行うと、多孔質化が進むに従って電圧が上昇していくが、抵抗値が大きくなっている部分まで多孔質化が進行すると、電圧がさらに急激に上昇するようになる。したがって、この時点で陽極酸化のための通電を停止すれば、図において電気抵抗が増加している部分よりも上側が高抵抗層となるため、高抵抗層の厚みのばらつきを小さくすることができる。
上述のように、本発明の赤外線放射素子によれば、シリコン基板の厚み方向において、発熱体層となる部分以外に多孔質化された断熱層を形成しているので、従来のように基板の一部のみが断熱層となっている場合に比べて断熱層の断熱性能が向上する。このため、発熱体層に通電を行うと、発熱体層だけが効率的に発熱するために、熱応答速度が遠く発光効率の高い赤外線放射素子を得ることができる。さらに、多孔質化されなかったシリコン基板が、そのまま発熱体層として機能するため、従来のように発熱体層を別途形成する必要がなく、工程の簡略化が図れる。
また、断熱層の上に形成され、断熱層よりも多孔度の小さい多孔質シリコン層を発熱体層として用いる場合と比べると、本案施例の赤外線放射素子では発熱体層が多孔質化されていないため、発熱体層の抵抗値を小さくすることができるので、発熱体層に印加する電圧を小さくすることができる。
本発明の赤外線放射素子の1実施例の断面図である。 本発明の赤外線放射素子の他の実施例を示す断面図である。 本発明の赤外線放射素子のさらに他の実施例を示す断面図である。 (a)は本発明の赤外線放射素子のさらに他の実施例を示す断面図であり、(b)はその変形例を示す断面図である。 本発明の赤外線放射素子のさらに他の実施例を示す断面図である。 本発明の赤外線放射素子のさらに他の実施例を示す断面図である。
符号の説明
1 赤外線放射素子
2 断熱層(高多孔度断熱層)
2a 断熱層(低多孔度断熱層)
3 発熱体層
3a 高強度構造部(単結晶層)
3b 発熱体層
3c 高抵抗層
4 パッド

Claims (5)

  1. シリコンからなる支持基板の一方の表面からシリコンを多孔質化することにより支持基板よりも熱伝導率の小さな断熱層を形成するとともに、前記支持基板の他方の表面には多孔質化されていないシリコンが発熱体層として存在し、該発熱体層の表面に一対のパッドが形成されてなることを特徴とする赤外線放射素子。
  2. 前記一方の表面の断熱層の多孔度の方が、前記発熱体層側の断熱層の多孔度よりも低いものであることを特徴とする請求項1に記載の赤外線放射素子。
  3. 前記支持基板の側面に多孔質化されていないシリコンが存在していることを特徴とする請求項1または2に記載の赤外線放射素子。
  4. 前記一方の表面が全面にわたって多孔質化されていることを特徴とする請求項3に記載の赤外線放射素子。
  5. 前記発熱体層のシリコンに電気抵抗を調整させる添加元素を導入させたことを特徴とする請求項1ないし4のいずれかに記載の赤外線放射素子。
JP2005151731A 2005-05-25 2005-05-25 赤外線放射素子 Pending JP2006331752A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151731A JP2006331752A (ja) 2005-05-25 2005-05-25 赤外線放射素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151731A JP2006331752A (ja) 2005-05-25 2005-05-25 赤外線放射素子

Publications (1)

Publication Number Publication Date
JP2006331752A true JP2006331752A (ja) 2006-12-07

Family

ID=37553238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151731A Pending JP2006331752A (ja) 2005-05-25 2005-05-25 赤外線放射素子

Country Status (1)

Country Link
JP (1) JP2006331752A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150094712A (ko) * 2012-12-14 2015-08-19 어플라이드 머티어리얼스, 인코포레이티드 기판 프로세싱 챔버 컴포넌트들을 위한 열 복사 배리어
CN105627835A (zh) * 2014-10-29 2016-06-01 北京航天长征飞行器研究所 空间目标红外辐射特性增强装置
WO2017130541A1 (ja) * 2016-01-25 2017-08-03 株式会社デンソー ヒータ装置
JP2020125088A (ja) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 カメラ搭載構造

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184757A (ja) * 1995-11-24 1997-07-15 Vaisala Oy 電気変調可能な熱放射源
JPH11251630A (ja) * 1998-02-27 1999-09-17 Anritsu Corp 赤外線放射素子
JPH11300274A (ja) * 1998-04-23 1999-11-02 Japan Science & Technology Corp 圧力波発生装置
JP2001221737A (ja) * 2000-02-08 2001-08-17 Yokogawa Electric Corp 赤外線光源及びその製造方法及び赤外線ガス分析計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184757A (ja) * 1995-11-24 1997-07-15 Vaisala Oy 電気変調可能な熱放射源
JPH11251630A (ja) * 1998-02-27 1999-09-17 Anritsu Corp 赤外線放射素子
JPH11300274A (ja) * 1998-04-23 1999-11-02 Japan Science & Technology Corp 圧力波発生装置
JP2001221737A (ja) * 2000-02-08 2001-08-17 Yokogawa Electric Corp 赤外線光源及びその製造方法及び赤外線ガス分析計

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10177014B2 (en) 2012-12-14 2019-01-08 Applied Materials, Inc. Thermal radiation barrier for substrate processing chamber components
JP2016508288A (ja) * 2012-12-14 2016-03-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 基板処理チャンバ構成要素用の熱放射バリア
KR20150094712A (ko) * 2012-12-14 2015-08-19 어플라이드 머티어리얼스, 인코포레이티드 기판 프로세싱 챔버 컴포넌트들을 위한 열 복사 배리어
KR102199672B1 (ko) * 2012-12-14 2021-01-07 어플라이드 머티어리얼스, 인코포레이티드 기판 프로세싱 챔버 컴포넌트들을 위한 열 복사 배리어
CN105627835A (zh) * 2014-10-29 2016-06-01 北京航天长征飞行器研究所 空间目标红外辐射特性增强装置
WO2017130541A1 (ja) * 2016-01-25 2017-08-03 株式会社デンソー ヒータ装置
CN108476559A (zh) * 2016-01-25 2018-08-31 株式会社电装 加热器装置
JPWO2017130541A1 (ja) * 2016-01-25 2018-04-05 株式会社デンソー ヒータ装置
US10913328B2 (en) 2016-01-25 2021-02-09 Denso Corporation Heater device
CN108476559B (zh) * 2016-01-25 2021-04-09 株式会社电装 加热器装置
DE112016006301B4 (de) 2016-01-25 2024-04-25 Denso Corporation Heizvorrichtung
JP2020125088A (ja) * 2019-02-06 2020-08-20 トヨタ自動車株式会社 カメラ搭載構造
JP7172682B2 (ja) 2019-02-06 2022-11-16 トヨタ自動車株式会社 カメラ搭載構造

Similar Documents

Publication Publication Date Title
JP5748384B2 (ja) 多孔質SiC基板を有する発光ダイオードおよび製造方法
JP2009260233A (ja) サブマウント、発光ダイオードパッケージ及びその製造方法
JP2006229168A (ja) 加熱方法および加熱装置
JP2006331752A (ja) 赤外線放射素子
US7378656B2 (en) Infrared radiation element and gas sensor using it
JP3918868B2 (ja) 半導体レンズの製造方法
JP2007057456A (ja) 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
JP4396464B2 (ja) 赤外線放射素子およびそれを用いたガスセンサ
JP2010236934A (ja) 赤外線放射素子
JP4852886B2 (ja) 赤外線放射素子
JP5260985B2 (ja) 赤外線放射素子
JP4424221B2 (ja) 赤外線放射素子及びそれを用いたガスセンサ
JP2007086768A (ja) 半導体レンズの製造方法
JP4534597B2 (ja) 赤外線放射素子
JP4501705B2 (ja) 赤外線放射素子
JP4534645B2 (ja) 赤外線放射素子
JP4396395B2 (ja) 赤外線放射素子の製造方法
JP2009210287A (ja) 赤外線放射素子
JP4586796B2 (ja) 半導体レンズの製造方法
JP2005337817A (ja) 赤外線放射素子
JP5374292B2 (ja) 赤外線放射素子及び当該赤外線放射素子を備えた赤外線式ガス検知器及び当該赤外線放射素子の製造方法
JP2010145296A (ja) 赤外線放射素子及びその製造方法
JPH11251630A (ja) 赤外線放射素子
JPH0640847U (ja) マイクロ化した赤外線分析計用赤外光源
TW390916B (en) Method for etching nitride

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080208

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100525