JP2007057456A - 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法 - Google Patents

赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法 Download PDF

Info

Publication number
JP2007057456A
JP2007057456A JP2005245379A JP2005245379A JP2007057456A JP 2007057456 A JP2007057456 A JP 2007057456A JP 2005245379 A JP2005245379 A JP 2005245379A JP 2005245379 A JP2005245379 A JP 2005245379A JP 2007057456 A JP2007057456 A JP 2007057456A
Authority
JP
Japan
Prior art keywords
layer
insulating layer
infrared radiation
heat insulating
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245379A
Other languages
English (en)
Inventor
Hirotaka Jomi
弘高 上ミ
Takashi Hatai
崇 幡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005245379A priority Critical patent/JP2007057456A/ja
Publication of JP2007057456A publication Critical patent/JP2007057456A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】 ガスセンサ等に利用される赤外線放射素子を改良するものであり、応答速度の早い赤外線放射素子の開発を課題とする。
【解決手段】 発熱体層4へ通電して発熱させることにより発熱体層4から赤外線が放射される赤外線放射素子Aである。赤外線放射素子Aでは、支持基板(半導体基板)1の厚み方向の一表面(図1における上面)側に主断熱層2が形成されている。この主断熱層2は、支持基板1の一部を多孔質化したものであり、支持基板1の主要部(主断熱層2以外の部位)よりも熱伝導率が十分に小さい。主断熱層2の上に発熱体層4が積層されている。発熱体層4上に通電用の一対のパッド(電極)6,6が形成されている。支持基板1の表面側であって各パッド6,6それぞれと支持基板1との間に空隙層8が設けられている。
【選択図】 図1

Description

本発明は、赤外線放射素子及びその製造方法に関するものである。また本発明は、赤外線放射素子を使用したガスセンサに関するものである。
赤外放射源を利用した各種の分析装置(例えば、赤外線ガス分析計など)が知られている。旧来、これらの分析装置に使用される赤外放射源としては、ハロゲンランプが広く採用されてきたが、ハロゲンランプは、大型で且つ比較的寿命が短いので、赤外線を利用してガスを検出する小型のガスセンサ等への適用は難しい。
そこで、ハロゲンランプに代わって、より小型化が可能な赤外放射源として、マイクロマシニング技術を利用して製造する赤外線放射素子の活用が提案されている(例えば、特許文献1、2、3参照)。
上記した特許文献1〜3には、シリコン基板などをマイクロマシニング技術により加工して形成した矩形枠状の支持基板の一表面側において、2点間に線状の発熱体を架け渡した所謂マイクロブリッジ構造の赤外線放射素子が記載されている。
ところで赤外線の吸収を利用してガスを検出するガスセンサにおいて、検出精度を向上させるためには、赤外線放射素子から放射される赤外線の放射量を安定させた状態で、短時間の内に計測を終了することが望ましい。
この観点から見ると、上述したマイクロブリッジ構造の赤外線放射素子は、支持基板が矩形枠状に形成されており、線状の発熱体の周囲が空気雰囲気や真空雰囲気であり、発熱体と発熱体周囲との熱容量差が大きく、赤外線の輻射量を発熱体へ流す電流のオンオフに高速で応答させることができるので好ましい。
しかしながら、上記特許文献1〜3に開示された赤外線放射素子では、発熱体が線状に形成されており、両端部が支持基板に支持されているだけなので、剛性が低く、耐久性が劣る。即ち特許文献1〜3に開示された赤外線放射素子は、発熱体が破損したり熱によって溶断したりして寿命が短くなってしまうことがあった。
また特許文献1〜3に開示された赤外線放射素子は、赤外線の放射量が少ないという不満もあった。
そこで更に改良が進められ、上記した特許文献1〜3に開示された赤外線放射素子に比べて赤外線の放射量を増大させることができるとともに長寿命化を図ることが可能な赤外線放射素子として、多孔質シリコン層のような多孔質層を断熱層として採用した平面型の赤外線放射素子が提案されている。この種の平面型の赤外線放射素子としては、例えば、図12に示す構成のものがある。
図12に示す構成の赤外線放射素子Aは、シリコン基板からなる支持基板としての半導体基板101の一表面側に多孔質シリコン層からなる断熱層102が形成されるとともに、断熱層102上に金属薄膜からなる発熱体層104が形成され、発熱体層104の両端部上それぞれにパッド106,106が形成されている。
特開平9−153640号公報 特開2000−236110号公報 特開平10−294165号公報
ところで、赤外線放射素子Aの用途によっては、これを間欠的に駆動したい場合があり、この様な用途に使用する場合には、駆動間隔をできるだけ短くしたいという要望がある。ここで赤外線放射素子Aを駆動する際の周波数については、赤外線放射素子Aの断熱層102の断熱性が高いほど高周波とすることができる。そのため上記した要望に応えるためには、断熱層102の断熱性能を向上させることが必要であり、具体的には、多孔質シリコン層の多孔度(空隙率)を大きくすればよい。
しかしながら、多孔質シリコン層(断熱層)の多孔度を上げると、多孔質シリコン層自体の剛性が低下し、後工程でクラックが生じるという問題点があった。即ち図12に示した構成の赤外線放射素子Aでは、発熱体層104上の各パッド106,106が半導体基板101の厚み方向において断熱層102に重複している。一方、発熱体層104の厚さは数μmであり、発熱体層104自体は剛性を持たない。そのため断熱層102を構成する多孔質シリコン層の多孔度を上げると、パッド106,106にボンディングワイヤをワイヤボンディングする際の衝撃によって断熱層102が破損したり断熱層102にクラックが発生することがあった。
そこで本出願人は、研究を重ね、この問題を解決することができる発明を完成し、先に特許出願を行った(特願2005−18710号)。なおこの特許出願は、本願出願時において、未公開である。
特願2005−18710号に記載された発明は、「支持基板の一表面側に支持基板よりも熱伝導率の小さな多孔質層からなる断熱層が形成されるとともに、断熱層よりも熱伝導率および導電率それぞれが大きな発熱体層が断熱層の表面側に形成され、支持基板の前記一表面側に発熱体層と接する一対のパッドが形成された赤外線放射素子であって、支持基板の前記一表面側において発熱体層よりも支持基板側で各パッドそれぞれと重複する部位に、断熱層の中央部に比べて機械的強度が高い高強度構造部を有することを特徴とする赤外線放射素子。」である。
そして本出願人は、前記した特許出願を行った後もさらに試作研究を続け、さらに高性能の赤外線放射素子の実現を目指した。即ち、赤外線放射素子を、より早い応答速度で駆動させるための研究を重ねた。
その結果、特願2005−18710号に記載した赤外線放射素子は、支持基板に熱が洩れることが判明し、この熱洩れを阻止することができれば応答速度がより早いものとなることが判った。
即ち特願2005−18710号に記載された発明は、発熱体層の下に断熱層を設けた点に特徴を有し、断熱層で支持基板に熱が洩れることを防ぐものであり、旧来の構造に比べて格段に優れた性能を有するものではあるが、研究の結果、断熱層を迂回したり、パッド側に迂回することによって熱が支持基板に伝わることが判った。
特願2005−18710号に記載された赤外線放射素子において、支持基板に熱が洩れる際の経路は次の通りである。
図13は、特願2005−18710号に記載された赤外線放射素子Aにおいて、支持基板201に熱が洩れる際の第一の経路を示す赤外線放射素子の断面図である。
図14は、特願2005−18710号に記載された赤外線放射素子Aにおいて、支持基板201に熱が洩れる際の第二の経路を示す赤外線放射素子の断面図である。
特願2005−18710号に記載された赤外線放射素子Aは、支持基板(半導体基板)201の一表面側に多孔質シリコン層からなる断熱層202が形成され、断熱層202よりも熱伝導率および導電率それぞれが大きな発熱体層204及び絶縁層205が支持基板201及び断熱層202上に形成され、発熱体層204上に一対のパッド206、206が形成されたものである。
断熱層202は半導体基板201の一表面において、所定領域のみを多孔質層としたものである。そして半導体基板201の上記一表面側における上記所定領域の周辺部分201aのうち、半導体基板201の厚み方向において、各パッド206,206それぞれと重複する部位が、高強度構造部207を構成している。高強度構造部207は、断熱層202の中央部に比べて機械的強度が高い。
第一の経路は、図13の様に、発熱体層204で発生した熱が、発熱体層204の端部に伝導し、絶縁層205を介して支持基板201側に逃げるものである。即ち発熱体層204は、ジュール熱によってパッド206,206間が発熱するが、発熱体層204自体の熱伝導率が高いため、発熱体層204の中央部分で発生した熱がパッド側に伝導される。特願2005−18710号に記載された赤外線放射素子Aでは、断熱層202は発熱体層204の中央部分に厚く設けられており、パッド206と重なる部位は、断熱層202が無いか、あっても薄い。そのためパッド側に伝導された熱が、絶縁層205を介して支持基板201側に洩れる。
第二の経路は、図14の様に発熱体層204で発生した熱の斜放射成分が支持基板201側へ洩れるものである。
即ち特願2005−18710号に記載された赤外線放射素子Aでは、前記した様に断熱層202は発熱体層204の中央部分にあり、略垂直方向に延びている。これに対して熱は、放射状に拡散して行くので、斜め方向に拡散する熱に対して断熱層202は薄いと言える。そのため発熱体層204で発生した熱の内、斜放射状に拡散する成分に対しては断熱効果が低く、多くの熱が支持基板201側に洩れる。
そこで本発明は、上記した問題点及び研究によって得られた知見に基づき、より応答速度の早い赤外線放射素子の開発を課題とするものである。
本発明は、次の様な構成を採用した。
即ち請求項1に記載の発明は、支持基板を有し、前記支持基板の表面側に、前記支持基板の主要部よりも熱伝導率の小さな多孔質層からなる主断熱層が形成され、さらに発熱体層が主断熱層の表面側の位置に形成されると共に発熱体層の表面側に一対のパッドが形成されており、前記支持基板の前記表面側であって各パッドそれぞれと重複する部位に、前記主断熱層の中央部に比べて機械的強度が高い高強度構造部を有する赤外線放射素子であって、前記パッドと支持基板との間に空隙層を有することを特徴とする赤外線放射素子である。
本発明の赤外線放射素子は、前記した第一の経路を遮断するものであり、パッドと支持基板との間に空隙層が設けられている。本発明では、パッドと支持基板との間に空隙層が設けられているので、中央で発生した熱が発熱体層のパッド側に伝導されるものの、支持基板には伝わりにくい。即ち本発明では、パッドの下部に断熱効果の高い中空部を設けることによって、支持基板側への伝熱を抑制できる。よって放射効率を向上できる。
また本発明の赤外線放射素子は、パッドと重複する部位に、機械的強度が高い高強度構造部を有するものであるから、応答速度の向上を図りながらも後工程における破損を防止することができる。例えば本発明の構成によると、各パッドそれぞれへボンディングワイヤをワイヤボンディングする際の衝撃によって素子が破損されるのを防止することができる。
また空隙層は、支持基板の表面に対して平行に設けられていることが望ましい(請求項2)。
請求項3に記載の発明は、空隙層との重複部分に、主断熱層よりも多孔度が高い補助断熱層を有することを特徴とする請求項1又は2に記載の赤外線放射素子である。
空隙層との重複部分に、主断熱層よりも多孔度が高くて断熱効果の高い補助断熱層を設けることによって、発熱体層から支持基板への伝熱をさらに抑制できるので、放射効率を向上することができる。
請求項4に記載の発明は、補助断熱層の厚さが主断熱層の厚さよりも薄いことを特徴とする請求項3に記載の赤外線放射素子である。
本発明の赤外線放射素子では、補助断熱層の厚さが主断熱層の厚さよりも薄いので、高強度構造部の強度を低下させることがない。
請求項5に記載の発明は、主断熱層の側面側に断熱溝が設けられていることを特徴とする請求項1乃至4のいずれかに記載の赤外線放射素子である。
本発明の赤外線放射素子は、前記した第二の経路を遮断するものであり、主断熱層の側面側に断熱溝が設けられている。本発明の赤外線放射素子では、断熱層から支持基板への伝熱を抑制できるので、放射効率をさらに向上させることができる。
請求項6に記載の発明は、断熱溝の側面側に主断熱層よりも多孔度が高い補助断熱層を有することを特徴とする請求項5に記載の赤外線放射素子である。
本発明によると、主断熱層側から支持基板への伝熱をさらに抑制できるので、放射効率をさらに向上することができる。
請求項7に記載の発明は、赤外放射源から赤外線を所定空間へ放射させて所定空間内の検知対象ガスでの赤外線の吸収を利用して検知対象ガスを検出するガスセンサであって、赤外放射源として請求項1乃至6のいずれかに記載の赤外線放射素子を備えてなることを特徴とするガスセンサである。
本発明のガスセンサは、応答性の良い赤外放射源を採用しているので、高精度でありながら、省電力である。
請求項8に記載の発明は、請求項1乃至6のいずれかに記載の赤外線放射素子の製造方法において、空隙層を構成させる部位に固形物の補助層を積層し、少なくとも補助層に重ねて他の層を積層した後に前記補助層を除去する工程を有することを特徴とする赤外線放射素子の製造方法である。
本発明の製造方法によれば、請求項1乃至6のいずれかに記載の特徴を有する赤外線放射素子が容易に製造できる。
本発明の赤外線放射素子は、応答速度のより一層の向上を図ることができる効果がある。また本発明の赤外線放射素子は、パッドへボンディングワイヤをワイヤボンディングする際の衝撃による破損を防止することができるという効果も併せ持っている。
(実施形態1)
以下、本発明の実施形態について説明する。
図1は、本発明の第一の実施形態の赤外線放射素子Aの斜視図である。
本実施形態の赤外線放射素子Aは、発熱体層4への通電により発熱体層4を発熱させることで発熱体層4から赤外線が放射される赤外線放射素子Aである。そして本実施形態の赤外線放射素子Aでは、支持基板(半導体基板)1の厚み方向の一表面(図1における上面)側に主断熱層2が形成されている。この主断熱層2は、支持基板1の一部を多孔質化したものであり、支持基板1の主要部(主断熱層2以外の部位)よりも熱伝導率が十分に小さい。
また主断熱層2の上に発熱体層4が積層されている。発熱体層4は、通電によって発熱するものである。発熱体層4は、前記した主断熱層2よりも熱伝導率および導電率のいずれもが大きい。
発熱体層4上に通電用の一対のパッド(電極)6,6が形成されている。なお、支持基板1の平面形状は矩形状であり、主断熱層2および発熱体層4の平面形状も矩形状である。ここに、発熱体層4は、パッド6,6の並設方向における寸法を同じ方向における主断熱層2の寸法よりも大きく設定してある。また、パッド6,6は、発熱体層4の両端部それぞれの上に発熱体層4と接する形で形成されている。
そして本実施形態に特有の構成として、支持基板の表面側であって各パッド6,6それぞれと支持基板1との間に空隙層8が設けられている。
前記した主断熱層2と、発熱体層4、パッド6,6及び空隙層8の位置関係を説明すると、主断熱層2は、発熱体層4の中央部分のみと重複しており、発熱体層4の両端部側には主断熱層2は無い。またパッド6,6は、発熱体層4の両端部側に設けられているので、パッド6,6と重複する部位には主断熱層2は無い。
発熱体層4の厚さは、いずれの部位も略均一であるが、両端部側は、中央部分に比べて外側に突出しており、発熱体層4の両端部側と支持基板1の間に空隙層(空隙部)8が形成されている。前記した発熱体層4の両端部側は、支持基板1の表面に対して平行であり、前記した空隙層8についても、支持基板1及び発熱体層4の双方に対して平行である。なお製造過程においては、空隙層8は水平姿勢となる。このように支持基板の表面に対して平行に設けられた空隙層を、以下、「水平空隙層」という。
本実施形態の赤外線放射素子Aは、多孔質層を利用した平面型の赤外線放射素子であって、発熱体層4から放射される赤外線のピーク波長をλ(μm)、発熱体層4の絶対温度をT(K)とすれば、ピーク波長λは、「λ=2898/T」となり、発熱体層4の絶対温度Tと発熱体層4から放射される赤外線のピーク波長λとの関係がウィーンの変位則を満たしている。要するに、本実施形態の赤外線放射素子Aでは、発熱体層4が擬似黒体を構成しており、外部電源からパッド6,6間に印加する電圧を調整することにより、発熱体層4に発生するジュール熱を変化させることができて、発熱体層4から放射される赤外線のピーク波長λを変化させることができる。
なお、本実施形態の赤外線放射素子Aでは、支持基板1の厚さを525μm、主断熱層2の厚さを50μm、発熱体層4の厚さを50nm、パッド6の厚さを300nmとしてあるが、これらの厚さは一例であって特に限定するものではない。
本実施形態の赤外線放射素子Aでは、発熱体層4の中間部(パッド6,6同士の間)が発熱するが、この発熱部位の裏面側には主断熱層2が設けられている。従って発熱体層4の中間部から支持基板1側に洩れる熱は少ない。
また発熱部位の熱は、発熱体層4の両端部側(パッド6,6の部位)に伝導されるが、発熱体層4の両端部側と支持基板1との間には空隙層(水平空隙層)8が設けられている。
そのため発熱体層4の両端部側から支持基板1への熱伝導も阻止される。そのため本発明の赤外線放射素子Aは、発熱体層4からの無駄な熱放散が少なく、電流のオンオフに対する応答が早い。
加えて本実施形態の赤外線放射素子Aは、支持基板1の上記一表面側において所定領域のみに多孔質層としての多孔質シリコン層からなる主断熱層2を形成してあり、支持基板1の上記一表面側における上記所定領域の周辺部分1aのうち支持基板1の厚み方向において各パッド6,6それぞれと重複する部位が、主断熱層2の中央部に比べて機械的強度が高い高強度構造部7を構成している。言い換えれば、本実施形態の赤外線放射素子Aでは、支持基板1の上記一表面側において発熱体層4よりも支持基板1側で各パッド6,6それぞれと重複する部位に、主断熱層2の中央部に比べて機械的強度が高い高強度構造部7を有している。
そのため本実施形態の赤外線放射素子Aでは、主断熱層2を構成する多孔質シリコン層の多孔度を大きくすることで応答速度の向上を図りながらも、上記高強度構造部7を有していることにより、各パッド6,6それぞれへボンディングワイヤをワイヤボンディングする際の衝撃によって主断熱層2が破損したり主断熱層2にクラックが発生するのを防止することができる。ここで、支持基板1の上記一表面側において主断熱層2が形成されていない上記周辺部分1aは、必ずしも各パッド6,6の全域に重複している必要はない。
次に赤外線放射素子Aの製造方法について説明する。
図2は、図1に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。即ち図2の(a)〜(g)は赤外線放射素子Aの製造方法の説明図であって、(a)〜(g)それぞれにおける左側の図は平面図、右側の図は断面図を示している。
本実施形態の赤外線放射素子Aは、支持基板1の一部を陽極酸化処理して主断熱層2を形成し、その上に絶縁層(補助層)5と発熱体層4及びパッド6を構成する膜を形成し、その後に、絶縁層(補助層)5を除去して空隙層8を成形することによって製造される。即ち本実施形態の赤外線放射素子Aは「主断熱層形成工程」、「絶縁層(補助層)形成工程」、「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行うことによって完成される。
最初に、支持基板1の一部に主断熱層2を形成する工程(主断熱層形成工程)を説明する。
主断熱層2を形成するのに際しては、ゴム系のフォトレジストからなるレジスト層10aを形成し(図2(a))、所定の部位をマスクする。具体的には、図2(a)の様に平面視で長方形の枠内の両端部をフォトレジストによってマスクする。なお実際の製造工程においては、一枚の基板から多数の赤外線放射素子Aを作るので、一枚の基板に多数の長方形の枠があり、そのそれぞれの両端部がフォトレジストによってマスクされることとなる。
支持基板(半導体基板)1として用いるシリコン基板の導電形はp型、n型のいずれでもよいが、p型のシリコン基板の方が陽極酸化処理により多孔質化を行った際に多孔度が大きくなりやすい傾向にあるので、支持基板1としてはp型のシリコン基板を用いることが好ましい。なお、支持基板1の一部を陽極酸化処理して多孔質化する際の電流密度は、支持基板1の導電形および導電率に応じて適宜設定すればよい。
例えば支持基板1としてp型の単結晶シリコン基板であって、抵抗率10Ωcm、面方位(100)、厚さ525μmのものが採用可能である。
レジスト層10aを形成することにより、断熱層となる部分のみが開口し、高強度構造部7となる領域の表面のみにレジスト層が形成された構造を作る。
続いて、レジスト層10aをマスクとして陽極酸化処理し、支持基板1の露出部位を所定深さまで多孔質化することにより、主断熱層2を形成する(図2(b))。
例えば50wt%のフッ化水素水溶液とエタノールとを1:1で混合した電解液を用い、シリコン基板の裏面を陽極とし、電解液中においてシリコン基板表面に対向配置した白金電極を陰極とし、電源から陽極と陰極との間に電流を流し陽極酸化を行うことにより、多孔質シリコン(ナノ結晶シリコン)からなる主断熱層2を作製する(図2(b))。シリコン基板が抵抗率10Ωcmのp型基板の場合、50mA/cm2の電流を8分間流すことにより、深さ50μm、多孔度75%の多孔質シリコン層が形成される。
もちろん陽極酸化処理の条件(例えば、電流密度および処理時間)を適宜設定することにより、主断熱層2となる多孔質シリコン層の多孔度および厚みをそれぞれ所望の値とすることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなる。例えば、熱伝導率が168W/(m・K)、熱容量が1.67×106J/(m3・K)の単結晶のシリコン基板を陽極酸化処理によって多孔質化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×106J/(m3・K)であることが知られている。
陽極酸化処理が終了すると、レジスト層10aを除去する(図2(c))。
前記した主断熱層形成工程が終了すると、絶縁層(補助層)形成工程を行う。絶縁層(補助層)形成工程においては、上記したレジスト層10aを除去した後(図2(c))、支持基板1の上記一部表面に絶縁層5を形成する(図2(d))。なお絶縁層5は、後の工程で除去されるので、本発明においては、補助層として機能する。
絶縁層(補助層)5の成膜は、例えばスパッタ法やCVD法により行うことができる。例えば支持基板1の上記一表面に所定膜厚(例えば1.0μm)の酸化膜系からなる絶縁膜を、スパッタ法やCVD法により成膜する。
絶縁層5の材料としては、シリコン基板を用いている場合は二酸化珪素(SiO2 )や窒化珪素(SiN)を採用し、成膜のパターニング方法としては、絶縁膜の一部を露出可能とするメタルマスクを支持基板1の上記一表面にセットした後で成膜する方策や、主断熱層2の一表面のみにレジストをパターニングし、支持基板1の上記一表面に絶縁膜を堆積させた上で主断熱層2表面のレジスト及び絶縁膜をリフトオフする方策が採用可能である。
あるいは支持基板1の上記一表面に絶縁膜を堆積させた上で、その上にレジストを塗布し、主断熱層2表面のみを開口したパターンにして、プラズマエッチングまたは反応性イオンエッチングなどにより、主断熱層2表面の絶縁膜を除去する方策を採用することもできる。
絶縁層(補助層)形成工程が終了すると、発熱体層形成工程を行う。発熱体層形成工程では、支持基板1の上記一表面側に発熱体層4を形成する(図2(e))。
発熱体層4は、例えば、炭素層(例えば、アモルファスカーボン層、グラファイト層、グラファイトライクカーボン層、ダイヤモンド層、ダイヤモンドライクカーボン層など)、電熱合金層(例えば、NiCr層など)、貴金属層(イリジウム層)、高融点金属層(例えば、タングステン層など)、主断熱層2に比べて多孔度の小さな多孔質シリコン層などにより構成すればよい。
より具体的には、発熱体層4としては、スパッタ法によって50nmのタングステン薄膜を形成する。
発熱体層形成工程が終了すると、パッド形成工程を行う。パッド形成工程は、発熱体層4の両端部上それぞれにパッド6を形成する工程である(図2(f))。
各パッド6,6は、金属材料(例えばアルミニウム、白金、金)により形成すればよい。例えば膜厚500nmのアルミニウム薄膜を電子ビーム蒸着法で形成する。パターニングには、メタルマスク法、リフトオフ法、エッチング法のいずれの手法を用いてもよい。
そして最後に補助層除去工程(空隙形成工程)を実施する。補助層除去工程(空隙形成工程)は、絶縁層(補助層)5を除去し水平空隙層8を形成する工程である(図2(g))。絶縁層5除去は、例えばエッチングによって行うことができる。エッチングによる補助層除去工程では、フッ酸系および燐酸などの水溶液またはガスなどを用いることで絶縁層5(二酸化珪素や窒化珪素)を除去することができる。この工程を経て発熱体層4と高強度構造部7間には水平空隙層8が形成される。
(実施形態2)
次に、本発明の第二の実施形態について説明する。
図3は、本発明の第二実施形態の赤外線放射素子Aの斜視図である。
図3に示す赤外線放射素子Aは、先の実施形態の赤外線放射素子Aをさらに改良したものであり、空隙層8との重複部分に、主断熱層2よりも多孔度が高い補助断熱層3が設けられている。補助断熱層3の厚さは、主断熱層2の厚さよりも薄い。
即ち本実施形態の赤外線放射素子Aでは、支持基板1の表面側(発熱体層4及びパッド層側)に補助断熱層3が設けられている。言い換えれば、支持基板1の本体部分と空隙層8との間に補助断熱層3が設けられた構成である。
本実施形態の赤外線放射素子Aでは、発熱体層4の両端部側と支持基板1との間に、先の実施形態と同様に空隙層8が設けられ、さらに加えて補助断熱層3があるから、発熱体層4の両端部側から支持基板1への熱伝導がより完全に阻止される。そのため本発明の赤外線放射素子Aは、発熱体層4からの無駄な熱放散が少なく、電流のオンオフに対する応答がより早い。
次に赤外線放射素子Aの製造方法について説明する。
図4は、図3に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。即ち図4の(a)〜(j)は赤外線放射素子Aの製造方法の説明図であって、(a)〜(j)それぞれにおける左側の図は平面図、右側の図は断面図を示している。
本実施形態の赤外線放射素子Aは、先述した第一実施形態の赤外線放射素子Aに比べて、補助断熱層3が新たに付加された構成である。従って製造方法は、先の実施形態の製造方法に対して補助断熱層3を形成させる工程(補助断熱層形成工程)が追加されたものである。
即ち本実施形態の赤外線放射素子Aは、「主断熱層形成工程」、「補助断熱層形成工程」、「絶縁層(補助層)形成工程」、「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行うことによって完成される。
本実施形態の赤外線放射素子Aの製造に際して実施される「主断熱層形成工程」は、第一実施形態で行われた工程と全く同一であり、レジスト層10aを形成し(図4(a))、レジスト層10aをマスクとして陽極酸化処理し、支持基板1の露出部位を所定深さまで多孔質化することにより、主断熱層2を形成した後(図4(b))、レジスト層10aを除去する(図4(c))。
主断熱層形成工程が終了すると、続いて補助断熱層形成工程を実施する。
補助断熱層形成工程においては、上記したレジスト層10aを除去した後、主断熱層2の表面に新たなレジスト層10bを形成する。レジスト層10bは、支持基板1の上記一表面上に補助断熱層3を形成する際における陽極酸化処理時のマスクとして機能する。
当該レジスト層10bをマスクとして陽極酸化処理によって支持基板1の露出部位を所定深さ(例えば5μm)まで多孔質化することにより、補助断熱層3を形成する。
高強度構造部7の強度を保持し、かつ、断熱性を向上させるために、補助断熱層3の深さは主断熱層2よりも浅くし、多孔度は主断熱層2よりも大きくする必要がある。
補助断熱層3は、前記した主断熱層2に比べて厚さが薄く、且つ多孔度が高いため、陽極酸化処理の条件が、主断熱層2を形成する場合とはやや異なる。具体的には、処理における電流密度が高く、処理時間が短い。
補助断熱層3を形成する条件として、50wt%のフッ化水素水溶液とエタノールとを1:1で混合した電解液を用い、シリコン基板の裏面を陽極とし、電解液中においてシリコン基板表面に対向配置した白金電極を陰極とし、電源から陽極と陰極との間に電流を流し陽極酸化を行うことにより、多孔質シリコン(ナノ結晶シリコン)からなる補助断熱層3を作製する(図4(e))。シリコン基板が抵抗率10Ωcmのp型基板の場合、100mA/cm2の電流を48秒間流すことにより、深さ5μm、多孔度85%の多孔質シリコン層が形成される。
そして続いて絶縁層(補助層)形成工程を実施する。即ち上記レジスト層10bを除去した後、支持基板1の上記一部表面に絶縁層(補助層)5を形成する。
さらに続いて「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行う。これらの工程は、先の実施形態と同一である。
即ち絶縁層(補助層)形成工程が終了すると、支持基板1の表面側にタングステン薄膜からなる発熱体層4を形成する(図4(h))。
発熱体層形成工程が終了すると、発熱体層4の両端部上それぞれにパッド6を形成する。
そして最後に補助層除去工程(空隙形成工程)を実施し、エッチング等の方策によって絶縁層5(二酸化珪素や窒化珪素)を除去し、発熱体層4と高強度構造部7間には水平空隙層8を形成させる(図4(j))。
(実施形態3)
次に、本発明の第三の実施形態について説明する。
図5は、本発明の第三実施形態の赤外線放射素子Aの斜視図である。
図5に示す赤外線放射素子Aについても、第一実施形態の赤外線放射素子Aをさらに改良したものであり、主断熱層2の側面側に断熱溝9が設けられた構成である。言い換えれば高強度構造部7側の支持基板1と、主断熱層2の間に、支持基板1の表面に対して垂直な溝状の空隙部(以下、「垂直空隙部」ともいう。)を設けたものである。
本実施形態の赤外線放射素子では、発熱体層4の両端部側と支持基板1との間に、先の実施形態と同様に水平空隙層8が設けられているから、発熱体層4の両端部側から支持基板1への熱伝導が阻止される。さらに加えて本実施形態の赤外線放射素子Aでは、主断熱層2の側面側に断熱溝9が設けられているから、前述した支持基板1に熱が洩れる際の第二の経路が遮断される。即ち熱は、放射状に拡散し、斜め方向に拡散する熱に対して主断熱層2が薄いものの、本実施形態では、主断熱層2の側面側に断熱溝9が設けられているから、斜め方向に拡散する熱が支持基板1(高強度構造部7側)に洩れることが阻止される。
そのため本発明の赤外線放射素子Aは、発熱体層4からの無駄な熱放散が少なく、電流のオンオフに対する応答がより早い。
次に赤外線放射素子Aの製造方法について説明する。
図6は、図5に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。即ち図6の(a)〜(j)は赤外線放射素子Aの製造方法の説明図であって、(a)〜(j)それぞれにおける左側の図は平面図、右側の図は断面図を示している。
本実施形態の赤外線放射素子Aは、先述した第一実施形態の赤外線放射素子Aに比べて、主断熱層2の側面側に断熱溝9が付加された構成である。従って製造方法は、先の実施形態の製造方法に対して断熱溝9を形成させる工程(断熱溝形成工程)が追加されたものである。
即ち本実施形態の赤外線放射素子Aは、「主断熱層形成工程」、「断熱溝形成工程」、「絶縁層(補助層)形成工程」、「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行うことによって完成される。
本実施形態の赤外線放射素子Aの製造に際して実施される「主断熱層形成工程」は、第一実施形態で行われた工程と全く同一であり、レジスト層10aを形成し(図6(a))、レジスト層10aをマスクとして陽極酸化処理し、支持基板1の露出部位を所定深さまで多孔質化することにより、主断熱層2を形成した後(図6(b))、レジスト層10aを除去する(図6(c))。
主断熱層形成工程が終了すると、続いて断熱溝形成工程を実施する。
断熱溝形成工程においては、上記したレジスト層10aを除去した後、支持基板1の表面上に垂直空隙部を形成するドライエッチングのマスクとして新たなレジスト層10bを形成し、当該レジスト層10bをマスクとしてドライエッチングを行い、支持基板1の露出部位を所定深さ(例えば50μm)までエッチングすることにより、断熱溝(垂直空隙部)9を形成する(図6(e))。
なお、後の工程で断熱溝(垂直空隙部)9上に発熱体層4を成膜する際、あらかじめ絶縁膜5をもって断熱溝9上部を塞ぐ必要があるため、断熱溝9のエッチング幅は狭くする(例えば2.0μm)。
また、ドライエッチングには深堀り反応性イオンエッチングを採用し、レジスト厚み2.0μmに対し、エッチング時間が120分の場合、エッチング深さ50μmの断熱溝(垂直空隙部)9が形成される。
上記レジスト層10bを除去した後、「絶縁層(補助層)形成工程」を実施し、支持基板1の表面の一部に絶縁層5を形成する(図6(g))。
例えば支持基板1の表面に所定膜厚(例えば1.0μm)の絶縁膜を, スパッタ法やCVD法により成膜する。絶縁層5の材料としては、シリコン基板を用いている場合は二酸化珪素(SiO2 )や窒化珪素(SiN)を採用することが推奨される。
また後の工程で発熱体層4を成膜する際、成膜の土台として、絶縁膜で断熱溝(垂直空隙部)9上部を埋める必要がある。この手法としてはスパッタ成膜法の場合は、斜方スパッタ法を用いることにより、絶縁膜を効率よく断熱溝(垂直空隙部)9の上部に堆積させる方策が考えられる。また熱酸化により、断熱溝(垂直空隙部)9内部を酸化膜(二酸化珪素SiO2 )で埋める方策も有効である。
さらに続いて「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行う。これらの工程は、先の実施形態と同一である。
即ち絶縁層(補助層)形成工程が終了すると、支持基板1の表面側にタングステン薄膜からなる発熱体層4を形成する(図6(h))。
発熱体層形成工程が終了すると、発熱体層4の両端部上それぞれにパッド6,6を形成する。
そして最後に補助層除去工程(空隙形成工程)を実施し、エッチング等の方策によって絶縁層5(二酸化珪素や窒化珪素)を除去し、発熱体層4と高強度構造部7間には水平空隙層8を形成させる(図6(j))。
(実施形態4)
次に、本発明の第四の実施形態について説明する。
図7は、本発明の第四実施形態の赤外線放射素子Aの斜視図である。
図7に示す赤外線放射素子Aは、前記した第三実施形態の赤外線放射素子Aをさらに改良したものであり、断熱溝9の側面側に主断熱層2よりも多孔度が高い補助断熱層3を設けた構成である。言い換えれば高強度構造部7側の支持基板と、断熱溝9の間に、さらに補助断熱層3を設けたものである。
本実施形態の赤外線放射素子Aでは、発熱体層4の両端部側と支持基板1との間に、先の実施形態と同様に水平空隙層8が設けられているから、発熱体層4の両端部側から支持基板1への熱伝導が阻止される。加えて本実施形態の赤外線放射素子Aでは、主断熱層2の側面側に断熱溝9が設けられているから、前述した支持基板1に熱が洩れる際の第二の経路が遮断される。さらに加えて本実施形態の赤外線放射素子Aでは、断熱溝9の側面側に補助断熱層3を設けたので、前述した支持基板1に熱が洩れる際の第二の経路が完全に遮断される。即ち熱は、放射状に拡散し、斜め方向に拡散する熱に対して主断熱層2が薄いものの、本実施形態では、主断熱層2の側面側に断熱溝9と補助断熱層3が設けられているから、斜め方向に拡散する熱が支持基板1(高強度構造部7側)に洩れることが阻止される。
そのため本発明の赤外線放射素子Aは、発熱体層4からの無駄な熱放散が少なく、電流のオンオフに対する応答がより早い。
次に赤外線放射素子Aの製造方法について説明する。
図8、図9は、図7に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。即ち図8、図9の(a)〜(m)は赤外線放射素子Aの製造方法の説明図であって、(a)〜(m)それぞれにおける左側の図は平面図、右側の図は断面図を示している。
本実施形態の赤外線放射素子Aは、先述した第三実施形態の赤外線放射素子Aに比べて、断熱溝9の側面側に補助断熱層3が付加された構成である。従って製造方法は、先の実施形態の製造方法に対して補助断熱層3を形成させる工程(補助断熱層形成工程)が追加されたものである。
即ち本実施形態の赤外線放射素子Aは、「主断熱層形成工程」、「補助断熱層形成工程」、「断熱溝形成工程」、「絶縁層(補助層)形成工程」、「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行うことによって完成される。
本実施形態の赤外線放射素子Aの製造に際して実施される「主断熱層形成工程」は、第一実施形態で行われた工程と全く同一であるので詳細な説明を省略する。
主断熱層形成工程が終了すると、続いて「補助断熱層形成工程」を実施する。
補助断熱層形成工程においては、上記したレジスト層10aを除去した後、支持基板1の表面上に補助断熱層3を形成する陽極酸化処理時のマスクとして新たなレジスト層10bを形成し、当該レジスト層10bをマスクとして陽極酸化処理によって支持基板1の露出部位を所定深さ(例えば50μm)まで多孔質化することにより、補助断熱層3を形成する(図8(e))。
例えば50wt%のフッ化水素水溶液とエタノールとを1:1で混合した電解液を用い、シリコン基板の裏面を陽極とし、電解液中においてシリコン基板表面に対向配置した白金電極を陰極とし、電源から陽極と陰極との間に電流を流し陽極酸化を行うことにより、多孔質シリコン(ナノ結晶シリコン)からなる補助断熱層3を作製する。シリコン基板が抵抗率10Ωcmのp型基板の場合、50mA/cm2の電流を8分間流すことにより、深さ50μm、多孔度75%の多孔質シリコン層が形成される。
高強度構造部7の強度を保持しつつ、断熱性を向上させるために、補助断熱層3の幅は主断熱層2よりも狭くし( 例えば10μm)、多孔度は高くする必要がある。
続いて断熱溝形成工程を実施する。断熱溝形成工程は先の実施形態と同様である。即ち 断熱溝形成工程においては、上記したレジスト層10bを除去した後(図8(f))、支持基板1の表面上に垂直空隙部を形成するドライエッチングのマスクとしてレジスト層10cを形成し(図8(g))、当該レジスト層10cをマスクとしてドライエッチングを行い、支持基板1の露出部位を所定深さ(例えば50μm)までエッチングすることにより、断熱溝9(垂直空隙部)を形成する(図8(h))。
上記レジスト層10cを除去した後(図8(i))、「絶縁層(補助層)形成工程」を実施し、半導体基板の表面の一部に絶縁層5を形成する(図9(j))。「絶縁層(補助層)形成工程」は先の実施形態と同一である。
さらに続いて「発熱体層形成工程」、「パッド形成工程」及び「補助層除去工程(空隙形成工程)」を順次行う。これの工程は、先の実施形態と同一である。
即ち絶縁層(補助層)形成工程が終了すると、支持基板1の表面側にタングステン薄膜からなる発熱体層4を形成する(図9(k))。
発熱体層形成工程が終了すると、発熱体層4の両端部上のそれぞれにパッド6を形成する。そして最後に補助層除去工程(空隙形成工程)を実施し、エッチング等の方策によって絶縁層5(二酸化珪素や窒化珪素)を除去し、発熱体層4と高強度構造部7間には水平空隙層8を形成させる(図9(m))。
(実施形態5)
次に、本発明の第五の実施形態について説明する。
図10は、本発明の第五実施形態の赤外線放射素子の斜視図である。
図10に示す赤外線放射素子は、前記した各実施形態の特徴的構成を全て取り入れたものである。
即ち図10に示す赤外線放射素子Aは、発熱体層4への通電により発熱体層4を発熱させることで発熱体層4から赤外線が放射される赤外線放射素子Aであり、支持基板1の厚み方向の一表面(図1における上面)を多孔質化して主断熱層2が形成されている。また主断熱層2の上に発熱体層4が積層されている。発熱体層4上に通電用の一対のパッド(電極)6,6が形成されている。
そして支持基板1の表面側であって各パッド6,6それぞれと支持基板1との間に水平空隙層8が設けられている。
さらに水平空隙層8との重複部分に、主断熱層2よりも多孔度が高く支持基板1の表面に平行な水平補助断熱層3aが設けられている。水平補助断熱層3aの厚さは、主断熱層2の厚さよりも薄い。また主断熱層2の側面側に断熱溝9が設けられている。さらに断熱溝9の側面側に主断熱層2よりも多孔度が高く支持基板1の表面に垂直な垂直補助断熱層3bが設けられている。
以上、説明した実施形態1〜4では、空隙部(空隙層)は平行又は垂直であり、その空隙部の壁面は平滑である様に図示している。しかしながら実際にはこの様に平滑に成形することは困難であり、ある程度の凹凸は存在する。また空隙部を構成する壁面は、その全域において非接触状態であることが望ましいが、ある程度の部分で接触している場合もある。
また各実施形態では、水平に設けた空隙部(水平空隙層8)は、いずれも支持基板1であるシリコン基板(補助断熱層3を含む)の上面に設けたが、シリコン基板の上面に他の層が積層され、その上に空隙部(空隙層)が設けられていてもよい。また空隙部と発熱体層4の間に他の層が介在されていてもよい。
垂直に設けた空隙部(断熱溝9)についても同様であり、主断熱層2との間に他の層が介在されていてもよい。
(実施形態6)
以上は、いずれも赤外線放射素子の変形例について説明したが、次に赤外線放射素子Aを採用したガスセンサ20について説明する。
図11は、本実施形態のガスセンサ20の分解斜視図である。
本実施形態のガスセンサ20は、赤外線光源21と、光学的なフィルター22と、検出素子23によって構成される。そして赤外線光源21には、上述した第一乃至第五の実施形態の赤外線放射素子Aが採用されている。
ガスセンサ20は、ガス通過部24を有し、当該ガス通過部24にガスGを通過させる。本実施形態のガスセンサ20は、赤外線放射素子Aから放射される赤外線Rの吸収量を測定することによって、空気中に存在する特定ガス(メタン、二酸化炭素、一酸化炭素、窒素酸化物その他)の濃度を測定することができる。
本実施形態のガスセンサ20は、赤外線光源21の熱漏れが改善されることにより、赤外線光源21の放射効率が向上し(高精度化)、ガスセンサ20に対する供給電力量を抑えることができる(省電力化)効果がある。
本発明の第一実施形態の赤外線放射素子Aの斜視図である。 図1に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。 本発明の第二実施形態の赤外線放射素子Aの斜視図である。 図3に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。 本発明の第三実施形態の赤外線放射素子Aの斜視図である。 図5に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。 本発明の第四実施形態の赤外線放射素子Aの斜視図である。 図7に示す赤外線放射素子Aの製造工程を示す平面図と、側面断面図である。 図7に示す赤外線放射素子Aの製造工程であって図8に示す工程に続く工程を示す平面図と、側面断面図である。 本発明の第五実施形態の赤外線放射素子Aの斜視図である。 本実施形態のガスセンサ20の分解斜視図である。 従来技術の赤外線放射素子Aの断面図である。 特願2005−18710号に記載された赤外線放射素子Aにおいて、支持基板に熱が洩れる際の第一の経路を示す赤外線放射素子Aの断面図である。 特願2005−18710号に記載された赤外線放射素子Aにおいて、支持基板に熱が洩れる際の第二の経路を示す赤外線放射素子Aの断面図である。
符号の説明
A 赤外線放射素子
1 支持基板(半導体基板)
2 主断熱層
3 補助断熱層
4 発熱体層
5 絶縁層
6 パッド
7 高強度構造部
8 水平空隙層
9 断熱溝(垂直空隙部)
20 ガスセンサ

Claims (8)

  1. 支持基板を有し、前記支持基板の表面側に、前記支持基板の主要部よりも熱伝導率の小さな多孔質層からなる主断熱層が形成され、さらに発熱体層が主断熱層の表面側の位置に形成されると共に発熱体層の表面側に一対のパッドが形成されており、前記支持基板の前記表面側であって各パッドそれぞれと重複する部位に、前記主断熱層の中央部に比べて機械的強度が高い高強度構造部を有する赤外線放射素子であって、前記パッドと支持基板との間に空隙層を有することを特徴とする赤外線放射素子。
  2. 空隙層は、支持基板の表面に対して平行に設けられていることを特徴とする請求項1に記載の赤外線放射素子。
  3. 空隙層との重複部分に、主断熱層よりも多孔度が高い補助断熱層を有することを特徴とする請求項1又は2に記載の赤外線放射素子。
  4. 補助断熱層の厚さが主断熱層の厚さよりも薄いことを特徴とする請求項3に記載の赤外線放射素子。
  5. 主断熱層の側面側に断熱溝が設けられていることを特徴とする請求項1乃至4のいずれかに記載の赤外線放射素子。
  6. 断熱溝の側面側に主断熱層よりも多孔度が高い補助断熱層を有することを特徴とする請求項5に記載の赤外線放射素子。
  7. 赤外放射源から赤外線を所定空間へ放射させて所定空間内の検知対象ガスでの赤外線の吸収を利用して検知対象ガスを検出するガスセンサであって、赤外放射源として請求項1乃至6のいずれかに記載の赤外線放射素子を備えてなることを特徴とするガスセンサ。
  8. 請求項1乃至6のいずれかに記載の赤外線放射素子の製造方法において、空隙層を構成させる部位に固形物の補助層を積層し、少なくとも補助層に重ねて他の層を積層した後に前記補助層を除去する工程を有することを特徴とする赤外線放射素子の製造方法。
JP2005245379A 2005-08-26 2005-08-26 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法 Pending JP2007057456A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245379A JP2007057456A (ja) 2005-08-26 2005-08-26 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245379A JP2007057456A (ja) 2005-08-26 2005-08-26 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法

Publications (1)

Publication Number Publication Date
JP2007057456A true JP2007057456A (ja) 2007-03-08

Family

ID=37921075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245379A Pending JP2007057456A (ja) 2005-08-26 2005-08-26 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法

Country Status (1)

Country Link
JP (1) JP2007057456A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864504B1 (ko) 2007-03-30 2008-10-20 (주)유우일렉트로닉스 Ndir 가스 센서용 고감도 적외선 감지 소자 및 그제조방법
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
JP2010236934A (ja) * 2009-03-30 2010-10-21 Panasonic Electric Works Co Ltd 赤外線放射素子
KR101034647B1 (ko) 2008-09-30 2011-05-16 (주)유우일렉트로닉스 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법
JP2015500465A (ja) * 2011-12-01 2015-01-05 コーニンクレッカ フィリップス エヌ ヴェ Irエミッタの温度変調および電力消費を改善するための構造設計およびプロセス
WO2015045343A1 (ja) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 赤外線放射素子及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100864504B1 (ko) 2007-03-30 2008-10-20 (주)유우일렉트로닉스 Ndir 가스 센서용 고감도 적외선 감지 소자 및 그제조방법
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
KR101034647B1 (ko) 2008-09-30 2011-05-16 (주)유우일렉트로닉스 웨이퍼 레벨 패키징을 이용한 ndir 방식의 가스 센서용적외선 감지소자 및 그의 제조방법
JP2010236934A (ja) * 2009-03-30 2010-10-21 Panasonic Electric Works Co Ltd 赤外線放射素子
JP2015500465A (ja) * 2011-12-01 2015-01-05 コーニンクレッカ フィリップス エヌ ヴェ Irエミッタの温度変調および電力消費を改善するための構造設計およびプロセス
WO2015045343A1 (ja) * 2013-09-26 2015-04-02 パナソニックIpマネジメント株式会社 赤外線放射素子及びその製造方法
CN105579832A (zh) * 2013-09-26 2016-05-11 松下知识产权经营株式会社 红外线放射装置及其制造方法
JPWO2015045343A1 (ja) * 2013-09-26 2017-03-09 パナソニックIpマネジメント株式会社 赤外線放射素子及びその製造方法

Similar Documents

Publication Publication Date Title
JP2007057456A (ja) 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
US20100239828A1 (en) Resistively heated small planar filament
KR100917792B1 (ko) 반사판을 구비한 마이크로 히터 및 그 제조방법
KR101786803B1 (ko) Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법
JP3918868B2 (ja) 半導体レンズの製造方法
US7378656B2 (en) Infrared radiation element and gas sensor using it
KR101078187B1 (ko) 마이크로 가스 센서 및 그 제조 방법
JP4396464B2 (ja) 赤外線放射素子およびそれを用いたガスセンサ
JP2006331752A (ja) 赤外線放射素子
JP2009210290A (ja) 赤外線放射素子
JP4424221B2 (ja) 赤外線放射素子及びそれを用いたガスセンサ
TWI492218B (zh) 熱致發聲裝置
JP2004502139A5 (ja)
JP4501705B2 (ja) 赤外線放射素子
TW423166B (en) Photodiode with the emitting surface and ohmic electrode located on different plane and its manufacturing method
JP4534597B2 (ja) 赤外線放射素子
JP4534645B2 (ja) 赤外線放射素子
JP2009210287A (ja) 赤外線放射素子
JP4586796B2 (ja) 半導体レンズの製造方法
JP4852886B2 (ja) 赤外線放射素子
JP2006153511A (ja) 湿度センサ
JP2004031945A (ja) 窒化物半導体発光チップ
JP4291965B2 (ja) 電子放出表示装置の製造方法
JP2010145296A (ja) 赤外線放射素子及びその製造方法
JPS62220850A (ja) 雰囲気検出装置