WO2013171941A1 - 赤外線放射素子 - Google Patents

赤外線放射素子 Download PDF

Info

Publication number
WO2013171941A1
WO2013171941A1 PCT/JP2013/001253 JP2013001253W WO2013171941A1 WO 2013171941 A1 WO2013171941 A1 WO 2013171941A1 JP 2013001253 W JP2013001253 W JP 2013001253W WO 2013171941 A1 WO2013171941 A1 WO 2013171941A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heating element
infrared radiation
substrate
element layer
Prior art date
Application number
PCT/JP2013/001253
Other languages
English (en)
French (fr)
Inventor
吉原 孝明
吉祥 永谷
辻 幸司
桐原 昌男
弘貴 松浪
植田 充彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013171941A1 publication Critical patent/WO2013171941A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/10Arrangements of light sources specially adapted for spectrometry or colorimetry
    • G01J3/108Arrangements of light sources specially adapted for spectrometry or colorimetry for measurement in the infrared range

Definitions

  • the present invention relates to an infrared radiation element.
  • an infrared radiation element manufactured using a manufacturing technology of MEMS micro-electro-mechanical systems
  • This type of infrared radiation element can be used as an infrared source (infrared light source) such as a gas sensor or an optical analyzer.
  • the radiation source includes a substrate 13, a first insulating layer 22 formed on the substrate 13, a radiation surface layer 11 formed on the first insulation layer 22, and a second surface formed on the radiation surface layer 11.
  • An insulating layer 24 and a plurality of extremely thin incandescent filaments 10 formed on the second insulating layer 24 are provided.
  • the radiation source includes a third insulating layer 26 that covers the plurality of incandescent filaments 10 and protects the plurality of incandescent filaments 10, and both ends of each incandescent filament 10 through openings formed in the third insulating layer 26. And a pair of metal pads 15 connected to the portion.
  • the second insulating layer 24 is provided to electrically insulate the radiation surface layer 11 from the plurality of incandescent filaments 10.
  • the incandescent filament 10 is surrounded by other elements (first insulating layer 22, radiation surface layer 11, second insulating layer 24, and third insulating layer 26) that form a multilayer structure as a uniform flat plate. It is stated that it is.
  • Reference 1 describes that the purpose of providing the first insulating layer 22 and the third insulating layer 26 is to protect the incandescent filament 10 and the radiating surface layer 11 from oxidation.
  • Document 1 describes an aqueous potassium hydroxide (KOH) solution, an ethylenediamine aqueous solution to which a small amount of pyrocatechol is added, and tetramethylammonium hydroxide (TMAH) as an etching solution that can be used to form the opening 14. .
  • KOH potassium hydroxide
  • TMAH tetramethylammonium hydroxide
  • the substrate 13 is formed of a (100) oriented silicon chip.
  • the first insulating layer 22 is made of a silicon nitride layer having a thickness of 200 nm.
  • the radiation surface layer 11 is made of a polysilicon film having a thickness of about 1 ⁇ m and doped with boron, phosphorus or arsenic.
  • the second insulating layer 24 is made of a silicon nitride layer having a thickness of about 50 nm.
  • the plurality of incandescent filaments 10 are made of a tungsten layer having a thickness of about 400 nm.
  • the third insulating layer 26 is made of a silicon nitride layer having a thickness of about 200 nm.
  • the metal pad 15 is made of, for example, aluminum, and forms ohmic contact with the plurality of incandescent filaments 10 through the openings formed in the third insulating layer 26.
  • the radiation surface layer 11 has an area of 1 mm 2 .
  • each incandescent filament 10 has a thickness of 0.1-1 ⁇ m and a width of 2-10 ⁇ m, and the plurality of incandescent filaments 10 are arranged at intervals of 20-50 ⁇ m. ing.
  • a plurality of incandescent filaments 10 are heated by an electric current flowing through the incandescent filaments 10, and the plurality of incandescent filaments 10 are used exclusively for heating the radiating surface layer 11. Act as the main heat radiation source.
  • the infrared radiation element is intermittently driven to emit infrared light intermittently, and the output of the light receiving element that detects the infrared light is locked in. It is known that the S / N ratio of the output of the gas sensor can be improved by amplifying with an amplifier.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide an infrared radiation element that can achieve low power consumption and high output, and can improve reliability. Is to provide.
  • the infrared radiation element (1) of the present invention includes a substrate (2), a heating element layer (3) formed on one surface (20) side of the substrate (2), and a protection covering the heating element layer (3).
  • infrared rays are radiated from the heating element layer (3) by energizing the heating element layer (3).
  • the substrate (2) includes an opening (2a) that exposes a part (6a) of the surface opposite to the insulating layer (6) when viewed from the heating element layer (3) side.
  • the insulating layer (6) includes a diaphragm (6D) that separates the opening (2a) and the heating element layer (3), and the one surface around the opening (2a) in the substrate (2).
  • a support portion (6S) that is provided on the side and supports the diaphragm portion (6D).
  • the insulating layer (6) and the protective layer (4) are made of a material having a linear expansion coefficient closer to the heating element layer (3) than the pads (9, 9).
  • each of the pads (9) is arranged in the vicinity of a boundary between the diaphragm portion (6D) and the support portion (6S).
  • the heating element layer (3) and the pads (9, 9) are electrically connected to the wiring portions (8, 8), and the wiring portion (8) includes the pad ( It is made of a wiring material having a linear expansion coefficient closer to that of the heating element layer (3) than 9).
  • the heating element layer (3) and the pads (9, 9) are provided with wiring parts (8, 8) for electrically connecting the heating element layer (3) and the wiring elements (8). It is made of the same material as the layer (3).
  • the functional layer (5) has a stress relaxation structure (50).
  • the stress relaxation structure (50) includes at least one slit (51) penetrating the protective layer (4) and the heating element layer (3).
  • the slit (51) has an elongated shape whose longitudinal direction is a direction parallel to the parallel direction of the pair of pads (9, 9).
  • the stress relaxation structure (50) includes a cut groove (52) formed in an outer peripheral edge of the heating element layer (3).
  • infrared radiation element of the present invention low power consumption and high output can be achieved, and the reliability can be improved.
  • FIG. 1A is a schematic plan view of a main part of an infrared radiation element according to Embodiment 1 of the present invention
  • FIG. 1B is a schematic cross-sectional view of the infrared radiation element according to Embodiment 1.
  • FIG. 2A is a schematic plan view of a main part of an infrared radiation element according to Embodiment 2 of the present invention
  • FIG. 2B is a schematic cross-sectional view of the infrared radiation element according to Embodiment 2.
  • FIG. 1A is a schematic plan view of a main part of an infrared radiation element according to Embodiment 1 of the present invention
  • FIG. 1B is a schematic cross-sectional view of the infrared radiation element according to Embodiment 1.
  • FIG. 2A is a schematic plan view of a main part of an infrared radiation element according to Embodiment 2 of the present invention
  • FIG. 2B is a schematic cross-sectional view of the infrared radiation
  • FIG. 10 is a schematic plan view of a main part illustrating another configuration example of the infrared radiation element according to the second embodiment. It is a principal part schematic plan view which shows another structural example of the infrared rays radiating element of Embodiment 2.
  • FIG. 5A is a schematic plan view of a main part of an infrared radiation element according to Embodiment 3 of the present invention
  • FIG. 5B is a schematic cross-sectional view of the infrared radiation element according to Embodiment 3.
  • 10 is a schematic plan view illustrating another configuration example of the infrared radiation element according to Embodiment 3.
  • FIG. 10 is a cross-sectional view taken along the line AA of the radiation source of FIG. 9.
  • the infrared radiation element 1 includes a substrate 2 having a first surface 20 and a second surface 21, and a heating element layer 3 and a heating element layer 3 formed on one surface (first surface 20) side of the substrate 2.
  • a functional layer 5 having the layer 4 and an insulating layer 6 that is interposed between the substrate 2 and the functional layer 5 on the first surface 20 side of the substrate 2 and supports the functional layer 5 are provided.
  • illustration of the protective layer 4 is omitted.
  • the infrared radiation element 1 includes a pair of pads 9 and 9 formed on the first surface 20 side of the substrate 2 and electrically connected to the heating element layer 3, and generates heat when the heating element layer 3 is energized. Infrared rays are emitted from the body layer 3.
  • the substrate 2 has an opening 2a that exposes a part of the surface on the opposite side of the insulating layer 6 when viewed from the heating element layer 3 side (the center in FIGS. 1A and 1B). Specifically, the substrate 2 has a through hole for forming the opening 2 a, and the opening surface of the through hole in the first surface 20 is closed by the insulating layer 6 formed on the first surface 20.
  • the infrared radiation element 1 includes wiring portions 8 and 8 that electrically connect the heating element layer 3 and the pads 9 and 9, respectively.
  • both ends of the rectangular heating element layer 3 are electrically connected to pads 9 and 9 via wiring portions 8 and 8, respectively.
  • the substrate 2 is formed of a single crystal silicon substrate having the first surface 20 of the (100) plane, but is not limited thereto, and may be formed of a single crystal silicon substrate of the (110) plane.
  • the substrate 2 is not limited to a single crystal silicon substrate, but may be a polycrystalline silicon substrate or other than a silicon substrate.
  • the material of the substrate 2 is preferably a material having a higher thermal conductivity and a larger heat capacity than the material of the insulating layer 6.
  • the outer peripheral shape of the substrate 2 is a right-angled quadrilateral (for example, a square shape or a rectangular shape).
  • substrate 2 is not specifically limited, For example, it is preferable to set to 10 mm ⁇ or less (10 mm ⁇ 10 mm or less).
  • the substrate 2 has an opening shape of the opening 2a as a right quadrilateral (for example, a square shape or a rectangular shape).
  • the opening 2a of the substrate 2 is formed in a shape in which the opening area on the other surface (second surface 21) side is larger than that on the one surface (first surface 20) side.
  • the opening 2 a of the substrate 2 is formed in a shape in which the opening area gradually increases as the distance from the insulating layer 6 increases.
  • the opening 2 a of the substrate 2 is formed by etching the substrate 2.
  • the opening 2a of the substrate 2 is formed by anisotropic etching using an alkaline solution as an etching solution. Can do.
  • the opening shape of the opening 2a of the substrate 2 is not particularly limited.
  • the mask layer for forming the opening 2 a is made of an inorganic material at the time of manufacture, the mask layer may remain on the second surface 21 side of the substrate 2.
  • a laminated film of a silicon oxide film and a silicon nitride film can be employed.
  • the insulating layer 6 includes a diaphragm portion 6D that separates the opening 2a and the heating element layer 3, and a support portion 6S that is formed on the first surface 20 side around the opening 2a in the substrate 2 and supports the diaphragm portion 6D. Become.
  • the insulating layer 6 includes a silicon oxide film on the substrate 2 side and a silicon nitride film stacked on the surface opposite to the silicon oxide film as viewed from the substrate 2 side.
  • the insulating layer 6 is not limited to a laminated film of a silicon oxide film and a silicon nitride film, and may be, for example, a single layer structure of a silicon oxide film or a silicon nitride film, a single layer structure made of other materials, or two or more layers.
  • the laminated structure may be used.
  • the insulating layer 6 also has a function as an etching stopper layer when the opening 2a is formed by etching the substrate 2 from the second surface 21 side of the substrate 2 when the infrared radiation element 1 is manufactured.
  • the heating element layer 3 has a right-angled quadrilateral shape (for example, a square shape or a rectangular shape), but is not particularly limited to a right-angled quadrilateral shape, and may be, for example, a circular shape or a polygonal shape.
  • the planar size of the heating element layer 3 is preferably set smaller than the planar size of the surface 6a facing the opening 2a in the insulating layer 6. That is, the heating element layer 3 is preferably set smaller than the planar size of the diaphragm portion 6D.
  • the planar size of the diaphragm portion 6D is not particularly limited, but is preferably set to 5 mm ⁇ or less (5 mm ⁇ 5 mm or less), for example.
  • the planar size of the heating element layer 3 is preferably set to be 3 mm ⁇ or less (3 mm ⁇ 3 mm or less), for example.
  • the planar shape of the heating element layer 3 is not limited to a square shape, and may be, for example, a rectangular shape, a circular shape, or a polygonal shape.
  • the material of the heating element layer 3 is tantalum nitride. That is, the heating element layer 3 is made of a tantalum nitride layer.
  • the material of the heating element layer 3 is not limited to tantalum nitride, and for example, titanium nitride may be employed.
  • conductive polysilicon may be adopted. That is, the heating element layer 3 may be composed of a conductive polysilicon layer.
  • the heating element layer 3 is preferably a tantalum nitride layer or a conductive polysilicon layer from the viewpoint of being chemically stable at a high temperature and ease of design of the sheet resistance.
  • the tantalum nitride layer can change the sheet resistance by changing its composition.
  • the conductive polysilicon layer can change the sheet resistance by changing the impurity concentration and the like.
  • the conductive polysilicon layer can be composed of an n-type polysilicon layer or a p-type polysilicon layer doped with an n-type impurity or a p-type impurity at a high concentration.
  • the impurity concentration is, for example, in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 5 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
  • the impurity concentration is in the range of about 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3. What is necessary is just to set suitably.
  • the infrared peak wavelength ⁇ emitted from the heating element layer 3 in the infrared radiation element 1 depends on the temperature of the heating element layer 3.
  • the absolute temperature of the heating element layer 3 is T [K] and the peak wavelength is ⁇ [ ⁇ m]
  • the relationship between the absolute temperature T of the heating element layer 3 and the peak wavelength ⁇ of infrared rays emitted from the heating element layer 3 satisfies the Vienna displacement law.
  • the heating element layer 3 forms a black body.
  • the infrared radiation element 1 can change Joule heat generated in the heating element layer 3 by adjusting input power applied between the pair of pads 9 and 9 from an external power source (not shown). The temperature of can be changed. Therefore, the infrared radiation element 1 can change the temperature of the heating element layer 3 according to the input power to the heating element layer 3, and can change the temperature of the heating element layer 3 from the heating element layer 3. The peak wavelength ⁇ of the emitted infrared light can be changed. Further, in the infrared radiation element 1 of the present embodiment, the amount of infrared radiation can be increased as the temperature of the heating element layer 3 is increased.
  • the infrared radiation element 1 can be used as a high-power infrared light source in a wide infrared wavelength range.
  • the peak wavelength ⁇ of infrared radiation emitted from the heating element layer 3 is about 4 ⁇ m, and the temperature of the heating element layer 3 is about 800K. And it is sufficient.
  • the heating element layer 3 forms a black body as described above.
  • the infrared radiation element 1 is assumed that the total energy E radiated per unit time in the unit area of the heating element layer 3 is approximately proportional to T 4 (that is, satisfying the Stefan-Boltzmann law). Guessed).
  • the protective layer 4 is composed of a silicon nitride film.
  • the protective layer 4 is not limited to this, and may be formed of, for example, a silicon oxide film, or may have a stacked structure of a silicon oxide film and a silicon nitride film.
  • the protective layer 4 preferably has a high transmittance with respect to infrared rays of a desired wavelength or wavelength range radiated from the heating element layer 3 when the heating element layer 3 is energized, but it is essential that the transmittance is 100%. It is not a thing.
  • Infrared radiation element 1 sets the material, thickness, etc. of insulating layer 6 and protective layer 4 in consideration of the stress balance of the sandwich structure composed of insulating layer 6, heating element layer 3 and protective layer 4. It is preferable. As a result, the infrared radiation element 1 can improve the stress balance of the above-described sandwich structure, and can suppress warping and breakage of the sandwich structure, thereby further improving the mechanical strength. It becomes possible to plan. As shown in FIG. 1B, the protective layer 4 only needs to cover at least a region where the heating element layer 3 and the pad 9 do not overlap with each other in the wiring portion 8, but the pad in the support portion 6 ⁇ / b> S of the insulating layer 6. It is more preferable to form also in the area
  • the thickness of the heating element layer 3 is preferably 0.2 ⁇ m or less from the viewpoint of reducing the heat capacity of the heating element layer 3.
  • the total thickness of the insulating layer 6, the heating element layer 3 and the protective layer 4 is from the viewpoint of reducing the heat capacity of the laminated structure of the insulating layer 6, the heating element layer 3 and the protective layer 4.
  • it is preferably set in the range of about 0.1 ⁇ m to 1 ⁇ m, more preferably 0.7 ⁇ m or less.
  • Each wiring part 8 is formed of the same material as the heating element layer 3.
  • the wiring portions 8 and 8 are arranged on the first surface 20 side of the substrate 2, and one end side (the first inner side) of the wiring portions 8 and 8 is the both ends of the heating element layer 3 (left and right in FIG. 1A). By being formed in a form that is continuous with both end portions), they are electrically connected to both end portions of the heating element layer 3, respectively.
  • the wiring portions 8 and 8 are configured such that, on the first surface 20 side of the substrate 2, the other end side (outside second side) of the wiring portions 8 and 8 is directly connected to the pads 9 and 9, respectively.
  • the pads 9 and 9 are electrically connected to each other.
  • each wiring part 8 and the pad 9 are in ohmic contact.
  • each pad 9 is preferably set in the range of about 0.5 to 2 ⁇ m.
  • a material of each pad 9 aluminum is adopted.
  • the material of each pad 9 is not limited to aluminum, and may be, for example, aluminum alloy (Al—Si) or gold.
  • the insulating layer 6, the heating element layer 3, the wiring portions 8 and 8, and the protective layer 4 are sequentially formed on the first surface 20 side of the substrate 2. 9 is formed, and then the opening 2a is formed in the substrate 2.
  • a thin film forming technique such as a thermal oxidation method or a CVD (Chemical Vapor Deposition) method can be employed, and the thermal oxidation method is preferable.
  • a thin film forming technique such as a CVD method can be used, and an LPCVD (Low Pressure Chemical Vapor Deposition) method is preferable.
  • each wiring part 8 can be formed simultaneously with the heating element layer 3.
  • a thin film forming technique such as a CVD method and a processing technique using a photolithography technique and an etching technique can be used.
  • a plasma CVD method is preferable.
  • each pad 9 for example, a thin film forming technique such as a sputtering method, a vapor deposition method and a CVD method, and a processing technique using a photolithography technique and an etching technique can be used.
  • a thin film forming technique such as a sputtering method, a vapor deposition method and a CVD method, and a processing technique using a photolithography technique and an etching technique can be used.
  • the substrate 2 is etched from the second surface 21 side using a laminated film (not shown) of a silicon oxide film and a silicon nitride film on the second surface 21 side of the substrate 2 as a mask layer. By doing so, it may be formed.
  • a silicon oxide film serving as a base of the mask layer is formed on the second surface 21 side of the substrate 2, and the silicon of the insulating layer 6 is formed.
  • a silicon nitride film is formed on the second surface 21 side of the substrate 2 simultaneously with the formation of the nitride film.
  • the patterning of the laminated film of the silicon oxide film and the silicon nitride film that is the basis of the mask layer may be performed using a photolithography technique and an etching technique.
  • the manufacturing method of the infrared radiation element 1 of the present embodiment it is possible to increase the accuracy of the thickness of the insulating layer 6 by using the insulating layer 6 as an etching stopper layer when forming the opening 2a. It becomes possible to prevent a part of the substrate 2 and residues from remaining on the opening 2a side in the insulating layer 6. In this manufacturing method, it is possible to suppress variations in the mechanical strength of the insulating layer 6 and variations in the heat capacity of the entire diaphragm portion 6D of the insulating layer 6 for each infrared radiation element 1.
  • the infrared radiating element 1 can be manufactured by using a MEMS manufacturing technique.
  • the insulating layer 6 and the protective layer 4 in the infrared radiation element 1 of the present embodiment are made of a material having a linear expansion coefficient closer to the heating element layer 3 than the pad 9.
  • the material of the heating element layer 3 is tantalum nitride (which is chemically stable even at high temperatures (for example, 800 ° C. or higher) and can have a higher resistivity than metal).
  • TaN is preferably used, and silicon oxide (SiO 2 ), silicon nitride (SiN), or the like can be used as the material of the insulating layer 6, and SiN, SiO 2, or the like can be used as the material of the protective layer 4. .
  • the heating element layer 3 is TaN having a linear expansion coefficient of 3.6 ⁇ 10 ⁇ 6 (K ⁇ 1 ) and a resistivity of 2.4 ⁇ 10 ⁇ 4 ⁇ ⁇ m.
  • the linear expansion coefficient and resistivity of Al which is the material of the pad 9, are 24 ⁇ 10 ⁇ 6 K ⁇ 1 and 2.7 ⁇ 10 ⁇ 8 ⁇ ⁇ m, respectively.
  • the linear expansion coefficients of SiO 2 and SiN are 2.3 ⁇ 10 ⁇ 6 K ⁇ 1 and 2.7 ⁇ 10 ⁇ 6 K ⁇ 1 , respectively.
  • the linear expansion coefficient and resistivity of Ta are 6.3 ⁇ 10 ⁇ 6 K ⁇ 1 and 12 ⁇ 10 ⁇ 8 ⁇ ⁇ m, respectively.
  • the linear expansion coefficient of Si is 2.8 ⁇ 10 ⁇ 6 K ⁇ 1 . From the viewpoint of improving the reliability of the infrared radiation element 1, it is preferable that the difference between the linear expansion coefficients of the insulating layer 6 and the protective layer 4 and the linear expansion coefficient of the heating element layer 3 is smaller.
  • the infrared radiation element 1 when the gas that the protective layer 4 is in contact with is air, TaN is adopted as the material of the heating element layer 3, and the heating element layer 3 is used by generating heat at a desired use temperature of, for example, 500 ° C.
  • the sheet resistance at which the infrared emissivity from the heating element layer 3 becomes maximum at this operating temperature is 189 ⁇ / ⁇ (189 ⁇ / sq.), And the maximum value of the emissivity is 50%. That is, the infrared radiation element 1 can maximize the infrared emissivity by impedance matching with air if the sheet resistance of the heating element layer 3 is 189 ⁇ / ⁇ .
  • the sheet resistance of the heating element layer 3 may be set in the range of 73 to 493 ⁇ / ⁇ . If the sheet resistance at which the emissivity is maximized at a desired use temperature is referred to as a prescribed sheet resistance, the sheet resistance of the heating element layer 3 at the desired use temperature is within the range of the prescribed sheet resistance ⁇ 10%. It is more preferable to set.
  • the infrared radiation element 1 includes a substrate 2, a heating element layer 3 and a functional layer 5 having a protective layer 4 covering the heating element layer 3, an insulating layer 6, and a pair of pads 9 and 9. Infrared rays are emitted from the heating element layer 3 as the heating element layer 3 generates heat by energizing the substrate, and a part of the surface on the opposite side of the insulating layer 6 as viewed from the heating element layer 3 side is applied to the substrate 2. An opening 2a to be exposed is formed.
  • the insulating layer 6 includes a diaphragm portion 6D that isolates the opening 2a and the heating element layer 3, and a support portion that is provided on the first surface 20 side around the opening 2a in the substrate 2 and supports the diaphragm portion 6D. 6S.
  • the insulating layer 6 and the protective layer 4 are made of a material having a linear expansion coefficient closer to that of the heating element layer 3 than the pads 9 and 9. Therefore, the infrared radiation element 1 of the present embodiment can achieve low power consumption and high output, and can improve reliability.
  • the infrared radiation element 1 since the laminated structure formed on the first surface 20 side of the substrate 2 is composed of the insulating layer 6, the heating element layer 3, and the protective layer 4, the heat capacity of the laminated structure. It is possible to reduce power consumption, and to reduce power consumption and response speed. In addition, the infrared radiation element 1 can reduce the heat capacity of the laminated structure, and since infrared rays are radiated from the heating element layer 3 by energizing the heating element layer 3, it is possible to increase the output. It becomes.
  • the insulating layer 6 and the protective layer 4 are made of a material having a linear expansion coefficient closer to the heating element layer 3 than the pads 9 and 9, the infrared radiation element 1 is caused by a temperature change of the heating element layer 3. It becomes possible to reduce the stress generated in the laminated structure, to suppress the damage of the laminated structure, and to improve the reliability.
  • Examples of the phenomenon in which the laminated structure on the first surface 20 side of the substrate 2 is damaged include a phenomenon in which the heating element layer 3 is peeled off from the diaphragm portion 6D of the insulating layer 6 and a phenomenon in which the laminated structure is broken.
  • each pad 9 is disposed close to the boundary between the diaphragm portion 6D and the support portion 6S. Specifically, a part of each outer peripheral line of each pad 9 in a plan view and an inner peripheral line (the first surface 20 of the substrate 2 inside the opening 2a in a projection view in the thickness direction of the insulating layer 6). It is preferable that they are arranged so as to overlap (substantially) the boundary line with the inner surface of the opening 2a. As a result, the infrared radiation element 1 can shorten the length of the wiring portion 8 between each pad 9 and the heating element layer 3, thereby further damaging the laminated structure on the first surface 20 side of the substrate 2. It becomes possible to suppress.
  • the infrared radiation element 1 of the present embodiment includes a plurality of wiring portions 8 that electrically connect the heating element layer 3 and the plurality of pads 9, respectively, and each wiring portion 8 is made of the same material as the heating element layer 3. Is formed. Thereby, the infrared radiation element 1 can suppress the damage of the laminated structure on the first surface 20 side of the substrate 2 more.
  • the substrate 2 is formed from a single crystal silicon substrate, and the insulating layer 6 is composed of a silicon oxide film and a silicon nitride film.
  • the infrared radiation element 1 has a larger heat capacity and thermal conductivity of the substrate 2 than the insulating layer 6, and the substrate 2 has a function as a heat sink. It is possible to improve the stability of infrared radiation characteristics.
  • the temperature of the heating element layer 3 is set to the highest use temperature of Si (a temperature slightly lower than the melting point of Si). As a result, the amount of infrared radiation can be greatly increased as compared with infrared light emitting diodes.
  • the infrared radiation element 1 includes the heating element layer 3, the wiring portion 8, and the center line of the infrared radiation element 1 orthogonal to the direction in which the pair of pads 9 and 9 are arranged and orthogonal to the thickness direction of the heating element layer 3.
  • Each of the pads 9 is preferably arranged in line symmetry. Thereby, the infrared radiation element 1 can further improve the mechanical strength, and can suppress the in-plane variation of the temperature of the heating element layer 3.
  • the infrared radiation element 1 of this embodiment is different from the infrared radiation element 1 of Embodiment 1 in that each wiring portion 8 is made of a wiring material having a linear expansion coefficient closer to the heating element layer 3 than the pad 9.
  • a wiring material of each wiring part 8 for example, Ta or Ti can be employed.
  • symbol is attached
  • each wiring portion 8 is made of a wiring material having a linear expansion coefficient closer to the heating element layer 3 than the pad 9, so that it generates heat compared to the infrared radiating element 1 of the first embodiment.
  • the body layer 3 can be efficiently heated.
  • the infrared radiation element 1 of the present embodiment can achieve lower power consumption and higher output than the infrared radiation element 1 of the first embodiment.
  • the planar shape of the wiring portion 8 has a trapezoidal shape in which the width dimension of the wiring portion 8 (the vertical dimension in FIG. 2A) gradually decreases as the distance from the pad 9 increases.
  • each of the pads 9 and 9 has a rectangular shape, and the pads 9 and 9 are arranged on both sides of the first surface 20 of the substrate 2 so that both longitudinal directions of the pads 9 and 9 are parallel to each other. .
  • the dimension of each wiring part 8 in the longitudinal direction of each pad 9 gradually decreases as the distance from the corresponding pad 9 (pad 9 electrically connected to the wiring part 8) increases.
  • the pad of this invention is not restricted to trapezoid shape.
  • the planar shape of the wiring portion 8 may be a rectangular shape having a constant width dimension regardless of the distance from the pad 9 as in the infrared radiation element 1 shown in FIG.
  • the wiring portion 8 has a rectangular shape that is the same as the width of the pad 9. That is, the wiring parts 8 and 8 are respectively arranged inside the pads 9 and 9 so that both longitudinal directions of the wiring parts 8 and 8 are parallel to each other.
  • the planar shape of the wiring portion 8 may be a rectangular shape having a constant width dimension and the same width dimension of the heating element layer 3 regardless of the distance from the pad 9 as in the infrared radiation element 1 shown in FIG. .
  • the infrared radiation element 1 of this embodiment is different from the infrared radiation element 1 of Embodiment 2 in that the functional layer 5 has a stress relaxation structure 50.
  • symbol is attached
  • the stress relaxation structure 50 includes a plurality of slits 51 that penetrate the protective layer 4 and the heating element layer 3. As shown in FIG. 5B, each slit 51 is preferably formed so as to penetrate not only the protective layer 4 and the heating element layer 3 but also the insulating layer 6.
  • the number of slits 51 in the stress relaxation structure 50 is not particularly limited, and may be at least one.
  • the infrared radiation element 1 it is preferable that the plurality (rows) of slits 51 are arranged symmetrically with respect to the center line of the heating element layer 3 along the direction in which the pair of pads 9 and 9 are arranged. Thereby, the infrared radiation element 1 can further improve the mechanical strength, and can suppress the in-plane variation of the temperature of the heating element layer 3.
  • the slit 51 has, for example, an elongated shape whose longitudinal direction is a direction parallel to the parallel arrangement direction of the pair of pads 9 and 9.
  • the infrared radiation element 1 can suppress an increase in resistance of the heating element layer 3 due to the provision of the stress relaxation structure 50.
  • the shape and arrangement of the slits 51 in the stress relaxation structure 50 are not limited to the examples in FIGS. 5A and 5B.
  • the slit 51 may be formed in a circular shape, and the slit 51 may be arranged at each lattice point of the virtual triangular lattice.
  • the stress relaxation structure 50 described in the present embodiment may be provided in the infrared radiation element 1 of the first embodiment.
  • the infrared radiation element 1 of this embodiment is different from the infrared radiation element 1 of Embodiment 2 in that the functional layer 5 (see FIG. 2B) has a stress relaxation structure 50.
  • symbol is attached
  • the stress relaxation structure 50 includes a cut groove 52 formed on the outer peripheral edge of the heating element layer 3.
  • the planar shape of the heating element layer 3 is a right-sided quadrangle (for example, a square shape or a rectangular shape), and each of the two outer peripheral edges along the direction in which the pair of pads 9 and 9 are arranged side by side.
  • a plurality of cut grooves 52 are arranged in parallel.
  • the arrangement of the cut grooves 52 in the stress relaxation structure 50 is not limited to the example of FIG.
  • the formation position of the cut groove 52 on one outer peripheral edge and the formation position of the cut groove 52 on the other outer peripheral edge of the two outer peripheral edges along the juxtaposed direction are described above. You may make it shift in the juxtaposition direction.
  • the planar shape of the heat generating body layer 3 becomes a bellows shape by providing the stress relaxation structure 50 in the heat generating body layer 3.
  • the stress relaxation structure 50 described in the present embodiment may be provided in the infrared radiation element 1 of the first embodiment.
  • the infrared radiation element 1 of each embodiment is not limited to an infrared light source for a gas sensor.
  • an infrared light source for flame detection, an infrared light source for infrared light communication, an infrared light source for spectral analysis, and the like Can be used.
  • Each of the above embodiments includes only the insulating layer 6, the heating element layer 3, and the protective layer 4 on the central portion side of the opening 2a of the substrate 2.
  • the influence of the heat capacity of the laminated structure is smaller than that in Document 1, it is possible to prevent the temperature change of the heating element layer 3 with respect to the voltage waveform applied to the heating element layer 3 from being delayed.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Resistance Heating (AREA)

Abstract

 赤外線放射素子は、基板と、基板の第1面側に形成された発熱体層および発熱体層を覆う保護層を有する機能層と、第1面と機能層との間に介在し機能層を支持する絶縁層と、第1面側に形成され発熱体層に電気的に接続された一対のパッドとを含む。基板は、発熱体層側から見て絶縁層の反対側の表面の一部を露出させる開口部を持つ。絶縁層は、開口部と発熱体層とを隔離するダイヤフラム部と、基板における開口部の周りの第1面側に設けられダイヤフラム部を支持する支持部とを有する。絶縁層および保護層は、パッドよりも発熱体層に近い線膨張率を有する材料からなる。

Description

赤外線放射素子
 本発明は、赤外線放射素子に関するものである。
 従来から、MEMS(micro electro mechanical systems)の製造技術などを利用して製造される赤外線放射素子が研究開発されている。この種の赤外線放射素子は、ガスセンサや光学分析装置などの赤外線源(赤外光源)として使用することができる。
 この種の赤外線放射素子としては、例えば、図9および図10に示す構成の放射源が知られている(日本国特許出願公開番号9-184757(以下「文献1」という)。
 この放射源は、基板13と、基板13上に形成された第1絶縁層22と、第1絶縁層22上に形成された放射表面層11と、放射表面層11上に形成された第2絶縁層24、第2絶縁層24上に形成された極めて細い複数の白熱フィラメント10とを備えている。また、この放射源は、複数の白熱フィラメント10を覆うように形成され複数の白熱フィラメント10を保護する第3絶縁層26と、第3絶縁層26に形成された開口を通して各白熱フィラメント10の両端部に接続された一対の金属パッド15,15とを備えている。第2絶縁層24は、放射表面層11を複数の白熱フィラメント10から電気的に絶縁するために設けてある。また、文献1には、白熱フィラメント10が、均一平面板としての多層構造をなす他の要素(第1絶縁層22、放射表面層11、第2絶縁層24、第3絶縁層26)により囲まれている旨が記載されている。また、文献1には、第1絶縁層22および第3絶縁層26を設ける目的は、白熱フィラメント10および放射表面層11が酸化しないように保護することである旨が記載されている。
 また、基板13には、放射表面層11に対応して開口部14が形成されている。文献1には、開口部14を形成するために使用できるエッチング液として、水酸化カリウム(KOH)水溶液、少量のピロカテコールを添加したエチレンジアミン水溶液、水酸化テトラメチルアンモニウム(TMAH)が記載されている。
 基板13は、(100)配向のシリコンチップにより形成されている。第1絶縁層22は、厚さが200nmの窒化シリコン層からなる。放射表面層11は、厚さが約1μmで、ホウ素、リンまたは砒素がドープされたポリシリコン膜からなる。第2絶縁層24は、厚さが約50nmの窒化シリコン層からなる。複数の白熱フィラメント10は、厚さが約400nmのタングステン層からなる。第3絶縁層26は、厚さが約200nmの窒化シリコン層からなる。金属パッド15は、例えば、アルミニウムから形成されており、第3絶縁層26に形成された開口を通して複数の白熱フィラメント10とオーム性接触を形成している。
 また、放射源は、放射表面層11が1mm2の面積を有している。白熱フィラメント10の寸法については、例えば、各白熱フィラメント10は、厚さが0.1-1μmであり、幅が2-10μmであり、複数の白熱フィラメント10は、20-50μmの間隔で配置されている。
 放射源は、複数の白熱フィラメント10がそれら白熱フィラメント10に流れる電流により加熱されるが、複数の白熱フィラメント10を、専ら放射表面層11の加熱のために用いるものであり、放射表面層11が主熱放射源として振る舞う。
 ところで、赤外線放射素子を例えば分光式ガスセンサ用の赤外線源として用いる場合には、赤外線放射素子を間欠的に駆動することで赤外線を間欠的に放射させ、赤外線を検出する受光素子の出力をロックインアンプにより増幅することで、ガスセンサの出力のS/N比を向上できることが知られている。
 しかしながら、図9および図10に示した放射源の構成では、白熱フィラメント10の熱容量だけでなく、第1絶縁層22、放射表面層11、第2絶縁層24および第3絶縁層26それぞれの熱容量に起因して、白熱フィラメント10へ与える電圧波形に対する放射表面層11の温度変化の応答が遅くなる。このため、上述の放射源では、放射表面層11の温度が上昇しにくくなり、高出力化、低消費電力化および応答速度の高速化が難しい。
 そこで、上述の放射源では、第1絶縁層22の熱容量を小さくするために、第1絶縁層22の厚さを薄くすることが考えられる。しかしながら、上述の放射源では、動作中に発生する熱応力に起因して第1絶縁層22が破壊されやすくなる懸念がある。また、上述の放射源では、白熱フィラメント10と第2絶縁層24との線膨張率差に起因した応力で第2絶縁層24が破損しやすくなってしまう懸念がある。
 本発明は上記事由に鑑みて為されたものであり、その目的は、低消費電力化および高出力化を図ることが可能であり、且つ、信頼性の向上を図ることが可能な赤外線放射素子を提供することにある。
 本発明の赤外線放射素子(1)は、基板(2)と、前記基板(2)の一表面(20)側に形成された発熱体層(3)および前記発熱体層(3)を覆う保護層(4)を有する機能層(5)と、前記基板(2)の前記一表面(20)と前記機能層(5)との間に介在し前記機能層(5)を支持する絶縁層(6)と、前記基板(2)の前記一表面(20)側に形成され前記発熱体層(3)に電気的に接続された一対のパッド(9,9)とを備える。この赤外線放射素子(1)では、前記発熱体層(3)への通電により前記発熱体層(3)から赤外線が放射される。前記基板(2)は、前記発熱体層(3)側から見て前記絶縁層(6)の反対側の表面の一部(6a)を露出させる開口部(2a)を備える。前記絶縁層(6)は、前記開口部(2a)と前記発熱体層(3)とを隔離するダイヤフラム部(6D)と、前記基板(2)における前記開口部(2a)周りの前記一表面(20)側に設けられ前記ダイヤフラム部(6D)を支持する支持部(6S)とを備える。前記絶縁層(6)および前記保護層(4)は、前記パッド(9,9)よりも前記発熱体層(3)に近い線膨張率を有する材料からなる。
 一実施形態において、前記各パッド(9)は、前記ダイヤフラム部(6D)と前記支持部(6S)との境界近傍に配置されてなる。
 一実施形態において、前記発熱体層(3)と前記パッド(9,9)の各々とを電気的に接続する配線部(8,8)を備え、前記配線部(8)は、前記パッド(9)よりも前記発熱体層(3)に近い線膨張率を有する配線材料からなる。
 一実施形態において、前記発熱体層(3)と前記パッド(9,9)の各々とを電気的に接続する配線部(8,8)を備え、前記配線部(8)は、前記発熱体層(3)と同じ材料により形成されてなる。
 一実施形態において、前記機能層(5)は、応力緩和構造(50)を有する。
 一実施形態において、前記応力緩和構造(50)は、前記保護層(4)と前記発熱体層(3)とを貫通する少なくとも1つのスリット(51)からなる。
 一実施形態において、前記スリット(51)は、前記一対のパッド(9,9)の並設方向に平行な方向を長手方向とする細長の形状である。
 一実施形態において、前記応力緩和構造(50)は、前記発熱体層(3)の外周縁に形成された切込溝(52)からなる。
 本発明の赤外線放射素子においては、低消費電力化および高出力化を図ることが可能であり、且つ、信頼性の向上を図ることが可能となる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
図1Aは本発明の実施形態1による赤外線放射素子の要部概略平面図、図1Bは実施形態1の赤外線放射素子の概略断面図である。 図2Aは本発明の実施形態2による赤外線放射素子の要部概略平面図、図2Bは実施形態2の赤外線放射素子の概略断面図である。 実施形態2の赤外線放射素子の他の構成例を示す要部概略平面図である。 実施形態2の赤外線放射素子の別の構成例を示す要部概略平面図である。 図5Aは本発明の実施形態3による赤外線放射素子の要部概略平面図、図5Bは実施形態3の赤外線放射素子の概略断面図である。 実施形態3の赤外線放射素子の他の構成例を示す概略平面図である。 本発明の実施形態4による赤外線放射素子の要部概略平面図である。 実施形態4の赤外線放射素子の他の構成例を示す要部概略平面図である。 従来例の放射源の平面図である。 図9の放射源のA-A断面図である。
 (実施形態1)
 以下では、本実施形態の赤外線放射素子1について図1Aおよび1Bに基づいて説明する。
 赤外線放射素子1は、第1面20および第2面21を有する基板2と、この基板2の一表面(第1面20)側に形成された発熱体層3および発熱体層3を覆う保護層4を有する機能層5と、基板2の第1面20側で基板2と機能層5との間に介在し機能層5を支持する絶縁層6とを備えている。なお、図1Aは、保護層4の図示を省略してある。
 また、赤外線放射素子1は、基板2の第1面20側に形成され発熱体層3に電気的に接続された一対のパッド9,9を備えており、発熱体層3への通電により発熱体層3から赤外線が放射される。
 基板2は、発熱体層3側から見て絶縁層6の反対側の表面の一部(図1Aおよび1Bでは中央部)を露出させる開口部2aが形成されている。詳しくは、基板2は、開口部2aを形成するための貫通孔を有し、第1面20における貫通孔の開口面は、第1面20に形成された絶縁層6で閉塞されている。
 また、赤外線放射素子1は、発熱体層3とパッド9,9を各々電気的に接続する配線部8,8を備えている。図1Aおよび1Bの例では、四角形状の発熱体層3の両端が、それぞれ、配線部8,8を介してパッド9,9に電気的に接続されている。
 以下、赤外線放射素子1の各構成要素について詳細に説明する。
 基板2は、第1面20が(100)面の単結晶のシリコン基板により形成されているが、これに限らず、(110)面の単結晶のシリコン基板により形成してもよい。また、基板2は、単結晶のシリコン基板に限らず、多結晶のシリコン基板でもよいし、シリコン基板以外でもよい。基板2の材料は、絶縁層6の材料よりも熱伝導率が大きく且つ熱容量が大きな材料が好ましい。
 基板2の外周形状は、直角四辺形(例えば正方形状または矩形状)である。基板2の外形サイズは、特に限定するものではないが、例えば、10mm□以下(10mm×10mm以下)に設定するのが好ましい。また、基板2は、開口部2aの開口形状を直角四辺形(例えば正方形状または矩形状)としてある。基板2の開口部2aは、上記一表面(第1面20)側に比べて他表面(第2面21)側での開口面積が大きくなる形状に形成されている。ここで、基板2の開口部2aは、絶縁層6から離れるほど開口面積が徐々に大きくなる形状に形成されている。基板2の開口部2aは、基板2をエッチングすることにより形成されている。基板2として第1面20が(100)面の単結晶のシリコン基板を採用している場合、基板2の開口部2aは、アルカリ系溶液をエッチング液として用いた異方性エッチングにより形成することができる。基板2の開口部2aの開口形状は、特に限定するものではない。また、赤外線放射素子1は、製造時において開口部2aを形成する際のマスク層が無機材料からなる場合、基板2の第2面21側に、マスク層が残っていてもよい。なお、マスク層としては、例えば、シリコン酸化膜とシリコン窒化膜との積層膜などを採用することができる。
 絶縁層6は、開口部2aと発熱体層3とを隔離するダイヤフラム部6Dと、基板2における開口部2aの周りの第1面20側に形成されダイヤフラム部6Dを支持する支持部6Sとからなる。
 また、絶縁層6は、基板2側のシリコン酸化膜と、基板2側から見てそのシリコン酸化膜の反対側の表面に積層されたシリコン窒化膜とからなる。絶縁層6は、シリコン酸化膜とシリコン窒化膜との積層膜に限らず、例えば、シリコン酸化膜やシリコン窒化膜の単層構造でもよいし、その他の材料からなる単層構造や、2層以上の積層構造でもよい。
 絶縁層6は、赤外線放射素子1の製造時において基板2の第2面21側から基板2をエッチングして開口部2aを形成する際のエッチングストッパ層としての機能も有している。
 発熱体層3は、平面形状を直角四辺形(例えば正方形状または矩形状)としてあるが、特に直角四辺形状に限定するものではなく、例えば、円形状や多角形状などでもよい。
 発熱体層3の平面サイズは、絶縁層6において開口部2aに臨む表面6aの平面サイズよりも小さく設定するのが好ましい。つまり、発熱体層3は、ダイヤフラム部6Dの平面サイズよりも小さく設定するのが好ましい。ここで、ダイヤフラム部6Dの平面サイズは、特に限定するものではないが、例えば、5mm□以下(5mm×5mm以下)に設定するのが好ましい。
 発熱体層3の平面サイズは、例えば、3mm□以下(3mm×3mm以下)となるように設定するのが好ましい。ただし、発熱体層3の平面形状は、正方形状に限らず、例えば、長方形状、円形状、多角形状などでもよい。
 発熱体層3の材料は、窒化タンタルを採用している。つまり、発熱体層3は、窒化タンタル層からなる。発熱体層3の材料は、窒化タンタルに限らず、例えば、窒化チタンなどを採用してもよい。また、発熱体層3の材料としては、導電性ポリシリコンを採用してもよい。つまり、発熱体層3は、導電性ポリシリコン層により構成してもよい。発熱体層3について、高温で化学的に安定であり、且つ、シート抵抗の設計容易性という観点からは、窒化タンタル層もしくは導電性ポリシリコン層を採用することが好ましい。窒化タンタル層は、その組成を変えることにより、シート抵抗を変えることが可能である。導電性ポリシリコン層は、不純物濃度などを変えることにより、シート抵抗を変えることが可能である。導電性ポリシリコン層は、n形不純物もしくはp形不純物が高濃度にドーピングされたn形ポリシリコン層もしくはp形ポリシリコン層により構成することができる。導電性ポリシリコン層をn形ポリシリコン層とし、n形不純物として例えばリンを採用する場合には、不純物濃度を例えば、1×1018cm-3~5×1020cm-3程度の範囲で適宜設定すればよい。また、導電性ポリシリコン層をp形ポリシリコン層とし、p形不純物として例えばボロンを採用する場合には、不純物濃度を1×1018cm-3~1×1020cm-3程度の範囲で適宜設定すればよい。
 赤外線放射素子1において発熱体層3から放射される赤外線のピーク波長λは、発熱体層3の温度に依存する。ここで、発熱体層3の絶対温度をT〔K〕、ピーク波長をλ〔μm〕とすれば、ピーク波長λは、
λ=2898/T
となり、発熱体層3の絶対温度Tと発熱体層3から放射される赤外線のピーク波長λとの関係がウィーンの変位則を満足している。要するに、赤外線放射素子1では、発熱体層3が黒体を構成している。赤外線放射素子1は、例えば、図示しない外部電源から一対のパッド9,9間に与える入力電力を調整することにより、発熱体層3に発生するジュール熱を変化させることができ、発熱体層3の温度を変化させることができる。したがって、赤外線放射素子1は、発熱体層3への入力電力に応じて発熱体層3の温度を変化させることができ、また、発熱体層3の温度を変化させることで発熱体層3から放射される赤外線のピーク波長λを変化させることができる。また、本実施形態の赤外線放射素子1では、発熱体層3の温度を高くするほど赤外線の放射量を増大させることが可能となる。このため、赤外線放射素子1は、広範囲の赤外線波長域において高出力の赤外線光源として用いることが可能となる。例えば、赤外線放射素子1をガスセンサの赤外光源として使用する場合には、発熱体層3から放射される赤外線のピーク波長λを4μm程度にするのが好ましく、発熱体層3の温度を800K程度とすればよい。ここにおいて、本実施形態の赤外線放射素子1では、発熱体層3が上述のように黒体を構成している。これにより、赤外線放射素子1は、発熱体層3の単位面積が単位時間に放射する全エネルギEがT4に略比例するものと推測される(つまり、シュテファン-ボルツマンの法則を満足するものと推測される)。
 保護層4は、シリコン窒化膜により構成してある。保護層4は、これに限らず、例えば、シリコン酸化膜により構成してもよいし、シリコン酸化膜とシリコン窒化膜との積層構造を有していてもよい。保護層4は、発熱体層3への通電時に発熱体層3から放射される所望の波長ないし波長域の赤外線に対する透過率が高いほうが好ましいが、透過率が100%であることを必須とするものではない。
 赤外線放射素子1は、絶縁層6と発熱体層3と保護層4とで構成されるサンドイッチ構造の応力バランスを考慮して、絶縁層6および保護層4それぞれの材料や厚さなどを設定することが好ましい。これにより、赤外線放射素子1は、上述のサンドイッチ構造の応力バランスを向上させることが可能となり、このサンドイッチ構造の反りや破損を、抑制することが可能となって機械的強度のより一層の向上を図ることが可能となる。なお、保護層4は、図1Bに示すように、少なくとも、発熱体層3と、配線部8においてパッド9が重なっていない領域を覆っていればよいが、絶縁層6の支持部6Sにおいてパッド9が形成されていない領域にも形成するのが、より好ましい。
 上述の発熱体層3の厚さは、発熱体層3の低熱容量化を図るという観点から0.2μm以下とするのが好ましい。
 絶縁層6の厚さと発熱体層3の厚さと保護層4の厚さとの合計厚さは、絶縁層6と発熱体層3と保護層4との積層構造の低熱容量化を図るという観点から、例えば、0.1μm~1μm程度の範囲で設定することが好ましく、0.7μm以下とするのがより好ましい。
 各配線部8は、発熱体層3と同じ材料により形成されている。ここで、配線部8,8は、基板2の第1面20側において、配線部8,8の一端側(内側の第1の側)が、発熱体層3の両端部(図1Aにおける左右両端部)にそれぞれ連続する形で形成されることにより、発熱体層3の両端部とそれぞれ電気的に接続されている。また、配線部8,8は、基板2の第1面20側において、配線部8,8の他端側(外側の第2の側)が、パッド9,9とそれぞれ直接接続されることにより、パッド9,9とそれぞれ電気的に接続されている。ここで、各配線部8とパッド9とは、オーミック接触をなしている。
 各パッド9の厚さは、0.5~2μm程度の範囲で設定することが好ましい。各パッド9の材料としては、アルミニウムを採用している。各パッド9の材料は、アルミニウムに限らず、例えば、アルミニウム合金(Al-Si)や金などでもよい。
 赤外線放射素子1の製造にあたっては、例えば、基板2の第1面20側に、絶縁層6、発熱体層3と配線部8,8、保護層4を順次形成してから、その後、パッド9,9を形成し、続いて、基板2に開口部2aを形成すればよい。
 絶縁層6のシリコン酸化膜の形成方法は、例えば、熱酸化法やCVD(Chemical Vapor Deposition)法などの薄膜形成技術を採用することができ、熱酸化法が好ましい。また、絶縁層6のシリコン窒化膜の形成方法は、CVD法などの薄膜形成技術を利用することができ、LPCVD(Low Pressure Chemical Vapor Deposition)法が好ましい。
 発熱体層3の形成方法は、例えば、スパッタ法や蒸着法やCVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。また、各配線部8の材料および厚さが、発熱体層3の材料および厚さと同じに設定してある場合には、各配線部8を発熱体層3と同時に形成することができる。
 保護層4の形成方法は、例えば、CVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。保護層4を形成する際のCVD法としては、プラズマCVD法が好ましい。
 また、各パッド9の形成にあたっては、例えば、スパッタ法、蒸着法およびCVD法などの薄膜形成技術と、フォトリソグラフィ技術およびエッチング技術を利用した加工技術とを利用することができる。また、開口部2aの形成にあたっては、基板2の第2面21側のシリコン酸化膜とシリコン窒化膜との積層膜(図示せず)をマスク層として、基板2を第2面21側からエッチングすることにより形成すればよい。マスク層を形成するにあたっては、例えば、まず、絶縁層6のシリコン酸化膜の形成と同時に基板2の第2面21側にマスク層の基礎となるシリコン酸化膜を形成し、絶縁層6のシリコン窒化膜の形成と同時に基板2の第2面21側にシリコン窒化膜を形成する。マスク層の基礎となるシリコン酸化膜とシリコン窒化膜との積層膜のパターニングは、フォトリソグラフィ技術およびエッチング技術を利用すればよい。
 本実施形態の赤外線放射素子1の製造方法では、開口部2aの形成時に、絶縁層6をエッチングストッパ層として利用することにより、絶縁層6の厚さの精度を高めることが可能となるとともに、絶縁層6における開口部2a側に基板2の一部や残渣が残るのを防止することが可能となる。この製造方法では、赤外線放射素子1ごとの、絶縁層6の機械的強度のばらつきや、絶縁層6のダイヤフラム部6D全体の熱容量のばらつきを抑制することが可能となる。
 上述の赤外線放射素子1の製造にあたっては、開口部2aの形成が終了するまでのプロセスを、ウェハレベルで行い、開口部2aを形成した後、個々の赤外線放射素子1に分離すればよい。つまり、赤外線放射素子1の製造にあたっては、例えば、基板2の基礎となるシリコンウェハを準備して、このシリコンウェハに複数の赤外線検出素子1を上述の製造方法に従って形成し、その後、個々の赤外線検出素子1に分離すればよい。
 上述の赤外線放射素子1の製造方法から分かるように、赤外線放射素子1は、MEMSの製造技術を利用して製造することができる。
 ところで、本実施形態の赤外線放射素子1における絶縁層6および保護層4は、パッド9よりも発熱体層3に近い線膨張率を有する材料からなる。本実施形態の赤外線放射素子1では、発熱体層3の材料として、高温(例えば、800℃以上)でも化学的に安定であり且つ抵抗率を金属に比べて大きくすることが可能な窒化タンタル(TaN)を採用することが好ましく、絶縁層6の材料として酸化シリコン(SiO2)、窒化シリコン(SiN)などを採用し、保護層4の材料として、SiN、SiO2などを採用することができる。TaNは、その組成を変えることにより、抵抗率およびシート抵抗を変えることが可能である。本実施形態の赤外線放射素子1では、発熱体層3を、線膨張率が3.6×10-6(K-1)で抵抗率が2.4×10-4Ω・mのTaNとしてある。これに対して、パッド9の材料であるAlの線膨張率および抵抗率は、それぞれ、24×10-6-1および2.7×10-8Ω・mである。また、SiO2およびSiNの線膨張率は、それぞれ、2.3×10-6-1および2.7×10-6-1である。なお、Taの線膨張率および抵抗率は、それぞれ、6.3×10-6-1および12×10-8Ω・mである。また、Siの線膨張率は、2.8×10-6-1である。なお、赤外線放射素子1の信頼性を向上させる観点からは、絶縁層6および保護層4それぞれの線膨張率と、発熱体層3の線膨張率との差が、より小さい方が好ましい。
 赤外線放射素子1において、保護層4が接する気体が空気であり、発熱体層3の材料としてTaNを採用し、発熱体層3を所望の使用温度として例えば500℃に発熱させて使用する場合、この使用温度で発熱体層3からの赤外線の放射率が最大となるシート抵抗は、189Ω/□(189Ω/sq.)であり、放射率の最大値は、50%である。つまり、赤外線放射素子1は、発熱体層3のシート抵抗を189Ω/□とすれば、空気とのインピーダンスマッチングにより、赤外線の放射率を最大とすることが可能となる。したがって、放射率の低下を抑制して例えば40%以上の放射率を確保するためには、発熱体層3のシート抵抗を73~493Ω/□の範囲で設定すればよい。なお、所望の使用温度において放射率が最大となるシート抵抗を規定シート抵抗と呼ぶことにすれば、所望の使用温度での発熱体層3のシート抵抗は、規定シート抵抗±10%の範囲で設定するのが、より好ましい。
 赤外線放射素子1は、基板2と、発熱体層3および発熱体層3を覆う保護層4を有する機能層5と、絶縁層6と、一対のパッド9,9とを備え、発熱体層3への通電による発熱体層3の発熱に伴い発熱体層3から赤外線が放射されるものであり、基板2に、発熱体層3側から見て絶縁層6の反対側の表面の一部を露出させる開口部2aが形成されている。ここで、絶縁層6は、開口部2aと発熱体層3とを隔離するダイヤフラム部6Dと、基板2における開口部2aの周りの第1面20側に設けられダイヤフラム部6Dを支持する支持部6Sとを備えている。また、絶縁層6および保護層4は、パッド9,9よりも発熱体層3に近い線膨張率を有する材料からなる。しかして、本実施形態の赤外線放射素子1は、低消費電力化および高出力化を図ることが可能であり、且つ、信頼性の向上を図ることが可能となる。
 さらに説明すれば、赤外線放射素子1は、基板2の第1面20側に形成される積層構造が、絶縁層6と発熱体層3と保護層4とで構成されるので、積層構造の熱容量を低減することが可能となり、低消費電力化および応答速度の高速化が可能となる。また、赤外線放射素子1は、積層構造の熱容量を低減することが可能であり且つ発熱体層3に通電することにより発熱体層3から赤外線が放射されるから、高出力化を図ることが可能となる。また、赤外線放射素子1は、絶縁層6および保護層4が、パッド9,9よりも発熱体層3に近い線膨張率を有する材料からなるので、発熱体層3の温度変化に起因して積層構造に発生する応力を低減することが可能となり、積層構造の破損を抑制することが可能となって、信頼性の向上を図ることが可能となる。なお、基板2の第1面20側の積層構造が破損する現象としては、例えば、絶縁層6のダイヤフラム部6Dから発熱体層3が剥れる現象や、積層構造が割れる現象などがある。
 この赤外線放射素子1において、各パッド9は、ダイヤフラム部6Dと支持部6Sとの境界まで近づけて配置されていることが好ましい。具体的には、平面視における各パッド9の各々の外周線の一部と、絶縁層6の厚み方向への投影視における開口部2aの内側の内周線(基板2の第1面20と開口部2aの内側面との境界線)とが、(ほぼ)重なるように配置されていることが好ましい。これにより、赤外線放射素子1は、各パッド9と発熱体層3の間の配線部8の長さを短くすることが可能となり、基板2の第1面20側の積層構造の破損を、より抑制することが可能となる。
 また、本実施形態の赤外線放射素子1は、発熱体層3と複数のパッド9を各々電気的に接続する複数の配線部8を備え、各配線部8が、発熱体層3と同じ材料により形成されている。これにより、赤外線放射素子1は、基板2の第1面20側の積層構造の破損を、より抑制することが可能となる。
 また、赤外線放射素子1は、基板2を単結晶のシリコン基板から形成し、絶縁層6をシリコン酸化膜とシリコン窒化膜とで構成してある。これにより、赤外線放射素子1は、絶縁層6に比べて基板2の熱容量および熱伝導率それぞれが大きく、基板2がヒートシンクとしての機能を有するので、小型化、入力電力に対する応答速度の高速化、赤外線の放射特性の安定性の向上を図ることが可能となる。また、赤外線放射素子1では、発熱体層3の材料として、Siよりも高融点のTaNを採用すれば、発熱体層3の温度をSiの最高使用温度(Siの融点よりもやや低い温度)まで上昇させることが可能となり、赤外線発光ダイオードに比べて赤外線の放射量を大幅に増大させることが可能となる。
 赤外線放射素子1は、一対のパッド9,9の並ぶ方向に直交し且つ発熱体層3の厚み方向に直交する赤外線放射素子1の中心線を対称軸として、発熱体層3、配線部8およびパッド9それぞれが、線対称に配置されていることが好ましい。これにより、赤外線放射素子1は、機械的強度のより一層の向上を図ることが可能となるとともに、発熱体層3の温度の面内ばらつきを抑制することが可能なる。
 (実施形態2)
 以下では、本実施形態の赤外線放射素子1について図2Aおよび2Bに基づいて説明する。
 本実施形態の赤外線放射素子1は、各配線部8が、パッド9よりも発熱体層3に近い線膨張率を有する配線材料からなる点が実施形態1の赤外線放射素子1と相違する。各配線部8の配線材料としては、例えば、TaやTiなどを採用することができる。なお、実施形態1と同様の構成要素については、同様の符号を付して説明を省略する。
 本実施形態の赤外線放射素子1では、各配線部8が、パッド9よりも発熱体層3に近い線膨張率を有する配線材料からなるので、実施形態1の赤外線放射素子1に比べて、発熱体層3を効率的に発熱させることが可能となる。これにより、本実施形態の赤外線放射素子1は、実施形態1の赤外線放射素子1に比べて、低消費電力化および高出力化を図ることが可能となる。
 図2Aおよび2Bに示した赤外線放射素子1では、配線部8の平面形状が、パッド9から離れるにつれて配線部8の幅寸法(図2Aの上下方向の寸法)が徐々に小さくなる台形状となっている。詳しくは、パッド9,9の各々は長方形状であり、パッド9,9は、パッド9,9の両長手方向が平行になるように、基板2の第1面20の両側に配置されている。各パッド9の長手方向における各配線部8の寸法は、対応するパッド9(当該配線部8と電気的に接続されるパッド9)から内側に離れるにつれて徐々に小さくなっている。なお、本発明のパッドは、台形状に限らない。例えば、配線部8の平面形状は、図3に示す赤外線放射素子1のように、パッド9からの距離によらず幅寸法が一定の長方形状でもよい。この例では、配線部8は、パッド9の幅寸法と同じとなる長方形状になっている。つまり、配線部8,8は、配線部8,8の両長手方向が平行になるように、パッド9,9の内側にそれぞれ配置されている。また、配線部8の平面形状は、図4に示す赤外線放射素子1のように、パッド9からの距離によらず幅寸法が一定で発熱体層3の幅寸法と同じとなる長方形状でもよい。
 (実施形態3)
 以下では、本実施形態の赤外線放射素子1について図5Aおよび5Bに基づいて説明する。
 本実施形態の赤外線放射素子1は、機能層5が、応力緩和構造50を有している点が実施形態2の赤外線放射素子1と相違する。なお、実施形態2と同様の構成要素については、同様の符号を付して説明を省略する。
 応力緩和構造50は、保護層4と発熱体層3とを貫通する複数のスリット51により構成されている。各スリット51は、図5Bに示すように、保護層4と発熱体層3とを貫通するだけでなく絶縁層6も貫通するように形成することが好ましい。
 応力緩和構造50のスリット51の数は、特に限定するものではなく、少なくとも1つであればよい。
 赤外線放射素子1において、複数(列)のスリット51が、一対のパッド9,9の並ぶ方向に沿った発熱体層3の中心線を対称軸として線対称に配置されていることが好ましい。これにより、赤外線放射素子1は、機械的強度のより一層の向上を図ることが可能となるとともに、発熱体層3の温度の面内ばらつきを抑制することが可能なる。
 スリット51は、例えば、一対のパッド9,9の並設方向に平行な方向を長手方向とする細長の形状であることが好ましい。これにより、赤外線放射素子1は、応力緩和構造50を設けたことに起因する発熱体層3の抵抗の増大を、抑制することが可能となる。
 応力緩和構造50におけるスリット51の形状や配置は、図5Aおよび5Bの例に限らない。例えば、図6に示すように、スリット51を円形状の形状として、仮想三角格子の各格子点にスリット51を配置してもよい。
 本実施形態で説明した応力緩和構造50は、実施形態1の赤外線放射素子1に設けてもよい。
 (実施形態4)
 以下では、本実施形態の赤外線放射素子1について図7に基づいて説明する。
 本実施形態の赤外線放射素子1は、機能層5(図2B参照)が、応力緩和構造50を有している点が実施形態2の赤外線放射素子1と相違する。なお、実施形態2と同様の構成要素については、同様の符号を付して説明を省略する。
 応力緩和構造50は、発熱体層3の外周縁に形成された切込溝52により構成されている。ここにおいて、赤外線放射素子1は、発熱体層3の平面形状が直角四辺形(例えば正方形状または矩形状)であり、一対のパッド9,9の並設方向に沿った2つの外周縁の各々に複数の切込溝52が並設されている。
 応力緩和構造50における切込溝52の配置は、図7の例に限らない。例えば、図8に示すように、上記並設方向に沿った2つの外周縁のうち一方の外周縁における切込溝52の形成位置と他方の外周縁における切込溝52の形成位置とを上記並設方向においてずらすようにしてもよい。なお、図8の例の赤外線放射素子1では、発熱体層3に応力緩和構造50を設けることにより、発熱体層3の平面形状が蛇腹状の形状となっている。
 本実施形態で説明した応力緩和構造50は、実施形態1の赤外線放射素子1に設けてもよい。
 なお、各実施形態の赤外線放射素子1は、ガスセンサ用の赤外光源に限らず、例えば、炎検知用の赤外光源、赤外光通信用の赤外光源、分光分析用の赤外光源などに使用可能である。
 上記実施形態の各々は、絶縁層6、発熱体層3および保護層4のみを、基板2の開口部2aの中央部側に含む。この積層構造では、文献1よりも、積層構造の熱容量の影響が小さいので、発熱体層3へ与える電圧波形に対する発熱体層3の温度変化が遅くなるのを防止することができる。

Claims (8)

  1.  基板と、
     前記基板の一表面側に形成された発熱体層および前記発熱体層を覆う保護層を有する機能層と、
     前記基板の前記一表面と前記機能層との間に介在し前記機能層を支持する絶縁層と、
     前記基板の前記一表面側に形成され前記発熱体層に電気的に接続された一対のパッドと
    を備え、
     前記発熱体層への通電により前記発熱体層から赤外線が放射される赤外線放射素子であって、
     前記基板は、前記発熱体層側から見て前記絶縁層の反対側の表面の一部を露出させる開口部を備え、
     前記絶縁層は、
     前記開口部と前記発熱体層とを隔離するダイヤフラム部と、
     前記基板における前記開口部の周りの前記一表面側に設けられ前記ダイヤフラム部を支持する支持部と
    を備え、
     前記絶縁層および前記保護層は、前記パッドよりも前記発熱体層に近い線膨張率を有する材料からなる
     ことを特徴とする赤外線放射素子。
  2.  前記各パッドは、前記ダイヤフラム部と前記支持部との境界近傍に配置されてなることを特徴とする請求項1記載の赤外線放射素子。
  3.  前記発熱体層と前記パッドの各々とを電気的に接続する配線部を備え、前記配線部は、前記パッドよりも前記発熱体層に近い線膨張率を有する配線材料からなることを特徴とする請求項2記載の赤外線放射素子。
  4.  前記発熱体層と前記パッドの各々とを電気的に接続する配線部を備え、前記配線部は、前記発熱体層と同じ材料により形成されてなることを特徴とする請求項2記載の赤外線放射素子。
  5.  前記機能層は、応力緩和構造を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の赤外線放射素子。
  6.  前記応力緩和構造は、前記保護層と前記発熱体層とを貫通する少なくとも1つのスリットからなることを特徴とする請求項5記載の赤外線放射素子。
  7.  前記スリットは、前記一対のパッドの並設方向に平行な方向を長手方向とする細長の形状であることを特徴とする請求項6記載の赤外線放射素子。
  8.  前記応力緩和構造は、前記発熱体層の外周縁に形成された切込溝からなることを特徴とする請求項5記載の赤外線放射素子。
PCT/JP2013/001253 2012-05-16 2013-02-28 赤外線放射素子 WO2013171941A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012112753A JP2013238538A (ja) 2012-05-16 2012-05-16 赤外線放射素子
JP2012-112753 2012-05-16

Publications (1)

Publication Number Publication Date
WO2013171941A1 true WO2013171941A1 (ja) 2013-11-21

Family

ID=49583374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/001253 WO2013171941A1 (ja) 2012-05-16 2013-02-28 赤外線放射素子

Country Status (3)

Country Link
JP (1) JP2013238538A (ja)
TW (1) TW201349284A (ja)
WO (1) WO2013171941A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9410849B2 (en) * 2014-01-21 2016-08-09 Kidde Technologies, Inc. Apparatuses, systems, and methods controlling testing optical fire detectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236110A (ja) * 1999-02-15 2000-08-29 Anritsu Corp 赤外線放射素子
JP2006013415A (ja) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd 赤外線放射素子およびそれを用いたガスセンサ
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
JP2010230453A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 赤外線放射素子
JP2011064633A (ja) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd 赤外線式ガス検知器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000236110A (ja) * 1999-02-15 2000-08-29 Anritsu Corp 赤外線放射素子
JP2006013415A (ja) * 2003-10-27 2006-01-12 Matsushita Electric Works Ltd 赤外線放射素子およびそれを用いたガスセンサ
JP2009210289A (ja) * 2008-02-29 2009-09-17 Panasonic Electric Works Co Ltd 赤外線検出システム
JP2010230453A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 赤外線放射素子
JP2011064633A (ja) * 2009-09-18 2011-03-31 Panasonic Electric Works Co Ltd 赤外線式ガス検知器

Also Published As

Publication number Publication date
TW201349284A (zh) 2013-12-01
JP2013238538A (ja) 2013-11-28

Similar Documents

Publication Publication Date Title
JP5895205B2 (ja) 赤外線放射素子
US10591715B2 (en) Fabry-Perot interference filter
JP6211833B2 (ja) ファブリペロー干渉フィルタ
WO2002084235A1 (fr) Capteur infrarouge
JP5884053B2 (ja) 赤外線放射素子
WO2015045343A1 (ja) 赤外線放射素子及びその製造方法
WO2013171941A1 (ja) 赤外線放射素子
JP2014035817A (ja) 赤外光源
JP2013124979A (ja) 赤外線放射素子
TWI492417B (zh) 紅外線放射元件及其製造方法
WO2014020797A1 (ja) 赤外線放射素子
JP2012173156A (ja) 赤外線センサモジュール
JP6710721B2 (ja) ファブリペロー干渉フィルタ
JP2015173028A (ja) 赤外線放射素子
JP2006047086A (ja) 赤外線センサ
JP2012063221A (ja) 赤外線センサ
JP6467254B2 (ja) 赤外線センサ
JP2018010037A (ja) ファブリペロー干渉フィルタ及び光検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13791342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13791342

Country of ref document: EP

Kind code of ref document: A1