JP2010145296A - 赤外線放射素子及びその製造方法 - Google Patents

赤外線放射素子及びその製造方法 Download PDF

Info

Publication number
JP2010145296A
JP2010145296A JP2008324557A JP2008324557A JP2010145296A JP 2010145296 A JP2010145296 A JP 2010145296A JP 2008324557 A JP2008324557 A JP 2008324557A JP 2008324557 A JP2008324557 A JP 2008324557A JP 2010145296 A JP2010145296 A JP 2010145296A
Authority
JP
Japan
Prior art keywords
layer
infrared radiation
semiconductor substrate
porous
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008324557A
Other languages
English (en)
Inventor
Yoshifumi Watabe
祥文 渡部
Yuichi Inaba
雄一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008324557A priority Critical patent/JP2010145296A/ja
Publication of JP2010145296A publication Critical patent/JP2010145296A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】高出力、高周波駆動が可能で、低消費電力化が図られた赤外線放射素子及びその製造方法を提供する
【解決手段】半導体基板1と、半導体基板1の一面に形成された保持層2と、半導体基板1の一面及び保持層2の一面によって囲まれた空間からなる気体層3と、保持層2の一面に形成された一乃至複数の長尺状の突部4と、保持層2の他面に積層され、電気入力されることによる発熱によって赤外線を放射する赤外線放射層5とを備え、気体層3は、赤外線放射層5に印加される電圧の周波数に基づいてその厚みが設定され、赤外線放射層5の昇温時には断熱層として働き、赤外線放射層5の降温時には放熱層として働く。
【選択図】図1

Description

本発明は、赤外線放射素子及びその製造方法に関するものである。
従来より、赤外線を放射する赤外線放射素子と、当該赤外線放射素子から放射される赤外線の内で検出対象ガスが吸収する波長の赤外線のみを通過させるフィルタを介して赤外線を受光して、当該受光した赤外線量に対応したレベルの検出信号を出力する受光素子とを備えたガスセンサ装置がある。そして、前記赤外線放射素子は、1回の計測で断続的に複数回赤外線を放射する。その際、検出精度を高くすると共に省電力化を図るためには、赤外線放射素子から放射される赤外線の放射量を安定させ短時間で計測することが望ましく、赤外線放射素子の高周波駆動化が望まれている。
そして、前記赤外線放射素子として、図7に示すような電球型の赤外線放射素子40や図8に示すようなダイヤフラム型の赤外線放射素子50が提供されている(例えば、特許文献1参照)。
電球型の赤外線放射素子40は、発光部のフィラメント42が、タングステン(W)または白金(Pt)からなる線材をコイル状に巻いたものや、コイルの表面をアルミナなどのセラミックで被覆したものから構成されている。そして、フィラメント42に電圧が印加されて昇温すると赤外線を放射する。また、赤外線放射素子40は、発光部となるフィラメント42の熱容量が大きいため、フィラメント42に電圧の印加を開始してから放射する赤外線の強度が所定の強度に達するまでの時間(昇温時間)が長い。また、赤外線を放射しているフィラメント42の印加電圧をオフしてから、赤外線の放射が停止するまでの時間(降温時間)も長い。従って、断続放射される赤外線の振幅差を大きくするためには、フィラメント42に印加される電圧の周波数を0.1〜10Hz程度に設定する必要がある。
また、ダイヤフラム型の赤外線放射素子50は、赤外線放射層50の裏面に設けられた半導体基板51をエッチングにより掘り込むことで凹部52を形成している。そして、赤外線放射層50は、金属からなる電極56に接続された発熱層53と当該発熱層53によって間接的に加熱される発光層54とを備える絶縁層55から構成されている。そして、発光層54は、電極56を介して電圧が印加された発熱層53の発熱によって間接的に加熱されることで赤外線を放射する。また、ダイヤフラム型の赤外線放射素子50は、絶縁層55が凹部52で接する空気の断熱効果によって断熱されているため発光層54の昇温時間が短い。しかし、当該断熱効果によって、発光層54は放熱効果が十分に得られないため降温時間が長い。従って、断続放射される赤外線の振幅差を大きくするためには、電極56に印加される電圧の周波数を例えば200Hz程度に設定する必要がある。
特開平9−184757号公報
従って、ガスセンサ装置等に上記赤外線放射素子40または、赤外線放射素子50を用いた場合には、赤外線放射素子40、50に印加される入力電圧の変調周波数周期が低く、計測に時間がかかり、低消費電力化を行うことは困難であった。
本発明は、上記事由に鑑みてなされたものであり、その目的は、高出力、高周波駆動が可能で、低消費電力化が図られた赤外線放射素子及びその製造方法を提供することにある。
請求項1の発明は、半導体基板と、半導体基板の一面に形成された薄膜状の保持層と、半導体基板の一面及び保持層の一面によって囲まれた空間からなる気体層と、保持層の一面に形成された一乃至複数の長尺状の突部と、保持層の他面に積層され、電気入力されることによる発熱によって赤外線を放射する赤外線放射層とを備え、前記気体層は、赤外線放射層に印加される電圧の周波数に基づいてその厚みが設定され、赤外線放射層の昇温時には断熱層として働き、赤外線放射層の降温時には放熱層として働くことを特徴とする赤外線放射素子。
この発明によれば、赤外線放射層の昇温時には、赤外線放射層から保持層に伝達した熱が気体層によって断熱されるため、断熱層として働く気体層によって赤外線放射層の昇温が阻害されず昇温時間が短くなり、赤外線放射層の降温時には、赤外線放射層から保持層に伝達した熱が、気体層を介して半導体基板へと放熱されるため、放熱層として働く気体層によって赤外線放射層の降温時間が短くなる。従って、赤外線放射層の昇降温が高速で行われて赤外線放射素子を高出力、高周波駆動させることができ、更には、計測時間を短縮できて低消費電力化を図ることができる。
また、突部によって保持層が補強されることで保持層の機械的強度が大きくなり、赤外線放射層の昇降温による熱膨張差によって、保持層が半導体基板に付着することを防止でき、昇温阻害や破損を防止でき、また、製造時のウェット処理後の乾燥時などで保持層が半導体基板に付着することも防止できる。
請求項2の発明は、請求項1の発明において、前記突部は、保持層の互いに対向する周縁間に形成されていることを特徴とする。
この発明によれば、保持層の機械的強度を容易に向上させることができる。
請求項3の発明は、請求項1または2の発明において、前記突部は、略格子状に形成されていることを特徴とする。
この発明によれば、保持層の機械的強度を更に容易に向上させることができる。
請求項4の発明は、請求項1乃至3いずれかの発明において、前記突部は、単結晶シリコンからなることを特徴とする。
この発明によれば、多孔質層に比べて機械的強度の高い単結晶シリコンを突部に用いることで、赤外線放射層の昇降温による熱膨張差によって、保持層が半導体基板へ付着することや、製造時のウェット処置後の乾燥時などで保持層が半導体基板に付着することもより効果的に防止することができる。
請求項5の発明は、請求項1乃至4いずれかの発明において、前記保持層の他面には、赤外線放射層が複数箇所に積層され、赤外線放射層間に露出する保持層の一面側に突部が設けられていることを特徴とする。
この発明によれば、熱伝導率が保持層に比べて高い赤外線放射層が、突部に直接接していないことで、赤外線放射層で発生する熱が突部へ放熱されることを抑制でき、赤外線放射層の発光効率を高めることができる。
また、赤外線放射層と突部とが直接接していないことで、赤外線放射層と突部との間に大きな温度勾配が発生することを抑制でき、当該温度勾配に起因する大きな熱応力によって赤外線放射層と突部とが破損することを防止できる。
請求項6の発明は、請求項1乃至5いずれかの発明において、前記保持層は、多孔質層からなることを特徴とする。
この発明によれば、多孔質層は、緻密な絶縁材料に比べて熱容量や熱伝導率が小さいため、赤外線放射層の昇温を阻害せず昇温時間を短縮でき、小さなエネルギーで大きく昇温することで低消費電力化を図ることができる。
請求項7の発明は、請求項6の発明において、前記多孔質層は、ポーラスシリコン、またはポーラスポリシリコンからなることを特徴とする。
この発明によれば、多孔質層ポーラスシリコン、またはポーラスポリシリコンからなることから、赤外線放射層の昇温温度に耐える耐熱性を確保できる。
請求項8の発明は、請求項1乃至7いずれかの発明において、前記保持層は、その周縁が半導体基板に固定されていることを特徴とする。
この発明によれば、保持層周縁部が全て半導体基板に接合されて保持強度が高められているため、保持層に接合された赤外線放射層の昇降温時に発生する熱膨張差によって保持層が変形し破損することを防止できる。
請求項9の発明は、請求項8の発明において、前記半導体基板と保持層とが接合する箇所は、保持層と半導体基板の接合を補強する補強部を備えることを特徴とする。
この発明によれば、保持層と半導体基板の接合部の強度を高めることができ、保持層の変形による破損を更に防止することができる。
請求項10の発明は、半導体基板の一面における所定領域において、一乃至複数の長尺状の領域に不純物ドープを施す第一のドープ工程と、前記所定領域の周縁に陽極酸化マスクを施すマスク工程と、前記所定領域を陽極酸化することで多孔質層を形成する多孔質化工程と、前記多孔質層に対向する半導体基板の厚み方向の領域、及び前記不純物ドープの厚み方向における半導体基板を陽極酸化により電解研磨することで気体層を形成すると共に、前記不純物ドープが施された箇所に一乃至複数の長尺状の突部を形成する電解研磨工程と、前記多孔質層の他面側に赤外線放射層を形成する赤外線放射層形成工程とを備え、前記気体層は赤外線放射層に印加される電圧の周波数に基づいてその厚みが設定され、赤外線放射層の昇温時には断熱層として働き、赤外線放射層の降温時には放熱層として働くことを特徴とする。
この発明によれば、本製造方法によって製造された赤外線放射素子は、赤外線放射層の昇温時には、赤外線放射層から保持層に伝達した熱が気体層によって断熱されるため、断熱層として働く気体層によって赤外線放射層の昇温が阻害されず昇温時間が短くなり、赤外線放射層の降温時には、赤外線放射層から保持層に伝達した熱が、気体層を介して半導体基板へと放熱されるため、放熱層として働く気体層によって赤外線放射層の降温時間が短くなる。従って、赤外線放射層の昇降温が高速で行われて赤外線放射素子を高出力、高周波駆動させることができ、更には、計測時間を短縮できて低消費電力化を図ることができる。
また、本製造方法により、陽極酸化による多孔質層の形成と当該多孔質層を介して行う陽極酸化による電解研磨との2段階の陽極酸化によって、低熱容量及び気体層による高い断熱性を備えた多孔質層を中空上に形成することができる。更に、保持層を形成する面の内、突部を形成する箇所に不純物ドープを施すことで、保持層上に別途陽極酸化マスクを行う必要がなく、保持層に積層される赤外線放射層の段切れや、不均一な抵抗部を無くすことができ、安定動作可能な赤外線放射素子を製造できる。加えて、突部によって保持層が補強されることで保持層の機械的強度が大きくなり、前記電解研磨工程の後に保持層が乾燥するまでの間に半導体基板へ付着することを防止することができる。
請求項11の発明は、請求項10の発明において、前記不純物ドープは、所定領域の互いに対向する周縁間に施されることを特徴とする。
この発明によれば、保持層の機械的強度を容易に向上させることができる。
請求項12の発明は、請求項10または11いずれかの発明において、前記不純物ドープは、略格子状に施されることを特徴とする。
この発明によれば、保持層の機械的強度を更に容易に向上させることができる。
請求項13の発明は、請求項10乃至12いずれかの発明において、前記マスク工程の前に、半導体基板の一面において陽極酸化マスクと所定領域との境界において、陽極酸化マスクと所定領域の両方にかかる不純物ドープを施す第二のドープ工程を備え、当該不純物ドープが施された箇所には、当該ドープと前記多孔質化工程によって多孔質化されず前記電解研磨工程によってドープの厚み方向に研磨されずに残存する半導体基板とから補強部が形成され、不純物ドープが施されていない箇所には、前記多孔質化工程によってポーラスシリコン層が形成され、前記電解研磨工程において前記ポーラスシリコン層の厚み方向に対向する半導体基板の領域に気体層が形成されることを特徴とする。
この発明によれば、前記電解研磨工程により気体層が形成された際に、等方的に処理が進行するため、保持層と半導体基板との接続部に不純物ドープが施されていない場合には、当該接続部が除去されてしまい保持層の周縁は陽極酸化マスクのみによって支持されることになるが、保持層と半導体基板との接続部に不純物ドープが施されていることで保持層と半導体基板との接続部にドープによるマスク領域が残存することで当該接続部の強度を高めることができ、、昇降温時の赤外線放射層の熱膨張差によって保持層が変形して破損することを防止することができる。
以上説明したように、本発明では、高出力、高周波駆動が可能で、低消費電力化が図られた赤外線放射素子及びその製造方法を提供することができるという効果がある。
以下、本発明の実施の形態を図面に基づいて説明する。
(実施形態1)
本実施形態の赤外線放射素子Aについて図1、2を用いて説明を行った後に、赤外線放射素子Aの製造方法について図3(a)〜(e)を用いて説明を行う。なお図1における上下左右を基準として上下左右方向と直交する方向を前後方向とする。
本実施形態の赤外線放射素子Aは、図1に示すように、半導体基板1と、半導体基板1の上面に形成された薄膜状の保持層2と、半導体基板1の上面及び保持層2の下面によって囲まれた空間からなる厚みの薄い気体層3と、保持層2の下面に形成されて保持層2を補強する突部4と、保持層2の上面に積層され、通電による発熱によって赤外線を放射する赤外線放射層5と、赤外線放射層5上に形成される通電用の一対の電極6とを備えている。
半導体基板1は、略矩形状の単結晶のシリコン基板が用いられており、その上面の所定の領域をフッ化水素水溶液中で陽極酸化することにより多孔度が70%の多孔質シリコン層(ポーラスシリコン層)からなる略矩形状の保持層2が形成されている。また、半導体基板1で用いられるシリコン基板の導電形は、p形、n形のどちらでもよいが、p形のシリコン基板の方が陽極酸化による多孔質化を行った際に多孔度が大きくなりやすい傾向にあるので、半導体基板1としてはp形のシリコン基板を用いることが好ましい。なお、半導体基板1の一部を陽極酸化する際の電流密度は、半導体基板1の導電形及び導電率に応じて適宜設定すればよい。また、保持層2を形成する多孔質層は、ポーラスポリシリコン層であってもよい。また、電気的絶縁や前後左右方向への熱伝導を抑制する効果を備えるため、ポーラスシリコンやポーラスポリシリコンの一部または全部が酸化、或いは窒化されていてもよい。
保持層2は、ポーラスシリコン層により構成されており多孔度が高くなるにつれて熱伝導率及び体積熱容量が小さくなる。
電極6は、金属材料(例えばアルミニウムなど)により形成され、赤外線放射層5の左右両端にそれぞれ積層され、図4(a)で示す略正弦波状の電圧が印加される。
そして、赤外線放射素子Aは、一対の電極6を介して赤外線放射層5に入力電圧が印加されると、赤外線放射層5が昇温して赤外線を放射し、入力電圧をオフされると赤外線放射層5が降温して赤外線の放射を停止する。
ここで、保持層2の厚みLは、当該保持層2の熱容量をα、熱伝導率をC、赤外線放射層5に印加される入力電圧の変調周波数をfとすると、
<√(α/πfC)・・・(式1)
であることが望ましい。
そして、本実施形態におけるポーラスシリコン層から形成された保持層2の厚みLは1umに設定されており、赤外線放射層5に印加される入力電圧の周波数f=10kHz、保持層の熱伝導率C=1.1W/mK、及び体積熱容量α=1.05×10J/mKを上記式1に代入すると、L=1um<5.7umとなって前記式1を満足している。これにより、保持層2は、赤外線放射層5の昇温を阻害せず、赤外線放射層5と保持層2とは全体として体積熱容量が小さいものとなる。そのため、保持層2の厚みLを、式1の範囲で調節することで、赤外線放射層5は印加される電圧の周波数に対応して高速に昇温が行われ、入力電圧の変調周波数を高くしても大きな赤外線強度振幅を得ることができる。
また、保持層2は、多孔質シリコン層からなることから緻密な絶縁材料から形成される場合に比べて材料的に体積熱容量が小さいため熱応答時間が短く、小さなエネルギーで昇温することから、赤外線放射層5の昇温効率をより高めることができる。加えて、保持層2は、ポーラスシリコンから形成されていることから赤外線放射層5の発熱に耐える耐熱性を有している。
次に、気体層3は、半導体基板1の上面と保持層2の下面との間に形成されており、その厚みLは、気体層3の体積熱容量をα、熱伝導率をC、赤外線放射層5に印加される入力電圧の変調周波数をfとすると、
(1/20)×√(α/πfC)<L<3√(α/πfC)・・・(式2)
で表される。
そして、気体層3の厚みLは、25umに設定されており、赤外線放射層5に印加される入力電圧の周波数f=10kHz、気体層3の熱伝導率C=0.0254W/mK、及び体積熱容量α=1.21×10J/mKを上記式1に代入すると、3.8um<L=25um<77umとなって前記式2を満足している。一般に、気体層3は、厚みLに応じた時間の経過までは主に断熱層として働き、それ以降は主に放熱層として働くことになる。従って、気体層3の厚みLを式2の範囲で調節することで、図4(a)、(b)で示すように、赤外線放射層5の昇温時間T1では気体層3が断熱層として働き、赤外線放射層5の降温時間T2では放熱層として働くように設定できる。而して、気体層3が断熱層から放熱層に切り替わるタイミングと、赤外線放射層5に印加される電圧が昇圧から降圧に切り替わるタイミングとを略一致させることができ、赤外線放射層5に印加される電圧が高周波変調されている場合であっても、電圧の周波数に略同期して赤外線放射層5を昇降温させることができると共に、大きな赤外線放射振幅を得ることができる。 ここで、気体層3を備えていない場合には、断熱性能が不足して放熱性能が断熱性能を上回る。従って、10kHzで変調された入力電圧が印加された場合、赤外線放射層5の温度は図4(c)で示すように、昇温時間T1で所定の赤外線強度を得ることができる温度まで上昇せず、降温時間T2で放熱されて低温状態を維持することから上記効果を得ることができない。
また、図8に示す従来例のダイヤフラム型赤外線放射素子50において、凹部52を気体層3とすると、基板51の厚み(525um)と凹部52の深さが略等しいことから、気体層3の厚みLがL=525umとなり、前記式2を満たさず放熱性能が不足する。従って、10kHzで変調された入力電圧が印加された場合、赤外線放射層5の温度は図4(d)で示すように、昇温時間T1には気体層3が断熱層として働き昇温する。しかし、降温時間T2においては放熱性能が不足するため、発光層54の温度は昇降温を繰り返す度に上昇し、過熱状態となって上記効果を得ることができない。
次に、突部4は、保持層2の下面において、多孔質層よりも機械的強度の高い単結晶シリコンによって略格子状に形成されており、前後左右方向の各両端部が半導体基板1と接続されている。ここで、シリコンからなる半導体基板1の熱膨張係数は0.42×10−4/Kであり、半導体基板1の上面が陽極酸化により多孔質化されたポーラスシリコン層からなる保持層2の熱膨張係数は、半導体基板1の熱膨張係数と略同等若しくはそれ以下であることから、イリジウムからなる赤外線放射層5の熱膨張係数0.68×10−4/Kとの差から、突部4が形成されていない場合には赤外線放射層5の昇降温による熱膨張差によって、保持層2が半導体基板1に付着する虞がある。
しかし、本実施形態では、突部4によって保持層2が補強されていることで上記不具合を防止でき、赤外線放射層5の昇温阻害や変形による破損を防止することができる。なお、本実施形態では、突部4が保持層2の下面に形成されているが、突部4が保持層2を貫通した状態で形成されていてもよい。
ところで、本実施形態の赤外線放射素子Aにおいて赤外線放射層5から放射される赤外線のピーク波長は、赤外線放射層5の温度に依存し、ピーク波長をλ(μm)、赤外線放射層5の絶対温度をT(K)とすれば、ピーク波長は、
λ=2898/T・・・(式3)
となり、赤外線放射層5の絶対温度Tと赤外線放射層5から放射される赤外線のピーク波長λとの関係がウィーンの変位側を満たしている。要するに、図示しない外部電源から一対の電極6間に印加する電圧を調整することにより、赤外線放射層5に発生するジュール熱を変化させる(つまり、赤外線放射層5の温度を変化させる)ことができて、赤外線放射層5から放射される赤外線のピーク波長λを変化させることができる。
そして、本実施形態の赤外線放射素子Aでは、例えば、一対の電極6間に200V程度の電圧を印加することによりピーク波長λが3μm〜4μmの赤外線を放射させることが可能であり、電極6間に印加する電圧を適宜調整することにより、ピーク波長λが4μm以上の赤外線を放射させることも可能である。
上記構成からなる本実施形態の赤外線放射素子Aは、赤外線放射層5の昇温時に赤外線放射層5から保持層2に伝達した熱が気体層3によって断熱されるため、断熱層として働く気体層3によって赤外線放射層5の昇温が阻害されず昇温時間T1が短くなり、降温時には、赤外線放射層5から保持層2に伝達した熱が、気体層3を介して半導体基板1へと放熱されるため、放熱層として働く気体層3によって赤外線放射層5の降温時間T2を短くできる。従って、図4(b)で示す赤外線放射層5の温度変化が、図4(a)で示す入力電圧の波形に同期して昇降温し、赤外線放射素子Aは高出力な赤外線を放射すると共に高周波駆動することができ、低消費電力化を図ることができる。
以下、本実施形態の赤外線放射素子Aの製造方法について図3(a)〜(e)を用いて説明する。なお、上記赤外線放射素子Aでは、突部4が略格子状に形成されているが、本製造方法の説明では、保持層2の下面の左右方向略中央に長尺状の突部4が形成されているものとして説明を行う。
まず、図3(a)に示すように、例えば、比抵抗が80〜120Ωcm程度の略矩形板状のp型半導体基板1の上面において所定の矩形領域を囲むPの不純物ドープ8を施すドープ工程を行い、当該矩形領域の左右方向略中央において前後方向で互いに対向する周縁間にPの不純物ドープ7を施すドープ工程を行う。
次に、アニール処置を行い不純物ドープ7,8を拡散及び活性化する。これにより、不純物ドープ7,8が施された領域は、n型の陽極酸化マスクとなる。その後、図3(b)に示すように、半導体基板1の上面において矩形枠状に形成された不純物ドープ8と当該不純物ドープ8よりも外側の領域とにかかる領域に、酸化処理(パイロ酸化)を行うことでシリコン酸化膜からなる陽極酸化マスク11を施すマスク工程を行い。そして、半導体基板1の裏面のシリコン酸化膜を除去した後、バックコンタクト用のアルミ電極9をスパッタにより形成する。
そして、図3(c)に示すように、前記矩形領域に陽極酸化処理を施す多孔質化工程を行うことによって、前記矩形領域内で不純物ドープ7,8が施された箇所を除いた領域が多孔質化され、多孔質層の保持層2が形成される。ここで、陽極酸化処理では、当該電解液として、フッ化水素水溶液とエタノールとを混合したフッ化水素30%の溶液を用い、陽極酸化を行う表面のみを電解液に接触させ、半導体基板1の上面に図示しない白金電極を配置して、下面より通電可能な治具にセットし、所定の電流密度(例えば、100mA/cm)の電流を所定時間だけ流すことにより1umの厚みを持った多孔質層を形成する。
また、保持層2の厚みは、前記式1に基づいて形成されることで、赤外線放射層5は印加される電圧の周波数に対応して高速に昇温が行われ、大きな赤外線強度振幅を得ることができる。
続いて、図3(d)に示すように、前記多孔質層からなる保持層2を介して保持層2に対向する半導体基板1の厚み方向の領域、及び不純物ドープ7に対向する半導体基盤1の厚み方向の領域を電解研磨する電解研磨工程を行うことで気体層3を形成すると共に、不純物ドープ7が施された箇所が残存することで突部4が同時形成される。ここで、電解研磨処理では、当該電解液として、フッ化水素水溶液とエタノールとを混合したフッ化水素15%の溶液を用い、陽極酸化を行う表面のみを電解液に接触させ、半導体基板1の上面に図示しない白金電極を配置して、下面から通電可能な治具にセットし、所定の電流密度(例えば、1000mA/cm)の電流を所定時間だけ流すことにより25umの厚みを持った気体層3を形成する。
ここで、気体層3の厚みは、前記式2に基づいて形成されることで、気体層3が断熱層から放熱層に切り替わるタイミングと、赤外線放射層5に印加される電圧が上昇から下降に切り替わるタイミングとを略一致させることができ、赤外線放射層5に印加される電圧が高周波変調されている場合であっても、電圧の周波数に略同期して赤外線放射層5を昇降温させることができると共に、大きな赤外線放射振幅を得ることができる。
また、上記多孔質化工程及び電解研磨工程では等方的に処理が進行するため、不純物ドープ8が施されていない場合には、図5に示すように保持層2の周縁が陽極酸化マスク11のみによって支持された状態となって機械的強度が小さいものとなる。しかし、本実施形態では、保持層2の周縁と半導体基板1の境界に不純物ドープ8が施されていることで、保持層2の周縁は不純物ドープ8によって形成されるn型シリコン基板を介して半導体基板1と接続されて機械的強度の大きいものとなっている。
そして、図3(e)に示すように、陽極酸化マスク11に囲まれた領域に、通電により発熱する貴金属(Ir)からなる赤外線放射層5を100nm程度積層する赤外線放射層形成工程を行い、その後に当該赤外線放射層5の左右両端に一対の電極6を設ける電極形成工程を行う。ここで、電極6は、メタルマスクなどを利用した蒸着法などによって設けられる。なお、本実施形態では、赤外線放射層5として貴金属のIrから形成しているが材料はこれに限定されず、耐熱性金属、金属窒化物、金属炭化物等、通電により発熱する耐熱性材料であればよく、好ましくは放射率の高いものが望ましい。
以上、図3(a)〜(e)で示される赤外線放射素子Aの製造方法によれば、陽極酸化による多孔質化工程と陽極酸化による電解研磨工程の2段階の陽極酸化を施すことによって、低体積熱容量及び高断熱性を有する多孔質層(保持層2)を容易に中空上に形成することができる。
また、半導体基板1の上面において突部4を形成する箇所に不純物ドープ7を施していることで、突部4を形成する箇所に前記マスク工程で別途段差を伴う陽極酸化マスクを施す必要がないため、その上面に積層される赤外線放射層5に段切れや不均一な抵抗部の発生が起こらず、安定動作可能な赤外線放射素子Aを製造できる。
更に、突部4が形成されることで、前記電解研磨工程の陽極酸化後に行われる乾燥過程において保持層2が半導体基板1に付着することを防止することができる。
なお、本実施形態の製造方法の説明では、長尺状の突部4を1本形成しているが、不純物ドープ7を施す際に略格子状に施すことで突部4を略格子状に形成することができ、保持層2の機械的強度を更に高めることができる。
また、本実施形態では、入力電圧として略正弦波状の電圧が印加されるが、入力電圧はこれに限定されず略矩形パルス状の電圧であってもよい。
(実施形態2)
本実施形態における赤外線放射素子Bは、前記実施形態1の赤外線放射素子Aと、赤外線放射層5の配置、及び突部3の形状が異なる。なお、実施形態1の赤外線放射素子Aと同様の機能を有するものについては同一の符号を付して説明を省略する。
前記実施形態1では、赤外線放射層5が保持層2の上面全面に積層されていたが、本実施形態では、図6に示すように、赤外線放射層5は、保持層2の上面において前後方向に3分割されて配設されており、3つの赤外線放射層5間に露出する2箇所の保持層2の下面に左右両端が半導体基板1と接続された長尺状の突部4がそれぞれ形成されている。なお、本実施形態では、赤外線放射層5は3箇所に分割されているが、分割数はこれに限定されず、2箇所または4箇所以上であってもよいものとする。
以上により、熱伝導率が保持層2に比べて高い赤外線放射層5が、突部4に直接接しないため、赤外線放射層5で発生する熱が突部4へ放熱されることを抑制でき、赤外線放射層5の発光効率を高めることができる。
また、赤外線放射層5と突部4とが直接接していないことで、赤外線放射層5と突部4との間に大きな温度勾配が発生することを抑制でき、当該温度勾配に起因する大きな熱応力によって赤外線放射層5と突部4とが破損することを防止できる。
本発明の実施形態1における赤外線放射素子の断面外略図である。 同上における赤外線放射素子の上面図である。 本発明の実施形態1における赤外線放射素子の製造方法の説明図である。 (a)〜(d)は、同上における赤外線放射素子の電圧波形または、温度波形を示し、(a)は、印加電圧波形、(b)は、式2を満たす場合の温度波形、(c)は、気体層を有さない場合の温度波形、(d)は、式2を満たさない場合の温度波形を示す。 同上における赤外線放射素子で、保持層の周縁に不純物ドープが施されていない場合の概略図を示す。 本発明の実施形態2における赤外線放射素子の上面図である。 従来例におけるコイル状フィラメントを備える電球型の赤外線放射素子の正面図である。 同上における、ダイヤフラム型の赤外線放射素子の断面外略図である。
符号の説明
1 基板
2 保持層
3 気体層
4 突部
5 赤外線放射層

Claims (13)

  1. 半導体基板と、
    半導体基板の一面に形成された薄膜状の保持層と、
    半導体基板の一面及び保持層の一面によって囲まれた空間からなる気体層と、
    保持層の一面に形成された一乃至複数の長尺状の突部と、
    保持層の他面に積層され、電気入力されることによる発熱によって赤外線を放射する赤外線放射層とを備え、
    前記気体層は、赤外線放射層に印加される電圧の周波数に基づいてその厚みが設定され、赤外線放射層の昇温時には断熱層として働き、赤外線放射層の降温時には放熱層として働くことを特徴とする赤外線放射素子。
  2. 前記突部は、保持層の互いに対向する周縁間に形成されていることを特徴とする請求項1記載の赤外線放射素子。
  3. 前記突部は、略格子状に形成されていることを特徴とする請求項2記載の赤外線放射素子。
  4. 前記突部は、単結晶シリコンからなることを特徴とする請求項1乃至3いずれか記載の赤外線放射素子。
  5. 前記保持層の他面には、赤外線放射層が複数箇所に積層され、赤外線放射層間に露出する保持層の一面側に突部が設けられていることを特徴とする請求項1乃至4いずれか記載の赤外線放射素子。
  6. 前記保持層は、多孔質層からなることを特徴とする請求項1乃至5いずれか記載の赤外線放射素子。
  7. 前記多孔質層は、ポーラスシリコン、またはポーラスポリシリコンからなることを特徴とする請求項6記載の赤外線放射素子。
  8. 前記保持層は、その周縁が半導体基板に固定されていることを特徴とする請求項1乃至7いずれか記載の赤外線放射素子。
  9. 前記半導体基板と保持層とが接合する箇所は、保持層と半導体基板の接合を補強する補強部を備えることを特徴とする請求項8記載の赤外線放射素子。
  10. 半導体基板の一面における所定領域において、一乃至複数の長尺状の領域に不純物ドープを施す第一のドープ工程と、
    前記所定領域の周縁に陽極酸化マスクを施すマスク工程と、
    前記所定領域を陽極酸化することで多孔質層を形成する多孔質化工程と、
    前記多孔質層に対向する半導体基板の厚み方向の領域、及び前記不純物ドープの厚み方向における半導体基板を陽極酸化により電解研磨することで、気体層を形成すると共に、前記不純物ドープが施された箇所に一乃至複数の長尺状の突部を形成する電解研磨工程と、
    前記多孔質層の他面側に赤外線放射層を形成する赤外線放射層形成工程とを備え、
    前記気体層は、赤外線放射層に印加される電圧の周波数に基づいてその厚みが設定され、赤外線放射層の昇温時には断熱層として働き、赤外線放射層の降温時には放熱層として働くことを特徴とする赤外線放射素子の製造方法。
  11. 前記不純物ドープは、所定領域の互いに対向する周縁間に施されることを特徴とする請求項10記載の赤外線放射素子の製造方法。
  12. 前記不純物ドープは、略格子状に施されることを特徴とする請求項11記載の赤外線放射素子の製造方法。
  13. 前記マスク工程の前に、半導体基板の一面において陽極酸化マスクと所定領域との境界において、陽極酸化マスクと所定領域の両方にかかる不純物ドープを施す第二のドープ工程を備え、当該不純物ドープが施された箇所には、当該ドープと前記多孔質化工程によって多孔質化されず前記電解研磨工程によってドープの厚み方向に研磨されずに残存する半導体基板とから補強部が形成され、不純物ドープが施されていない箇所には、前記多孔質化工程によってポーラスシリコン層が形成され、前記電解研磨工程において前記ポーラスシリコン層の厚み方向に対向する半導体基板の領域に気体層が形成されることを特徴とする請求項10乃至12いずれか記載の赤外線放射素子の製造方法。
JP2008324557A 2008-12-19 2008-12-19 赤外線放射素子及びその製造方法 Pending JP2010145296A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008324557A JP2010145296A (ja) 2008-12-19 2008-12-19 赤外線放射素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008324557A JP2010145296A (ja) 2008-12-19 2008-12-19 赤外線放射素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2010145296A true JP2010145296A (ja) 2010-07-01

Family

ID=42565883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008324557A Pending JP2010145296A (ja) 2008-12-19 2008-12-19 赤外線放射素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2010145296A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020797A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 赤外線放射素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172630A (ja) * 1991-12-24 1993-07-09 Matsushita Electric Works Ltd 赤外線検出素子
JPH09184757A (ja) * 1995-11-24 1997-07-15 Vaisala Oy 電気変調可能な熱放射源
JP2001221737A (ja) * 2000-02-08 2001-08-17 Yokogawa Electric Corp 赤外線光源及びその製造方法及び赤外線ガス分析計
JP2002122497A (ja) * 2000-10-13 2002-04-26 Denso Corp 薄膜センシング部を有する半導体装置及びその製造方法
JP2005140594A (ja) * 2003-11-05 2005-06-02 Denso Corp 赤外線光源
JP2006234424A (ja) * 2005-02-22 2006-09-07 Matsushita Electric Works Ltd 赤外線放射素子及びそれを用いたガスセンサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05172630A (ja) * 1991-12-24 1993-07-09 Matsushita Electric Works Ltd 赤外線検出素子
JPH09184757A (ja) * 1995-11-24 1997-07-15 Vaisala Oy 電気変調可能な熱放射源
JP2001221737A (ja) * 2000-02-08 2001-08-17 Yokogawa Electric Corp 赤外線光源及びその製造方法及び赤外線ガス分析計
JP2002122497A (ja) * 2000-10-13 2002-04-26 Denso Corp 薄膜センシング部を有する半導体装置及びその製造方法
JP2005140594A (ja) * 2003-11-05 2005-06-02 Denso Corp 赤外線光源
JP2006234424A (ja) * 2005-02-22 2006-09-07 Matsushita Electric Works Ltd 赤外線放射素子及びそれを用いたガスセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012067654; Il Hyun Choi; Wise, K.D.: 'A Silicon-Thermopile-Based Infrared Sensing Arrayfor Use in Automated Manufacturing' IEEE TRA.TlSACTIONS ON ELECTRON DEVICES Volume: 33 , Issue: 1, 1986, Page(s): 72 - 79 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014020797A1 (ja) * 2012-08-02 2014-02-06 パナソニック株式会社 赤外線放射素子

Similar Documents

Publication Publication Date Title
JP4505672B2 (ja) 圧力波発生装置及びその製造方法
JP5260985B2 (ja) 赤外線放射素子
US20070090293A1 (en) Infrared radiation element and gas sensor using it
JP2016129183A (ja) 静電チャック装置
CN204190159U (zh) 一种传导冷却型医疗用高功率半导体激光器系统
JP2006180082A (ja) 圧力波発生素子およびその製造方法
JP4396464B2 (ja) 赤外線放射素子およびそれを用いたガスセンサ
JP2010145296A (ja) 赤外線放射素子及びその製造方法
JP2007057456A (ja) 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
CN204190160U (zh) 一种基于传导冷却的医疗用高功率半导体激光器系统
JP5374292B2 (ja) 赤外線放射素子及び当該赤外線放射素子を備えた赤外線式ガス検知器及び当該赤外線放射素子の製造方法
JP4424221B2 (ja) 赤外線放射素子及びそれを用いたガスセンサ
JP4998826B2 (ja) フラッシュランプ及びフラッシュランプの製造方法
JP2008228386A (ja) 熱電子発電素子用の電極製造方法、その電極、及び、当該電極を用いた熱電子発電素子
JP2015082531A (ja) 熱光起電力発電用エミッタ
JP5243817B2 (ja) 赤外線放射素子
JP2011100948A (ja) 半導体装置とその製造方法
JP4852886B2 (ja) 赤外線放射素子
RU2582302C1 (ru) Полупроводниковый лазер на основе эпитаксиальной гетероструктуры
JP2011060897A (ja) アニール装置及びアニール方法
JP4534597B2 (ja) 赤外線放射素子
JP2003283037A (ja) 光半導体用パッケージ
JP4525273B2 (ja) 圧力波発生装置
JP2002026434A (ja) 半導体レーザ励起固体レーザ装置
JP2005337817A (ja) 赤外線放射素子

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528