JP2006287264A - 炭化珪素半導体装置 - Google Patents

炭化珪素半導体装置 Download PDF

Info

Publication number
JP2006287264A
JP2006287264A JP2006201032A JP2006201032A JP2006287264A JP 2006287264 A JP2006287264 A JP 2006287264A JP 2006201032 A JP2006201032 A JP 2006201032A JP 2006201032 A JP2006201032 A JP 2006201032A JP 2006287264 A JP2006287264 A JP 2006287264A
Authority
JP
Japan
Prior art keywords
region
silicon carbide
silicon
carbide semiconductor
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006201032A
Other languages
English (en)
Other versions
JP4586775B2 (ja
Inventor
Masakatsu Hoshi
星  正勝
Tronnamchai Kleison
トロンナムチャイ クライソン
Tetsuya Hayashi
林  哲也
Saichiro Kaneko
佐一郎 金子
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006201032A priority Critical patent/JP4586775B2/ja
Publication of JP2006287264A publication Critical patent/JP2006287264A/ja
Application granted granted Critical
Publication of JP4586775B2 publication Critical patent/JP4586775B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】製造工程が簡単であり、高い耐圧保持機能を有する耐圧構造を備えた炭化珪素半導体装置を提供する。
【解決手段】n 型の炭化珪素からなる炭化珪素基板領域11と、炭化珪素基板領域11の上に形成されたn型のカソード領域12と、カソード領域12における炭化珪素基板領域11との接合界面に対向する一主面に接しているアノード電極13と、炭化珪素基板領域11の裏面に形成されたカソード電極14と、アノード電極13の外周に接し、且つ環状をなすように配置されたエッジ保護領域16と、アノード電極13並びにエッジ保護領域16と同心円状に、且つ互いに接しないように環状に配置された複数の電界緩和領域17とが形成されている。
【選択図】図1

Description

この発明は、炭化珪素半導体装置に関する。
従来、ガードリング構造を備えた炭化珪素半導体装置としては、図8に示すようなものが知られている(例えば、特許文献1参照。)。図8に示すように、この炭化珪素半導体装置50は、n型の炭化珪素からなる基板領域51上に、n型のカソード領域52が形成されている。このカソード領域52の表層部には、p型のアノード領域53と、このアノード領域53を取り囲むように環状をなしたp型のガードリング領域54が形成されている。また、このアノード領域53に接するようにアノード電極55が形成されている。さらに、基板領域51の裏面には、カソード電極56が形成されている。なお、ガードリング領域54は、アノード領域53並びにアノード電極55とは接しておらず、フローティング状態となっている。
次に、この炭化珪素半導体装置50における周辺耐圧構造の機能について説明する。例えば、アノード電極55を接地し、カソード電極56に正電位を印加すると、p型のアノード領域53とn型のカソード領域52の接合部に逆バイアスがかかり、高耐圧を得るために低不純物濃度で形成されているカソード領域52に空乏層が広がる。
アノード領域53とカソード領域52との間に形成される接合面は、平坦な部分ばかりではなく、アノード領域53の端部では、図8に示すように湾曲している。そのため、平面接合部よりも湾曲している接合部のほうが電界強度は高くなっており、仮にガードリング領域54が無い場合、アノード領域53の平坦な接合面で期待される降伏電圧より低い電圧で、アノード領域53端部の湾曲している接合部においてアバランシェ降伏が起こる。
しかし、アノード領域53の端部の隣にp型のガードリング領域54を配置すると、カソード電位が上昇して、アノード領域53から伸びた空乏層が隣接するp型のガードリング領域54に達した時点でアノード領域53の湾曲部の横方向の電界上昇が緩和される。カソード電位がさらに上昇すると、ガードリング領域54から空乏層が伸び始める。このように、ガードリング領域54が存在すると、アノード領域53の端部への電界集中を防ぐことができ、耐圧を向上させることができる。
特開平11−266014号公報 (第1頁、図1)
しかしながら、図8に示すような従来構造では、カソード領域52の所定の位置に、カソード領域52とは異なる導電型のガードリング領域54を有する構造であるため、製造時においてはカソード領域52への局所的不純物ドーピングが必須となる。このとき、カソード領域52の局所的不純物ドーピングには主にイオン注入法が用いられるが、カソード領域52は結晶欠陥の回復がシリコン材料に比べて難しい炭化珪素材料からなるため、イオン注入時に発生する結晶欠陥を低減するために高温に加熱しながらのイオン注入となる。さらに、ドーピングした不純物の活性化には1500℃前後の高温の熱処理工程を要するが、この高温の熱処理中にカソード領域52の表面の劣化を招いてしまう。図8では、一例として、PNダイオードの耐圧構造、つまり、主領域にアノード領域53を配置し、それを取り囲むようにガードリング領域54を環状に配置した場合について説明したが、例えばアノード領域53の代わりに主領域にMOSFET、JFET、若しくはバイポーラトランジスタなどを配置し、スイッチ素子の耐圧構造として機能している場合には、上記した高温の熱処理工程によってチャネル移動度の低下やゲート絶縁膜の信頼性の低下を招くことになる。
また、例えば図9に示すように、主領域構造として局所的不純物ドーピングを必要としない、アノード電極55が直接カソード領域52に接するショットキー・バリア・ダイオードのような構造では、アノード電極55の端部の電界集中を回避するエッジ保護領域57とガードリング領域54とを形成するためだけに、局所的不純物ドーピングが必要となり、特性への影響だけでなく、プロセスが複雑になるという問題を有していた。
そこで、本発明は、上記のような従来の問題を解決するためになされたものであり、カソード領域に局所的な不純物ドーピングを必要とせず、製造工程が簡単であり、従来と同等の耐圧保持機能を有する耐圧構造を備えた炭化珪素半導体装置を提供することを目的としている。
請求項1に記載の発明は、炭化珪素半導体装置であって、ドリフト領域である第一導電型の炭化珪素半導体基体と、炭化珪素半導体基体の一主面に設けられたアノード電極と、炭化珪素半導体基体の一主面に対向する反対側の主面に設けられたカソード電極と、炭化珪素半導体基体の一主面に接してアノード電極を取り囲むように環状をなし、且つ炭化珪素半導体基体よりバンドギャップが小さい半導体材料で構成され、炭化珪素半導体基体とのヘテロ接合界面にエネルギー障壁を有する電界緩和領域とを有することを要旨とする。
請求項2記載の発明は、請求項1記載の炭化珪素半導体装置であって、電界緩和領域がアノード電極とは接しないように形成されていることを特徴とする。
請求項3記載の発明は、請求項1又は請求項2に記載された炭化珪素半導体装置であって、電界緩和領域が互いに接しないように同心円状に複数形成されていることを特徴とする。
請求項4記載の発明は、請求項1記載の炭化珪素半導体装置であって、電界緩和領域が前記アノード電極と接すると共に、電界緩和領域と前記一主面とが接する部分のうち、アノード電極から最も離れた部分の電位が少なくともカソード電極の電位とほぼ同電位となるように、電界緩和領域が所定値以上の幅を有していることを特徴とする。
請求項5記載の発明は、請求項4記載の炭化珪素半導体装置であって、電界緩和領域が、少なくとも同心円状に同一導電型の不純物濃度分布を有すると共に、不純物濃度の高い領域においては一主面とは接しないように絶縁層を介していることを特徴とする。
請求項6記載の発明は、請求項1乃至請求項5のいずれか一項に記載された炭化珪素半導体装置であって、電界緩和領域は、単結晶シリコン、アモルファスシリコン、多結晶シリコンのいずれかであることを特徴とする。
本発明によれば、カソード領域に接する電界緩和領域がカソード領域とはバンドギャップが異なる材料で構成されているため、カソード領域への不純物導入が不要となり、その製造工程が簡便となる。また、本発明では、不純物導入をイオン注入法を行う必要がないため、高温の熱処理工程が不要となる。このため、熱処理工程に伴うチャネル移動度の低下やゲート絶縁膜の信頼性の低下などの素子特性の低下を回避することができる。
以下、本発明に係る炭化珪素半導体装置の詳細を図面に示す実施の形態に基づいて説明する。但し、図面は模式的なものであり、各層の厚みや厚みの比率などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。
(第1の実施の形態)
図1は、本発明に係る炭化珪素半導体装置の第1の実施の形態を示している。本実施の形態の炭化珪素半導体装置10は、炭化珪素のポリタイプが例えば4Hタイプであり、第一導電型としてのn型の炭化珪素からなる炭化珪素基板領域11と、この炭化珪素基板領域11の上(一主面側)に形成されたn型の炭化珪素でなるカソード領域12と、このカソード領域12における炭化珪素基板領域11との接合界面に対向する一主面に接しているアノード電極13とを備えている。なお、炭化珪素基板領域11とカソード領域12とは、ドリフト領域としての炭化珪素半導体基体を構成している。また、炭化珪素基板領域11の他の主面(裏面)には、カソード電極14が形成されている。
なお、アノード電極13とカソード領域12との接合部(接合界面)はショットキー接続をしており、炭化珪素基板領域11とカソード電極14との接合部はオーミック接続している。すなわち、図1に示すように、本実施の形態は、主領域構造としてショットキー・バリア・ダイオードを形成した例である。
また、本実施の形態の炭化珪素半導体装置10においては、ショットキー・バリア・ダイオードの周辺構造として、アノード電極13の外周に接し、且つ環状をなすように配置されたエッジ保護領域16と、アノード電極13並びにエッジ保護領域16と同心円状に、且つ互いに接しないように環状に配置された複数の電界緩和領域17が形成されている。また、カソード領域12の表面には、これらエッジ保護領域16と電界緩和領域17を覆うように絶縁膜18が形成されている。
そして、エッジ保護領域16並びに電界緩和領域17は、例えばn型の多結晶シリコンからなる。このように、カソード領域12とエッジ保護領域16並びに電界緩和領域17のそれぞれの接合部は、バンドギャップが異なる材料(炭化珪素と多結晶シリコン)によるヘテロ接合を形成している。つまり、その接合界面には、所定のエネルギー障壁が存在している。
なお、本実施の形態では、図1に示すように、アノード電極13と電界緩和領域17との間にエッジ保護領域16を有しているが、エッジ保護領域16は省略してもよい。また、本実施の形態では、図1に示すように、アノード電極13を囲む電界緩和領域17を2本設けているが、この電界緩和領域17の数は単数でも3以上の複数であってもよい。ここで、電界緩和領域17の数を複数とすれば、耐圧構造機能をさらに容易に果たすことができる。
次に、本実施の形態で示す周辺構造の機能について説明する。
まず、アノード電極13に接地電位を印加して、カソード電極14に正電位を徐々に印加していくと、ショットキー接合を有するアノード電極13とカソード領域12との接合部に逆バイアスがかかり、高耐圧を得るために低不純物濃度で形成されているカソード領域12には空乏層が広がる。そして、アノード電極13の直下のカソード領域12の部分から伸びた空乏層がアノード電極13に最も近い最内周の電界緩和領域7に伸びた時点で、カソード領域12の横方向(カソード領域12とカソード電極14との接合面方位と直交する方向)の電界上昇は鈍化し、アノード電極13端部における電界集中は緩和される。そして、アノード電極13端部の電界集中が緩和される分、アノード電極13とカソード電極14との間に印加できる電位差、つまり、本実施の形態で主領域構造として例示しているショットキー・バリア・ダイオードの耐圧を向上することができる。
このとき、アノード電極13との接合界面から伸びている空乏層は、カソード領域12と電界緩和領域17とのヘテロ接合界面に到達する。電界緩和領域17とカソード電極14との間には、所定の電位差が生じているが、この電位差は以下に示すようなヘテロ接合の特性により、ほぼカソード領域12側で保持されるため、上記した耐圧は維持される。
次に、半導体のエネルギーバンド構造を図5〜図7に示すバンド構造図を用いて説明する。なお、図5〜図7において、左側に電界緩和領域17に対応するn型シリコンのエネルギーバンド構造を、右側にカソード領域12に対応する4Hタイプのn型炭化珪素のエネルギーバンド構造を示している。なお、本実施の形態においては電界緩和領域17が多結晶シリコンからなる場合を説明するが、図5〜図7ではシリコンのエネルギーバンド構造を用いて説明する。また、この説明ではヘテロ接合の特性を理解し易くするため、ヘテロ接合界面に界面準位が存在しない場合の理想的な半導体ヘテロ接合のエネルギー準位について例示している。
図5はシリコン及び炭化珪素の両者が接触していない状態を示している。図5中のシリコンの電子親和力をχ1、仕事関数(真空準位からフェルミ準位までのエネルギー)をφ1、フェルミエネルギー(伝導帯からフェルミ準位までのエネルギー)をδ1、バンドギャップをEg1としている。同様に、炭化珪素の電子親和力をχ2、仕事関数をφ2、フェルミエネルギーをδ2、バンドギャップをEg2とする。図5に示すように、シリコンと炭化珪素との接合面には、両者の電子親和力χの違いからエネルギー障壁ΔEcが存在し、その関係は下式(1)のように示すことができる。
ΔEc=χ1−χ2…(1)
また、図6は、シリコン及び炭化珪素の両者を接触させ、シリコンと炭化珪素のヘテロ接合を形成したエネルギーバンド構造である。シリコン及び炭化珪素の両者を接触後も、エネルギー障壁ΔEcは接触前と同様に存在するため、シリコン側の接合界面には幅W1の電子の蓄積層が形成され、一方で炭化珪素側の接合界面には幅W2の空乏層が形成されると考えられる。ここで、両接合界面に生じる拡散電位をVD、シリコン側の拡散電位成分をV1、炭化珪素側の拡散電位成分をV2とすると、VDは両者のフェルミ準位のエネルギー差であるから、その関係は下式(2)〜(4)のように示される。
VD=(δ1+ΔEc−δ2)/q…(2)
VD=V1+V2…(3)
W2=√((2*ε0*ε2*V2)/(q*N2))…(4)
ここで、ε0は真空中の誘電率、ε2は炭化珪素の比誘電率、N2は炭化珪素のイオン化不純物濃度を表す。なお、これらの式は、バンド不連続のモデルとしてAndersonの電子親和力に基づいており、理想的状態でさらに歪みの効果は考慮していない。
このように、図1に示した第1の実施の形態においては、図6に示すように電界緩和領域17とカソード領域12との接合界面にヘテロ障壁が存在しており、図7に示すように、カソード電極14に所定の正電位が印加された状態では、ヘテロ接合界面のカソード領域12側には印加したカソード電位に応じて空乏層が拡がる。それに対し、電界緩和領域17側に存在する電子はヘテロ接合界面のエネルギー障壁ΔEcを越えることができず、その接合界面には電子が蓄積する。このことから、カソード電位に応じた電界がほとんどかからないため、多結晶シリコンからなる電界緩和領域17側が先に臨界電界に達することが回避される。つまり、従来と同様に耐圧を維持することができる。
また、本実施の形態においては一例として、カソード領域12としてn型の炭化珪素を、電界緩和領域17としてのn型の多結晶シリコンを用いて説明しているが、n型の炭化珪素とp型の多結晶シリコン、p型の炭化珪素とp型の多結晶シリコン、p型の炭化珪素とn型の多結晶シリコンの如何なる組み合わせでもよい。また、電界緩和領域17の材料の一例として、多結晶シリコンを用いた例で説明したが、単結晶シリコン、アモルファスシリコンや、炭化珪素に比べてバンドギャップが小さい材料、ひいては炭化珪素とヘテロ接合を形成する材料であればどの材料でもよい。
さらに、本実施の形態においては、電界緩和領域17の材料としてカソード領域12とショットキー接合を形成する例えばニッケル(Ni)などの金属材料で形成してもよい。この場合、上記したヘテロ接合と類似した効果を奏し、同様の耐圧保持効果を容易に確保することができる。
このように、本実施の形態に係る炭化珪素半導体装置10では、図1に示すような構成とすることにより、従来構造の炭化珪素半導体装置と同様の動作を実現することができ、しかも従来構造と比べて以下のような特徴を有する。
すなわち、本実施の形態においては、カソード領域12に接する電界緩和領域17がカソード領域12とバンドギャップが異なる材料で構成されているため、従来構造では必須であった局所的不純物ドーピングが不要となる。このため、その製造工程が簡便であると同時に、高温の熱処理工程が不要となるため、この熱処理工程による主領域構造におけるチャネル移動度の低下やゲート絶縁膜の信頼性低下などの素子性能低下を回避することができる。また、電界緩和領域17を所定の位置に所定の本数配置することで、カソード領域12の横方向に拡がる電界分布を緩和することができ、容易に従来と同等の耐圧構造機能を実現することができる。
以上、第1の実施の形態について説明したが、主領域構造に限定されるものではない。つまり、例えば図2に示した本実施の形態の変形例のように、アノード電極13とカソード領域12との間に、p型の炭化珪素からなるアノード領域15を有するようなPNダイオードが主領域構造として形成されていてもよい。さらには、MOSFET、JFET、バイポーラトランジスタ、IGBTなどのスイッチ構造が主領域構造として形成されていてもよい。
(第2の実施の形態)
図3は、本発明に係る炭化珪素半導体装置の第2の実施の形態を示している。
本実施の形態の炭化珪素半導体装置20では、図1に示した第1の実施の形態の炭化珪素半導体装置10におけるエッジ保護領域16並びに電界緩和領域17を形成する代わりに、例えば多結晶シリコンでなるn型の抵抗性領域25がアノード電極23の外周部に接するように形成されている点が異なる。なお、本実施の形態に係る炭化珪素半導体装置20における他の構成は、図1に示した第1の実施の形態と同様である。
すなわち、本実施の形態の炭化珪素半導体装置20は、炭化珪素のポリタイプが例えば4Hタイプであり、第一導電型としてのn型の炭化珪素からなる炭化珪素基板領域21と、この炭化珪素基板領域21の上に形成されたn型のカソード領域22と、このカソード領域22における炭化珪素基板領域21との接合界面に対向する一主面に接しているアノード電極23とを備えている。また、炭化珪素基板領域21の他の主面(裏面)には、カソード電極24が形成されている。
なお、アノード電極23とカソード領域22との接合部はショットキー接続をしており、炭化珪素基板領域21とカソード電極24との接合部はオーミック接続している。本実施の形態においても、上記第1の実施の形態と同様に、主領域構造としてショットキー・バリア・ダイオードを形成している。
また、上記した抵抗性領域25とカソード領域22とが接する部分のうち、アノード電極23から最も離れた部分の電位が少なくともカソード電極24の電位とほぼ同電位となるように、抵抗性領域25が所定値以上の幅を有している。つまり、アノード電極23を接地電位として、カソード電極24に正の電位を印加した場合に、少なくともアノード電極23からカソード領域22に伸びる空乏層幅よりも抵抗性領域25の幅が大きくなっている。
このような構成にすることによって、カソード領域22から横方向に広がる電位分布が抵抗性領域25の抵抗広がりによって規定されるため、アノード電極23端部の電界集中を緩和することができ、上記した第1の実施の形態と同様の耐圧を保持することができる。また、上記した第1の実施の形態においては、電界緩和領域同士もしくはエッジ保護領域との間隔を調整して所望の耐圧を得る必要があり、その間隔はフォトリソグラフィー工程における最小加工幅などの精度による制限を受けるのに対し、本実施の形態においては、抵抗性領域25の不純物濃度を一義的に決めてしまえば、最適なカソード領域22の電位分布が実現できるため、容易に所望の耐圧を得ることができる。
なお、第2の実施の形態においては、抵抗性領域25に用いるヘテロ半導体材料として多結晶シリコンを用いた例で説明したが、単結晶シリコン、アモルファスシリコンや、炭化珪素に比べてバンドギャップが小さい材料、ひいては炭化珪素とヘテロ接合を形成する材料であれば他の材料を用いてもよい。
さらに、カソード領域22としてn型の炭化珪素を、抵抗性領域25としてn型の多結晶シリコンを用いて説明したが、n型の炭化珪素とp型の多結晶シリコン、p型の炭化珪素とp型の多結晶シリコン、p型の炭化珪素とn型の多結晶シリコンの如何なる組み合わせでもよい。
(第3の実施の形態)
図4は本発明に係る炭化珪素半導体装置の第3の実施の形態を示す断面図である。
本実施の形態における炭化珪素半導体装置30における上記した第2の実施の形態との相違点は、n型の抵抗性領域25の一部に、不純物濃度の高いn型の抵抗性領域27が形成されており、且つこの抵抗性領域27がカソード領域22と接しないように、フィールド絶縁膜28が形成されている。本実施の形態における他の構成は、上記した第2の実施の形態と同様である。なお、図4中、符号26は抵抗領域25、27の上を覆う絶縁膜である。
このような構成にすることによって、カソード領域22には接しない抵抗性領域27の抵抗値を任意に変えることが可能となる。つまり、抵抗性領域25とカソード領域22とが接して形成されているヘテロ接合部の耐圧(ヘテロ障壁の高さ)を維持しながら、抵抗性領域25の抵抗分布、すなわち、カソード領域22に広がる電位分布を積極的に所望の値に設定することができるため、上記した第2の実施の形態で得られる効果に加えて、耐圧構造領域の設計自由度を高めることができる。
なお、第3の実施の形態においては、抵抗性領域25に用いるヘテロ半導体材料として多結晶シリコンを用いて説明したが、炭化珪素に比べてバンドギャップが小さい材料、ひいては炭化珪素とヘテロ接合を形成する材料であれば他の材料を用いてもよい。
さらに、カソード領域22としてn型の炭化珪素を、抵抗性領域25としてn型の多結晶シリコンを用いて説明しているが、n型の炭化珪素とp型の多結晶シリコン、p型の炭化珪素とn型の多結晶シリコンの如何なる組み合わせでもよい。
以上、第1〜第3の実施の形態においては一例として、炭化珪素のポリタイプに4Hタイプを用いて説明したが、6H、3C等のその他のポリタイプを用いてもよい。さらに、本発明の主旨を逸脱しない範囲での変形を含むことは言うまでもない。
本発明に係る炭化珪素半導体装置の第1の実施の形態を示す断面図である。 第1の実施の形態に係る炭化珪素半導体装置の変形例を示す断面図である。 本発明に係る炭化珪素半導体装置の第2の実施の形態を示す断面図である。 本発明に係る炭化珪素半導体装置の第3の実施の形態を示す断面図である。 本発明の動作原理を説明するシリコンと炭化珪素とが接触する前のエネルギーバンド構造図である。 本発明の動作原理を説明するシリコンと炭化珪素とが接触した後のエネルギーバンド構造図である。 本発明の動作原理を説明する電圧印加時のエネルギーバンド構造図である。 従来の炭化珪素半導体装置の断面図である。 従来の他の炭化珪素半導体装置の断面図である。
符号の説明
10、20、30 炭化珪素半導体装置
11 炭化珪素基板領域
12 カソード領域
13 アノード電極
14 カソード電極
15 アノード領域
16 エッジ保護領域
17 電界緩和領域
18 絶縁膜
21 炭化珪素基板領域
22 カソード領域
23 アノード電極
24 カソード電極
25、27 抵抗性領域

Claims (6)

  1. ドリフト領域である第一導電型の炭化珪素半導体基体と、
    前記炭化珪素半導体基体の一主面に設けられたアノード電極と、
    前記炭化珪素半導体基体の一主面に対向する反対側の主面に設けられたカソード電極と、
    前記炭化珪素半導体基体の一主面に接して前記アノード電極を取り囲むように環状をなし、且つ前記炭化珪素半導体基体よりバンドギャップが小さい半導体材料で構成され、前記炭化珪素半導体基体とのヘテロ接合界面にエネルギー障壁を有する電界緩和領域と、
    を有することを特徴とする炭化珪素半導体装置。
  2. 前記電界緩和領域が前記アノード電極とは接しないように形成されていることを特徴とする請求項1記載の炭化珪素半導体装置。
  3. 前記電界緩和領域が互いに接しないように同心円状に複数形成されていることを特徴とする請求項1又は請求項2に記載された炭化珪素半導体装置。
  4. 前記電界緩和領域が前記アノード電極と接すると共に、該電界緩和領域と前記一主面とが接する部分のうち、前記アノード電極から最も離れた部分の電位が少なくとも前記カソード電極の電位とほぼ同電位となるように、前記電界緩和領域が所定値以上の幅を有していることを特徴とする請求項1記載の炭化珪素半導体装置。
  5. 前記電界緩和領域が、少なくとも同心円状に同一導電型の不純物濃度分布を有すると共に、前記不純物濃度の高い領域においては前記一主面とは接しないように絶縁層を介していることを特徴とする請求項4記載の炭化珪素半導体装置。
  6. 前記電界緩和領域は、単結晶シリコン、アモルファスシリコン、多結晶シリコンのいずれかであることを特徴とする請求項1乃至請求項5のいずれか一項に記載された炭化珪素半導体装置。
JP2006201032A 2006-07-24 2006-07-24 炭化珪素半導体装置 Expired - Fee Related JP4586775B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201032A JP4586775B2 (ja) 2006-07-24 2006-07-24 炭化珪素半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201032A JP4586775B2 (ja) 2006-07-24 2006-07-24 炭化珪素半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003013372A Division JP3885738B2 (ja) 2003-01-22 2003-01-22 炭化珪素半導体装置

Publications (2)

Publication Number Publication Date
JP2006287264A true JP2006287264A (ja) 2006-10-19
JP4586775B2 JP4586775B2 (ja) 2010-11-24

Family

ID=37408746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201032A Expired - Fee Related JP4586775B2 (ja) 2006-07-24 2006-07-24 炭化珪素半導体装置

Country Status (1)

Country Link
JP (1) JP4586775B2 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941463B1 (ja) * 1971-05-26 1974-11-09
JPS54118781A (en) * 1978-03-08 1979-09-14 Mitsubishi Electric Corp Planar-type diode
JPS55162273A (en) * 1979-06-04 1980-12-17 Origin Electric Co Ltd Schottky barrier diode
JPS6394673A (ja) * 1986-10-09 1988-04-25 Sanken Electric Co Ltd シヨツトキバリア半導体装置の製造方法
JPH01235379A (ja) * 1988-03-16 1989-09-20 Sanken Electric Co Ltd シヨツトキバリア半導体装置
JPH01246868A (ja) * 1988-03-28 1989-10-02 Sanken Electric Co Ltd シヨツトキバリア半導体装置
JPH03185870A (ja) * 1989-12-15 1991-08-13 Toshiba Corp 半導体装置
JP2002334998A (ja) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
JP2003069045A (ja) * 2001-08-22 2003-03-07 Mitsubishi Electric Corp 半導体装置
JP3885738B2 (ja) * 2003-01-22 2007-02-28 日産自動車株式会社 炭化珪素半導体装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941463B1 (ja) * 1971-05-26 1974-11-09
JPS54118781A (en) * 1978-03-08 1979-09-14 Mitsubishi Electric Corp Planar-type diode
JPS55162273A (en) * 1979-06-04 1980-12-17 Origin Electric Co Ltd Schottky barrier diode
JPS6394673A (ja) * 1986-10-09 1988-04-25 Sanken Electric Co Ltd シヨツトキバリア半導体装置の製造方法
JPH01235379A (ja) * 1988-03-16 1989-09-20 Sanken Electric Co Ltd シヨツトキバリア半導体装置
JPH01246868A (ja) * 1988-03-28 1989-10-02 Sanken Electric Co Ltd シヨツトキバリア半導体装置
JPH03185870A (ja) * 1989-12-15 1991-08-13 Toshiba Corp 半導体装置
JP2002334998A (ja) * 2001-05-08 2002-11-22 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
JP2003069045A (ja) * 2001-08-22 2003-03-07 Mitsubishi Electric Corp 半導体装置
JP3885738B2 (ja) * 2003-01-22 2007-02-28 日産自動車株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
JP4586775B2 (ja) 2010-11-24

Similar Documents

Publication Publication Date Title
TWI596783B (zh) Semiconductor device
JP5900698B2 (ja) 半導体装置
US10930773B2 (en) Semiconductor device
JP5665912B2 (ja) 半導体装置及びその製造方法
JP5439215B2 (ja) 半導体装置および半導体装置の製造方法
JP2019071313A (ja) 半導体装置
JP2007013058A (ja) 半導体装置
US10062750B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP6560444B2 (ja) 半導体装置
KR101461886B1 (ko) 쇼트키 배리어 다이오드 및 그 제조 방법
JP6463506B2 (ja) 炭化珪素半導体装置
JP7030665B2 (ja) 半導体装置
JP7353925B2 (ja) 半導体装置
JP4948784B2 (ja) 半導体装置及びその製造方法
WO2012124191A1 (ja) 半導体装置
JP2013182905A (ja) 半導体装置
JP5216183B2 (ja) 半導体装置
JP4131193B2 (ja) 半導体装置
WO2022190444A1 (ja) 電界効果トランジスタ
JP3885738B2 (ja) 炭化珪素半導体装置
JP4586775B2 (ja) 炭化珪素半導体装置
JP2004253510A (ja) 半導体装置
JP3879697B2 (ja) 半導体装置
JP2009076930A (ja) 半導体装置
JP5114865B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Ref document number: 4586775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees