JP2006313712A - 真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置 - Google Patents

真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置 Download PDF

Info

Publication number
JP2006313712A
JP2006313712A JP2005162445A JP2005162445A JP2006313712A JP 2006313712 A JP2006313712 A JP 2006313712A JP 2005162445 A JP2005162445 A JP 2005162445A JP 2005162445 A JP2005162445 A JP 2005162445A JP 2006313712 A JP2006313712 A JP 2006313712A
Authority
JP
Japan
Prior art keywords
chamber
pressure
vapor
hole
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162445A
Other languages
English (en)
Inventor
治宇 ▲趙▼
Chih-Yu Chao
Wen-Jiunn Hsieh
文俊 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JP2006313712A publication Critical patent/JP2006313712A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/10Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference
    • G01N7/12Analysing materials by measuring the pressure or volume of a gas or vapour by allowing diffusion of components through a porous wall and measuring a pressure or volume difference the diffusion being followed by combustion or catalytic oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • B01L2400/049Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics vacuum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/2002Controlling environment of sample

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

【課題】 外界圧力または大気圧より圧力が高い液体環境を提供できる真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を提供する。
【解決手段】 ケース11と、ケース11の内部に配置される腔室12と、ケース11内部を分割する隔離板14と、腔室12の外部に形成される蒸気室16と、蒸気室16の外部に形成される緩衝室18とを備える。腔室12は、加圧装置13と連接している。腔室12は、頂面と底面に別々に蒸気室16と繋がる蒸気孔121を有する。隔離板14が内孔141を二つ有することで、蒸気室16と緩衝室18は互いに繋ぎ合う。ケース11は頂面と底面に外界と繋がる外孔111を有し、ケース11は蒸気室16に対応する送気孔162と緩衝室18に対応する抽気孔182を少なくとも一つ有する。
【選択図】 図1

Description

本発明は、真空または低圧環境下で高圧環境を操作する技術に関し、特に、真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置に関するものである。
微細尺度下での観察技術において、現今もっとも高倍率の拡大効果を達成可能であるのが電子顕微鏡である。人々は、電子顕微鏡の超高倍率拡大により物質のナノサイズの構造に相関する科学研究を進めることが可能である。
電子ビームにより物体を探知することを原理とする電子顕微鏡は、ナノサイズの構造の観察を執行するために、真空環境下で高電圧により電子を加速し、電磁透視鏡により焦点を絞る方法が必要である。図14に示すように、電子顕微鏡81は、試料を置くための試料槽(specimen chamber)82を有する。試料槽82の内部は、真空である。試料槽82は、上極片(pole piece)86と下極片(pole piece)86とを有することで、電子ビームにより焦点を合わせる正確度を確保することが可能である。この二つの極片86の間の距離は、約1センチ前後である。また、試料は非揮発性または超低揮発性の物質でないと、真空環境下での観察を執行することができない。また、液体または気体のような流体物質は、沸騰、揮発または漏出の現象が発生するため、試料とすることができない。
前述の問題を解決し、ある流体が存在している環境下でも電子顕微鏡内に置かれた試料を観察及び分析するために、1974年の当時、Kalmanは電子顕微鏡により水の構造を観察した(非特許文献1参照)。しかし、その設計において、蒸気室と緩衝室の構造を採用しないため、水は直接超低圧または真空環境に曝露され、急速に揮発して水蒸気になる。観察試験は続けられるが、その結果、観察分析可能な時間は相当に短縮されてしまう。文献のレポートにより、水膜の寿命はわずか数秒だけである。したがって、多くの分析観察の作業をこれほど短い時間内で完成させることは不可能であるため、その技術は実用性に乏しい。
同じ時期にKalmanの他にこれに相関する技術研究に携わったのは、Hui、GaiとDaultonなどを中心とする研究グループがある。Hui S Wなどは、1976年に水蒸気を制御可能な環境槽を提出した(非特許文献2参照)。図15と図16に示すように、この技術は、電子顕微鏡91の試料槽92を高くするように改装し、試料槽92の内部に水槽94と環境槽96を配置し、二つの隔離板962により環境槽96の内部を分割してその中央に水蒸気層964を形成し、かつ水蒸気層964の上下に別々に緩衝層966を形成し、また、水槽94に水蒸気層964に連接する気管941を有することで、水蒸気層964に水蒸気を供給し、また、相互平行の二つの隔離板962と環境槽96の上下壁面に別々に蒸気孔963を配置することで、蒸気孔963により同じ軸の電子ビームを透過させ、また、環境槽96の中間の水蒸気層964の一側から外へ延ばして試料管967を形成し、また、試料治具971を外部から試料管967を貫通させて環境槽96内の水蒸気層964に進入させ、そして、O型リング972により試料治具971と水蒸気層964の壁面を封じることで、水蒸気層964と外部を隔離することである。
前述の構造と技術は、環境槽96内の環境を気体または水蒸気として制御することしかできないため、液体環境の試料槽を制御し、その圧力を常圧に維持することは不可能である。
また、Cai P.L.が率いた研究グループの2002年の研究成果は、電子顕微鏡の下で気相、液相、固相化学反応の実験を観察することが可能であるが、その欠点は、試料槽の圧力を常圧に近い状態または圧力の比較的高い状態に維持して観察と分析を進めることができず、液体と気体が平衡した安定状態を維持するために、試料槽の液体を急速に揮発させてしまうことである(非特許文献3参照)。したがって、液体を持続的に補充することが必要である。しかし、このようなプロセスは、試料の流動が頻発し、新しい試料と古い試料の混合が均質でない問題が発生するため、観察の信頼性に影響する。また、大量揮発した高圧蒸気または外界から気体室に注入された高圧気体が上下極片の間に充満しているため、電子が気体分子に衝撃を与えて生成した多重散乱を深刻化させ、また、電子ビームによる結像または電子回折の実験をスムーズに進行させることができない。かつこうした試料槽の設計では、液体の注入量を有効に制御できない。したがって、液体の厚さが厚くなりすぎてしまうため、電子ビームが試料を透過できなくなり、観察と分析ができなくなる。
また、Cai P.L.の設計は、顕微鏡の本体を分解する必要がある。顕微鏡を分解しないと、これらの部品を装着できないため、量産の可能性が低い。
また、Daulton T.L.の設計による試料槽は、窓型(window type)を採用するものである(非特許文献4参照)。このような設計は、前述の方法のような液体揮発後の問題を防止することは可能であるが、窓型薄膜が厚すぎて電子の多重散乱が発生する問題があるため、結像または電子回折の実験を進行させることは不可能である。分析観察の作業が可能であるとしても、解像度は大幅に低下する。もう一つの重大な欠点として、常圧またはそれ以上の圧力を条件として操作する場合、試料槽と気体室との間の圧力の差が大きすぎるため、窓型薄膜はこの圧力の差に耐えられずに破裂し、試料槽内の液体が急速に揮発して顕微鏡の高度真空区域に浸入することで、顕微鏡の高度真空区域の真空度を大幅に低下させ、操作ができなくなってしまうことがあることである。
前述の諸技術では、真空状態下で常圧またはそれ以上比較的高い圧力の液体環境を保持し、かつ操作と観察ができる方法を得ることができない。
Kaiman E.et al.,J,Appli.Cryst.7,442,1974 Hui S W et al.,Journal of Physics E 9,72,1976 Cai P.L.,Microscopy & Microanalysis 8,21,2002 Daulton T.L.et al.,Microscopy Research & Technique 7,470,2001
本発明は、上述の問題に鑑みて、試作と実験で絶えず研究を進めた結果、真空状態下で常圧またはそれ以上比較的高い圧力の液体環境を保持し、かつ操作と観察ができる技術を完成させ、電子顕微鏡の本来の設計を変えないことを前提として前述の効果を達成する。
本発明の主な目的は、真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を提供することである。これにより、真空または低圧環境下で外界圧力または大気圧より圧力が高い液体環境を安定させるように保持し、かつ操作と観察をすることが可能となる。
本発明のもう一つの目的は、真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を提供することである。これにより、電子顕微鏡の本来の設計を変えないことを前提として外界圧力より高い液体観察環境を提供することが可能となる。
上述の目的を達成するために、本発明による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置は、下記のステップと構造を含む。ステップa)は、ケースを用意し、ケース内部に腔室を配置し、少なくとも一枚の隔離板によりケース内部を分割し、腔室の外部に少なくとも一つの蒸気室を形成し、かつ蒸気室の外部に少なくとも一つの緩衝室を形成し、腔室に液体試料を注入し、また、腔室と加圧装置を連接させることで、加圧装置により腔室内の液体試料に所定の圧力を供給し、また、腔室の頂面と底面に別々に蒸気室と繋がる蒸気孔を設けて、蒸気室と緩衝室との間の隔離板に二つの内孔を設けることで、蒸気室と緩衝室を互いに繋ぎ合わせ、かつ二つの内孔を蒸気孔の上方と下方に位置させ、ケースの頂面と底面に別々に外界と繋がる外孔を設け、かつ外孔と内孔と蒸気孔とを同軸に位置させ、また、ケースに蒸気室に対応する送気孔と緩衝室に対応する抽気孔とを設けることである。ステップb)は、ケースを真空または低圧環境に配置して腔室と蒸気室と緩衝室の温度を同じ温度に制御することである。ステップc)は、加圧装置により腔室内の液体試料にケース外の環境圧力よりも大きい所定の圧力を持続的に加えると同時に蒸気室に気体を注入し、かつ蒸気室と腔室との間の圧力差を液体が蒸気孔から流出する臨界圧力以下に制御することで(Keller S.et al.,Journal of Food Protectiom 66,1260,2003)、腔室内の液体を蒸気孔から流出させないように蒸気形態で蒸気孔から蒸気室へ徐々に揮発させ(Keller S.et al.,Journal of Food Protectiom 66,1260,2003)、揮発速度は極めて遅くて3.3×10-5g/secであるため、電子顕微鏡の解像度に影響することはなく(Hui S.W.et al.,Journal of Physics E 9,72,1976)、そして、蒸気室中の気体と蒸気を内孔から緩衝室へ徐々に拡散させることである。ステップd)は、所定の速度で抽気孔から緩衝室の気体を抽出することで、緩衝室内の気体と蒸気を外孔からケースの外部へ拡散させないように抽出することである。これにより、真空または低圧環境下で高圧腔室を提供し、外孔と内孔と蒸気孔により液体試料の観察を進行させることが可能となる。
また、本発明は、蒸気室の上下方に二つ以上の緩衝室を配置することで、緩衝室の抽気速度の制御に柔軟性を与え、かつ緩衝室の抽気速度を適当な抽気速度まで達するように制御することで、緩衝室内の気体と蒸気を外孔からケースの外へ拡散させないように完全に抽出することを可能にすると同時に蒸気室を内部の気体圧力が常圧または常圧以上に達する環境に維持することが可能である。
また、本発明は、真空または低圧環境下で観察可能な高圧気体状態の腔室を提供することである。その実施方法は、前述のステップにおける加圧装置により腔室に注入される液体試料を気体に変えれば、腔室環境を高圧状態に維持可能である方法である。
以下、本発明の技術特徴を以下の六つの実施例と図面に基づいて説明する。まず、図面の説明は下記の通りである。
図1は、本発明の第一実施例の部分的な断面を示す斜視図である。
図2は、本発明の第一実施例を示す断面図である。
図3は、本発明の第一実施例の実施状態を示す模式図である。
図4は、本発明の第二実施例の部分的な断面を示す斜視図である。
図5は、本発明の第二実施例を示す断面図である。
図6は、本発明の第三実施例を示す断面図である。
図7は、本発明の第三実施例の部分的な断面を示す斜視図である。
図8は、本発明の第三実施例の実施状態を示す模式図である。
図9は、本発明の第四実施例を示す断面図である。
図10は、図9の一部分を拡大した図である。
図11は、本発明の第五実施例を示す断面図である。
図12は、本発明の第六実施例を示す断面図である。
図13は、図12の一部分を拡大した図である。
図1と図2に示すように、本発明の第一実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法は、下記のステップを含む。
ステップa)は、ケース11を用意し、ケース11内部に腔室12を配置し、隔離板14によりケース11内部を分割し、腔室12の外部に蒸気室16を形成し、蒸気室16の外部に緩衝室18を形成する。蒸気室16は腔室12の外に位置し、緩衝室18は蒸気室16の外に位置する。続いて、腔室12に水などの液体試料100(液体試料100の液体の厚さは30μm以下である)を注入し、かつ腔室12と加圧装置13を連接させることで、加圧装置13により腔室12内の液体試料100に所定の圧力を供給するか、液体試料または分析用の物質を補充する。続いて、腔室12の頂面と底面に別々に蒸気室16と繋がる蒸気孔121(直径が5μm〜100μmの間である)を設けて、隔離板14において二つの内孔141を蒸気孔121の上方と下方に位置させるように設けることで、蒸気室16と緩衝室18を互いに繋ぎ合わせ、ケース11の頂面と底面に別々に外孔111(直径が20μm〜800μmの間である)を設けることで、緩衝室18と外界を繋げ、かつ外孔111と内孔141と蒸気孔121とを同軸に位置させる。外孔111の直径は、内孔141の直径より大きい。続いて、ケース11に蒸気室16に対応する二つの送気孔162と緩衝室18に対応する二つの抽気孔182とを設ける。
ステップb)は、図3に示すように、ケース11を真空または低圧環境、例えば、電子顕微鏡の試料槽102の極片104(pole pieces)の間に配置し、かつ腔室12、腔室12内の液体試料100、蒸気室16及び緩衝室18の温度を同じ温度に制御する。
ステップc)は、加圧装置13により腔室12内の液体試料100に所定の圧力(本実施例では、50トル(torr)〜200トルに加圧可能である)を持続的に加えると同時に腔室12内の液体試料100の受けた圧力を電子顕微鏡の試料槽102内の圧力以上に維持し、かつ変わらせないようにする。続いて、蒸気室16に気体を注入する。気体は液体試料の蒸気(通常、水蒸気である)、特定気体または液体試料の蒸気と特定気体の混合物のいずれか一つであり、特定気体は窒素(N2)、酸素(O2)、二酸化炭素(CO2)、不活性気体またはその混合物のいずれか一つである。また、注入される気体温度は蒸気室16の温度と腔室12の温度に等しいか、それらより低いため、蒸気室内の蒸気を冷却させて凝結させることを防止することが可能である。続いて、蒸気室16と腔室12との間の圧力差を液体が蒸気孔121から流出する臨界圧力以下に制御することで、腔室内12の液体試料100を蒸気孔121から流出させないように蒸気形態で蒸気孔121から外へ徐々に揮発させて、そして、蒸気室16中の気体と蒸気を内孔141から緩衝室18へ拡散させる。
ステップd)は、所定の速度で抽気孔から緩衝室18の気体を抽出することで、緩衝室内18の気体と蒸気を外孔111からケース11の外へ拡散させないように抽出する。
上述のステップにより、真空または低圧環境下で高圧腔室12を提供し、外孔111と内孔141と蒸気孔121により液体試料100の観察を進行させることが可能となる。腔室12内の圧力は加圧装置により提供され、かつ蒸気孔121の直径により制限され、そして、送気孔162から注入された蒸気室16の気体により提供される圧力と腔室12の間の圧力差は極めて小さく(臨界漏出圧力より小さく)、液体試料100は厚さが極めて薄く、その重量を無視できるため、腔室12内の液体試料100を蒸気孔121から外へ流出させないように蒸気形態で外へ徐々に揮発させることが可能である。これにより、安定している高圧の液体環境を提供して、イオンビーム、原子ビーム、中性子ビーム、光束またはX線などの探知光束を外孔111、内孔141、蒸気孔121から透過させることで、腔室12内の液体試料100を観察することが可能となる。
本実施例のステップc)では、加圧装置13により腔室に液体試料100を注入する作業は、二つの送気孔162により蒸気室16の気体を抽出して蒸気室の温度と腔室12の温度とを一致させるように維持し、加圧装置13により腔室12に液体試料100または液体に加えたい物質を注入し、そして、蒸気室16と腔室12の間の圧力差または濃度差により腔室12に進入させる。この時、蒸気孔121から拡散した蒸気と液体は、蒸気室16内の極めて低い圧力環境下で揮発して蒸気となって急速に抽出される。続いて、液体試料100が腔室12に充満すると、蒸気室16に気体を注入する。ここで、前述の過程では、緩衝室18の気体を持続的に抽出することが必要である。続いて、送気孔162により蒸気室16に気体を注入して所定の温度と圧力に制御することで、蒸気室16との間の圧力差が原因で腔室12内の液体試料100を蒸気孔121から溢れさせることなく、腔室12内の液体試料100を蒸気孔121から徐々に揮発させて蒸気を形成し、蒸気室16に拡散させる。また、加圧装置13により拡散している微量水蒸気を持続的に補充することが可能である。
図4と図5に示すように、本発明の第二実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置は、ケース21と、ケース21の内部に配置される腔室22と、ケース21内部を分割する隔離板24と、腔室22の外部に形成される蒸気室26と、蒸気室26の外部に形成される緩衝室28とを備え、蒸気室26が腔室22を囲み、緩衝室28が蒸気室26を囲み、ケース21の全体の高さが1センチ(cm)またはそれ以下である。
腔室22は中に注入される流体試料100は、例えば、水を収納する。液体試料100の液体の厚さは、30μm以下である。腔室22は、一側へ延びて注入管223が形成され、かつ加圧装置23と連接する。加圧装置23は、注入管223に連接する液体加圧ポンプで、腔室22内の液体試料100に所定の圧力を供給するか、液体試料100または他の分析用の物質を補充することが可能である。また、腔室22の頂面と底面に別々に蒸気室26と繋がる蒸気孔221(直径が5μm〜100μmの間である)を有し、かつ隔離板24において二つの内孔241(直径が10μm〜200μmの間である)を蒸気孔221の上方と下方に位置させるように設けることで、蒸気室26と緩衝室28を互いに繋ぎ合わせる。また、ケース21は頂面と底面に外孔211(直径が20μm〜800μmの間である)を有することで、緩衝室28と外界を互いに繋ぎ合わせ、外孔211は内孔241と蒸気孔221とともに同軸に位置する。また、ケース21は、蒸気室26に対応する二つの送気孔262と緩衝室28に対応する二つの抽気孔282とを有する。
第二実施例による操作方法は、前述の第一実施例により掲示される方法と同じであるため、詳しい説明を省く。また、ケース21の高さは、現今の電子顕微鏡内の極片(pole pieces)間の距離に対応することが可能である。
図6から図8に示すように、本発明の第三実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置20’は、第二実施例により掲示される装置とほぼ同じであるが、違うことは下記の通りである。
緩衝室28’内の二つの内孔241’の上方と下方に別々に斜面隔離板29を有することで、緩衝室28’内部を分割して二つの副緩衝室288’が形成され、斜面隔離板29は内孔241’と外孔211’とともに同軸に位置する緩衝孔296を有し、緩衝室28’はケース21’上の二つの抽気孔282’に対応し、副緩衝室288’はケース21’上の抽気孔283’に対応する。そして、各緩衝孔の直径は10μm〜400μmの間で、なおかつ内孔の直径と外孔の直径との間である。これにより、本実施例は、斜面隔離板29を配置することで、ケース21’の本来の高さを高めることなく、緩衝室28’の数を増加させることが可能である。
第三実施例では、緩衝室28’及び緩衝室288’の数を増加させることで、圧力漸減効果を生じ、緩衝室28’及び緩衝室288’内の抽気速度の制御に柔軟性を与え、かつ圧力緩衝の効果を増加させることが可能である。これにより、蒸気室に気体を注入する圧力を760トル(torr)(大気圧)に増加させると同時に腔室22’内では加圧装置23’により液体試料100に加える圧力により大気圧またはそれ以上に達する圧力を得ることが可能となる。本実施例では、加圧装置23’により腔室22’内の液体試料100に加える圧力を780トル(torr)に増加させ、蒸気室26に気体を注入する圧力と腔室22’内の液体試料100の間の圧力差を液体が蒸気孔221’から流出する臨界圧力以下(例えば、蒸気孔の直径が20μm、その臨界圧力が20トル(torr)以下である)に制御することで、腔室内22’内の液体を蒸気孔221’から流出させないように蒸気形態で蒸気孔221’から蒸気室26’へ徐々に揮発させる。また、本実施例を操作する場合、蒸気室26’に注入される気体を総圧力が大気圧(760トル(torr))の窒素(N2)または不活性気体と腔室内22’内の液体の温度と同じ飽和蒸気の混合物に設定することで、腔室内22’内の液体が揮発して蒸気になる速度を制御することが可能である。また、蒸気室26’において液体試料100が冷却して凝結することを防止するために、蒸気室26’に注入される窒素、ヘリウムまたは他の気体を予め加熱し、その温度を液体試料100の蒸気温度に等しいか、それより高い温度に制御することが必要である。また、緩衝室28’と二つの副緩衝室288’の抽気速度を別々に160リットル/秒(L/sec)以上と240リットル/秒(L/sec)以上に制御し、かつ二つの副緩衝室288’の抽気速度を緩衝室28’の抽気速度以上に維持することで、抽気回流の現象を防止することが可能である。これにより、二つの副緩衝室288’内の気体と蒸気を外孔211’からケース21’の外へ拡散させないように完全に抽出すると同時に蒸気室26’内部の気体圧力を常圧に達する環境に維持することが可能となる。
第三実施例の他の操作方法は、前述の実施例により掲示される方法と同じであるため、詳しい説明を省く。また、ケース21’(図8に示す)の高さは現今の電子顕微鏡内の極片(pole pieces)間の距離に対応することが可能である。
図9と図10に示すように、本発明の第四実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置30は、第二実施例により掲示される装置とほぼ同じであるが、違うことは下記の通りである。
ケース31は一側に扁平部312を有し、内孔341と外孔311は扁平部312に位置し、扁平部312全体の高さは1センチ(cm)またはそれ以下である。ケース31は内部が複数の隔離板34により分割され、蒸気室36は上下方に上緩衝室38と下緩衝室38’を有する。また、ケース31は、蒸気室36に対応する送気孔362と、上緩衝室38と下緩衝室38’に対応する二つの抽気孔382とを有する。
また、第四実施例は、さらに内部に注入管391を有する試料治具39を含む。ケース31は、蒸気室36と繋がる設置孔364を有する。試料治具39は、設置孔364を貫通して蒸気室36内に置かれる。腔室32は箱体であり、腔室32の頂面と底面に配置される蒸気孔321の厚さは周縁から中央へ漸減し、腔室32の一端は開口部324を有する。かつ腔室32は、一部分が試料治具内39に置かれ、開口部324により注入管391と繋がる。加圧装置33は、注入管391に連接する液体加圧ポンプである。腔室32と試料治具39との間には、接着剤326を有する。試料治具39は、腔室32の周囲において縦壁392を有することで、腔室32を囲み、その位置を制限する。
第四実施例の使用方法は、前述の第二実施例により掲示される方法と同じであるため、詳しい説明を省く。また、加圧装置33により腔室32内の液体試料100に圧力を供給する場合、腔室32は試料治具39に接着されるため、圧力により押し出されて試料治具39から分離されることはない。また、縦壁392は位置を制限するものであるため、腔室32を離脱させないように確保することが可能である。
また、第四実施例では、ケース31の高さを増加させず、上緩衝室38と下緩衝室38’の内部に斜面隔離板(図中未表示)を配置することも可能である。その配置方法は、図6に示すように、上緩衝室38と下緩衝室38’の内部を分割して二つの副緩衝室(図中未表示)を形成することである。その達成できる効果は、多層の緩衝室を形成することで、緩衝室38と緩衝室38’と副緩衝室(図中未表示)の抽気速度の操作範囲を増大させ、圧力緩衝の効果を増加させることが可能である。これにより、蒸気室36に気体を注入する圧力を760トル(torr)(大気圧)に増加させることが可能となる。また、多層の緩衝室の操作方法は、第三実施例に関わる説明を参照する。
図11に示すように、本発明の第五実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置40は、第四実施例により掲示される装置とほぼ同じであるが、違うことは下記の通りである。
ケース41は内部が複数の隔離板44により分割され、上緩衝室48の上方には上部外緩衝室488を有し、下緩衝室48’の下方には下部外緩衝室488’を有し、かつ上緩衝室48と上部外緩衝室488との間の隔離板44には緩衝孔443を有し、下緩衝室48’と下部外緩衝室488’との間の隔離板44には緩衝孔443’を有する。緩衝孔443と緩衝孔443’は、内孔441と蒸気孔421と外孔411とともに同軸に位置する。また、ケース41は、上緩衝室48と下緩衝室48’に対応する二つの抽気孔482と、上部緩衝室488と下部緩衝室488’に対応する二つの抽気孔483とを有する。また、試料治具49は一側に注入管491と繋がる注入口494を有し、注入口494はキャップ496により塞がれる。
第五実施例の操作方法は、前述の第三実施例により掲示される方法と同じであるため、詳しい説明を省く。また、試料治具49の注入口494を腔室42の近くに配置することで、液体試料100を注入する位置から腔室42までの距離を短縮することを可能にして、液体試料100を速く注入しやすくなる。
図12と図13に示すように、本発明の第六実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置は、下記のものを備える。
ケース51は内部が少なくとも一枚の隔離板54により分割され、ケース51内部に緩衝室58を有し、緩衝室58の外部に外緩衝室58’を有し、緩衝室58と外緩衝室58’との間の隔離板54において緩衝室58の頂面と底面に位置する緩衝孔581を少なくとも二つ有し、また、ケース51の頂面と底面に外界と繋がる外孔511を有し、また、ケース51は緩衝室58と繋がる設置孔583と、緩衝室58に対応する二つの抽気孔585と、外緩衝室58’に対応する抽気孔585’とを有する。
試料治具61は設置孔583から緩衝室58内に置かれ、試料治具61の内部に送気管62と、一端に開口部66を有する蒸気ボックス65とを有し、蒸気ボックス65は前端の一部分が試料治具61内に置かれ、かつ接着剤63により接着され、そして、開口部66により試料治具61の送気管62と繋がり、また、試料治具61は送気管62と繋がる送気孔64を有し、また、試料治具61は蒸気ボックス65の周囲において縦壁611を有する。腔室67は、若干の隔離板54により蒸気ボックス65内に形成され、内部が流体により充填される。加圧装置71は、注入管72により腔室67と連接することで、腔室67に気体、液体または液体と気体の混合物の分析試料を注入する。また、蒸気ボックス65内の腔室67の外には蒸気室68を有し、腔室67の頂面と底面には別々に蒸気室68と繋がる蒸気孔671を有し、蒸気孔671の厚さは周縁から中央へ漸減し、また、蒸気ボックス65の頂面と底面には別々に緩衝室58と繋がる内孔651を有する。蒸気孔671と内孔651と緩衝孔581と外孔511とは、同軸である。
第六実施例は、ケースの内部に多層の緩衝室が形成されるものであり、前述の第三実施例により掲示される方法と同じであるため、詳しい説明を省く。また、送気管62壁の温度と緩衝室58及び緩衝室58’の温度を送気管64により注入される気体(蒸気と特定気体の混合物)の温度以上に設定することで、操作過程において注入される蒸気を冷却させて凝結させることを防止することが可能である。
また、第六実施例では、ケース51の高さを増加させず、外緩衝室58’内部に斜面隔離板(図中未表示)を配置することも可能である。その配置方法は、図6に示すように、外緩衝室58’の上下方において内部を分割して二つの副緩衝室(図中未表示)を形成することである。これにより、多層の緩衝室を形成し、圧力漸減効果を果たし、緩衝室内の抽気速度の操作に柔軟性を与えることが可能である。これにより、圧力緩衝の効果を増加させることが可能となる。また、多層の緩衝室の操作方法は、第三実施例に関わる説明を参照する。また、前述の第三実施例により掲示される多層の緩衝室の構造により、蒸気ボックス65内部の蒸気室68内の気圧と腔室67内に液体を注入する圧力を大気圧以上に達する環境に制御することが可能である。
また、第六実施例による装置は、真空または低圧環境下で大気圧以上に達する気体腔室を提供することも可能である。その実施方法は、前述のステップにおける加圧装置71により腔室67内に注入される液体試料を気体に変えれば、腔室67内の環境を大気圧以上に達する状態に維持することが可能である。また、第六実施例のもう一つの操作方法は、試料治具61の送気孔64により蒸気室68の気体を抽出することである。蒸気室68は、このような操作方法により新しい緩衝室とすることができる。つまり、加圧装置71により腔室67内に注入される気圧を大幅に増加させることが可能である。
上述により、本発明の長所は、下記の通りである。
一、真空または低圧環境下で安定している液体環境を提供することで、凝固点から沸点の間の温度範囲において液体試料を常圧(大気圧)または大気圧以上の圧力環境に保持し、観察と分析をすることが可能である。かつ外孔と緩衝孔と内孔と蒸気孔とは同軸であるため、電子顕微鏡の電子ビームまたは他の装置のイオンビーム、原子ビーム、中性子ビーム、光束またはX線などの干渉性の高い光束(beams)を透過させて、腔室内の流体の観察または分析を進行させることが可能である。
二、本発明の技術により、ケースまたは扁平部全体の高さを1センチ以内に減少させることで、直接電子顕微鏡の極片(pole pieces)間の空間に配置することが可能である。したがって、現今の商品化されている電子顕微鏡の本来の設計を変えることなく、顕微鏡本体の外界圧力に等しいか、それより高い液体環境を提供し、観察と分析を進行させることが可能となる。
三、本発明により、腔室内の液体試料に生体細胞または他の試料を入れることが可能である。これにより、電子顕微鏡の電子ビームにより常温及び大気圧の液体状態下で生体細胞または液体試料中の他の試料の状態を観察することが可能となる。
本発明により掲示される蒸気孔と内孔と緩衝孔と外孔の直径、環境温度、水蒸気の圧力及び抽気速度は例示的なものに過ぎないため、本発明の範囲を限定するものではない。また、他の孔の直径及び気体と液体の圧力または抽気速度を修正することは、本発明の簡単な変化であるため、本発明の請求範囲に含まれるべきである。
本発明の第一実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置の部分的な断面を示す斜視図である。 本発明の第一実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 本発明の第一実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置の実施状態を示す模式図である。 本発明の第二実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置の部分的な断面を示す斜視図である。 本発明の第二実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 本発明の第三実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 本発明の第三実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置の部分的な断面を示す斜視図である。 本発明の第三実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置の実施状態を示す模式図である。 本発明の第四実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 図9の一部分を拡大した図である。 本発明の第五実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 本発明の第六実施例による真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置を示す断面図である。 図12の一部分を拡大した図である。 周知の電子顕微鏡の試料槽の内部を示す模式図である。 周知の技術により環境槽が改装された電子顕微鏡に設けられている状態を示す模式図である。 周知の環境槽を示す断面図である。
符号の説明
11 ケース、12 腔室、13 加圧装置、14 隔離板、16 蒸気室、18 緩衝室、20 真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置、20’ 真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置、21 ケース、21’ ケース、22 腔室、22’ 腔室、23 加圧装置、23’ 加圧装置、24 隔離板、26 蒸気室、26’ 蒸気室、28 緩衝室、28’ 緩衝室、29’ 斜面隔離板、30 真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置、31 ケース、32 腔室、33 加圧装置、34 隔離板、36 蒸気室、38 上緩衝室、38’ 下緩衝室、39 試料治具、40 真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置、41 ケース、42腔室、44 隔離板、48 上緩衝室、48’ 下緩衝室、49 試料治具、50 真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置、51 ケース、54 隔離板、58 緩衝室、58’ 緩衝室、61 試料治具、62 送気管、63 接着剤、64 送気孔、65 蒸気ボックス、66 開口部、67 腔室、71 加圧装置、72 注入管、100 液体試料、102 電子顕微鏡の試料槽、104 極片、111 外孔、121 蒸気孔、141 内孔、162 送気孔、182 抽気孔、211 外孔、211’ 外孔、221 蒸気孔、221’ 蒸気孔、223 注入管、241 内孔、241’ 内孔、262 送気孔、282 抽気孔、282’ 抽気孔、283’ 抽気孔、288’ 副緩衝室、296 緩衝孔、311 外孔、312 扁平部、321 蒸気孔、324 開口部、326 接着剤、341 内孔、362 送気孔、364 設置孔、382 送気孔、391 注入管、392 縦壁、411 外孔、421 蒸気孔、441 内孔、443 緩衝孔、443’ 緩衝孔、482 抽気孔、483 抽気孔、488 上段外緩衝室、488’ 下段外緩衝室、491 注入管、494 注入口、496 キャップ、511 外孔、581 緩衝孔、583 設置孔、585 抽気孔、585’ 抽気孔、611 縦壁、651 内孔、671 蒸気孔、672 蒸気室

Claims (31)

  1. ケースを用意し、ケース内部に腔室を配置し、少なくとも一枚の隔離板によりケース内部を分割し、腔室の外部に少なくとも一つの蒸気室を形成し、蒸気室の外部に少なくとも一つの緩衝室を形成し、腔室に液体試料を注入し、腔室と加圧装置を連接させることにより、腔室内の液体試料に所定の圧力を供給し、腔室の頂面と底面に別々に蒸気室と繋がる蒸気孔を設けて、蒸気室と緩衝室との間の隔離板に二つの内孔を設けることにより、蒸気室と緩衝室を互いに繋ぎ合わせ、二つの内孔を蒸気孔の上方と下方に位置させ、ケースの頂面と底面に別々に外界と繋がる外孔を設け、外孔と内孔と蒸気孔を同軸に位置させ、ケースに蒸気室に対応する送気孔と緩衝室に対応する抽気孔を設けるステップa)と、
    ケースを真空または低圧環境に配置して腔室、蒸気室及び緩衝室の温度を同じ温度に制御するステップb)と、
    加圧装置により腔室内の液体試料にケース外の環境圧力よりも大きい所定の圧力を持続的に加えると同時に蒸気室に気体を注入し、蒸気室と腔室との間の圧力差を液体が蒸気孔から流出する臨界圧力以下に制御することで、腔室内の液体試料を蒸気孔から流出させないように蒸気形態で蒸気孔から蒸気室へ徐々に揮発させ、蒸気室中の気体と蒸気を内孔から緩衝室へ拡散させるステップc)と、
    所定の速度で抽気孔から緩衝室の気体を抽出することで、緩衝室内の気体と蒸気を外孔からケースの外部へ拡散させないように抽出するステップd)と、
    を含むことにより、真空または低圧環境下で高圧腔室を提供し、外孔と内孔と蒸気孔により液体試料の観察を進行させることが可能となることを特徴とする真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  2. 外孔の直径は、内孔の直径より大きいことを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  3. ステップc)では、腔室内の液体試料の温度は腔室の温度と同じであり、蒸気室に注入される気体温度は蒸気室の温度と腔室の温度に等しいか、それらより低いことを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  4. ステップc)では、気体は腔室内の液体試料の蒸気、特定気体または液体試料の蒸気と特定気体の混合物のいずれか一つであることを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  5. 特定気体の温度は、液体試料の蒸気の温度に等しいか、それより高いことを特徴とする請求項4に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  6. 特定気体は、窒素(N2)、酸素(O2)、二酸化炭素(CO2)、不活性気体またはその混合物のいずれか一つであることを特徴とする請求項4に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  7. ステップc)では、加圧装置により腔室内の液体試料に加える所定の圧力は、50トル(torr)以上であることを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  8. ステップa)では、加圧装置により腔室に液体試料を補充することが可能であることを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  9. ステップc)では、送気孔により蒸気室の気体を抽出して蒸気室の温度と腔室の温度とを一致させるように維持し、加圧装置により腔室に液体試料または液体に加えたい物質を注入し、蒸気室と腔室との間の圧力差または濃度差により腔室に進入させ、続いて、液体試料が腔室に充満すると、蒸気室に気体を注入し、前記過程では、緩衝室の気体を持続的に抽出することが必要であり、続いて、送気孔により蒸気室に気体を注入して所定の温度と圧力に達するまで制御することで、蒸気室との間の圧力差が原因で腔室内の液体試料を蒸気孔から溢れさせることなく、腔室内の液体試料を蒸気孔から徐々に揮発させて蒸気を形成し、蒸気室に拡散させ、加圧装置により拡散している微量水蒸気を持続的に補充することを特徴とする請求項1に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法。
  10. ケースと、ケースの内部に配置される腔室と、ケース内部を分割する隔離板と、腔室の外部に形成される少なくとも一つの蒸気室と、蒸気室の外部に形成される少なくとも一つの緩衝室とを備え、
    腔室は流体により充填され、腔室内の液体試料に所定の圧力を持続的に供給する加圧装置と連接し、腔室の頂面と底面に別々に蒸気室と繋がる蒸気孔を有し、蒸気室と緩衝室との間の隔離板は内孔を二つ有することで、蒸気室と緩衝室を互いに繋ぎ合わせ、そのうちの二つの内孔が別々に蒸気孔の上方と下方に位置し、ケースは頂面と底面に外界と繋がる外孔を有し、外孔が内孔と蒸気孔とともに同軸に位置し、ケースは蒸気室に対応する送気孔と緩衝室に対応する抽気孔を少なくとも一つ有することを特徴とする真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  11. 蒸気孔の直径は、5μm〜100μmで、内孔の直径は10μm〜200μmで、外孔の直径は20μm〜800μmであり、内孔の直径は外孔の直径より小さいことを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  12. 腔室内の液体試料の厚さは、30μm以下であることを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  13. ケース全体の高さは、1センチ(cm)以下であることを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  14. 腔室は、一側へ延びて注入管を形成し、加圧装置は注入管に連接する液体加圧ポンプであることを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  15. 緩衝室内の二つの内孔の上方と下方に別々に斜面隔離板を有することで、緩衝室内部を分割して二つの副緩衝室が形成され、斜面隔離板は内孔と外孔とともに同軸に位置する緩衝孔を有し、副緩衝室はケース上の抽気孔に対応することを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  16. 外側に位置する副緩衝室の抽気速度は、内側に位置する副緩衝室の抽気速度より大きいことを特徴とする請求項15に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  17. 蒸気室に注入される気体は、蒸気室内の気圧を760トル(torr)以上に保持し、内側に位置する副緩衝室に対する抽気速度は160リットル/秒(L/sec)以上で、外側に位置する副緩衝室に対する抽気速度は240リットル/秒(L/sec)以上であることを特徴とする請求項15に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  18. 緩衝孔の直径は、10μm〜400μmであり、緩衝孔の直径は内孔と外孔の直径の間であることを特徴とする請求項15に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  19. ケースは、一側に扁平部を有し、内孔と外孔は扁平部に位置付けられることを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  20. ケースは、内部が複数の隔離板により分割され、蒸気室は上下方に上緩衝室と下緩衝室を有することを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  21. 隔離板は、上緩衝室の上方に上部外緩衝室を有し、下緩衝室の下方に下部外緩衝室を有し、上緩衝室と上部外緩衝室との間の隔離板には緩衝孔を有し、下緩衝室と下部外緩衝室との間の隔離板には緩衝孔を有し、緩衝孔は内孔と蒸気孔と外孔とともに同軸に位置することを特徴とする請求項20に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  22. 蒸気孔の厚さは、周縁から中央へ漸減することを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  23. さらに内部に注入管を有する試料治具を有し、ケースは蒸気室と繋がる設置孔を有し、試料治具は設置孔を貫通して蒸気室内に置かれ、腔室は一端に開口部を有する箱体であり、腔室は一部分が試料治具内に置かれ、開口部により注入管と繋がり、加圧装置は注入管に連接することを特徴とする請求項10に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  24. 腔室と試料治具との間には、接着剤を有することを特徴とする請求項23に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  25. 試料治具は、腔室の周囲において縦壁を有することを特徴とする請求項23に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  26. 試料治具は、一側に注入管と繋がる注入口を有し、注入口はキャップにより塞がれることを特徴とする請求項23に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  27. ケースは、内部が少なくとも一枚の隔離板により分割され、ケースの内部に緩衝室を有し、緩衝室の外部に外緩衝室を有し、緩衝室と外緩衝室との間の隔離板において緩衝室の頂面と底面に位置する緩衝孔を有し、ケースの頂面と底面に外界と繋がる外孔を有し、ケースは緩衝室と繋がる設置孔と、別々に緩衝室と外緩衝室に対応する抽気孔とを有し、
    試料治具は設置孔から緩衝室内に置かれ、試料治具の内部に送気管と、一端に開口部を有する蒸気ボックスとを有し、蒸気ボックスは一部分が試料治具の前端に置かれ、開口部により送気管と繋がり、試料治具は送気管と繋がる送気孔を有し、
    腔室は若干の隔離板により蒸気ボックス内に形成され、内部が流体により充填され、
    加圧装置は注入管により腔室と連接し、蒸気ボックス内の腔室の外には蒸気室を有し、腔室の頂面と底面には別々に蒸気室と繋がる蒸気孔を有し、蒸気ボックスの頂面と底面には別々に緩衝室と繋がる内孔を有し、蒸気孔と内孔と緩衝孔と外孔とは同軸であることを特徴とする真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  28. 蒸気ボックスと試料治具との間には、接着剤を有することを特徴とする請求項27に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  29. 試料治具は、蒸気ボックスの周囲において縦壁を有することを特徴とする請求項27に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  30. 加圧装置は、腔室に気体、液体または液体と気体の混合物を注入することを特徴とする請求項27に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
  31. 箱体内の蒸気室は、箱体の内部の緩衝室として送気孔の気体を抽出することが可能であることを特徴とする請求項30に記載の真空または低圧環境下で高圧腔室の操作及び観察を可能にする装置。
JP2005162445A 2005-05-09 2005-06-02 真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置 Pending JP2006313712A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW094114962A TWI274823B (en) 2005-05-09 2005-05-09 Method of operating and viewing of high pressure chamber in a vacuum or low pressure environment and the apparatus thereof

Publications (1)

Publication Number Publication Date
JP2006313712A true JP2006313712A (ja) 2006-11-16

Family

ID=37393264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162445A Pending JP2006313712A (ja) 2005-05-09 2005-06-02 真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置

Country Status (6)

Country Link
US (1) US20060249688A1 (ja)
JP (1) JP2006313712A (ja)
KR (1) KR100643732B1 (ja)
AU (1) AU2005231901A1 (ja)
CA (1) CA2525737A1 (ja)
TW (1) TWI274823B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061990A (ja) * 2008-09-03 2010-03-18 Japan Science & Technology Agency 電子顕微鏡用試料ホルダ。

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI277734B (en) * 2005-10-26 2007-04-01 Li Bing Huan Method for observing living bodies using an electron microscopy
TW200722732A (en) * 2005-12-09 2007-06-16 Li Bing Huan Semi-enclosed observation space for electron microscopy
WO2007089124A1 (en) * 2006-02-02 2007-08-09 Cebt Co. Ltd. Device for sustaining differential vacuum degrees for electron column
EP2105944A1 (en) * 2008-03-28 2009-09-30 FEI Company Environmental cell for a particle-optical apparatus
TWI738490B (zh) * 2020-07-27 2021-09-01 劉劭祺 材料處理設備及其操作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04345739A (ja) * 1991-05-23 1992-12-01 Hitachi Ltd 電子顕微鏡等に用いる試料汚染防止装置
JPH0785829A (ja) * 1993-09-17 1995-03-31 Hitachi Ltd 走査電子顕微鏡の試料室内部観察装置
JP4098690B2 (ja) * 2003-09-08 2008-06-11 日本電子株式会社 走査形プローブ顕微鏡
DE10344492B4 (de) * 2003-09-24 2006-09-07 Carl Zeiss Nts Gmbh Teilchenstrahlgerät
TWI274824B (en) * 2005-05-09 2007-03-01 Li Bing Huan Method of operating and viewing of liquid in a vacuum or low pressure environment and an apparatus for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061990A (ja) * 2008-09-03 2010-03-18 Japan Science & Technology Agency 電子顕微鏡用試料ホルダ。

Also Published As

Publication number Publication date
TWI274823B (en) 2007-03-01
KR100643732B1 (ko) 2006-11-10
AU2005231901A1 (en) 2006-11-23
CA2525737A1 (en) 2006-11-09
TW200639348A (en) 2006-11-16
US20060249688A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4262722B2 (ja) 電子顕微鏡の半密閉式観測環境形成装置
JP2006313712A (ja) 真空または低圧環境下で高圧腔室の操作及び観察を可能にする方法及び装置
JP4117307B2 (ja) 真空または低圧環境下で液体の操作及び観察を可能にする方法及び装置
JP2006318903A (ja) 真空または低圧環境下で気体の操作および観察を可能にする装置
TWI275118B (en) Sample box of electron microscope for observing a general sample/live cell
US9105442B2 (en) Charged particle beam apparatus
JP2007163447A (ja) 電子顕微鏡用の超薄液体制御板
JP2007165271A (ja) 電子顕微鏡用の密閉式観測環境形成装置
Cho et al. Effect of material properties on evaporative water removal from polymer electrolyte fuel cell diffusion media
KR101675386B1 (ko) 하전 입자선 장치 및 시료 관찰 방법
WO2013051357A1 (ja) 検査又は観察装置及び試料の検査又は観察方法
CN104517791A (zh) 用于带电粒子显微术的冷冻样本的制备
JP2013164419A (ja) 電子顕微鏡用のガラス化された試料を作製する方法
JP2017106895A (ja) 荷電粒子顕微鏡用の極低温サンプルの調製
JP2006313716A (ja) 真空または低圧環境下で気体の操作及び観察を可能にする装置
Yang et al. Performance of a microfluidic device for in situ ToF-SIMS analysis of selected organic molecules at aqueous surfaces
JP2007165283A (ja) 電子顕微鏡用の超薄液体制御板及び電子顕微鏡用の超薄液体制御板とボックスとの組合せ
US20070045559A1 (en) Method of operating liquid in the vacuum or low-pressure environment and observing the operation and device for the operation and observation
Ban et al. Characterization of alkali-metal vapor cells fabricated with an alkali-metal source tablet
US8164756B2 (en) System and method of fluid exposure and data acquisition
EP1722394A2 (en) Method of operating liquid in the vacuum or low-pressure environment and observing the operation and device for the operation and observation
Ohn et al. Capillary pressure properties of gas diffusion materials used in PEM fuel cells
CN100511568C (zh) 在真空或低压环境中操作高压腔室且供观测的方法及装置
Waafi Sub-Micrometer 3D Printing with 3D Ice Lithography
Gosse et al. Development of a fluidic cell to image precipitation reactions by x-ray microscopy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080827

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090625