KR101786803B1 - Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법 - Google Patents

Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법 Download PDF

Info

Publication number
KR101786803B1
KR101786803B1 KR1020160063753A KR20160063753A KR101786803B1 KR 101786803 B1 KR101786803 B1 KR 101786803B1 KR 1020160063753 A KR1020160063753 A KR 1020160063753A KR 20160063753 A KR20160063753 A KR 20160063753A KR 101786803 B1 KR101786803 B1 KR 101786803B1
Authority
KR
South Korea
Prior art keywords
pattern
gas sensor
base
sensing material
forming
Prior art date
Application number
KR1020160063753A
Other languages
English (en)
Inventor
김종백
강윤성
이경훈
조병화
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020160063753A priority Critical patent/KR101786803B1/ko
Application granted granted Critical
Publication of KR101786803B1 publication Critical patent/KR101786803B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/34Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic
    • G01N25/36Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using mechanical temperature-responsive elements, e.g. bimetallic for investigating the composition of gas mixtures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/20Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity
    • G01N25/22Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures
    • G01N25/28Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly
    • G01N25/30Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements
    • G01N25/32Investigating or analyzing materials by the use of thermal means by investigating the development of heat, i.e. calorimetry, e.g. by measuring specific heat, by measuring thermal conductivity on combustion or catalytic oxidation, e.g. of components of gas mixtures the rise in temperature of the gases resulting from combustion being measured directly using electric temperature-responsive elements using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명은 가스 센서 제조방법에 관한 것으로서, 더욱 상세하게는 Coffee-Ring Effect를 이용하여 감지물질이 코팅, 형성될 수 있도록 하는 가스 센서 제조방법에 관한 것이다.
본 발명의 일 실시예에 따르면, 서브스트레이트에 센서 전극 패턴베이스를 형성하는 패턴베이스 형성단계; 상기 패턴베이스의 상면의 동일 평면상에 센서 전극 패턴과 마이크로 전열기 전극 패턴을 형성하는 패턴 형성단계; 형성된 패턴 위에 베이스절연막을 형성한 후, 감지물질이 코팅되기 위한 노출부를 형성하기 위하여, 상기 베이스절연막 상면의 설정된 위치를 식각 처리하는 노출부 형성단계; 상기 노출부에 감지물질을 포함한 액적을 드랍 코팅한 후, 건조함으로써 Coffee-ring effect에 의하여 드랍된 위치의 가장자리 영역에 감지물질을 코팅하는 감지물질 코팅단계를 포함하는 Coffee-Ring Effect를 이용한 가스센서 제조 방법을 제공한다.

Description

Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법{The Gas Sensor Platform and the Manufacturing Method Using Coffee-Ring Effect}
본 발명은 가스 센서 및 가스 센서 제조방법에 관한 것으로서, 더욱 상세하게는 Coffee-Ring Effect를 이용하여 감지물질이 코팅, 형성될 수 있는 가스 센서와 그 가스 센서 제조방법에 관한 것이다.
이 부분에 기술된 내용은 단순히 본 발명의 실시예에 대한 배경 정보를 제공할 뿐 종래기술을 구성하는 것은 아니다.
현대 사회에서 가스의 사용이 날로 늘어나면서 가스는 우리의 일상생활에 도움이 되기도 하지만 잘못 사용하였을 경우에는 심각한 피해를 입히기도 한다. 이러한 위험성 때문에, 가스 피해를 사전에 예방하기 위하여 가연성 또는 유해성 가스를 조기에 감지 또는 검출하기 위한 수단으로서 가스센서의 활용이 늘고 있다.
통상적으로 가스센서는 크게 고체 전해질, 접촉 연소식, 전기 화학식, 반도체식으로 분류된다. 이중에서 최근에 가장 많이 연구되고 있는 것은 반도체식 마이크로 가스센서이다. 이는 반도체식 마이크로 가스센서가 실리콘칩위에 제조되거나 집적됨으로써 일반IC와의 호환성과, 제조와 동작에 있어서 저비용, 고효율의 특성을 나타내기 때문이다.
도 1은 종래의 마이크로 가스센서를 나타내는 단면 예시도이다. 종래의 가스센서는 다층 박막구조를 이루고 있다.
도 1을 참조하면, 종래의 반도체식 마이크로 가스센서는 최저로부터 절연막, 실리콘 기판(1), 절연막(2)이 순차적으로 적층되어 있는 구조이며, 히터전극(4)상에는 또 다른 절연막(3)이 증착되고, 그 절연막(3)상에는 감지전극(5)과 경우에 실시예에 따라 가스 감지막(미도시)이 더 적층되는 다층 구조이다.
종래의 반도체식 마이크로 가스센서에서는 가스 감지막을 형성하기 위하여 통상적인 방법으로 마이크로 주사기를 이용하여 감지전극(5)의 중심부에 정확하게 감지물질을 드롭(drop)하여야 하는 공정상의 어려움이 있다. 이에 따라 감지물질인 나노 입자들이 불필요한 위치에 남게 되는 현상이 발생하기도 한다.
아울러 상술한 구조의 마이크로 가스센서는 다층 박막구조를 이루고 있다. 즉, 히터전극과 감지전극이 동일한 평면상에 형성된 것이 아니라, 적층된 복층 구조를 가지고 있다. 이러한 복층 구조의 가스센서는 제작 또는 제품 운용중에 있어서, 반도체식 가스 센서의 주된 문제점 중 하나인 히터전극과 감지전극 간에 단락현상이 발생할 가능성이 있어, 제품의 불량률이 높아지는 문제가 많다.
대한민국 공개특허 10-2009-0059568
본 발명은 전술한 문제점을 해결하기 위해 제안된 것으로서, 본 발명의 일 목적은 마이크로 전열기의 전극 패턴과 센서 전극 패턴을 동일 평면상에 형성하는 가스센서를 제공함에 있다.
또한, 본 발명의 일 목적은 실리콘 기판 위에 마이크로 가공공정(Micromachining) 기술로 형성된 공중 부유형 가스센서를 제공함에 있다.
또한, 본 발명의 일 목적은 감지물질인 나노 입자들이 불필요한 위치에 남게 되는 현상을 최소화하고 필요한 감지 전극 위에 집중되도록 유도하고자 한다.
위에 제기된 과제를 달성하기 위하여, 본 발명은 서브스트레이트에 센서 전극 패턴베이스를 형성하는 패턴베이스 형성단계; 상기 패턴베이스의 상면의 동일 평면상에 센서 전극 패턴과 마이크로 전열기 전극 패턴을 형성하는 패턴 형성단계; 형성된 패턴 위에 베이스절연막을 형성한 후, 감지물질이 코팅되기 위한 노출부를 형성하기 위하여, 상기 베이스절연막 상면의 설정된 위치를 식각 처리하는 노출부 형성단계; 상기 노출부에 감지물질을 포함한 액적을 드랍 코팅한 후, 건조함으로써 Coffee-ring effect에 의하여 드랍된 위치의 가장자리 영역에 감지물질을 코팅하는 감지물질 코팅단계를 포함하는 Coffee-Ring Effect를 이용한 가스센서 제조 방법을 제공한다.
삭제
삭제
삭제
삭제
삭제
삭제
여기서, 상기 센서 전극 패턴베이스는 실리콘 질화막을 화학기상증착법(CVD)으로 증착하여 형성될 수 있다.
또한, 상기 마이크로 전열기 전극 패턴과 센서 전극 패턴은 백금을 패턴하여 형성될 수 있다.
또한, 상기 베이스절연막은 실리콘 산화막을 화학기상증착법(CVD)으로 증착하여 형성될 수 있다.
또한, 마이크로 전열기 전극 패턴을 절연하는 히터절연막을 형성하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
또한, 상기 패턴베이스의 하면에 마스크를 패턴한 후 습식 식각 처리하는 공중 부유형 가스 센서 플랫폼을 형성하는 단계를 더 포함할 수 있다.
이상에서 설명한 바와 같이 본 발명의 일 실시예에 따르면, 마이크로 전열기의 전극 패턴과 센서 전극 패턴을 동일 평면상에 형성하게 되므로 복층 전극 구조에 비해 내열성이 강한 가스 센서를 제공하는 장점이 있다.
또한, 공중 부유형 구조로 인해 열 손실이 적기 때문에 낮은 소비전력으로 고온을 유지할 수 있는 장점이 있다.
특히, 본 특허에서 고안한 전극 패턴 구조와 Coffee-Ring Effect에 따른 코팅 방법에 따라 감지물질인 나노 입자들이 불필요한 위치에 남게 되는 현상을 최소화하고, 감지 전극상의 필요한 위치에 감지물질인 나노 입자들이 집중되는 것을 유도할 수 있다.
본 발명의 Coffee-Ring Effect에 따른 코팅 방법에 따라 적은 양의 나노 입자들로서 효율적인 센서의 제작이 가능하므로 가스 센서의 총 제작비용이 저감되는 장점도 가진다.
이외에도, 본 발명의 효과는 실시예에 따라서 우수한 내구성을 가지는 센서플랫폼을 제공하는 등 다양한 효과를 가지며, 그러한 효과에 대해서는 후술하는 실시예의 설명 부분에서 명확하게 확인될 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 일 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래의 마이크로 가스센서의 단면 예시도이다.
도 2는 본 발명의 일 실시예에 따른 가스센서를 나타내는 사시도이다.
도 3은 본 발명의 Coffee-Ring Effect의 개념을 나타내는 도면이다.
도 4는 본 발명의 일 실시예에 따른 가스센서의 감지 부위를 나타내는 평면도이다.
도 5는 도 4와 다른 실시예에 따른 가스센서의 감지 부위를 나타내는 평면도이다.
도 6은 본 발명의 일 실시예에 따른 가스센서를 나타내는 단면도이다.
도 7은 본 발명과의 비교 실시예를 나타내기 위한 가스센서의 감지 부위를 나타내는 평면도이다.
도 8은 본 발명의 일 실시예에 따른 가스센서 제조 방법을 나타내는 블록도이다.
이하 설명하는 실시 예들은 본 발명의 기술 사상을 당업자가 용이하게 이해할 수 있도록 제공되는 것으로서 이에 의해 본 발명이 한정되지는 않는다. 또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.
그리고 여기서의 "연결"이란 일 부재와 타 부재의 직접적인 연결, 간접적인 연결을 포함하며, 접착, 부착, 체결, 접합, 결합 등 모든 물리적인 연결 또는 전기적인 연결을 의미할 수 있다.
보다 구체적으로 어떤 구성요소가 다른 구성요소에 연결되어 있거나 접속되어 있다고 언급될 때에는, 그 다른 구성요소에 직접적으로 연결 또는 접속되어 있을 수도 있지만 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 한다. 또한, 본 명세서 전체에서 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
또한 '제1, 제2' 등과 같은 표현이나 도면부호는 복수의 구성들을 구분하기 위한 용도로만 사용된 표현으로써, 구성들 사이의 순서나 기타 특징들을 한정하지 않는다.
단수의 표현은 문맥상 명백하게 다르게 표현하지 않는 한, 복수의 표현을 포함한다. "포함한다" 또는 "가진다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 의미하기 위한 것으로, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들이 부가될 수 있는 것으로 해석될 수 있다.
또한, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 본 발명의 실시예를 설명하기 위한 것일 뿐이고, 본 발명의 범위를 한정하는 것이 아니다.
도 2는 본 발명의 일 실시예에 따른 가스센서를 나타내는 사시도이다. 도 3은 본 발명의 Coffee-Ring Effect의 개념을 나타내는 도면이다. 도 4는 본 발명의 일 실시예에 따른 가스센서를 나타내는 단면도이다.
본 발명의 일 실시예에 따른 가스센서(10)는 서브스트레이트(20); 가스 센서 패턴베이스(30); 상기 패턴베이스(30)의 동일 평면상에 패터닝되는 마이크로 전열기 전극 패턴과 센서 전극 패턴; 및 상기 센서 전극 패턴 상에 코팅되는 감지물질(100');을 포함하되, 상기 마이크로 전열기 전극 패턴은 상기 패턴베이스(30)의 일측에 마련되는 열원(40)과 전기적으로 연결되는 구성으로서, 상기 열원(40)으로부터 연장되는 전열선(41) 및 상기 전열선(41) 단부에 위치하는 가열부(41')를 포함하고, 상기 센서 전극 패턴은 상기 패턴베이스(30)의 일측에 마련되는 소스(50)와 전기적으로 연결되는 구성으로서, 상기 소스(50)로부터 연장되는 전극회로(51, 52) 및 상기 전극회로(51, 52) 단부에 위치하되 상기 가열부(41')의 외측을 둘러싸도록 형성되는 감지부(51', 52')를 포함하고, 상기 감지물질(100')은 상기 감지부(51', 52')의 +극과 -극 사이에 드랍(drop) 코팅되어 형성되는 것을 특징으로 할 수 있다.
여기서 서브스트레이트(20)는 실리콘 웨이퍼(Si)로부터 형성될 수 있으며, 가스 센서 패턴베이스(30)는 서브스트레이트(20, PCB) 상에 형성될 수 있다. 가스센서 패턴베이스(30)는 블럭 형태의 서브스트레이트(20)에 식각 공정을 통하여 형성될 수 있고, 실시예에 따라 테두리부와 중공부(h)로 이루어진 형상으로 형성될 수 있다. 가스센서 패턴베이스(30)의 제조 방법에 대해서는 이하 상세히 후술하기로 한다.
본 발명의 가스센서 패턴베이스(30) 상에는 마이크로 전열기 전극 패턴과 센서 전극 패턴이 동열 평면상에 형성되고, 상기 센서 전극 패턴 상에 감지물질이 코팅되는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 가스센서(10)는 전기가 통하는 센서전극이 두 개(+극, -극으로 이루어짐)가 구비되어 있고, 그 위에 가스 감지물질을 코팅을 하는 구조로 이루어진다. 이러한 구조 하에서 해당 감지물질에 가스가 달라붙으면 감지물질 자체의 저항이 변하게 되며, 그 저항 변화를 측정하여 가스의 농도를 예측한다.
본 발명의 일 실시예에 따른 가스센서(10)는 가스 감지물질이 동작하기 위하여 일정한 온도가 필요하므로 센서 전극 패턴뿐만 아니라 마이크로 전열기 전극 패턴이 더 구비되어야 한다. 마이크로 전열기 전극 패턴에 의하여 감지물질을 예컨대 300도에서 400도 정도로 가열하고, 이렇게 가열된 상태에서 센서 전극이 피측정 대상인 가스를 측정할 수 있다.
배경기술에서 전술한 바와 같이, 종래의 기술에 의한 가스센서는 센서 전극 패턴과 마이크로 전열기 전극 패턴이 복층으로 이루어지므로 제조공정이나 가스센서 운용 중에 상면과 하면에 단락현상이 일어날 가능성이 있다. 예컨대, 마이크로 전열기에 의해 고온으로 승온됨에 따라 절연막이 녹아내려, 상부의 전극에서 하부의 전극으로 감지물질이 스며들 수 있게 되고, 이러한 경우 단락이 일어날 수 있으며, 고온에서 작동하므로 서브스트레이트(20) 자체에 변형이 일어날 수 있는 등의 문제가 있다.
그러나 본 발명의 일 실시예에 따른 가스센서(10)는 센서 전극 패턴과 마이크로 전열기 전극 패턴을 패턴페이스(30)의 동일 평면상의 하나의 층에 위치시켜 전술한 문제를 해소하였다.
가스센서는 선택성이 중요하다. 이 선택성은 다양한 가스들을 구분하기 위해서 복수의 가스센서 중 어느 하나는 특정 가스에 잘 반응하고 다른 하나는 다른 특정한 가스에 잘 반응 하도록 하는 것이다. 즉, 가스센서를 선택성 있게 만드는 기술이 중요한데, 그 방법으로 본 발명의 일 실시예에 따른 가스센서(10)는 여러 개의 서로 다른 센서를 어레이(array)로 구성하여 하나의 가스를 측정하게 해서 패턴을 확인하는 방법이 적용될 수도 있다. 본 실시예에 따른 가스센서 어레이에 의하면 어떠한 패턴이 나오면 어떠한 종류의 가스가 얼마큼 있는지를 예측할 수 있는 것이다.
상기한 목적 달성을 위한 본 발명의 구체적인 실시예로서, 본 발명의 마이크로 전열기 전극 패턴은 상기 패턴베이스(30)의 일측에 마련되는 열원(40)과 전기적으로 연결되는 구성으로서, 상기 열원(40)으로부터 연장되는 전열선(41) 및 상기 전열선(41) 단부에 위치하는 가열부(41')를 포함할 수 있다.
또한, 상기 센서 전극 패턴은 상기 패턴베이스(30)의 일측에 마련되는 소스(50)와 전기적으로 연결되는 구성으로서, 상기 소스(50)로부터 연장되는 전극회로(51, 52) 및 상기 전극회로(51, 52) 단부에 위치하되 상기 가열부(41')의 외측을 둘러싸도록 형성되는 감지부(51', 52')를 포함할 수 있다.
여기서 열원(40)은 마이크로 전열기 전극 패턴에 열을 공급할 수 있는 히팅 수단이면 모두 해당될 수 있으며, 마찬가지로 소스(50)는 센서 전극 패턴에 전원을 공급할 수 있는 수단이면 모두 해당될 수 있는 것으로서 특정한 구성에 한정되지 않는다.
상기 열원(40)과 소스(50)는 가스센서의 컴팩트(compact)한 구성을 위해 패턴베이스(30)의 동일평면상에 위치함이 바람직하나, 반드시 이에 한정되는 것은 아니다.
본 발명의 Coffee-Ring Effect란, 나노 입자를 포함하는 액적(droplet, 100)이 건조 시 가장자리에 나노 입자들이 쌓이게 되는 현상을 말한다. 도 3(a)에 도시된 바와 같이 어느 평면상에 액적(100)이 최초 드랍된 후, 소정의 시간이 지나면 도 3(b)에 도시된 바와 같이 액적(100)의 가장자리(edge) 부분에 Ring 형상의 흔적이 남게 된다. 이를 Coffee-Ring Effect라 하며, 본 발명에서는 센서 전극 상에 감지물질을 연결하고자 할 때, 드랍 코팅하는 방법을 사용하여 도 3(b)와 같은 흔적을 남기는 것을 주요 특징으로 한다.
이와 같은 과정에서 본 발명에서는 상기 Coffee-Ring의 형성을 촉진하기 위해 액적(droplet)의 코팅이후 소정의 시간동안 건조하는 과정을 수반할 수 있다.
Coffee-Ring Effect를 이용하면, 감지물질인 나노 입자들이 불필요한 위치에 남게 되는 현상을 최소화할 수 있다. 단순히 감지물질인 나노 입자를 형성할 경우와 대비하여, 감지 전극 상의 필요한 위치에 감지물질인 나노 입자들이 집중되는 것을 유도할 수 있는 장점이 있다.
한편, 본 발명에서는 상기와 같은 특유의 과제 해결원리의 제공과 함께, Coffee-Ring Effect를 가장 효과적으로 적용할 수 있는 특유의 전극 패턴을 제공하고자 한다. 이하 도 4 내지 도 7을 참조하여 설명한다.
도 4와 도 5에 도시된 바와 같이 가열부(41')가 감지부(51', 52')의 내측에 위치하는 구성이고, 감지부(51', 52')가 가열부(41')를 실질적으로 둘러싸는 구성이라 할 수 있다. Coffee-Ring Effect의 최적화를 위해 나노 입자의 감지물질이 감지부(51', 52')의 +극과 -극 사이에 형성될 수 있도록 하기 위한 구성이며, 일 실시예에 다르면 상기 가열부(41')와 감지부(51', 52')는 "C" 형상(또는 일부가 절단된 원형상)을 갖도록 형성될 수 있다.
더욱 구체적으로 상기 가열부(41')는 "C" 형상으로서 일단 및/또는 타단이 전열선(41)에 연결될 수 있다. 상기 감지부(51', 52') 또한 상기 가열부(41')의 형상에 대응하여 "C"형상을 갖도록 마련되어, 상기 가열부(41')의 중심부를 기준으로 +극, -극 순으로 배치되어 상기 가열부(41')를 감싸도록 배치되거나, -극, +극 순으로 배치되어 상기 가열부(41')를 감싸도록 배치될 수도 있다.
이와 다른 실시예에 따른 상기 센서 전극 패턴에서는, +극과 -극 중 어느 하나의 극성에 해당하는 감지부(51')가 당해 극성의 전극회로(51)로부터 연장되고 이중의 "C" 형상을 가지며 상기 가열부(41')를 감싸고, 다른 하나의 극성에 해당하는 감지부(52')는 다른 하나의 극성에 해당하는 전극회로(52)로부터 연결되어 상기 이중의 "C" 형상 감지부(51')의 내측에서 마찬가지로 "C"형상을 갖도록 형성되어 상기 가열부를 감싸게 될 수 있다. 즉, 상기 센서 전극 패턴이 상기 가열부의 중심부를 기준으로 +극, -극, +극 또는 -극, +극, -극의 형태로 교번적으로 배치됨으로써, 나노 입자들이 +극을 갖는 전극 패턴과 -극을 갖는 전극 패턴 사이에 골고루 자리 잡을 수 있도록 할 수 있다.
실시예에 따라서 상기 열원(40)과 소스(50)는 상기 감지물질을 사이에 두고 서로 마주보며 배치되는 구조를 가질 수 있으며, 실시예에 따라서 상기 가열부(41')와 감지부(51', 52')는 상기 센서 패턴베이스(30)의 중앙에 배치될 수 있다.
도 5와 도 6은 도 4와 다른 실시예에 따른 가스센서에 대한 도면으로서, 마이크로 전열기 전극 패턴을 절연하는 히터절연막(hitter Insulator Film, 60)을 더 포함하는 것을 특징으로 한다.
히터절연막(60)을 포함함으로써, 감지물질(100')이 포함된 액적(100')을 드랍 코팅할 때, 마이크로 전열기 전극 패턴상에 감지물질(100')이 코팅되는 것을 방지하며, 마이크로 전열기 전극 패턴과 센서 전극 패턴 사이에 감지물질(100')이 불필요하게 코팅되는 것을 방지할 수 있다.
마이크로 전열기 전극 패턴과 센서 전극 패턴 사이에 감지물질(100')이 도포되는 경우에는 감지물질(100')을 매개로 마이크로 전열기의 열이 전도되어 센서 전극 패턴에 손상을 줄 수 있는데, 상기 히터절연막(60)을 이용함으로써 이를 방지할 수 있다.
히터절연막(60)의 형상은 원형, 장방형 등 다양하게 형성될 수 있으나, 도 6(a)에 도시된 바와 같이 전열선(4l)과 전극회로(51, 52)가 연장되는 길이방향으로 길이는 길고 폭은 좁은 대략의 직사각형 형상으로 형성될 수 있다. 이와 달리 히터절연막(60)은 도6(b)에 도시된 바와 같이 서브스트레이트(20) 또는 패턴 베이스(30)를 덮도록하되, 감지부(51’, 52’)의 일부는 노출하는 형상으로 형성될 수도 있다. 본 발명의 가스센서는 공중부유형이 소비전력과 열화에 의한 손상을 최소화 시키는 측면에서 유리하기 때문에 히터절연막(60)의 형상 또한 도 6(b)에서처럼 공중부유된 서브스트레이트(20) 또는 패턴 베이스(30)를 덮으면서 서브스트레이트(20)와 패턴 베이스(30)가 식각된 부분에는 히터절연막(60) 또한 식각되어 형성되는 것이 바람직하다. 이러한 형상의 히터절연막(60)을 사용하면 도면에 도시된 바와 같이 센서 전극 패턴 사이에 나노입자를 효율적으로 배치할 수 있게 된다.
한편, 도 7은 본 발명의 전극 패턴을 설명하기 위한 비교 실시예로서, 감지부(51', 52')가 가열부(41')의 감싸는 것이 아니라 가열부(41')가 감지부(51', 52')를 감싸는 것을 나타내는 도면이다. 도 7에 도시된 실시예에 따르면, 중앙부에 있는 감지부(51')의 안쪽에 불필요한 감지물질이 코팅될 수 있으며, 본 발명의 실시예와 동일한 면적의 패턴 베이스(30)를 기준으로 센서 전극 패턴이 형성되는 표면적이 작아 본 발명의 실시예에 비해 감지성능이 떨어질 수 있다. 따라서, 충분한 감지성능을 확보함과 동시에 필요한 위치에만 감지물질을 코팅할 수 있도록 본 발명은 감지부(51', 52')가 가열부(41')를 감싸도록 형성된다.
다음으로, 본 발명의 일 실시예에 따른 가스센서 제조 방법을 설명하기로 한다. 도 8은 본 발명의 일 실시예에 따른 가스센서 제조 방법을 나타내는 블록도이다.
본 실시예에 따른 가스센서는 실리콘 기판 위에 마이크로 가공공정(Micromachining) 기술로 형성될 수 있다.
본 발명의 일 실시예에 따른 가스센서 제조방법은, 서브스트레이트(20)에 센서 패턴베이스(30)를 형성하는 패턴베이스 형성단계(S810); 상기 패턴베이스의 상면의 동일 평면상에 센서 전극 패턴과 마이크로 전열기 전극 패턴을 형성하는 패턴 형성단계(S820); 형성된 패턴 위에 베이스절연막(30)을 형성한 후, 감지물질(100')이 코팅되기 위한 노출부를 형성하기 위하여, 상기 절연막 상면의 설정된 위치를 식각 처리하는 노출부 형성단계(S830); 상기 노출부에 감지물질(100')을 포함한 액적(droplet)을 드랍하는 감지물질 드랍단계(S840); 소정의 시간동안 드랍된 액적(droplet)을 건조하는 건조단계(S850)을 포함할 수 있다.
패텐베이스 형성단계(S810)와 관련하여 서브스트레이트(PCB, 20)는 실리콘(Si)으로 구성될 수 있으며, 상기 패턴베이스(30)는 실리콘 질화막(Si2N3)을 화학기상증착법(Chemical Vapor Deposition, CVD)으로 증착하여 형성할 수 있다.
그 다음 단계인 패턴형성단계(S820)와 관련하여, 증착한 패턴베이스(30) 위에 백금을 패턴하여 마이크로 전열기 전극 패턴과 센서 전극 패턴을 동일 평면상에 같은 층에 형성할 수 있다.
그리고 노출부 형성단계(S830)와 관련하여 본 발명에서는 감지물질(100')이 코팅되기 위한 노출부와 센서 패턴베이스(30)와의 경계를 명확히 구분하기 위해, 전극 패턴 상에 먼저 베이스절연막(미도시)을 형성하고 상기 베이스절연막(미도시) 상면의 설정된 위치를 식각 처리하는 노출부 형성단계를 포함할 수 있다. 베이스절연막(미도시)으로서 실리콘 산화막(SiO2)을 이용할 수 있는데, 백금 패턴 위에 실리콘 산화막을 화학기상증착법으로 증착한 후 센서 전극의 감지 부위와 각 전극의 패드를 노출 시키기 위해 리소그래피 및 반응성 이온 에칭(Reactive Ion Etching, RIE) 공정을 수행할 수 있다.
그리고 상기 노출부에 감지물질(100')을 포함한 액적(droplet)을 드랍하는 감지물질 드랍단계(S840); 소정의 시간동안 드랍된 액적(droplet)을 건조하는 건조단계(S850)를 포함하여 Coffee-Ring Effect를 이용한 제조 방법을 수행한다.
나아가 다음 단계(도 6d)로서, 적층한 가스센서(10) 플랫폼의 공중 부유를 위해 서브스트레이트(20) 하면에 리소그라피 및 RIE 공정으로 식각 구멍(Etch hole)을 패터닝하여 중공부(h)와 테두리부 등을 형성할 수 있다.
제작된 가스센서는 마이크로 전열기 전극 패턴과 센서 전극 패턴이 동일 층에 패턴되어 반도체식 가스센서의 주된 문제점인 단락 현상을 방지하고, 감지 부위(B)를 공중 부유시키고 면적을 최소화하여 소비 전력을 대폭 감소시킬 수 있다.
또한, 본 발명의 일 실시예에 따르면 상기 마이크로 전열기 전극 패턴을 절연하는 히터절연막(60)을 형성하는 단계(S835)를 더 포함할 수 있다.
서브스트레이트(20), 패턴베이스(30), 전극 패턴, 히터절연막(60)은 차례로 적층되어 가스센서(100 플랫폼를 구성할 수 있으며, 서브스트레이트(20)와 패턴베이스(30)에 식각을 통한 중공부(h)를 형성하고, 이 가스센서(10) 플랫폼의 중앙부는 서브스트레이트(110)의 테두리부의 일단과 타단을 브릿지 형태로 연결하는 구조(A)로 형성될 수 있다.
이러한 구성을 통하여 감지 부위(B)를 공중 부유시킬 수 있으며, 감지 부위(B)의 면적을 최소화하여 소비 전력을 대폭 감소시킬 수 있다.
이상의 본 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만, 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것은 아니며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에 대한 기술 분야에서 통상의 지식을 가진 자라면, 본 발명의 사상과 범위 안에서 위와 같은 실시례를 다양한 수정 및 변경을 가할 수 있을 것이다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.
10: 가스 센서
20: 서브스트레이트
30: 센서 패턴베이스
40: 열원
41: 전열선
41': 가열부
50: 소스(source)
51: 전극회로
51': 감지부
60: 히터절연막
A: 브릿지 형태로 연결하는 구조
B: 감지 부위

Claims (12)

  1. 삭제
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 서브스트레이트에 센서 패턴베이스를 형성하는 패턴베이스 형성단계;
    상기 패턴베이스 상면의 동일 평면상에 센서 전극 패턴과 마이크로 전열기 전극 패턴을 형성하는 패턴 형성단계;
    형성된 패턴 위에 베이스절연막을 형성한 후, 감지물질이 코팅되기 위한 노출부를 형성하기 위하여, 상기 베이스절연막 상면의 설정된 위치를 식각 처리하는 노출부 형성단계;
    상기 노출부에 감지물질을 포함한 액적을 드랍 코팅한 후, 건조함으로써 Coffee-ring effect에 의하여 드랍된 위치의 가장자리 영역에 감지물질을 코팅하는 감지물질 코팅단계;
    를 포함하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
  8. 제7항에 있어서,
    상기 센서 패턴베이스는 실리콘 질화막을 화학기상증착법(CVD)으로 증착하여 형성하는 것을 특징으로 하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
  9. 제7항에 있어서,
    상기 마이크로 전열기 전극 패턴과 센서 전극 패턴은 백금을 패턴하여 형성하는 것을 특징으로 하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
  10. 제7항에 있어서,
    상기 베이스절연막은 실리콘 산화막을 화학기상증착법(CVD)으로 증착하여 형성하는 것을 특징으로 하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
  11. 제7항에 있어서,
    상기 마이크로 전열기 전극 패턴을 절연하는 히터절연막(60)을 형성하는 단계를 더 포함하는 것을 특징으로 하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
  12. 제7항에 있어서,
    상기 패턴베이스의 하면에 마스크를 패턴한 후 습식 식각처리하는 공중 부유형 가스 센서 플랫폼을 형성하는 단계를 더 포함하는 Coffee-Ring Effect를 활용 가능한 가스센서 제조 방법.
KR1020160063753A 2016-05-24 2016-05-24 Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법 KR101786803B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160063753A KR101786803B1 (ko) 2016-05-24 2016-05-24 Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160063753A KR101786803B1 (ko) 2016-05-24 2016-05-24 Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법

Publications (1)

Publication Number Publication Date
KR101786803B1 true KR101786803B1 (ko) 2017-11-15

Family

ID=60387180

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160063753A KR101786803B1 (ko) 2016-05-24 2016-05-24 Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR101786803B1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487407A4 (en) * 2016-07-19 2019-11-13 Biometry Inc. METHOD AND SYSTEMS FOR MEASURING ANALYTES USING CALIBRATABLE TEST STRIPS
KR20200120009A (ko) 2019-04-11 2020-10-21 주식회사 센서위드유 다종 복합가스 감지용 나노 센서의 감도와 신뢰성 향상을 위한 피독기능을 가진 병렬 센서 구조의 센서와 센서 플랫폼
US11175268B2 (en) 2014-06-09 2021-11-16 Biometry Inc. Mini point of care gas chromatographic test strip and method to measure analytes
US11435340B2 (en) 2014-06-09 2022-09-06 Biometry Inc. Low cost test strip and method to measure analyte

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11175268B2 (en) 2014-06-09 2021-11-16 Biometry Inc. Mini point of care gas chromatographic test strip and method to measure analytes
US11435340B2 (en) 2014-06-09 2022-09-06 Biometry Inc. Low cost test strip and method to measure analyte
US11747324B2 (en) 2014-06-09 2023-09-05 Biometry Inc. Low cost test strip and method to measure analyte
EP3487407A4 (en) * 2016-07-19 2019-11-13 Biometry Inc. METHOD AND SYSTEMS FOR MEASURING ANALYTES USING CALIBRATABLE TEST STRIPS
US11255840B2 (en) 2016-07-19 2022-02-22 Biometry Inc. Methods of and systems for measuring analytes using batch calibratable test strips
KR20200120009A (ko) 2019-04-11 2020-10-21 주식회사 센서위드유 다종 복합가스 감지용 나노 센서의 감도와 신뢰성 향상을 위한 피독기능을 가진 병렬 센서 구조의 센서와 센서 플랫폼

Similar Documents

Publication Publication Date Title
KR101786803B1 (ko) Coffee-Ring Effect를 활용할 수 있는 가스 센서 플랫폼 및 그 제조방법
US10241094B2 (en) Micro heater, micro sensor and micro sensor manufacturing method
US7861575B2 (en) Micro gas sensor and manufacturing method thereof
US8047074B2 (en) Humidity sensor and method of manufacturing the same
JP6440727B2 (ja) 集積化ガスセンサ及びそれに関連する製造方法
KR101808239B1 (ko) 마이크로 히터 및 마이크로 센서
US20160370336A1 (en) Micro Heater and Micro Sensor
CN106164661A (zh) 微热板上的基于cmos的半导体设备及其制造方法
KR102210634B1 (ko) 마이크로 히터 및 마이크로 센서
KR101686123B1 (ko) 마이크로 히터 및 마이크로 센서
US11345590B2 (en) Semiconductor sensor and method of manufacturing the same
CN107727713B (zh) 微传感器
JP2007057456A (ja) 赤外線放射素子、ガスセンサ、及び赤外線放射素子の製造方法
KR101756357B1 (ko) 마이크로 히터 및 마이크로 센서
US20190064094A1 (en) Gas sensor and gas sensor package having the same
KR101720570B1 (ko) 가스센서 어레이 및 그 제조방법
KR101760811B1 (ko) 마이크로 히터 및 마이크로 센서
KR102163115B1 (ko) 브리지형 마이크로 가스센서 및 그 제조방법
KR100679894B1 (ko) 가스 센서 및 그의 제조 방법
KR20090002424A (ko) 가스 센서 및 그의 제조 방법
KR100773025B1 (ko) 반도체식 가스센서, 그 구동방법 및 제조방법
KR200342819Y1 (ko) 마이크로 가스센서 어레이
TWI577991B (zh) 氣體可穿透垂直式感測器及包含其之氣體感測系統
KR20160035821A (ko) 마이크로 히터 및 마이크로 히터 제조방법 및 마이크로 센서 및 마이크로 센서 제조방법
KR20060100874A (ko) 마이크로 채널 구조를 갖는 가스센서

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant