JP2009210289A - 赤外線検出システム - Google Patents

赤外線検出システム Download PDF

Info

Publication number
JP2009210289A
JP2009210289A JP2008051002A JP2008051002A JP2009210289A JP 2009210289 A JP2009210289 A JP 2009210289A JP 2008051002 A JP2008051002 A JP 2008051002A JP 2008051002 A JP2008051002 A JP 2008051002A JP 2009210289 A JP2009210289 A JP 2009210289A
Authority
JP
Japan
Prior art keywords
infrared
porous
semiconductor substrate
infrared detection
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008051002A
Other languages
English (en)
Inventor
Yoshiaki Honda
由明 本多
Yoshifumi Watabe
祥文 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008051002A priority Critical patent/JP2009210289A/ja
Publication of JP2009210289A publication Critical patent/JP2009210289A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】赤外線検出感度の高い赤外線検出システムを提供する。
【解決手段】第1の半導体基板11とヒータ層13との間に形成された第1の多孔質部12を有する赤外線放射素子10と、第2の半導体基板21と感温部23との間に形成された第2の多孔質部22を有し赤外線放射素子10から放射された赤外線を検出する赤外線検出素子20と、赤外線放射素子10への入力電力を制御して赤外線放射素子10から赤外線を放射させる制御部(図示せず)とを備える。赤外線放射素子10は、第1の多孔質部12におけるヒータ層13側に第1の多孔質部12の表層部を酸化することにより形成された第1の封孔層12dを有し、赤外線検出素子20は、第2の多孔質部22における感温部23側に第2の多孔質部22の表層部を酸化することにより形成された第2の封孔層22dを有する。
【選択図】 図1

Description

本発明は、赤外線放射素子と当該赤外線放射素子から放射された赤外線を検出する赤外線検出素子とを備えた赤外線検出システムに関するものである。
従来から、赤外放射源を利用した各種の分析装置(例えば、赤外線ガス分析計などの赤外線検出システム)が提供されているが、これらの分析装置で用いられている赤外放射源として代表的なものは、ハロゲンランプであって、大型で且つ寿命が比較的短いので、赤外線を利用してガスを検出する小型のガスセンサへの適用は難しい。なお、透光性の気密容器内に放射体としてのフィラメントを収納したハロゲンランプのような赤外放射源においては、フィラメントの形状や放射特性などを工夫することにより小型化を図ったものもあるが、気密容器を必要とするから、小型のガスセンサへの適用は難しいのが現状である。
そこで、小型化が可能な赤外放射源として、マイクロマシンニング技術を利用して形成する赤外線放射素子が各所で研究開発されている(例えば、特許文献1〜3参照)。
ここにおいて、上記特許文献1〜3には、シリコン基板などをマイクロマシンニング技術により加工して形成した矩形枠状の支持基板の一表面側において2点間に線状の発熱体を架け渡した所謂マイクロブリッジ構造の赤外線放射素子が記載されている。なお、この種のマイクロブリッジ構造の赤外線放射素子は、線状の発熱体への通電に伴うジュール熱により発熱体から赤外線を放射させるものであって、中赤外領域の赤外線を放射可能であり且つ電気的な入力に対する高速応答性を有している。
ところで、赤外線の吸収を利用してガスを検出するガスセンサにおいて検出精度を高くするためには、赤外線放射素子から放射される赤外線の放射量を安定させ短時間で計測することが望ましく、上述のマイクロブリッジ構造の赤外線放射素子では、支持基板が矩形枠状に形成されており、線状の発熱体の周囲が空気なので、発熱体と発熱体周囲との熱容量差を大きくすることができ、発熱体へ流す電流のオンオフに高速で応答するようになっている。
しかしながら、上記特許文献1〜3に開示された赤外線放射素子では、線状の発熱体の両端に設けたパッド間へ印加する電圧のオンオフに伴う応答速度を向上させるために、発熱体の周囲を空気または真空として発熱体と周囲との熱容量の差を大きくしてあるが、発熱体が線状の形状に形成されており両端部が支持基板に支持されているだけなので、発熱体が破損したり熱により溶断したりして寿命が短くなってしまうことがあった。
そこで、上記特許文献1〜3に開示された赤外線放射素子に比べて長寿命化を図ることが可能な赤外線放射素子として、多孔質シリコンからなる多孔質部を断熱層として採用した赤外線放射素子が提案されている(例えば、特許文献4)。ここにおいて、上記特許文献4に記載された赤外線放射素子は、例えば、シリコン基板の一表面側に多孔質シリコンからなる断熱層が形成されるとともに、断熱層上に発熱体層(ヒータ層)が形成され、発熱体層の両端部上それぞれにパッドが形成されている。
このような赤外線放射素子を例えば分光式ガスセンサ用の赤外線源として用いる場合、赤外線放射素子を間欠的に駆動することで赤外線を間欠的に放射させ、赤外線を検出する受光素子(赤外線検出素子)の出力をロックインアンプにより増幅することで、ガスセンサの出力のS/Nを向上させることができる。
ところで、上記特許文献4には、受光素子の具体的な構造について記載されていないが、応答速度を向上させるために、図8に示すように、単結晶のシリコン基板101の一表面側に多孔質シリコンからなる多孔質部102が形成され、多孔質部102上にシリコン酸化膜からなる絶縁膜103が形成され、当該絶縁膜103上にサーモパイル型のセンシングエレメントからなる感温部104が形成された赤外線検出素子(特許文献5参照)を用いることが考えられる
特開平9−153640号公報(段落番号〔0027〕、〔0028〕、図2参照) 特開2000−236110号公報(段落番号〔0017〕、〔0018〕、〔0019〕、図1、図2参照) 特開平10−294165号公報(段落番号〔0014〕、〔0015〕、図1参照) 特開2006−13415号公報 特開平9−145479号公報
ところで、図8に示した構成の赤外線検出素子では、感温部104と多孔質部102との間にシリコン酸化膜からなる絶縁膜103が形成されているので、絶縁膜103が形成されていない場合に比べて断熱性が低下して赤外線検出感度が低下してしまうという問題があった。また、上記特許文献4に記載された赤外線放射素子では、断熱層を構成している多孔質部の熱物性が、空気中に含まれる酸素などとの反応や不純物の吸着や付着などに起因して変化し、赤外線の出力が低下したり不安定となってしまい、結果的に赤外線検出素子での赤外線検出感度が低下してしまう。
本発明は上記事由に鑑みて為されたものであり、その目的は、赤外線検出感度の高い赤外線検出システムを提供することにある。
請求項1の発明は、第1の半導体基板の一表面側に形成されたヒータ層および第1の半導体基板の前記一表面側で第1の半導体基板とヒータ層との間に形成された第1の多孔質部を有する赤外線放射素子と、第2の半導体基板の一表面側に形成された感温部および第2の半導体基板の前記一表面側で第2の半導体基板と感温部との間に形成された第2の多孔質部を有し赤外線放射素子から放射された赤外線を検出する赤外線検出素子と、赤外線放射素子への入力電力を制御して赤外線放射素子から赤外線を放射させる制御部とを備え、赤外線放射素子は、第1の多孔質部におけるヒータ層側に第1の多孔質部の表層部を酸化することにより形成された第1の封孔層を有し、赤外線検出素子は、第2の多孔質部における感温部側に第2の多孔質部の表層部を酸化することにより形成された第2の封孔層を有することを特徴とする。
この発明によれば、赤外線放射素子が、第1の多孔質部におけるヒータ層側に第1の多孔質部の表層部を酸化することにより形成された第1の封孔層を有しているので、空気中に含まれる酸素や水分などの反応性物質や不純物が第1の多孔質部に吸着したり付着したりして熱物性が変化するのを抑制することができて、第1の多孔質部の経時変化による出力低下を抑制でき、しかも、赤外線検出素子が、第2の多孔質部における感温部側に第2の多孔質部の表層部を酸化することにより形成された第2の封孔層を有しているので、感温部と第2の多孔質部との間にシリコン酸化膜などの絶縁膜を介在させてある場合に比べて赤外線検出素子の赤外線検出感度を高めることができる。
請求項2の発明は、請求項1の発明において、前記赤外線検出素子は、前記感温部が、前記第2の多孔質部よりも不純物濃度の高い高不純物濃度多孔質部と、当該高不純物濃度多孔質部の表層部を酸化することにより形成された高不純物濃度封孔層とからなることを特徴とする。
この発明によれば、前記感温部を、前記第2の多孔質部および前記第2の封孔層を形成してから不純物を選択的にイオン注入することにより形成することができる。
請求項3の発明は、請求項1の発明において、前記赤外線検出素子は、前記第2の多孔質部が多孔質の酸化シリコン、多孔質の酸化シリコン系ポリマー、多孔質酸化シリコン系無機ポリマーの群から選択される材料により形成されてなることを特徴とする。
この発明によれば、前記第2の多孔質部が多孔質シリコンにより形成されている場合に比べて熱浸透率を小さくできて、前記第2の多孔質部の断熱性が向上し、赤外線検出感度のより一層の高感度化を図れる。
請求項4の発明は、請求項1の発明において、前記赤外線検出素子は、前記第2の多孔質部が前記第2の半導体基板の一部を陽極酸化処理することにより形成されてなることを特徴とする。
この発明によれば、前記第2の多孔質部を前記第2の半導体基板の所望の領域に精度良く形成することが可能となる。
請求項5の発明は、請求項1ないし請求項4の発明において、前記赤外線検出素子は、前記感温部の周辺に前記第2の封孔層が露出していることを特徴とする。
この発明によれば、前記第2の封孔層のうち前記感温部の周辺に露出した部位や当該部位下の前記第2の多孔質部で赤外線が吸収されるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
請求項6の発明は、請求項1ないし請求項5の発明において、前記赤外線検出素子は、前記感温部の熱浸透率が前記第2の多孔質部の熱浸透率よりも大きいことを特徴とする。
この発明によれば、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
請求項7の発明は、請求項1ないし請求項6の発明において、前記赤外線検出素子は、前記感温部が、抵抗ボロメータ型のセンシングエレメントもしくはサーモパイル型のセンシングエレメントからなり、前記第2の多孔質部の熱拡散長が前記感温部の幅寸法よりも大きいことを特徴とする。
この発明によれば、前記感温部が抵抗ボロメータ型のセンシングエレメントもしくはサーモパイル型のセンシングエレメントからなる構成において、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
請求項8の発明は、請求項1または請求項4または請求項6の発明において、前記赤外線検出素子は、前記感温部が、抵抗ボロメータ型のセンシングエレメントからなり、前記第2の半導体基板の前記一表面側において前記第2の多孔質部および前記第2の封孔層が形成された部位上に形成され、前記第2の半導体基板の前記一表面側において前記第2の多孔質部および前記第2の封孔層が形成された部位以外の領域上に形成された絶縁膜上に3つの感温抵抗体が形成され、前記感温部と当該3つの感温抵抗体とからなる4つの抵抗がブリッジ接続されてなることを特徴とする。
この発明によれば、赤外線検出感度をより高めることができる。
請求項9の発明は、請求項1ないし請求項8の発明において、前記赤外線放射素子は、前記第1の半導体基板と前記第1の多孔質部との界面が前記ヒータ層から前記第1の多孔質部側へ放射された赤外線を反射する凹曲面状の赤外線反射ミラーを構成していることを特徴とする。
この発明によれば、前記赤外線放射素子において、前記ヒータ層から放射された赤外線を効率良く取り出すことができ、赤外線の出力の高出力化が可能となり、結果的に、赤外線検出感度を高めることができる。
請求項1の発明は、赤外線検出感度を高めることができるという効果がある。
(実施形態1)
本実施形態の赤外線検出システムは、赤外線を放射する赤外線放射素子10と、赤外線放射素子10から放射された赤外線を検出する赤外線検出素子20と、赤外線放射素子10の駆動電源(例えば、電池など)から赤外線放射素子10への入力電力を制御して赤外線を放射させるマイクロコンピュータなどからなる制御部(図示せず)とを備えている。また、本実施形態の赤外線検出システムは、ガスセンサであり、赤外線検出素子20の出力に基づいてガス濃度を演算するマイクロコンピュータなどからなる信号処理部(図示せず)と、信号処理部により求められたガス濃度を表示する表示部(図示せず)とを備えており、検知対象ガス成分の分子構造から決定する吸収波長の赤外線の吸光度に基づいてガス濃度を求めるようになっている。
赤外線放射素子10は、図2(a),(b)に示すように、単結晶のシリコン基板からなる第1の半導体基板11の一表面側(図2(b)における上面側)にヒータ層(発熱体層)13が形成されるとともに、ヒータ層13と第1の半導体基板11との間に多孔質シリコン層からなる第1の多孔質部12が形成されており、第1の半導体基板11の上記一表面側にヒータ層13の両端部それぞれと電気的に接続される一対のパッド14,14が形成されている。したがって、赤外線放射素子10は、一対のパッド14,14を介してヒータ層13へ入力電力が与えることによりヒータ層13から赤外線を放射する。
上述の第1の半導体基板11の外周形状は矩形状であって、第1の多孔質部12の平面形状は円形状、ヒータ層13の平面形状は短冊状に形成してあるが、これらの平面形状は特に限定するものではない。ここにおいて、第1の多孔質部12は、第1の半導体基板11に比べて熱伝導率および熱容量が小さく、ヒータ層13と第1の半導体基板11との間の断熱層として機能する。
また、赤外線放射素子10は、第1の半導体基板11の上記一表面側に各パッド14,14およびヒータ層13と半導体基板11とを電気的に絶縁する絶縁膜(例えば、シリコン窒化膜、シリコン酸化膜など)15が形成されており、各パッド14,14は、ヒータ層13の端部と絶縁膜15のうち第1の半導体基板11の上記一表面上に形成された部位とに跨って形成されている。
本実施形態では、上述のように第1の半導体基板11として単結晶のシリコン基板を用いており、第1の多孔質部12を多孔質シリコン層により構成しているので、第1の半導体基板11の一部を電解液中で陽極酸化処理することにより第1の多孔質部12を形成することができる。ここにおいて、多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が148〔W/(m・K)〕、熱容量が1.63×10〔J/(m・K)〕の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1〔W/(m・K)〕、熱容量が0.7×10〔J/(m・K)〕であることが知られている。なお、本実施形態では、第1の多孔質部12を多孔度が略70%の多孔質シリコン層により構成してあり、第1の多孔質部12の熱伝導率が0.12〔W/(m・K)〕、熱容量が0.5×10〔J/(m・K)〕となっている。ここで、第1の多孔質部12の多孔度は特に限定するものではないが、少なくとも、SiO、Siのような絶縁材料よりも断熱性が高くなるように設定する。
上述のヒータ層3の材料としては、第1の半導体基板11の材料であるSiに比べて高融点の金属を採用することが好ましく、本実施形態では、Irを採用しているが、Irに限らず、例えば、W、Mo、Ni、Pt、Ta、Tiなどの金属やNiCrなどの電熱合金や、ポリシリコンなどを採用してもよい。ただし、ヒータ層13の材料として採用する金属としては、熱応力に起因してヒータ層13や第1の多孔質部12が破壊されるのを防止するという観点から、第1の半導体基板11の材料であるSiの熱膨張係数に近い熱膨張係数を有する金属を採用することが好ましい。
また、ヒータ層3と第1の多孔質部12との間に密着性改善用の密着層として例えばTi膜を介在させてもよいし、ヒータ層13の表面側に当該ヒータ層13に比べて放射率の高い材料(例えば、金黒、Crなど)からなる高放射率層を設けてもよい。ここにおいて、密着層や高放射率層を設けることにより、ヒータ層13の材料の制約が少なくなるという利点がある。なお、上記密着層の材料はTiに限らず、例えば、Cr、Nb、Zr、TiN、TaNなどでもよい。
また、各パッド14,14は、Alにより形成してあるが、Alに限らず、Auなどを採用してもよいし、単層構造に限らず、例えば、多層構造(例えば、Cr膜とNi膜とAu膜との積層膜)を採用してもよい。
本実施形態の赤外線放射素子においてヒータ層13から放射される赤外線のピーク波長λは、ヒータ層13の温度に依存し、ピーク波長をλ〔μm〕、ヒータ層13の絶対温度をT〔K〕とすれば、ピーク波長λは、
λ=2898/T
となり、ヒータ層13の絶対温度Tとヒータ層3から放射される赤外線のピーク波長λとの関係がウィーンの変位則を満足している。要するに、本実施形態の赤外線放射素子では、ヒータ層13が黒体を構成しており、上記駆動電源からパッド14,14間に与える入力電力を調整することにより、ヒータ層13に発生するジュール熱を変化させる(つまり、ヒータ層13の温度を変化させる)ことができる。したがって、ヒータ層13への最大入力電力に応じてヒータ層13の温度を変化させることができ、また、ヒータ層13の温度を変化させることでヒータ層13から放射される赤外線のピーク波長λを変化させることができる。
ところで、上述の赤外線放射素子10は、第1の半導体基板11と第1の多孔質部12との界面がヒータ層13から第1の多孔質部12側へ放射された赤外線を反射する凹曲面状の赤外線反射ミラー16を構成しており、第1の多孔質部12におけるヒータ層13側の表面が凹曲面状に形成されており、ヒータ層13が当該第1の多孔質部12の凹曲面状の表面の一部に沿った断面形状に形成されているので、ヒータ層13から表面側へ放射される赤外線を集光することができるとともに、赤外線反射ミラー16により反射された赤外線を集光することができるので、入力電力に対する応答速度が速い高出力の赤外線ビームを得ることが可能となる(なお、図1中の矢印は、赤外線放射素子10から放射された赤外線を模式的に示している)。図3に、室温(300〔K〕)下にある赤外線放射素子10に対してヒータ層13の温度が1003〔K〕になるような入力電力を単パルス的に与えた場合のヒータ層13の室温からの温度上昇値ΔT〔K〕を測定した結果を示す。ここに、図3の横軸は時間であって、縦軸は入力電力および温度上昇値ΔTそれぞれのピークを1として正規化してあり、同図中の「イ」が入力電力の時間変化(つまり、入力波形)を示し、「ロ」が温度上昇値ΔTの時間変化(つまり、入力波形に対する応答波形)を示している。この図3から、ヒータ層13へ入力電力を単パルス的に与えることによりヒータ層13の温度が瞬時に上昇・下降していることが分かり(入力波形の半値幅は5.3μsec、応答波形の半値幅は20μsecである)、高速応答が可能であることが確認された。
なお、上述の赤外線放射素子10において、第1の多孔質部12におけるヒータ層13側の表面を凹曲面状に形成するには、第1の多孔質部12を形成するにあたって、まず、第1の半導体基板11の上記一表面側に当該凹曲面状を形成するための除去部位となる多孔質部を形成してから当該多孔質部を除去し、その後、陽極酸化処理を行うことにより第1の多孔質部12を形成すればよい。
また、上述の赤外線放射素子10は、第1の多孔質部12が、第1の半導体基板11側に屈折率の異なる複数(本実施形態では、2つであるが、3つ以上でもよい)の多孔質層12b,12cにより構成され所望の波長域の赤外線を選択的に反射する多層反射部17を有しており、多孔質層12b,12cの屈折率と厚さとを適宜設定することにより、波長選択性を持たせることができるので、ヒータ層13から第1の多孔質部12側へ放射された赤外線に対する波長選択性を向上させることができる。なお、上述の多孔質層12b,12cは、多孔度を異ならせることにより、屈折率を異ならせてあり、第1の半導体基板11に近い多孔質層12cに比べて、第1の半導体基板11から遠い多孔質層12bの多孔度を低く設定してある。上述の多孔質層12b,12cは、陽極酸化工程において、陽極酸化処理の条件を適宜設定することにより形成することができる。
また、赤外線放射素子10は、第1の多孔質部12におけるヒータ層13側に封孔処理を施すことにより第1の封孔層12dが形成され、ヒータ層13における第1の多孔質部12側と反対側の表面に、当該表面側へ放射される赤外線をカットする(阻止する)ための絶縁膜(例えば、シリコン窒化膜、シリコン酸化膜など)18が形成されている。
第1の封孔層12dは、第1の多孔質部12の表層部を酸化する封孔処理工程を行うことにより形成してあり、電気絶縁性を有している。ここで、第1の多孔質部12の表層部は、第1の多孔質部12を形成する陽極酸化工程において、陽極酸化処理の条件を適宜設定することにより第1の断熱部12aとなる部位に比べて多孔度および細孔径を小さくしてある。封孔処理工程では、第1の多孔質部12の表層部を高温高湿(例えば、温度が120℃、湿度が85%)の雰囲気に曝して酸化する(つまり、酸化種を含む雰囲気において少なくとも第1の多孔質部12の表層部を加熱した状態で酸化する)ことで第1の封孔層12dを形成している。
以上説明した赤外線放射素子10によれば、第1の多孔質部12におけるヒータ層13側に第1の封孔層12dが形成されていることにより、酸素や水分などの反応性物質や不純物が第1の多孔質部12に吸着したり付着したりして第1の多孔質部12の熱物性が変化するのを抑制することができ、第1の多孔質部12の経時変化による出力低下を抑制できる。
また、赤外線放射素子10は、第1の多孔質部12に上述の多層反射部17が設けられる一方で、ヒータ層13における第1の多孔質部12側と反対側の表面が絶縁膜18により覆われているので、赤外線放射素子10全体として放射する赤外線の波長の選択性を高めることができ、不要は波長域の赤外線が放射されるのを抑制することができ、ガスセンサの高感度化を図れる。
次に、赤外線検出素子20について図4(a),(b)を参照しながら説明する。
赤外線検出素子20は、単結晶のシリコン基板からなる第2の半導体基板21の一表面側(図4(b)における上面側)に形成された感温部23および第2の半導体基板21の上記一表面側で第2の半導体基板21と感温部23との間に形成された多孔質シリコン層からなる第2の多孔質部22を有している。また、赤外線検出素子20は、感温部23が抵抗ボロメータ型のセンシングエレメント(感温抵抗)により構成されており、第2の半導体基板21の上記一表面側に感温部23の両端部それぞれと電気的に接続される一対のパッド24,24が形成されている。なお、感温部23の材料としては、Ptを採用しているが、Ptに限らず、例えば、Tiなどの抵抗温度依存性のある金属などを採用すればよい。
上述の第2の半導体基板21の外周形状は矩形状であって、第2の多孔質部22の平面形状は矩形状、感温部23の平面形状はつづら折れ状の形状に形成してあるが、これらの平面形状は特に限定するものではない。ここにおいて、第2の多孔質部22は、第2の半導体基板21に比べて熱伝導率および熱容量が小さく、感温部23と第2の半導体基板21との間の断熱層として機能する。
また、赤外線検出素子20は、第2の半導体基板21の上記一表面側に各パッド24,24および感温部23と第2の半導体基板21とを電気的に絶縁する絶縁膜(例えば、シリコン窒化膜、シリコン酸化膜など)25が形成されており、各パッド24,24は、感温部23の端部と絶縁膜25のうち第2の半導体基板21の上記一表面上に形成された部位とに跨って形成されている。
本実施形態では、上述のように第2の半導体基板21として単結晶のシリコン基板を用いており、第2の多孔質部22を多孔質シリコン層により構成しているので、第2の半導体基板21の一部を電解液中で陽極酸化処理することにより第2の多孔質部22を形成することができる。
また、赤外線検出素子20は、第2の多孔質部22における感温部23側に第2の多孔質部22の表層部を酸化することにより形成された第2の封孔層22dを有している。なお、第2の多孔質部22は、第2の半導体基板21の一部を陽極酸化処理することにより形成されているので、第2の多孔質部22を第2の半導体基板21の所望の領域に精度良く形成することが可能となる。ここにおいて、本実施形態では、第2の半導体基板21の上記一表面上に上述の絶縁膜25を形成するとともに第2の半導体基板21の他表面側に陽極を形成した後に陽極酸化処理を行うことにより厚みが一様な第2の多孔質部22を形成している。
第2の封孔層22dは、第2の多孔質部22の表層部を酸化する封孔処理工程を行うことにより形成してあり、電気絶縁性を有している。ここで、第2の多孔質部22の表層部は、第2の多孔質部22を形成する陽極酸化工程において、陽極酸化処理の条件を適宜設定することにより他の部位に比べて多孔度および細孔径を小さくしてある。封孔処理工程では、第2の多孔質部22の表層部を高温高湿(例えば、温度が120℃、湿度が85%)の雰囲気に曝して酸化する(つまり、酸化種を含む雰囲気において少なくとも第2の多孔質部22の表層部を加熱した状態で酸化する)ことで第2の封孔層22dを形成している。
しかして、本実施形態における赤外線検出素子20では、第2の多孔質部22における感温部23側に第2の多孔質部22の表層部を酸化することにより形成された第2の封孔層22dを有しており、当該第2の封孔層22dは第2の多孔質部22の多孔質の性状が残っている(ただし、封孔処理工程前よりも細孔径は小さくなっている)ので、CVD法やスパッタ法などにより成膜されるシリコン酸化膜やシリコン窒化膜などに比べて断熱性が高く、感温部23と第2の多孔質部22との間にシリコン酸化膜などの絶縁膜を介在させてある場合に比べて赤外線検出素子20の赤外線検出感度を高めることができる。
また、本実施形態における赤外線検出素子20は、感温部23の周辺に第2の封孔層22dが露出しているので、第2の封孔層2dのうち感温部23の周辺に露出した部位や当該部位下の第2の多孔質部22で赤外線が吸収され、多孔質では熱容量が小さく赤外線が照射されると赤外線吸収による温度変化が大きくなるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
また、本実施形態における赤外線検出素子20は、感温部23の熱浸透率が第2の多孔質部22の熱浸透率よりも大きいので、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。なお、熱浸透率は、熱伝導率をα〔W/(m・K)〕、熱容量をC〔J/(m・K)〕とするとき、熱浸透率=(α・C)1/2で表される。
また、本実施形態における赤外線検出素子20は、感温部23が、抵抗ボロメータ型のセンシングエレメントからなり、第2の多孔質部22の熱拡散長が感温部23の幅寸法よりも大きいので、感温部23が抵抗ボロメータ型のセンシングエレメントからなる構成において、第2の多孔質部22で受けた赤外線による熱が第2の半導体基板21側へ伝達する前に感温部23の温度を上昇させることができるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
以上説明した本実施形態の赤外線検出システムによれば、マイクロブリッジ構造の赤外線放射素子を用いる場合に比べて赤外線放射素子10の応答速度が速いので、ヒータ層13を所定温度(例えば、500℃)まで昇温するのに要する時間が短いので、省電力化を図れ、また、赤外線放射素子10が、第1の多孔質部11におけるヒータ層13側に第1の多孔質部11の表層部を酸化することにより形成された第1の封孔層12dを有しているので、第1の多孔質部12の経時変化による出力低下を抑制でき、しかも、赤外線検出素子20が、第2の多孔質部22における感温部23側に第2の多孔質部22の表層部を酸化することにより形成された第2の封孔層22dを有しているので、感温部23と第2の多孔質部22との間にシリコン酸化膜などの絶縁膜を介在させてある場合に比べて赤外線検出素子20の赤外線検出感度を高めることができる。
ところで、本実施形態では、第2の多孔質部22を多孔質シリコンにより形成しているが、第2の多孔質部22を多孔質の酸化シリコン、多孔質の酸化シリコン系ポリマー、多孔質酸化シリコン系無機ポリマーの群から選択される材料により形成するようにしてもよく、第2の多孔質部22をこれらの材料により形成した場合には、多孔質シリコンにより形成されている場合に比べて熱浸透率を小さくできて、第2の多孔質部22の断熱性が向上し、赤外線検出感度のより一層の高感度化を図れる。なお、第2の多孔質部22をこれらの材料により形成する場合には、例えば、第2の半導体基板22において第2の多孔質部22の形成予定領域に凹所を形成し、その後、ゾルゲル溶液を第2の半導体基板22の上記一表面側に回転塗布して凹所を埋め込んでから、乾燥させるプロセスを採用することができ、第2の多孔質部22を容易に形成することができる。
(実施形態2)
本実施形態の赤外線検出システムの基本構成は実施形態1と同じであり、図5(a),(b)に示す赤外線検出素子20の構成が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
本実施形態における赤外線検出素子20は、感温部23が、抵抗ボロメータ型のセンシングエレメントからなり、第2の半導体基板21の上記一表面側において第2の多孔質部22および第2の封孔層22dが形成された部位上に形成され、第2の半導体基板21の上記一表面側において第2の多孔質部22および第2の封孔層22dが形成された部位以外の領域上に形成された絶縁膜25上に3つの感温抵抗体27が形成され、感温部23と当該3つの感温抵抗体27とからなる4つの抵抗が金属配線(例えば、Al配線など)26によりブリッジ接続され、隣り合う抵抗同士を接続する金属配線26間にパッド24が形成されている。ここにおいて、各抵抗23,27は、平面形状がつづら折れ状の形状に形成されている。なお、本実施形態では、感温部23および各感温抵抗体27の材料としてTiを採用しているが、Tiに限らず、Ptなどを採用してもよい。
しかして、本実施形態の赤外線検出システムでは、実施形態1に比べて、赤外線検出感度をより高めることができる。また、本実施形態における赤外線検出素子20も、感温部23の周辺に第2の封孔層22dが露出しているので、第2の封孔層2dのうち感温部23の周辺に露出した部位や当該部位下の第2の多孔質部22で赤外線が吸収され、多孔質では熱容量が小さく赤外線が照射されると赤外線吸収による温度変化が大きくなるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
(実施形態3)
本実施形態の赤外線検出システムの基本構成は実施形態1と同じであり、図6(a),(b)に示す赤外線検出素子20の構成が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
本実施形態における赤外線検出素子20は、抵抗ボロメータ型のセンシングエレメントからなる感温部23が、第2の多孔質部22よりもボロンなどの不純物濃度の高い高不純物濃度多孔質部23eと、当該高不純物濃度多孔質部23eの表層部を酸化することにより形成された高不純物濃度封孔層23fとから構成されている。
しかして、本実施形態では、感温部23を、第2の多孔質部22および第2の封孔層22dを形成してから、第2の多孔質部22および第2の封孔層22dにおける感温部23の形成予定領域に不純物(例えば、ボロンなど)を選択的にイオン注入することにより形成することができる。このため実施形態1のように感温部23の材料としてPt、Tiなどの金属を採用している場合に比べて、感温部23を容易に形成することができるとともに、低コスト化を図れる。また、本実施形態では、感温部23が高不純物濃度多孔質部23eと高不純物濃度封孔層23fとで構成されていることにより、感温部23自体で赤外線を吸収できるため、Pt、Tiなどの金属に比べて、赤外線を効率良く検出することができる。また、本実施形態における赤外線検出素子20も、感温部23の周辺に第2の封孔層22dが露出しているので、第2の封孔層2dのうち感温部23の周辺に露出した部位や当該部位下の第2の多孔質部22で赤外線が吸収され、多孔質では熱容量が小さく赤外線が照射されると赤外線吸収による温度変化が大きくなるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
(実施形態4)
本実施形態の赤外線検出システムの基本構成は実施形態1と同じであり、図7(a),(b)に示す赤外線検出素子20の構成が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
本実施形態における赤外線検出素子20は、感温部23が、サーモパイル型のセンシングエレメントからなり、第2の多孔質部22の熱拡散長が感温部23の幅寸法よりも大きい点が相違するだけである。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
本実施形態における赤外線検出素子20の感温部23は、異種材料からなる熱電要素23a,23bの対からなる複数(ここでは、3つ)の熱電対が直列接続されたサーモパイル型のセンシングエレメントであって、3つの冷接点部が第2の半導体基板20の上記一表面上の絶縁膜25上に配置されるとともに、3つの温接点部が第2の封孔層22d上に配置されている。ここで、各熱電対は、対となる熱電要素23a,23bの一方をp形ポリシリコンにより形成するとともに他方をn形ポリシリコンにより形成し、対となる短冊状の熱電要素23a,23bの長手方向の一端部同士が各半導体エレメント23a,23bそれぞれの材料に比べて熱伝導率の高い材料(例えば、Alなどの金属材料)からなる接合部23cを介して接続されており、対となる熱電要素23a,23bの各一端部と接合部23cとで温接点部を構成している。また、感温部23は、隣り合う2つの熱電対の一方の熱電対の熱電要素23bの他端部と他方の熱電対の熱電要素23aの他端部とが金属材料(例えば、Alなど)からなる接合部23dを介して接続されており、上記一方の熱電対の熱電要素23bの他端部と上記他方の熱電対の熱電要素23aの他端部と接合部23dとで冷接点部を構成している。なお、対となる熱電要素23a,23bの材料は、p形ポリシリコンとn形ポリシリコンとの組み合わせに限らず、例えば、Alとポリシリコンとの組み合わせや、ポーラスのp形シリコンとn形シリコンとの組み合わせなどでもよい。
本実施形態では、上述のように、感温部23が、サーモパイル型のセンシングエレメントからなり、第2の多孔質部22の熱拡散長が感温部23の幅寸法よりも大きいので、赤外線検出素子20の感温部23がサーモパイル型のセンシングエレメントからなる構成において、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。また、本実施形態における赤外線検出素子20も、感温部23の周辺に第2の封孔層22dが露出しているので、第2の封孔層2dのうち感温部23の周辺に露出した部位や当該部位下の第2の多孔質部22で赤外線が吸収され、多孔質では熱容量が小さく赤外線が照射されると赤外線吸収による温度変化が大きくなるから、赤外線をより効率良く検出することができ、赤外線検出感度を高めることができる。
実施形態1における赤外線検出システムの概略構成図である。 同上における赤外線放射素子を示し、(a)は概略平面図、(b)は概略断面図である。 同上における赤外線放射素子の特性説明図である。 同上における赤外線検出素子を示し、(a)は概略平面図、(b)は概略断面図である。 実施形態2における赤外線検出素子を示し、(a)は概略平面図、(b)は概略断面図である。 実施形態3における赤外線検出素子を示し、(a)は概略平面図、(b)は概略断面図である。 実施形態4における赤外線検出素子を示し、(a)は概略平面図、(b)は概略断面図である。 従来例における赤外線検出素子の概略断面図である。
符号の説明
10 赤外線放射素子
11 第1の半導体基板
12 第1の多孔質部
12d 第1の封孔層
13 ヒータ層
14 パッド
15 絶縁膜
16 赤外線反射ミラー
20 赤外線検出素子
21 第2の半導体基板
22 第2の多孔質部
22d 第2の封孔層
23 感温部
23a 熱電要素
23b 熱電要素
23e 高不純物濃度多孔質部
23f 高不純物濃度封孔層
24 パッド
25 絶縁膜
27 感温抵抗体

Claims (9)

  1. 第1の半導体基板の一表面側に形成されたヒータ層および第1の半導体基板の前記一表面側で第1の半導体基板とヒータ層との間に形成された第1の多孔質部を有する赤外線放射素子と、第2の半導体基板の一表面側に形成された感温部および第2の半導体基板の前記一表面側で第2の半導体基板と感温部との間に形成された第2の多孔質部を有し赤外線放射素子から放射された赤外線を検出する赤外線検出素子と、赤外線放射素子への入力電力を制御して赤外線放射素子から赤外線を放射させる制御部とを備え、赤外線放射素子は、第1の多孔質部におけるヒータ層側に第1の多孔質部の表層部を酸化することにより形成された第1の封孔層を有し、赤外線検出素子は、第2の多孔質部における感温部側に第2の多孔質部の表層部を酸化することにより形成された第2の封孔層を有することを特徴とする赤外線検出システム。
  2. 前記赤外線検出素子は、前記感温部が、前記第2の多孔質部よりも不純物濃度の高い高不純物濃度多孔質部と、当該高不純物濃度多孔質部の表層部を酸化することにより形成された高不純物濃度封孔層とからなることを特徴とする請求項1記載の赤外線検出システム。
  3. 前記赤外線検出素子は、前記第2の多孔質部が多孔質の酸化シリコン、多孔質の酸化シリコン系ポリマー、多孔質酸化シリコン系無機ポリマーの群から選択される材料により形成されてなることを特徴とする請求項1記載の赤外線検出システム。
  4. 前記赤外線検出素子は、前記第2の多孔質部が前記第2の半導体基板の一部を陽極酸化処理することにより形成されてなることを特徴とする請求項1記載の赤外線検出システム。
  5. 前記赤外線検出素子は、前記感温部の周辺に前記第2の封孔層が露出していることを特徴とする請求項1ないし請求項4のいずれか1項に記載の赤外線検出システム。
  6. 前記赤外線検出素子は、前記感温部の熱浸透率が前記第2の多孔質部の熱浸透率よりも大きいことを特徴とする請求項1ないし請求項5のいずれか1項に記載の赤外線検出システム。
  7. 前記赤外線検出素子は、前記感温部が、抵抗ボロメータ型のセンシングエレメントもしくはサーモパイル型のセンシングエレメントからなり、前記第2の多孔質部の熱拡散長が前記感温部の幅寸法よりも大きいことを特徴とする請求項1ないし請求項6のいずれか1項に記載の赤外線検出システム。
  8. 前記赤外線検出素子は、前記感温部が、抵抗ボロメータ型のセンシングエレメントからなり、前記第2の半導体基板の前記一表面側において前記第2の多孔質部および前記第2の封孔層が形成された部位上に形成され、前記第2の半導体基板の前記一表面側において前記第2の多孔質部および前記第2の封孔層が形成された部位以外の領域上に形成された絶縁膜上に3つの感温抵抗体が形成され、前記感温部と当該3つの感温抵抗体とからなる4つの抵抗がブリッジ接続されてなることを特徴とする請求項1または請求項4または請求項6記載の赤外線検出システム。
  9. 前記赤外線放射素子は、前記第1の半導体基板と前記第1の多孔質部との界面が前記ヒータ層から前記第1の多孔質部側へ放射された赤外線を反射する凹曲面状の赤外線反射ミラーを構成していることを特徴とする請求項1ないし請求項8のいずれか1項に記載の赤外線検出システム。
JP2008051002A 2008-02-29 2008-02-29 赤外線検出システム Pending JP2009210289A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051002A JP2009210289A (ja) 2008-02-29 2008-02-29 赤外線検出システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051002A JP2009210289A (ja) 2008-02-29 2008-02-29 赤外線検出システム

Publications (1)

Publication Number Publication Date
JP2009210289A true JP2009210289A (ja) 2009-09-17

Family

ID=41183611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051002A Pending JP2009210289A (ja) 2008-02-29 2008-02-29 赤外線検出システム

Country Status (1)

Country Link
JP (1) JP2009210289A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101924A1 (ja) * 2010-02-16 2011-08-25 パナソニック株式会社 圧力波発生素子及びそれを搭載したデバイス
JP2013083651A (ja) * 2011-10-10 2013-05-09 Samsung Electronics Co Ltd 赤外線サーマルディテクタ及びその製造方法
JP2013524506A (ja) * 2010-03-30 2013-06-17 日本テキサス・インスツルメンツ株式会社 半導体熱電対及びセンサ
WO2013171941A1 (ja) * 2012-05-16 2013-11-21 パナソニック株式会社 赤外線放射素子
FR3072212A1 (fr) * 2017-10-10 2019-04-12 Safran Electronics & Defense Dispositif electrique a transition entre des comportements isolant et semiconducteur
WO2022195957A1 (ja) * 2021-03-18 2022-09-22 住友電気工業株式会社 光センサ

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915055A (ja) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd 赤外線検出回路
JPH09145479A (ja) * 1995-11-29 1997-06-06 New Japan Radio Co Ltd 非接触型温度センサ
JPH09153640A (ja) * 1995-11-30 1997-06-10 Kobe Steel Ltd 赤外線光源
JPH10294165A (ja) * 1997-04-18 1998-11-04 Matsushita Electric Works Ltd 赤外線光源及び赤外線光源を用いたガス濃度検出器
JP2000236110A (ja) * 1999-02-15 2000-08-29 Anritsu Corp 赤外線放射素子
JP2001208606A (ja) * 2000-01-27 2001-08-03 Alps Electric Co Ltd 赤外線センサ
JP2006013415A (ja) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd 赤外線放射素子およびそれを用いたガスセンサ
JP2006234424A (ja) * 2005-02-22 2006-09-07 Matsushita Electric Works Ltd 赤外線放射素子及びそれを用いたガスセンサ
JP2007051915A (ja) * 2005-08-17 2007-03-01 Matsushita Electric Works Ltd 赤外線センサ
JP2007057456A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
WO2007049496A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Works, Ltd. 圧力波発生装置およびその製造方法
JP2007292720A (ja) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd 半導体レンズおよびそれを用いた赤外線検出装置、半導体レンズの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915055A (ja) * 1995-06-27 1997-01-17 Matsushita Electric Works Ltd 赤外線検出回路
JPH09145479A (ja) * 1995-11-29 1997-06-06 New Japan Radio Co Ltd 非接触型温度センサ
JPH09153640A (ja) * 1995-11-30 1997-06-10 Kobe Steel Ltd 赤外線光源
JPH10294165A (ja) * 1997-04-18 1998-11-04 Matsushita Electric Works Ltd 赤外線光源及び赤外線光源を用いたガス濃度検出器
JP2000236110A (ja) * 1999-02-15 2000-08-29 Anritsu Corp 赤外線放射素子
JP2001208606A (ja) * 2000-01-27 2001-08-03 Alps Electric Co Ltd 赤外線センサ
JP2006013415A (ja) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd 赤外線放射素子およびそれを用いたガスセンサ
JP2006234424A (ja) * 2005-02-22 2006-09-07 Matsushita Electric Works Ltd 赤外線放射素子及びそれを用いたガスセンサ
JP2007051915A (ja) * 2005-08-17 2007-03-01 Matsushita Electric Works Ltd 赤外線センサ
JP2007057456A (ja) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
WO2007049496A1 (ja) * 2005-10-26 2007-05-03 Matsushita Electric Works, Ltd. 圧力波発生装置およびその製造方法
JP2007292720A (ja) * 2006-03-28 2007-11-08 Matsushita Electric Works Ltd 半導体レンズおよびそれを用いた赤外線検出装置、半導体レンズの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011101924A1 (ja) * 2010-02-16 2011-08-25 パナソニック株式会社 圧力波発生素子及びそれを搭載したデバイス
JP2013524506A (ja) * 2010-03-30 2013-06-17 日本テキサス・インスツルメンツ株式会社 半導体熱電対及びセンサ
JP2013083651A (ja) * 2011-10-10 2013-05-09 Samsung Electronics Co Ltd 赤外線サーマルディテクタ及びその製造方法
WO2013171941A1 (ja) * 2012-05-16 2013-11-21 パナソニック株式会社 赤外線放射素子
FR3072212A1 (fr) * 2017-10-10 2019-04-12 Safran Electronics & Defense Dispositif electrique a transition entre des comportements isolant et semiconducteur
WO2022195957A1 (ja) * 2021-03-18 2022-09-22 住友電気工業株式会社 光センサ

Similar Documents

Publication Publication Date Title
JP2009210289A (ja) 赤外線検出システム
KR101311322B1 (ko) 적외선식 가스 검지기 및 적외선식 가스 계측 장치
JP4054069B2 (ja) マイクロマシニング法により製造された光熱式ガスセンサ
JP6160667B2 (ja) 熱伝導式ガスセンサ
EP3368871B1 (en) Infrared device
JP2001349787A5 (ja)
JP2008145133A (ja) 放射温度計
US20070227575A1 (en) Thermopile element and infrared sensor by using the same
JP2017166826A (ja) ガスセンサ
AU2868492A (en) Regulated infrared source
JP4449906B2 (ja) 赤外線放射素子およびそれを用いたガスセンサ
JP2007121047A (ja) 赤外線センサ
JP4396464B2 (ja) 赤外線放射素子およびそれを用いたガスセンサ
US7279692B2 (en) Micromechanical infrared source
JPH06142063A (ja) 放射体温計
CN109084901A (zh) 一种红外辐射传感器
JP2011064633A (ja) 赤外線式ガス検知器
JP2009266506A (ja) 誘導加熱調理器
JP3874077B2 (ja) ヒステリシスを有するボロメ−タ型赤外線検出器及びその駆動方法
JP4184325B2 (ja) 可燃性ガスセンサ
JP2000055737A (ja) ボロメータ型赤外線センサ
JP4400156B2 (ja) レーザ用出力モニタ
EP3904846A1 (en) Thermal emitter with embedded heating element
JP2002156279A (ja) サーモパイル型赤外線センサ
JP5633195B2 (ja) 熱検知デバイス

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100924

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604