JP2006227137A - 画像形成装置 - Google Patents
画像形成装置 Download PDFInfo
- Publication number
- JP2006227137A JP2006227137A JP2005038630A JP2005038630A JP2006227137A JP 2006227137 A JP2006227137 A JP 2006227137A JP 2005038630 A JP2005038630 A JP 2005038630A JP 2005038630 A JP2005038630 A JP 2005038630A JP 2006227137 A JP2006227137 A JP 2006227137A
- Authority
- JP
- Japan
- Prior art keywords
- group
- image forming
- forming apparatus
- layer
- titanyl phthalocyanine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Photoreceptors In Electrophotography (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
【解決手段】 少なくともスコロトロン方式の帯電手段、600dpi以上の解像度を有する露光手段等及び感光体を具備してなり、感光体線速が300mm/sec以上で動作され、該帯電手段から該感光体に印加される電界強度が30V/μm以上であり、電荷発生層中にCuKα線(波長1.542A)の対するブラッグ角2θの回折ピークとして、少なくとも27.2°に最大回折ピークを有し9.4°、9.6°、24.0°に主要なピークを有し、最も低角側の回折ピークとして7.3°にピークを有し、7.3°のピークと9.4°のピークの間にピークを有さず26.3°にピークを有さない一次粒子の平均サイズが0.25μm以下であるチタニルフタロシアニン結晶を含むことを特徴とする画像形成装置。
【選択図】 図17
Description
前者は感光体口径をそれほど大きなものにしないで、装置の小型化を優先的に設計するため、高速化には限界があり、また感光体の寿命にも限界がある。後者は、プリント速度で100枚/分程度の高速化を実現するために、大口径な感光体を使用し、かつ感光体線速を可能な限り大きくし、感光体の寿命もプリント1枚あたりの感光体回転数を実質的に少なくすることにより、高耐久化を図っている。
コロトロン帯電器は、一般に50〜100μm径の金属製ワイヤーを開口部を有した金属性シールドケースで囲み、開口部を感光体表面に対向させた状態でワイヤーに5−10KVの高電圧を印加し、これによって発生した正又は、負イオンを感光体表面に移動させて帯電させる帯電部材である。 コロトロン帯電器は、限られた帯電時間内で、一定量のコロナ電荷を供給する帯電部材である。
後述の如く有機感光体(OPC)は画像形成時に種々のハザードを受け、感光層が摩耗したり、表面に傷が付いたりし、全体的に又は一部局部的に感光体の帯電能が低下し、コロトロン方式では帯電の安定性が得られ難い。 特に線速で300mm/sec以上の高線速領域ではコロトロン方式は帯電電位の安定性で問題が発生する。
例えば、特許文献1には硝酸セルロース系樹脂中間層が、特許文献2にはナイロン系樹脂中間層が、特許文献3にはマレイン酸系樹脂中間層が、特許文献4にはポリビニルアルコール樹脂中間層がそれぞれ開示されている。しかしながら、これらの単層かつ樹脂単独の中間層は電気抵抗が高いため、残留電位の上昇を引き起こし、ネガ・ポジ現像においては画像濃度低下を生じる。また、不純物等に起因するイオン伝導性を示すことから、低温低湿環境下では中間層の電気抵抗が特に高くなるため、残留電位が著しく上昇し、高温高湿環境下では中間層の電気抵抗が低下し、地汚れが発生しやすくなる傾向が見られていた。このため、残留電位を低減させるために、中間層を薄膜化する必要があり、十分な地汚れの抑制が実現されていないのが実情であった。
このように、複数の中間層を積層させ機能分離させた構成は、モアレ防止や地汚れ抑制、さらに残留電位低減を両立させる上で高い有効性を示すものの、樹脂層を薄膜化させて用いる必要があり、それに用いられる樹脂によっては、地汚れや残留電位の湿度依存性が大きかったり、膜厚依存性が大きくなる傾向が見られ、必ずしも高い安定性を有していなかった。
図3には、感光体に印加される電界強度(感光体表面電位/感光層膜厚)に対するドット形成の様子を示す(書き込みは1200dpiで行っている)。図3に示されるように、小径ドットを忠実に再現するためには電界強度を高めに設定する必要がある。図4には、電界強度に対する地汚れランクの変化を示す。ここで言う地汚れランクとは、地汚れの程度を示すものであり、数値が大きいほど地汚れの程度が良好(地汚れ発生頻度が低い)であることを表すものである。図3と図4から分かるように両者の間には電界強度に関してトレード・オフの関係がある。地汚れを回避するためには、通常、感光体の電界強度を30V/μm以下で使用し、小径ドットの再現を多少犠牲にしているシステムが使用されていた。例えば、特許文献41では、地汚れと細線の再現性を両立させるために、感光体の電界強度を12〜40V/μmで使用する旨の記載がある。
具体的には、感光体線速が300mm/sec以上で動作され、且つスコロトロン帯電方式により30V/μm以上の電界強度が感光体に印加され、600dpi以上の解像度を有する書き込みが行われる画像形成装置において、少なくとも電荷ブロッキング層、モアレ防止層、及び特定結晶型及び特定粒子サイズを有するチタニルフタロシアニン結晶を含有する感光体を使用することにより、チタニルフタロシアニン固有の高感度を維持し、高耐久で高速画像出力が可能な画像形成装置を提供することにある。
(1) 少なくともスコロトロン方式の帯電手段、600dpi以上の解像度を有する露光手段、現像手段、転写手段、及び電子写真感光体を具備してなり、且つ感光体線速が300mm/sec以上で動作される画像形成装置において、該電子写真感光体が導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層および感光層を順に積層してなる電子写真感光体であり、該感光層中にCuKα線の特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、該帯電手段により該電子写真感光体に下記式(A)で定義される電界強度を30(V/μm)以上印加することを特徴とする画像形成装置。
電界強度(V/μm)=現像位置における感光体未露光部表面電位(V)
/感光層膜厚(μm) ・・・ (A)
(3) 前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満、0.3μm以上であることを特徴とする前記(1)または(2)の何れかに記載の画像形成装置。
(4) 前記絶縁性材料がポリアミドであることを特徴とする前記(3)に記載の画像形成装置。
(5) 前記ポリアミドが、N−メトキシメチル化ナイロンであることを特徴とする前記(4)に記載の画像形成装置。
(6) 前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする前記(1)乃至(5)の何れかに記載の画像形成装置。
(7) 前記バインダー樹脂が熱硬化型樹脂であることを特徴とする前記(6)に記載の画像形成装置。
(9) 前記アルキッド樹脂とメラミン樹脂の混合比が、5/5〜8/2(重量比)の範囲であることを特徴とする前記(8)に記載の画像形成装置。
(10) 前記無機顔料が酸化チタンであることを特徴とする前記(6)乃至(9)に記載の画像形成装置。
(11) 前記酸化チタンが平均粒径の異なる2種類の酸化チタンであり、平均粒径の大きい方の酸化チタン(T1)の平均粒径を(D1)とし、他方の酸化チタン(T2)の平均粒径を(D2)とした場合、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする前記(10)に記載の画像形成装置。
(12) 前記酸化チタン(T2)の平均粒径(D2)が、0.05μm<D2<0.2μmであることを特徴とする前記(11)に記載の画像形成装置。
(13) 前記平均粒径の異なる2種の酸化チタンの混合比率(重量比)が、0.2≦T2/(T1+T2)≦0.8であることを特徴とする前記(11)又は(12)に記載の画像形成装置。
(15) 前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行ない、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過したものを用いて得られたものであることを特徴とする前記(1)乃至(14)の何れかに記載の画像形成装置。
(16) 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする前記(14)又は(15)の何れかに記載の画像形成装置。
(18) 前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする前記(14)乃至(17)の何れかに記載の画像形成装置。
(19) 前記感光層もしくは電荷輸送層が少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする前記(1)乃至(18)の何れかに記載の画像形成装置。
(21) 前記保護層が比抵抗1010Ω・cm以上の無機顔料あるいは金属酸化物を含有することを特徴とする前記(20)に記載の画像形成装置。
(22) 前記保護層が高分子電荷輸送物質を含有することを特徴とする前記(20)又は(21)の何れかに記載の画像形成装置。
(23) 前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする前記(20)乃至(22)の何れかに記載の画像形成装置。
(24) 前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする前記(23)に記載の画像形成装置。
(26) 前記保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする前記(25)に記載の画像形成装置。
(27) 前記保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする前記(25)又は(26)のいずれかに記載の画像形成装置。
(28) 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする前記(25)乃至(27)のいずれかに記載の画像形成装置。
(30) 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の少なくとも一種以上であることを特徴とする前記(25)乃至(29)のいずれかに記載の画像形成装置。
(33) 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、保護層全量に対し30〜70重量%であることを特徴とする前記(25)乃至(32)のいずれかに記載の画像形成装置。
(34) 前記保護層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする前記(25)乃至(33)のいずれかに記載の画像形成装置。
(35) 前記帯電手段に用いられる放電ワイヤーの直径が、30μm以上80μm未満であることを特徴とする前記(1)乃至(34)の何れかに記載の画像形成装置。
(36) 前記画像形成装置に用いられる転写手段が、感光体上に形成されたトナー像を直接被転写体に転写する直接転写方式であることを特徴とする前記(1)乃至(35)の何れかに記載の画像形成装置。
(38) 前記画像形成装置において、光除電機構を用いないことを特徴とする前記(1)乃至(37)の何れかに記載の画像形成装置。
(39) 少なくとも帯電手段、露光手段、現像手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする前記(1)乃至(38)の何れかに記載の画像形成装置。
(40) 感光体と少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つ以上の手段とが一体となった、装置本体と着脱自在なカートリッジを搭載していることを特徴とする前記(1)乃至(39)の何れかに記載の画像形成装置。
図5は、本発明の画像形成装置を説明するための概略図であり、後に示すような変形例も本発明の範疇に属するものである。
図5において、感光体(1)は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、及び感光層が設けられてなり、感光層にはCuKα線の特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有してなる。感光体(1)はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。
尚、本願において電界強度は下記(A)で定義したものを用いるものとする。
電界強度(V/μm)=現像位置における感光体未露光部表面電位(V)
/感光層膜厚(μm) ・・・ (A)
上記帯電部材に用いられる放電ワイヤーとしては、直径が80μm未満30μm以上のものが有効に使用出来る。直径が80μm以上のワイヤーは表面積が大きくなり過ぎ、放電むらが生じやすく、長期にわたり均一に感光体を帯電させることが困難である。また、直径が30μm未満の放電ワイヤーを用いた帯電器では感光体への帯電が均一で、且つオゾン等の活性気体により酸化されにくいため、長期にわたり安定した帯電が可能になるが、他方線径が小さいため放電電流が少なくなり、近年強い要請のある複写機等の高速化に対応出来ない場合が存在する。
また、1つの帯電部材の中に複数の放電ワイヤーを併用することは、高速機における帯電に関しては非常に有利である。
また、放電ワイヤーは使用時にテンションをかけて使用するため、引っ張り強度として、150kg/mm2以上のものが好ましく使用される。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、本発明で用いられる電荷発生材料である特定結晶型のフタロシアニン顔料が高感度を示すことから良好に使用される。
この際、転写後の感光体表面電位が繰り返し使用における感光体の静電疲労に大きな影響を及ぼす。即ち、感光体の静電疲労は感光体の通過電荷量により大きく左右される。この通過電荷量とは、感光体の膜厚方向を流れる電荷量に相当する。感光体の画像形成装置中の動作として、帯電手段(メイン帯電器)により所望の帯電電位に帯電され(ほとんどの場合負帯電される)、原稿に応じた入力信号に基づき光書き込みが行われる。この際、書き込みが行われた部分は光キャリアが発生し、表面電荷を中和する(電位減衰する)。この時、光キャリア発生量に依存した電荷量が感光体膜厚方向に流れる。
感光体の通過電荷は、感光体表面に帯電された電位(これにより生じた電界)により、光照射が行われることにより、発生した光キャリアが移動することにより生じる。従って、感光体表面電位を光以外の手段で減衰させることが出来れば、感光体1回転(画像形成1サイクル)あたりの通過電荷量を低減することが出来る。
先の帯電方式においてAC成分を重畳して使用する場合や、感光体の残留電位が小さい場合等は、この除電機構を省略することもできる。また、光学的な除電ではなく静電的な除電機構(例えば、逆バイアスを印加したあるいはアース接地した除電ブラシなど)を用いることもできる。前述のように書き込み率の小さな原稿では、光除電の影響は大きく、次の画像形成サイクルにおいて残像などの影響がない限り、光除電を用いない方が好ましい。
また、現像ユニット(6)により感光体(1)上に現像されたトナーは、転写紙(7)に転写されるが、感光体(1)上に残存するトナーが生じた場合、ファーブラシ(14)およびブレード(15)により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
図6において、符号(1C)、(1M)、(1Y)、(1K)はドラム状の感光体であり、感光体は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、及び感光層が設けられてなり、感光層にはCuKα線の特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有してなる。
プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図7に示すものが挙げられる。感光体(101)は導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、及び感光層が設けられてなり、感光層にはCuKα線の特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有してなる。
導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層、および感光層を順に形成してなる電子写真感光体であって、該感光層中にCuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に 9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均サイズが0.25μm以下であるチタニルフタロシアニン結晶を含有するものである。
従って、両者の技術は未完成の技術であり、上述のような特定結晶型を有するチタニルフタロシアニン結晶を感光層に用い、電荷ブロッキング層、モアレ防止層の順に積層した中間層を有する感光体を作製した場合、高感度と静電的な安定性は発現されるものの、本発明の目的である地汚れ耐久性の向上と帯電部材による絶縁破壊防止に関しては、満足のいくものではなかった。
ハロゲン化フリーのチタニルフタロシアニンを合成するためには、チタニルフタロシアニン合成の際の原材料に、ハロゲン化された材料を使用しないことである。具体的には、後述の方法が用いられる。
初めにチタニルフタロシアニン結晶の合成粗品の合成法について述べる。フタロシアニン類の合成方法は古くから知られており、非特許文献2、特許文献48等に記載されている。
例えば、第1の方法として、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この場合、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。第3の方法は、無水フタル酸あるいはフタロニトリル類とアンモニアを先ず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。第4の方法は、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。特に、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法であり、本発明においては極めて有効に使用される。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄・濾過を行ない、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行ない、固形分濃度で5〜15wt%程度の水ペーストを得る。
結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3°のピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さない結晶型を有するチタニルフタロシアニン結晶に変換する工程である。
この際、使用される有機溶媒は、所望の結晶型を得られるものであれば、いかなる有機溶媒も使用できるが、特にテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタンの中から選ばれる1種を選択すると、良好な結果が得られる。これら有機溶媒は単独で用いることが好ましいが、これらの有機溶媒を2種以上混合する、あるいは他の溶媒と混合して用いることも可能である。結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の重量の10倍以上、好ましくは30倍以上の重量であることが望ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)に含まれる不純物を十分に取り除く効果が発現されるからである。尚、ここで使用する不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、アシッド・ペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが望ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、出来上がった結晶を水洗処理のような操作をしても完全には取り除くことが出来ない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特許文献34(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることが出来るが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。この理由は、先に述べたとおりである。以上の結晶変換方法は特許文献33に準じた結晶変換方法である。
感光層に含有されるチタニルフタロシアニン結晶の粒子サイズをコントロールするための方法は、大きく2つの方法が挙げられる。1つはチタニルフタロシアン結晶粒子を合成する際に、0.25μmより大きい粒子を含まない結晶を合成する方法であり、いま1つはチタニルフタロシアニン結晶を分散した後、0.25μmより大きい粗大粒子を取り除いてしまう方法である。勿論、両者を併用して用いることはより大きな効果を併せ持つものである。
チタニルフタロシアニン結晶の粒子サイズをより細かくするために、本発明者らが観察したところによれば、前述の不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図8参照)、結晶変換に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存をおそれて充分な結晶変換時間を確保し、結晶変換が十二分に行なわれた後に、濾過を行ない、所望の結晶型を有するチタニルフタロシアニン結晶を得るものである。このため、原料として充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後の結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)を得ているものである(図9参照)。
図中のスケール・バーは、いずれも0.2μmである。
図10に示されるように一次粒子が小さい状態で作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下、より好ましくは0.2μm以下)にするためには、一次粒子が凝集(集合)して集まって形成する2次粒子をほぐすだけのシェアを与えることで分散が可能である。この結果、必要以上のエネルギーを与えないため、前述の如き、粒子の一部が所望の結晶型でない結晶型へと転移し易い結果は生み出さずに、粒度分布の細かい分散液を容易に作製することが可能である。
この2種類の分散液の平均粒径並びに粒度分布を公知の方法に従って、市販の粒度分布測定装置(堀場製作所製:超遠心式自動粒度分布測定装置、CAPA700)により測定した。その結果を図13に示す。図13における「A」が図11に示す分散液に対応し、「B」が図12に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の平均粒径値は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上では、両者に全くの差があるとは判断できない。
このような結果から、凝集を抑制しつつ、結晶変換時に作製される一次粒子をできる限り小さくするために、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法は有効であることがわかる。
このような結晶変換方法を採用することにより、一次平均粒子サイズの小さな(0.25μm以下、好ましくは0.2μm以下)チタニルフタロシアニン結晶を得ることができる。特許文献33に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明の効果を高めるために有効な手段である。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機は、公知のものがいずれも使用可能であるが、大気下で行なう場合には送風型の乾燥機が好ましい。更に、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。特に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段である。特に10mmHgよりも真空度が高い状態で乾燥することが有効である。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散することで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また溶媒は顔料へのぬれ性、顔料の分散性などにより選択すればよい。
次に特定結晶型を有するチタニルフタロシアニン結晶を分散した後に、0.25μm以上の粒子を取り除く方法について述べる。
図14は、本発明に用いられる電子写真感光体の構成例を示す断面図であり、導電性支持体(201)上に、電荷ブロッキング層(205)、モアレ防止層(206)、特定の結晶型を有し特定平均粒子サイズ以下のチタニルフタロシアニン結晶を含有する感光層(204)が順に積層された構成をとっている。
図15は、本発明に用いられる電子写真感光体の別の構成例を示す断面図であり、導電性支持体(201)上に、電荷ブロッキング層(205)、モアレ防止層(206)、特定の結晶型を有し特定平均粒子サイズ以下のチタニルフタロシアニン結晶を含有する電荷発生層(207)、電荷輸送材料を主成分とする電荷輸送層(208)が順に積層された構成をとっている。
電荷ブロッキング層は、感光体帯電時に電極(導電性支持体)に誘起される逆極性の電荷が、支持体から感光層に注入するのを防止する機能を有する層で、主に地汚れを抑制させることを目的とした層である。負帯電の場合には正孔注入防止、正帯電の場合には電子注入防止の機能を有する。また、素管の欠陥に対する隠蔽性を高める効果も有しており、地汚れ抑制効果を高めるものである。したがって、これらの目的を達成するためには電荷の移動を抑えることが要求されることから、無機顔料を含有させずに絶縁性の高い樹脂のみで構成されることが好ましい。
また、電荷ブロッキング層の膜厚は0.1μm以上2.0μm未満、好ましくは0.3μm以上2.0μm以下程度が適当である。電荷ブロッキング層が厚くなると、帯電と露光の繰返しによって、特に低温低湿で残留電位の上昇が著しく、また、膜厚が薄すぎるとブロッキング性の効果が小さくなる、また電荷ブロッキング層には、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進材等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより基体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
この際、アルキッド/メラミン樹脂の混合比は、モアレ防止層の構造及び特性を決定する重要な因子である。両者の比(重量比)が5/5〜8/2の範囲が良好な混合比の範囲として挙げることが出来る。5/5よりもメラミン樹脂がリッチであると、熱硬化の際に体積収縮が大きくなり塗膜欠陥を生じやすくなったり、感光体の残留電位を大きくする方向にあり望ましくない。また、8/2よりもアルキッド樹脂がリッチであると、感光体の残留電位低減には効果があるものの、バルク抵抗が低くなりすぎて地汚れが悪くなる方向になり望ましくない。
また、2種の酸化チタンの混合比率(重量比)も重要な因子である。T2/(T1+T2)が0.2よりも小さい場合には、酸化チタンの充填率がそれほど大きくなく、地汚れ抑制効果が十分に発揮出来ない。一方、0.8よりも大きな場合には、隠蔽力が低下し、モアレを発生させる場合がある。従って、0.2≦T2/(T1+T2)≦0.8であることが重要である。
また、モアレ防止層の膜厚は1〜10μm、好ましくは2〜5μmとするのが適当である。膜厚が1μm未満では効果の発現性が小さく、10μmを越えると残留電位の蓄積を生じるので望ましくない。
電荷発生層は、電荷発生物質として、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン結晶が用いられる。さらに、この特定の結晶型を有するチタニルフタロシアンを結晶合成時あるいは分散濾過処理により、一次粒子の平均粒子サイズを0.25μm以下にすることによって達成される。
電荷発生層は、前記顔料を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これをモアレ防止層上に塗布し、乾燥することにより形成される。
必要に応じて電荷発生層に用いられる結着樹脂としては、必要に応じて電荷発生層に用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリスルホン、ポリ−N−ビニルカルバゾール、ポリアクリルアミド、ポリビニルベンザール、ポリエステル、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリフェニレンオキシド、ポリアミド、ポリビニルピリジン、セルロース系樹脂、カゼイン、ポリビニルアルコール、ポリビニルピロリドン等があげられる。結着樹脂の量は、電荷発生物質100重量部に対し0〜500重量部、好ましくは10〜300重量部が適当である。
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジエン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。中でも、環境への負荷低減等の意図から、非ハロゲン系溶媒の使用は望ましいものである。具体的には、テトラヒドロフランやジオキソラン、ジオキサン等の環状エーテルやトルエン、キシレン等の芳香族系炭化水素、及びそれらの誘導体が良好に用いられる。
これら電子供与性基を有する重合体から構成される電荷輸送層、あるいは架橋構造を有する重合体は耐摩耗性に優れたものである。通常、電子写真プロセスにおいては、帯電電位(未露光部電位)は一定であるため、繰り返し使用により感光体の表面層が摩耗すると、その分だけ感光体にかかる電界強度が高くなってしまう。この電界強度の上昇に伴い、地汚れの発生頻度が高くなるため、感光体の耐摩耗性が高いことは、地汚れに対して有利である。これら電子供与性基を有する重合体から構成される電荷輸送層は、自身が高分子化合物であるため成膜性に優れ、低分子分散型高分子からなる電荷輸送層に比べ、電荷輸送部位を高密度に構成することが可能で電荷輸送能に優れたものである。このため、高分子電荷輸送物質を用いた電荷輸送層を有する感光体には高速応答性が期待できる。
その他の電子供与性基を有する重合体としては、公知単量体の共重合体や、ブロック重合体、グラフト重合体、スターポリマーや、また、例えば特許文献49、特許文献50、特許文献51等に開示されているような電子供与性基を有する架橋重合体などを用いることも可能である。
先に、保護層中にフィラーを添加する構成について説明する。
保護層に使用される材料としてはABS樹脂、ACS樹脂、オレフィン−ビニルモノマー共重合体、塩素化ポリエーテル、アリル樹脂、フェノール樹脂、ポリアセタール、ポリアミド、ポリアミドイミド、ポリアクリレート、ポリアリルスルホン、ポリブチレン、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリエーテルスルホン、ポリエチレン、ポリエチレンテレフタレート、ポリイミド、アクリル樹脂、ポリメチルベンテン、ポリプロピレン、ポリフェニレンオキシド、ポリスルホン、ポリスチレン、AS樹脂、ブタジエン−スチレン共重合体、ポリウレタン、ポリ塩化ビニル、ポリ塩化ビニリデン、エポキシ樹脂等の樹脂が挙げられる。中でも、ポリカーボネートもしくはポリアリレートが最も良好に使用できる。
また、感光体の保護層に用いられるフィラー材料のうち有機性フィラー材料としては、ポリテトラフルオロエチレンのようなフッ素樹脂粉末、シリコーン樹脂粉末、a−カーボン粉末等が挙げられ、無機性フィラー材料としては、銅、スズ、アルミニウム、インジウムなどの金属粉末、シリカ、酸化錫、酸化亜鉛、酸化チタン、酸化インジウム、酸化アンチモン、酸化ビスマス、アンチモンをドープした酸化錫、錫をドープした酸化インジウム等の金属酸化物、チタン酸カリウムなどの無機材料が挙げられる。特に、フィラーの硬度の点からは、この中でも無機材料を用いることが有利である。特に、シリカ、酸化チタン、アルミナが有効に使用できる。
更に、画像ボケが発生しにくいフィラーとしては、電気絶縁性が高いフィラー(比抵抗が1010Ω・cm以上)が好ましく、フィラーのpHが5以上を示すものやフィラーの誘電率が5以上を示すものが特に有効に使用できる。また、pHが5以上のフィラーあるいは誘電率が5以上のフィラーを単独で使用することはもちろん、pHが5以下のフィラーとpHが5以上のフィラーとを2種類以上を混合したり、誘電率が5以下のフィラーと誘電率が5以上のフィラーとを2種類以上混合したりして用いることも可能である。また、これらのフィラーの中でも高い絶縁性を有し、熱安定性が高い上に、耐摩耗性が高い六方細密構造であるα型アルミナは、画像ボケの抑制や耐摩耗性の向上の点から特に有用である。
更に、これらのフィラーは少なくとも一種の表面処理剤で表面処理させることが可能であり、そうすることがフィラーの分散性の面から好ましい。フィラーの分散性の低下は残留電位の上昇だけでなく、塗膜の透明性の低下や塗膜欠陥の発生、さらには耐摩耗性の低下をも引き起こすため、高耐久化あるいは高画質化を妨げる大きな問題に発展する可能性がある。表面処理剤としては、従来用いられている表面処理剤すべてを使用することができるが、フィラーの絶縁性を維持できる表面処理剤が好ましい。例えば、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコアルミネート系カップリング剤、高級脂肪酸等、あるいはこれらとシランカップリング剤との混合処理や、Al2O3、TiO2、ZrO2、シリコーン、ステアリン酸アルミニウム等、あるいはそれらの混合処理がフィラーの分散性及び画像ボケの点からより好ましい。シランカップリング剤による処理は、画像ボケの影響が強くなるが、上記の表面処理剤とシランカップリング剤との混合処理を施すことによりその影響を抑制できる場合がある。表面処理量については、用いるフィラーの平均一次粒径によって異なるが、3〜30wt%が適しており、5〜20wt%がより好ましい。表面処理量がこれよりも少ないとフィラーの分散効果が得られず、また多すぎると残留電位の著しい上昇を引き起こす。これらフィラー材料は単独もしくは2種類以上混合して用いられる。フィラーの表面処理量に関しては、上述のようにフィラー量に対する使用する表面処理剤の重量比で定義される。
また、保護層には残留電位低減、応答性改良のため、電荷輸送物質を含有しても良い。電荷輸送物質は、電荷輸送層の説明のところに記載した材料を用いることができる。電荷輸送物質として、低分子電荷輸送物質を用いる場合には、保護層中における濃度傾斜を設けても構わない。耐摩耗性向上のため、表面側を低濃度にすることは有効な手段である。ここでいう濃度とは、保護層を構成する全材料の総重量に対する低分子電荷輸送物質の重量の比を表わし、濃度傾斜とは上記重量比において表面側において濃度が低くなるような傾斜を設けることを示す。また、高分子電荷輸送物質を用いることは、感光体の耐久性を高める点で非常に有利である。
このような保護層の形成法としては通常の塗布法が採用される。尚、上述した保護層の厚さは 0.1〜10μm程度が適当である。
架橋構造の形成に関しては、1分子内に複数個の架橋性官能基を有する反応性モノマーを使用し、光や熱エネルギーを用いて架橋反応を起こさせ、3次元の網目構造を形成するものである。この網目構造がバインダー樹脂として機能し、高い耐摩耗性を発現するものである。
また、上記反応性モノマーとして、全部もしくは一部に電荷輸送能を有するモノマーを使用することは非常に有効な手段である。このようなモノマーを使用することにより、網目構造中に電荷輸送部位が形成され、保護層としての機能を十分に発現することが可能となる。電荷輸送能を有するモノマーとしては、トリアリールアミン構造を有する反応性モノマーが有効に使用される。
このような網目構造を有する保護層は、耐摩耗性が高い反面、架橋反応時に体積収縮が大きく、あまり厚膜化するとクラックなどを生じる場合がある。このような場合には、保護層を積層構造として、下層(感光層側)には低分子分散ポリマーの保護層を使用し、上層(表面側)に架橋構造を有する保護層を形成しても良い。
特定の架橋型保護層としては、電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されるものが好ましい。3官能以上のラジカル重合性モノマーを硬化した架橋構造を有するため3次元の網目構造が発達し、架橋密度が非常に高い高硬度且つ高弾性な表面層が得られ、かつ均一で平滑性も高く、高い耐摩耗性、耐傷性が達成される。この様に感光体表面の架橋密度すなわち単位体積あたりの架橋結合数を増加させることが重要であるが、硬化反応において瞬時に多数の結合を形成させるため体積収縮による内部応力が発生する。この内部応力は架橋型保護層の膜厚が厚くなるほど増加するため保護層全層を硬化させると、クラックや膜剥がれが発生しやすくなる。この現象は初期的に現れなくても、電子写真プロセス上で繰り返し使用され帯電、現像、転写、クリーニングのハザード及び熱変動の影響を受けることにより、経時で発生しやすくなることもある。
本発明に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーとは、例えばトリアリールアミン、ヒドラゾン、ピラゾリン、カルバゾールなどの正孔輸送性構造、例えば縮合多環キノン、ジフェノキノン、シアノ基やニトロ基を有する電子吸引性芳香族環などの電子輸送構造を有しておらず、且つラジカル重合性官能基を3個以上有するモノマーを指す。このラジカル重合性官能基とは、炭素−炭素2重結合を有し、ラジカル重合可能な基であれば何れでもよい。これらラジカル重合性官能基としては、例えば、下記に示す1−置換エチレン官能基、1,1−置換エチレン官能基等が挙げられる。
CH2=CH−X1− ・・・・式10
(ただし、式10中、X1は、置換基を有していてもよいフェニレン基、ナフチレン基等のアリーレン基、置換基を有していてもよいアルケニレン基、−CO−基、−COO−基、−CON(R10)−基(R10は、水素、メチル基、エチル基等のアルキル基、ベンジル基、ナフチルメチル基、フェネチル基等のアラルキル基、フェニル基、ナフチル基等のアリール基を表す。)、または−S−基を表す。)
これらの官能基を具体的に例示すると、ビニル基、スチリル基、2−メチル−1,3−ブタジエニル基、ビニルカルボニル基、アクリロイルオキシ基、アクリロイルアミド基、ビニルチオエーテル基等が挙げられる。
CH2=C(Y)−X2− ・・・・式11
(ただし、式11中、Yは、置換基を有していてもよいアルキル基、置換基を有していてもよいアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、ハロゲン原子、シアノ基、ニトロ基、メトキシ基あるいはエトキシ基等のアルコキシ基、−COOR11基(R11は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル、フェネチル基等のアラルキル基、置換基を有していてもよいフェニル基、ナフチル基等のアリール基、または−CONR12R13(R12およびR13は、水素原子、置換基を有していてもよいメチル基、エチル基等のアルキル基、置換基を有していてもよいベンジル基、ナフチルメチル基、あるいはフェネチル基等のアラルキル基、または置換基を有していてもよいフェニル基、ナフチル基等のアリール基を表し、互いに同一または異なっていてもよい。)、また、X2は上記式10のX1と同一の置換基及び単結合、アルキレン基を表す。ただし、Y、X2の少なくとも何れか一方がオキシカルボニル基、シアノ基、アルケニレン基、及び芳香族環である。)
なお、これらX1、X2、Yについての置換基にさらに置換される置換基としては、例えばハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等が挙げられる。
すなわち、本発明において使用する上記ラジカル重合性モノマーとしては、例えば、トリメチロールプロパントリアクリレート(TMPTA)、トリメチロールプロパントリメタクリレート、トリメチロールプロパンアルキレン変性トリアクリレート、トリメチロールプロパンエチレンオキシ変性(以後EO変性)トリアクリレート、トリメチロールプロパンプロピレンオキシ変性(以後PO変性)トリアクリレート、トリメチロールプロパンカプロラクトン変性トリアクリレート、トリメチロールプロパンアルキレン変性トリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート(PETTA)、グリセロールトリアクリレート、グリセロールエピクロロヒドリン変性(以後ECH変性)トリアクリレート、グリセロールEO変性トリアクリレート、グリセロールPO変性トリアクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサアクリレート(DPHA)、ジペンタエリスリトールカプロラクトン変性ヘキサアクリレート、ジペンタエリスリトールヒドロキシペンタアクリレート、アルキル化ジペンタエリスリトールペンタアクリレート、アルキル化ジペンタエリスリトールテトラアクリレート、アルキル化ジペンタエリスリトールトリアクリレート、ジメチロールプロパンテトラアクリレート(DTMPTA)、ペンタエリスリトールエトキシテトラアクリレート、リン酸EO変性トリアクリレート、2,2,5,5,−テトラヒドロキシメチルシクロペンタノンテトラアクリレートなどが挙げられ、これらは、単独又は2種類以上を併用しても差し支えない。
前記一般式(1)、(2)において、R1の置換基中、アルキル基としては、例えばメチル基、エチル基、プロピル基、ブチル基等、アリール基としては、フェニル基、ナフチル基等が、アラルキル基としては、ベンジル基、フェネチル基、ナフチルメチル基が、アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等がそれぞれ挙げられ、これらは、ハロゲン原子、ニトロ基、シアノ基、メチル基、エチル基等のアルキル基、メトキシ基、エトキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フェニル基、ナフチル基等のアリール基、ベンジル基、フェネチル基等のアラルキル基等により置換されていても良い。
R1の置換基のうち、特に好ましいものは水素原子、メチル基である。
該縮合多環式炭化水素基としては、好ましくは環を形成する炭素数が18個以下のもの、例えば、ペンタニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、as−インダセニル基、s−インダセニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレル基、ピレニル基、クリセニル基、及びナフタセニル基等が挙げられる。
複素環基としては、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、オキサジアゾール、及びチアジアゾール等の1価基が挙げられる。
(1)ハロゲン原子、シアノ基、ニトロ基等。
(2)アルキル基、好ましくは、C1〜C12とりわけC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキル基であり、これらのアルキル基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチル基、エチル基、n−ブチル基、i−プロピル基、t−ブチル基、s−ブチル基、n−プロピル基、トリフルオロメチル基、2−ヒドロキエチル基、2−エトキシエチル基、2−シアノエチル基、2−メトキシエチル基、ベンジル基、4−クロロベンジル基、4−メチルベンジル基、4−フェニルベンジル基等が挙げられる。
(3)アルコキシ基(−OR2)であり、R2は(2)で定義したアルキル基を表わす。具体的には、メトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、t−ブトキシ基、n−ブトキシ基、s−ブトキシ基、i−ブトキシ基、2−ヒドロキシエトキシ基、ベンジルオキシ基、トリフルオロメトキシ基等が挙げられる。
(5)アルキルメルカプト基またはアリールメルカプト基であり、具体的にはメチルチオ基、エチルチオ基、フェニルチオ基、p−メチルフェニルチオ基等が挙げられる。
具体的には、アミノ基、ジエチルアミノ基、N−メチル−N−フェニルアミノ基、N,N−ジフェニルアミノ基、N,N−ジ(トリール)アミノ基、ジベンジルアミノ基、ピペリジノ基、モルホリノ基、ピロリジノ基等が挙げられる。
(8)置換又は無置換のスチリル基、置換又は無置換のβ−フェニルスチリル基、ジフェニルアミノフェニル基、ジトリルアミノフェニル基等。
前記Ar1、Ar2で表わされるアリーレン基としては、前記Ar3、Ar4で表されるアリール基から誘導される2価基である。
置換もしくは無置換のアルキレン基としては、C1〜C12、好ましくはC1〜C8、さらに好ましくはC1〜C4の直鎖または分岐鎖のアルキレン基であり、これらのアルキレン基にはさらにフッ素原子、水酸基、シアノ基、C1〜C4のアルコキシ基、フェニル基又はハロゲン原子、C1〜C4のアルキル基もしくはC1〜C4のアルコキシ基で置換されたフェニル基を有していてもよい。具体的にはメチレン基、エチレン基、n−ブチレン基、i−プロピレン基、t−ブチレン基、s−ブチレン基、n−プロピレン基、トリフルオロメチレン基、2−ヒドロキエチレン基、2−エトキシエチレン基、2−シアノエチレン基、2−メトキシエチレン基、ベンジリデン基、フェニルエチレン基、4−クロロフェニルエチレン基、4−メチルフェニルエチレン基、4−ビフェニルエチレン基等が挙げられる。
置換もしくは無置換のアルキレンエーテル基としては、エチレンオキシ、プロピレンオキシ、エチレングリコール、プロピレングリコール、ジエチレングリコール、テトラエチレングリコール、トリプロピレングリコールを表わし、アルキレンエーテル基アルキレン基はヒドロキシル基、メチル基、エチル基等の置換基を有してもよい。
置換もしくは無置換のアルキレン基としては、前記Xのアルキレン基と同様なものが挙げられる。
置換もしくは無置換のアルキレンエーテル2価基としては、前記Xのアルキレンエーテル2価基が挙げられる。
アルキレンオキシカルボニル2価基としては、カプロラクトン2価変性基が挙げられる。
但し、1官能及び2官能のラジカル重合性モノマーやラジカル重合性オリゴマーを多量に含有させると架橋型保護層の3次元架橋結合密度が実質的に低下し、耐摩耗性の低下を招く。このためこれらのモノマーやオリゴマーの含有量は、3官能以上のラジカル重合性モノマー100重量部に対し50重量部以下、好ましくは30重量部以下であればより好ましい。
熱重合開始剤としては、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、t−ブチルクミルパーオキサイド、2,5−ジメチル−2,5−ジ(パーオキシベンゾイル)ヘキシン−3、ジ−t−ブチルベルオキサイド、t−ブチルヒドロベルオキサイド、クメンヒドロベルオキサイド、ラウロイルパーオキサイド、2,2−ビス(4,4−ジ−t−ブチルパーオキシシクロヘキシ)プロパンなどの過酸化物系開始剤、アゾビスイソブチルニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル、アゾビスイソブチルアミジン塩酸塩、4,4’−アゾビス−4−シアノ吉草酸などのアゾ系開始剤が挙げられる。
UV照射の場合、メタルハライドランプ等を用いるが、照度は50mW/cm2以上、1000mW/cm2以下、時間としては5秒から5分程度が好ましく、ドラム温度は50℃を越えないように制御する。
熱硬化の場合、加熱温度は100〜170℃が好ましく、例えば加熱手段として送風型オーブンを用い、加熱温度を150℃に設定した場合、加熱時間は20分〜3時間である。
硬化終了後は、さらに残留溶媒低減のため100〜150℃で10分〜30分加熱して、本発明の感光体を得る。
また、以上の様に記述した、フィラーを含有した保護層、架橋型保護層の他に真空薄膜作成法にて形成したa−C、a−SiCなど公知の材料を保護層として用いることができる。
(フェノール系化合物)
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、2,2'−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2'−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4'−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4'−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)、1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3',5'−ジ−t−ブチル−4'−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3'−ビス(4'−ヒドロキシ−3'−t−ブチルフェニル)ブチリックアシッド]クリコ−ルエステル、トコフェロール類など。
N−フェニル−N'−イソプロピル−p−フェニレンジアミン、N,N'−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N'−ジ−イソプロピル−p−フェニレンジアミン、N,N'−ジメチル−N,N'−ジ−t−ブチル−p−フェニレンジアミンなど。
(ハイドロキノン類)
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
(有機硫黄化合物類)
ジラウリル−3,3'−チオジプロピオネート、ジステアリル−3,3'−チオジプロピオネート、ジテトラデシル−3,3'−チオジプロピオネートなど。
(有機燐化合物類)
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
具体的には、高画質な画像を形成するため、スコロトロン方式の帯電装置により30V/μm以上の電界強度が形成されるように感光体に帯電を行い、更に600dpi以上の書き込み光源による書き込みを行うことにより静電潜像を形成する画像形成装置において、特定結晶型で特定粒子サイズのチタニルフタロシアニン結晶を含有する感光体を使用することにより、チタニルフタロシアニン固有の高感度を維持し、高耐久で300mm/sec以上の高速画像出力が可能な画像形成装置が提供される。
まず、電荷発生材料(チタニルフタロシアニン結晶)の合成例について述べる。
(比較合成例1)
引用文献33に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン29.2部とスルホラン200部を混合し、窒素気流下でチタニウムテトラブトキシド20.4部を滴下する。滴下終了後、徐々に180℃まで昇温し、反応温度を170℃〜180℃の間に保ちながら5時間撹拌して反応を行なった。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄し、つぎにメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶を濾過、ついで洗浄液が中性になるまでイオン交換水(pH:7.0、比伝導度:1.0μS/cm)による水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8、比伝導度は2.6μS/cmであった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたこのウェットケーキ(水ペースト)40部をテトラヒドロフラン200部に投入し、4時間攪拌を行なった後、濾過を行ない、乾燥して、チタニルフタロシアニン粉末を得た(顔料1とする)。
上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は33倍である。尚、比較合成例1の原材料には、ハロゲン化物を使用していない。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、Cu−Kα特性X線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、更に26.3°にピークを有さないチタニルフタロシアニン粉末を得られた。その結果を図17に示す。
X線管球:Cu
電圧:50kV
電流:30mA
走査速度:2°/分
走査範囲:3°〜40°
時定数:2秒
(比較合成例2)
特許文献35、実施例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をポリエチレングリコール50部に加え、100部のガラスビーズと共に、サンドミルを行なった。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥して顔料を得た(顔料2とする)。比較合成例2の原材料には、ハロゲン化物を使用していない。
特許文献36、製造例1に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキを乾燥し、乾燥物1部をイオン交換水10部とモノクロルベンゼン1部の混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥して顔料を得た(顔料3とする)。比較合成例3の原材料には、ハロゲン化物を使用していない。
特許文献37の製造例に記載の方法に準じて、顔料を作製した。すなわち、フタロジニトリル9.8部と1−クロロナフタレン75部を撹拌混合し、窒素気流下で四塩化チタン2.2部を滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200℃〜220℃の間に保ちながら3時間撹拌して反応を行なった。反応終了後、放冷し130℃になったところ熱時濾過し、次いで1−クロロナフタレンで粉体が青色になるまで洗浄、次にメタノールで数回洗浄し、さらに80℃の熱水で数回洗浄した後、乾燥し顔料を得た(顔料4とする)。比較合成例4の原材料には、ハロゲン化物を使用している。
特許文献38、合成例1に記載の方法に準じて、顔料を作製した。すなわち、α型TiOPc5部を食塩10部およびアセトフェノン5部と共にサンドグラインダーにて100℃にて10時間結晶変換処理を行なった。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥して顔料を得た(顔料5とする)。比較合成例5の原材料には、ハロゲン化物を使用している。
(比較合成例6)
特許文献39、実施例1に記載の方法に準じて、顔料を作製した。すなわち、O−フタロジニトリル20.4部、四塩化チタン7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩酸、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄後、乾燥し、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を約1時間、5℃以下の温度を保ちながら攪拌する。続いて硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過する。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウエットケーキを得る。そのケーキをTHF100部中で約5時間攪拌を行ない、濾過、THFによる洗浄を行ない乾燥後、顔料を得た(顔料6とする)。比較合成例6の原材料には、ハロゲン化物を使用している。
特許文献40、合成例2に記載の方法に準じて、顔料を作製した。すなわち、先の比較合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行なった。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行なった。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行ない、顔料を得た(顔料7とする)。比較合成例7の原材料には、ハロゲン化物を使用していない。
(比較合成例8)
特許文献34のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。即ち、1,3−ジイミノイソインドリン58部、テトラブトキシチタン51部をα−クロロナフタレン300部中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄、乾燥して50部のチタニルフタロシアニンを得た。チタニルフタロシアニン4部を0℃に冷却した濃硫酸400部中に加え、引き続き0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800mL/トルエン800mL混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニンを混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニンを濾別し、乾燥して、2.9部のチタニルフタロシアニンを得た(顔料8とする)。比較合成例8の原材料には、ハロゲン化物を使用していない。
比較合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、次のように結晶変換を行ない、比較合成例1よりも一次粒子の小さなフタロシアニン結晶を得た。
比較合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン400部を加え、室温下でホモミキサー(ケニス、MARKIIfモデル)により強烈に撹拌(2000rpm)し、ペーストの濃紺色の色が淡い青色に変化したら(撹拌開始後20分)、撹拌を停止し、直ちに減圧濾過を行なった。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧下(5mmHg)、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5部を得た(顔料9とする)。合成例1の原材料には、ハロゲン化物を使用していない。上記ウェットケーキの固形分濃度は、15wt%であった。結晶変換溶媒のウェットケーキに対する重量比は44倍である。
合成例1と同じ条件で、攪拌時間を30分に変更した以外は、合成例1と同様に結晶変換を行い、チタニルフタロシアニン結晶を得た(顔料10とする)。
(合成例3)
合成例1と同じ条件で、攪拌時間を40分に変更した以外は、合成例1と同様に結晶変換を行い、チタニルフタロシアニン結晶を得た(顔料11とする)。
上述のように観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定する。測定した30個体の長径の算術平均を求めて、平均粒子サイズとした。
以上の方法により求められた合成例1における水ペースト中の平均粒子サイズは、0.06μmであった。
(1官能の電荷輸送性構造を有する化合物の合成例)
本発明における1官能の電荷輸送性構造を有する化合物は、例えば特許第3164426号公報記載の方法にて合成される。また、下記にこの一例を示す。
(1)ヒドロキシ基置換トリアリールアミン化合物(下記構造式B)の合成
メトキシ基置換トリアリールアミン化合物(下記構造式A)113.85部(0.3mol)と、ヨウ化ナトリウム138部(0.92mol)にスルホラン240部を加え、窒素気流中で60℃に加温した。この液中にトリメチルクロロシラン99部(0.91mol)を1時間かけて滴下し、約60℃の温度で4時間半撹拌し反応を終了させた。
この反応液にトルエン約1500部を加え室温まで冷却し、水と炭酸ナトリウム水溶液で繰り返し洗浄した。
その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン:酢酸エチル=20:1)にて精製した。
得られた淡黄色オイルにシクロヘキサンを加え、結晶を析出させた。
この様にして下記構造式Bの白色結晶88.1部(収率=80.4%)を得た。
融点:64.0〜66.0℃
上記(1)で得られたヒドロキシ基置換トリアリールアミン化合物(構造式B)82.9部(0.227mol)をテトラヒドロフラン400部に溶解し、窒素気流中で水酸化ナトリウム水溶液(NaOH:12.4部,水:100部)を滴下した。
この溶液を5℃に冷却し、アクリル酸クロライド25.2部(0.272mol)を40分かけて滴下した。その後、5℃で3時間撹拌し反応を終了させた。
この反応液を水に注ぎ、トルエンにて抽出した。この抽出液を炭酸水素ナトリウム水溶液と水で繰り返し洗浄した。その後、このトルエン溶液から溶媒を除去し、カラムクロマトグラフィー処理(吸着媒体:シリカゲル、展開溶媒:トルエン)にて精製した。得られた無色のオイルにn−ヘキサンを加え、結晶を析出させた。
この様にして例示化合物No.54の白色結晶80.73部(収率=84.8%)を得た。
融点:117.5〜119.0℃
比較合成例1で作製した顔料1を下記組成の処方にて、下記に示す条件にて分散を行い電荷発生層用塗工液として、分散液1を作製した。
チタニルフタロシアニン顔料(顔料1) 15部
ポリビニルブチラール(積水化学製:BX−1) 10部
2−ブタノン 280部
市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノンおよび顔料を全て投入し、ローター回転数1200r.p.m.にて30分間分散を行ない、分散液を作製した(分散液1とする)。
分散液作製例1で使用した顔料1に変えて、それぞれ比較合成例2〜8および合成例1〜3で作製した顔料2〜11を使用して、分散液作製例1と同じ条件にて分散液を作製した(顔料番号に対応して、それぞれ分散液2〜11とする)。
(分散液作製例12)
分散液作製例1で作製した分散液1を、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行い、濾液を得た(分散液12とする)。
(分散液作製例13)
分散液作製例10で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−3−CS(有効孔径3μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行ない分散液を作製した(分散液13とする)。
分散液作製例12で使用したフィルターを、アドバンテック社製、コットンワインドカートリッジフィルター、TCW−5−CS(有効孔径5μm)に変えた以外は、分散液作製例12と同様に加圧濾過を行ない分散液を作製した(分散液14とする)。
(分散液作製例15)
分散液作製例1における分散条件を下記の通り変更して、分散を行った(分散液15とする)。ローター回転数:1000r.p.m.にて20分間分散を行った。
(分散液作製例16)
分散液作製例15で作製した分散液をアドバンテック社製、コットンワインドカートリッジフィルター、TCW−1−CS(有効孔径1μm)を用いて、濾過を行なった。濾過に際しては、ポンプを使用し、加圧状態で濾過を行なった。濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することが出来なかった。このため以下の評価は実施しなかった。
直径100mmのアルミニウムシリンダー(JIS1050)に、下記組成の電荷ブロッキング層塗工液、モアレ防止層塗工液、電荷発生層塗工液、および電荷輸送層塗工液を、順次塗布・乾燥し、 1.0μmの電荷ブロッキング層、3.5μmのモアレ防止層、電荷発生層、28μmの電荷輸送層を形成し、積層感光体を作製した(感光体1とする)。
なお、電荷発生層の膜厚は、780nmにおける電荷発生層の透過率が25%になるように調整した。電荷発生層の透過率は、下記組成の電荷発生層塗工液を、ポリエチレンテレフタレートフィルムを巻き付けたアルミシリンダーに感光体作製と同じ条件で塗工を行ない、電荷発生層を塗工していないポリエチレンテレフタレートフィルムを比較対照とし、市販の分光光度計(島津:UV−3100)にて、780nmの透過率を評価した。
N−メトキシメチル化ナイロン(鉛市:ファインレジンFR−101) 4部
メタノール 70部
n−ブタノール 30部
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
◎電荷発生層塗工液
先に作製した分散液1を用いた。
ポリカーボネート(TS2050:帝人化成社製) 10部
下記構造式の電荷輸送物質 7部
感光体作製例1で使用した電荷発生層塗工液(分散液1)をそれぞれ、分散液2〜15に変更した以外は、感光体作製例1と同様に感光体を作製した。なお、電荷発生層の膜厚は、感光体作製例1と同様に、すべての塗工液を用いた場合に780nmの透過率が25%になるように調整した(分散液番号に対応して、感光体2〜15とする)。
(感光体作製例16)
感光体作製例9において、電荷ブロッキング層を設けない以外は、感光体作製例9と同様に感光体を作製した(感光体16とする)。
(感光体作製例17)
感光体作製例9において、モアレ防止層を設けない以外は、感光体作製例9と同様に感光体を作製した(感光体17とする)。
感光体作製例9において、電荷ブロッキング層とモアレ防止層の塗工順序を入れ替えた以外は、感光体作製例9と同様に感光体を作製した(感光体18とする)。
(感光体作製例19)
感光体作製例9において、電荷ブロッキング層の膜厚を0.1μmとした以外は、感光体作製例9と同様に感光体を作製した(感光体19とする)。
(感光体作製例20)
感光体作製例9において、電荷ブロッキング層の膜厚を0.3μmとした以外は、感光体作製例9と同様に感光体を作製した(感光体20とする)。
(感光体作製例21)
感光体作製例9において、電荷ブロッキング層の膜厚を0.6μmとした以外は、感光体作製例9と同様に感光体を作製した(感光体21とする)。
感光体作製例9において、電荷ブロッキング層の膜厚を1.8μmとした以外は、感光体作製例9と同様に感光体を作製した(感光体22とする)。
(感光体作製例23)
感光体作製例9において、電荷ブロッキング層の膜厚を2.3μmとした以外は、感光体作製例9と同様に感光体を作製した(感光体23とする)。
(感光体作製例24)
感光体作製例9において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体24とする)。
◎電荷ブロッキング層塗工液
アルコール可溶性ナイロン(東レ:アミランCM8000) 4部
メタノール 70部
n−ブタノール 30部
感光体作製例9において、電荷ブロッキング層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体25とする)。
◎電荷ブロッキング層塗工液
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 400部
(感光体作製例26)
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体26とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 168部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、2/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体27とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 252部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、3/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体28とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 84部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体29とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 42部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、0.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体30とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 336部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、4/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体31とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
N−メトキシメチル化ナイロン(鉛市:ファインレジンFR−101) 27.5部
酒石酸(硬化触媒) 1部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体32とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 22.4部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 28部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、4/6重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体33とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 28部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 23.3部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、5/5重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体34とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 39.2部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 14部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、7/3重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体35とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 44.8部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 9.3部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、8/2重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体36とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 126部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 50.4部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 4.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、9/1重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体37とする)。
◎モアレ防止層塗工液
酸化亜鉛(SAZEX4000:堺化学製) 165部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 120部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体38とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm) 63部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
PT−401MとCR−ELの平均粒径の比は0.28、2種の酸化チタンのの混合比は0.5である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体39とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 113.4部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm)12.6部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
PT−401MとCR−ELの平均粒径の比は0.28、2種の酸化チタンのの混合比は0.1である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体40とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 12.6部
酸化チタン(PT−401M:石原産業社製、平均粒径:0.07μm)113.4部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
PT−401MとCR−ELの平均粒径の比は0.28、2種の酸化チタンのの混合比は0.9である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体41とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(TTO−F1:石原産業社製、平均粒径:0.04μm) 63部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.16、両者の混合比は0.5である。
感光体作製例9において、モアレ防止層塗工液を下記組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体42とする)。
◎モアレ防止層塗工液
酸化チタン(CR−EL:石原産業社製、平均粒径:0.25μm) 63部
酸化チタン(A−100:石原産業社製、平均粒径:0.15μm) 63部
アルキッド樹脂[ベッコライトM6401−50−S(固形分50%)、
大日本インキ化学工業製] 33.6部
メラミン樹脂[スーパーベッカミンL−121−60(固形分60%)、
大日本インキ化学工業製] 18.7部
2−ブタノン 100部
上記組成で、無機顔料とバインダー樹脂の容積比は、1.5/1である。
アルキッド樹脂とメラミン樹脂の比は、6/4重量比である。
平均粒径の比は0.6、両者の混合比は0.5である。
感光体作製例9における電荷輸送層塗工液を以下の組成のものに変更した以外は、感光体作製例9と同様に感光体を作製した(感光体43とする)。
◎電荷輸送層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
感光体作製例9における電荷輸送層の膜厚を23μmとし、電荷輸送層上に下記組成の保護層塗工液を塗布乾燥し、5μmの保護層を設けた以外は感光体作製例9と同様に感光体を作製した(感光体44とする)。
◎保護層塗工液
ポリカーボネート(TS2050:帝人化成社製、粘度平均分子量:5万) 10部
下記構造式の電荷輸送物質 7部
シクロヘキサノン 500部
テトラヒドロフラン 150部
感光体作製例44における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体45とする)。
酸化チタン微粒子(比抵抗:1.5×1010Ω・cm、平均一次粒径:0.5μm) 4部
(感光体作製例46)
感光体作製例44における保護層塗工液中のアルミナ微粒子を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体46とする)。
酸化錫−酸化アンチモン粉末(比抵抗:106Ω・cm、平均1次粒径0.4μm) 4部
(感光体作製例47)
感光体作製例44における保護層塗工液中を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体47とする)。
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
シクロヘキサノン 500部
テトラヒドロフラン 150部
感光体作製例44における保護層塗工液中を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体48とする)。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
感光体作製例44における保護層塗工液中を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体49とする)。
◎保護層塗工液
メチルトリメトキシシラン 100部
3%酢酸 20部
下記構造の電荷輸送性化合物 35部
酸化防止剤(サノール LS2626:三共化学社製) 1部
ポリカルボン酸化合物 BYK P104:ビックケミー社製 0.4部
硬化剤(ジブチル錫アセテート) 1部
2−プロパノール 200部
感光体作製例44における保護層塗工液中を以下のものに変更した以外は、感光体作製例44と同様に感光体を作製した(感光体50とする)。
保護層は、スプレー塗工してから20分間自然乾燥した後、メタルハライドランプ:160W/cm、照射強度:500mW/cm2、照射時間:60秒の条件で光照射を行うことによって塗布膜を硬化させた。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 10部
(例示化合物No.54)
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
感光体作製例50における電荷輸送層塗工液を以下の組成のものに変更した以外は、感光体作製例50と同様に感光体を作製した(感光体51とする)。
◎電荷輸送層塗工液
下記組成の高分子電荷輸送物質(重量平均分子量:約135000) 10部
塩化メチレン 100部
感光体作製例50において、保護層塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに変更した以外は、すべて感光体作製例50と同様にして電子写真感光体52を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(ペンタエリスリトールテトラアクリレート(SR−295、化薬サートマー製)
分子量:352、官能基数:4官能、分子量/官能基数=88)
感光体作製例50の保護層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記の電荷輸送性構造を有さない2官能のラジカル重合性モノマー10部に換えた以外は、すべて感光体作成例50と同様にして電子写真感光体53を作製した。
電荷輸送性構造を有さない2官能のラジカル重合性モノマー 10部
(1,6−ヘキサンジオールジアクリレート(和光純薬製)
分子量:226、官能基数:2官能、分子量/官能基数=113)
感光体作製例50において、架橋型電荷輸送層用塗工液に含有される電荷輸送性構造を有さない3官能以上のラジカル重合性モノマーを下記のラジカル重合性モノマーに換えた以外は、すべて感光体作製例50と同様にして電子写真感光体54を作製した。
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 10部
(カプロラクトン変性ジペンタエリスリトールヘキサアクリレート
(KAYARAD DPCA−120、日本化薬製)
分子量:1947、官能基数:6官能、分子量/官能基数=325)
感光体作製例50の保護層用塗工液に含有される1官能の電荷輸送性構造を有するラジカル重合性化合物を下記構造式に示される2官能の電荷輸送性構造を有するラジカル重合性化合物10部に換えた以外は感光体作製例50と同様に電子写真感光体55を作製した。
感光体作製例50において、保護層用塗工液を下記組成に換えた以外は、感光体作成例50と同様にして電子写真感光体56を作製した。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 6部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 14部
(例示化合物No.54)
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
感光体作製例50において、保護層用塗工液を下記組成に換えた以外は、感光体作成例50と同様にして電子写真感光体57を作製した。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 14部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 6部
(例示化合物No.54)
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
感光体作製例50において、保護層用塗工液を下記組成に換えた以外は、感光体作成例50と同様にして電子写真感光体58を作製した。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 2部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 18部
(例示化合物No.54)
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
感光体作製例50において、保護層用塗工液を下記組成に換えた以外は、感光体作成例50と同様にして電子写真感光体59を作製した。
◎保護層塗工液
電荷輸送性構造を有さない3官能以上のラジカル重合性モノマー 18部
{トリメチロールプロパントリアクリレート
(KAYARAD TMPTA、日本化薬製)
分子量:296、官能基数:3官能、分子量/官能基数=99}
下記構造の1官能の電荷輸送性構造を有するラジカル重合性化合物 2部
(例示化合物No.54)
1−ヒドロキシ−シクロヘキシル−フェニル−ケトン
(イルガキュア184、チバ・スペシャルティ・ケミカルズ製)
テトラヒドロフラン 100部
感光体作製例1に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例1と同様に電子写真感光体を作製した(感光体60とする)。
(感光体作製例61)
感光体作製例4に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例4と同様に電子写真感光体を作製した(感光体61とする)。
(感光体作製例62)
感光体作製例6に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例6と同様に電子写真感光体を作製した(感光体62とする)。
(感光体作製例63)
感光体作製例9に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例9と同様に電子写真感光体を作製した(感光体63とする)。
感光体作製例11に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例11と同様に電子写真感光体を作製した(感光体64とする)。
(感光体作製例65)
感光体作製例12に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例12と同様に電子写真感光体を作製した(感光体65とする)。
(感光体作製例66)
感光体作製例16に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例16と同様に電子写真感光体を作製した(感光体66とする)。
(感光体作製例67)
感光体作製例17に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例17と同様に電子写真感光体を作製した(感光体67とする)。
感光体作製例18に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例18と同様に電子写真感光体を作製した(感光体68とする)。
(感光体作製例69)
感光体作製例38に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例38と同様に電子写真感光体を作製した(感光体69とする)。
(感光体作製例70)
感光体作製例44に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例44と同様に電子写真感光体を作製した(感光体70とする)。
感光体作製例50に使用した導電性支持体を、直径40mmのアルミニウムシリンダー(JIS1050)に変更した以外は、感光体作製例50と同様に電子写真感光体を作製した(感光体71とする)。
以上のように作製した感光体作製例1〜42の電子写真感光体(感光体1〜42)を図7に示すような画像形成装置用プロセスカートリッジに装着し、図5に示す様な画像形成装置(感光体線速は320mm/sec)に搭載し、帯電部材としてスコロトロン方式の帯電部材(放電ワイヤーは直径50μmの金メッキを施したタングステン−モリブデン合金)を用いて下記の帯電条件で帯電し、画像露光光源として780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続30万枚印刷を行った(試験環境は、22℃−55%RHである)。
帯電条件1:
ワイヤーへの印加電圧:−6.0KV
グリッド電圧:−920V(感光体の未露光部電位は−900V)
帯電条件2:
ワイヤーへの印加電圧:−5.8KV
グリッド電圧:−780V(感光体の未露光部電位は−750V)
なお、画像評価は初期及び30万枚印刷後に、下記2つの評価を実施した。
(i)地汚れの評価:
白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価
直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
(iii)その他の項目として、画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。また、ハーフトーン画像を出力し、モアレ発生有無の評価を実施した。
(i)、(ii)は4段階のランク評価を行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
(iii)の項目に関しては、不具合点が発生した場合のみ表7に記載した。
以上の結果を表7に示す。
前記実施例1で用いた画像形成装置を1200dpiのドット画像が形成可能なように改造した。
感光体作製例9で作製した感光体9を用いて、上記改造機を用いて帯電条件を変え、感光体に印加される電界強度を表8のように変えた状態で、地汚れとドット形成状態の変化を確認した。
実施例1において、帯電部材の放電ワイヤーの直径を90μm(材質は同じ)のものに変更し、10万枚の画像形成を行った以外は、実施例1と同様に評価を行った。
(結果)
初期的には良好な画像を形成出来たが、10万枚後の画像においては、帯電ムラによる画像ムラが発生した(1ドットがうまく形成出来ない箇所があった)。
(実施例37)
実施例36において、帯電部材の放電ワイヤーの直径を25μm(材質は同じ)のものに変更した以外は、実施例36と同様に評価を行った。
(結果)
初期的には良好な画像を形成出来たが、10万枚後の画像出力時にはグリッド電圧をかなり大きくしなければならなかった(画像はそれほど悪くなかった)。また、ワイヤーとグリッドの損傷が、実施例1の場合に比べて悪かった。
実施例1において、通紙試験に使用したチャートを書き込み率1%のチャートに変更し、連続 30万枚の印刷を行った。この際、図5に示す画像形成装置の現像部位における感光体表面電位と、転写直後の感光体表面電位を計測するため、表面電位計をセット出来るように改造を行った。
通紙試験前と通紙試験後において、現像部位における感光体露光部の電位を測定した。この際、露光部の表面電位を計測するために、光書き込みは感光体全面のベタ書き込みを行った。
実施例38における通紙試験に際しては、転写バイアスを調整することにより、転写後の感光体非書き込み部の電位が−150Vになるように調整した。この測定の際には、光書き込みを行わず、感光体の転写後の電位を測定した。結果を表9に示す。
実施例38において、転写後の感光体非書き込み部の電位が−80Vになるように調整した以外は、実施例38と同様に試験を行った。結果を表9に示す。
(実施例40)
実施例38において、転写後の感光体非書き込み部の電位が0Vになるように調整した以外は、実施例38と同様に試験を行った。結果を表9に示す。
(実施例41)
実施例38において、転写後の感光体非書き込み部の電位が+70Vになるように調整した以外は、実施例38と同様に試験を行った。結果を表9に示す。
(実施例42)
実施例38において、転写後の感光体非書き込み部の電位が+150Vになるように調整した以外は、実施例38と同様に試験を行った。結果を表9に示す。
(実施例43)
実施例38において、除電部材を除電ランプから、導電性ブラシ(アースに接続)に変更した以外は、実施例38と同様に試験を行った。結果を表9に示す。
前述ように作製した感光体作製例9及び43〜59の電子写真感光体(感光体9、43〜59)を図7に示すような画像形成装置用プロセスカートリッジに装着し、図5に示す様な画像形成装置に搭載し、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、帯電部材としてスコロトロン方式の帯電装置(放電ワイヤーとして直径50μmの金メッキを施したタングステン−モリブデン合金を使用)、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続50万枚印刷を行った(試験環境は、22℃−55%RHである)。
帯電条件1:
ワイヤーへの印加電圧:−6.0KV
グリッド電圧:−920V(感光体の未露光部電位は−900V)
帯電条件2:
ワイヤーへの印加電圧:−5.8KV
グリッド電圧:−780V(感光体の未露光部電位は−750V)
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
(ii)ドット形成状態の評価:直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
(iii)その他の項目として、画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。また、ハーフトーン画像を出力し、モアレ発生有無の評価を実施した。(iii)の項目に関しては、不具合点が発生した場合のみ表10に記載した。
上述のように作製した保護層を設けた感光体44〜59(実施例46〜60)は、上記50万枚の通紙試験を実施した後、高温高湿環境(30℃−90%RH)にて、更に500枚の通紙試験を行い、画像評価を実施した。評価条件は、実施例46〜61に準じた(帯電条件1)。
結果を表11に示す。
なお、評価は500枚印刷後に、下記3つの評価を実施した。
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
(ii)画像濃度の評価:黒ベタ画像を出力し、ベタ部の画像濃度を評価した。
(iii)1ドット画像を出力し、ドット輪郭の明確さをランク評価した。ランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。
以上のように作製した感光体作製例60〜71の感光体を、図7に示すような1つの画像形成装置用プロセスカートリッジに装着し、更に図6に示すフルカラー画像形成装置に搭載した。4つの画像形成要素では画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み、解像度600dpi)、帯電部材としてスコロトロン方式の帯電部材((放電ワイヤーとして直径50μmの金メッキを施したタングステン−モリブデン合金を使用)、)、転写部材として転写ベルトを用い、下記の帯電条件にて、書き込み率6%のチャートを用い、連続15万枚印刷を行った(試験環境は、22℃−55%RHである)。
帯電条件1:
ワイヤーへの印加電圧:−6.0KV
グリッド電圧:−920V(感光体の未露光部電位は−900V)
帯電条件2:
ワイヤーへの印加電圧:−5.8KV
グリッド電圧:−780V(感光体の未露光部電位は−750V)
(i)地汚れの評価:白ベタ画像を出力し、地肌部に発生する黒点の数、大きさからランク評価を実施した。
(ii)ドット形成状態の評価:直径60μmの1ドット画像を形成し、ドット形成状態を150倍の顕微鏡にて観察し、ランク評価を実施した。
(iii)色再現性の評価:感光体初期状態と15万枚ランニング後に、同じフルカラー画像を出力し、色再現性の評価を試みた。
何れの場合にもランク評価は4段階にて行ない、極めて良好なものを◎、良好なものを○、やや劣るものを△、非常に悪いものを×で表わした。以上の結果を表12に示す。
感光体作製例9の感光体を用いて、実施例1と同一条件で10万枚の画像形成を行い、実施例1と同様に評価を行った。
(比較例94)
実施例84において、画像形成装置の帯電部材をスコロトロン方式の帯電部材から、接触帯電方式の帯電ローラ(φ30mm)に変更し10万枚の画像形成を行った。帯電条件は下記の条件で帯電を行った以外は、実施例84と同様に評価を行った。
帯電条件:
DCバイアス:−1600V(感光体の未露光部表面電位が、−900Vになるようにあわせた)
(比較例95)
実施例84において、画像形成装置の帯電部材をスコロトロン方式の帯電部材から、接触帯電方式の帯電ローラ(φ30mm)に変更した。帯電条件は下記の条件で帯電を行った以外は、実施例84と同様に評価を行った。
帯電条件:
DCバイアス:−900V
ACバイアス:2.0kV(peak to peak)、周波数:3.0kHz
以上の結果を、表13に示す。
一方、比較例95の場合には、帯電均一性はある程度確保されている様に見られたが、摩耗量が大きく、10万枚後の画像では地汚れがひどかった。
(比較合成例9)
比較合成例1における結晶変換溶媒を塩化メチレンから2−ブタノンに変更した以外は、比較合成例1と同様に処理を行ない、チタニルフタロシアニン結晶を得た。
比較合成例1の場合と同様に、比較合成例9で作製したチタニルフタロシアニン結晶のXDスペクトルを測定した。これを図19に示す。図19より、比較合成例9で作製されたチタニルフタロシアニン結晶のXDスペクトルにおける最低角は、比較合成例1で作製されたチタニルフタロシアニンの最低角(7.3°)とは異なり、7.5°に存在することが判る。
比較合成例1で得られた顔料(最低角7.3°)に特許文献53に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例1のX線回折スペクトルを図20に示す。
(測定例2)
比較合成例9で得られた顔料(最低角7.5°)に特許文献53に記載の顔料(最大回折ピークを7.5°に有する)と同様に作製したものを3重量%添加し、乳鉢で混合して、先程と同様にX線回折スペクトルを測定した。測定例2のX線回折スペクトルを図21に示す。
以上のことから、本願発明のチタニルフタロシアニン結晶における最低角ピークである7.3°は、公知のチタニルフタロシアニン結晶における7.5°のピークとは異なるものであることが判る。
1C 感光体
1M 感光体
1Y 感光体
1K 感光体
2 除電ランプ
2C 帯電部材
2M 帯電部材
2Y 帯電部材
2K 帯電部材
3 帯電部材
3C レーザー光
3M レーザー光
3Y レーザー光3K レーザー光
4C 現像部材
4M 現像部材
4Y 現像部材
4K 現像部材
5 画像露光部
5C クリーニング部材
5M クリーニング部材
5Y クリーニング部材
5K クリーニング部材
6 現像ユニット
6C 画像形成要素
6M 画像形成要素
6Y 画像形成要素
6K 画像形成要素
7 転写紙
8 分離チャージャ
9 レジストローラ
10 転写搬送ベルト
11C 転写ブラシ
11M 転写ブラシ
11Y 転写ブラシ
11K 転写ブラシ
12 分離爪
13 クリーニング前チャージャー
14 ファーブラシ
15 クリーニングブレード
16 転写搬送ベルト
17 給紙コロ
18 定着装置
102 帯電手段
103 露光
104 現像手段
105 転写体
106 転写手段
107 クリーニング手段
201 導電性支持体
202 フィラー分散層
203 樹脂層
204 感光層
205 電荷ブロッキング層
206 モアレ防止層
207 電荷発生層
208 電荷輸送層
209 保護層
Claims (40)
- 少なくともスコロトロン方式の帯電手段、600dpi以上の解像度を有する露光手段、現像手段、転写手段、及び電子写真感光体を具備してなり、且つ感光体線速が300mm/sec以上で動作される画像形成装置において、該電子写真感光体が導電性支持体上に少なくとも電荷ブロッキング層、モアレ防止層および感光層を順に積層してなる電子写真感光体であり、該感光層中にCuKα線の特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、7.3°のピークと9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さない結晶型で、一次粒子の平均粒子サイズが0.25μm以下であるチタニルフタロシアニン結晶を含み、該帯電手段により該電子写真感光体に下記式(A)で定義される電界強度を30(V/μm)以上印加することを特徴とする画像形成装置。
電界強度(V/μm)=現像位置における感光体未露光部表面電位(V)
/感光層膜厚(μm) ・・・ (A) - 前記感光層が、電荷発生層と電荷輸送層とを順次積層した積層構成からなることを特徴とする請求項1に記載の画像形成装置。
- 前記電荷ブロッキング層が絶縁性材料からなり、その膜厚が2.0μm未満、0.3μm以上であることを特徴とする請求項1または2の何れかに記載の画像形成装置。
- 前記絶縁性材料がポリアミドであることを特徴とする請求項3に記載の画像形成装置。
- 前記ポリアミドが、N−メトキシメチル化ナイロンであることを特徴とする請求項4に記載の画像形成装置。
- 前記モアレ防止層が無機顔料とバインダー樹脂を含有し、両者の容積比が1/1乃至3/1の範囲であることを特徴とする請求項1乃至5の何れかに記載の画像形成装置。
- 前記バインダー樹脂が熱硬化型樹脂であることを特徴とする請求項6に記載の画像形成装置。
- 前記熱硬化型樹脂がアルキッド/メラミン樹脂の混合物であることを特徴とする請求項7に記載の画像形成装置。
- 前記アルキッド樹脂とメラミン樹脂の混合比が、5/5〜8/2(重量比)の範囲であることを特徴とする請求項8に記載の画像形成装置。
- 前記無機顔料が酸化チタンであることを特徴とする請求項6乃至9に記載の画像形成装置。
- 前記酸化チタンが平均粒径の異なる2種類の酸化チタンであり、平均粒径の大きい方の酸化チタン(T1)の平均粒径を(D1)とし、他方の酸化チタン(T2)の平均粒径を(D2)とした場合、0.2<(D2/D1)≦0.5の関係を満たすことを特徴とする請求項10に記載の画像形成装置。
- 前記酸化チタン(T2)の平均粒径(D2)が、0.05μm<D2<0.20μmであることを特徴とする請求項11に記載の画像形成装置。
- 前記平均粒径の異なる2種の酸化チタンの混合比率(重量比)が、0.2≦T2/(T1+T2)≦0.8であることを特徴とする請求項11又は12に記載の画像形成装置。
- 前記結晶型のチタニルフタロシアニン結晶を、平均粒子サイズが0.3μm以下で、その標準偏差が0.2μm以下になるまで分散を行い、その後有効孔径が3μm以下のフィルターにて濾過を行い、一次粒子の平均粒子サイズを0.25μm以下とした分散液を使用し、感光層あるいは電荷発生層を塗工したことを特徴とする請求項1乃至13の何れかに記載の画像形成装置。
- 前記チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、その回折ピークの半値巾が1゜以上である一次粒子の平均粒子サイズが0.1μm以下の不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを水の存在下で有機溶媒により結晶変換を行ない、結晶変換後の一次粒子の平均粒子サイズが0.25μmより大きく成長する前に、有機溶媒より結晶変換後のチタニルフタロシアニンを分別、濾過したものを用いて得られたものであることを特徴とする請求項1乃至14の何れかに記載の画像形成装置。
- 前記チタニルフタロシアニン結晶が、ハロゲン化物を含まない原材料を使用して合成されたものであることを特徴とする請求項14又は15の何れかに記載の画像形成装置。
- 前記チタニルフタロシアニン結晶が、アシッドペースト法により作製された不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンが、十分にイオン交換水で洗浄され、洗浄後のイオン交換水のpHが6〜8の間及び/又はイオン交換水の比伝導度が8μS/cm以下であることを特徴とする請求項14乃至16の何れかに記載の画像形成装置。
- 前記チタニルフタロシアニン結晶が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンを、水の存在下で有機溶媒により結晶変換を行ったものを用いて得られたものであり、前記チタニルフタロシアニン結晶の結晶変換に際して、使用される有機溶媒量が不定形チタニルフタロシアニンもしくは低結晶性チタニルフタロシアニンの30倍(重量比)以上であることを特徴とする請求項14乃至17の何れかに記載の画像形成装置。
- 前記感光層もしくは電荷輸送層が少なくともトリアリールアミン構造を主鎖および/または側鎖に含むポリカーボネートを含有することを特徴とする請求項1乃至18の何れかに記載の画像形成装置。
- 前記感光層もしくは電荷輸送層上に保護層を有することを特徴とする請求項1乃至19の何れかに記載の画像形成装置。
- 前記保護層が比抵抗1010Ω・cm以上の無機顔料あるいは金属酸化物を含有することを特徴とする請求項20に記載の画像形成装置。
- 前記保護層が高分子電荷輸送物質を含有することを特徴とする請求項20又は21の何れかに記載の画像形成装置。
- 前記保護層のバインダー樹脂が、架橋構造を有することを特徴とする請求項20乃至22の何れかに記載の画像形成装置。
- 前記架橋構造を有するバインダー樹脂の構造中に、電荷輸送部位を有することを特徴とする請求項23に記載の画像形成装置。
- 前記保護層が、少なくとも電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーと1官能の電荷輸送性構造を有するラジカル重合性化合物とを硬化することにより形成されることを特徴とする請求項20に記載の画像形成装置。
- 前記保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの官能基が、アクリロイルオキシ基及び/又はメタクリロイルオキシ基であることを特徴とする請求項25に記載の画像形成装置。
- 前記保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーにおける官能基数に対する分子量の割合(分子量/官能基数)が、250以下であることを特徴とする請求項25又は26のいずれかに記載の画像形成装置。
- 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の官能基が、アクリロイルオキシ基又はメタクリロイルオキシ基であることを特徴とする請求項25乃至27のいずれかに記載の画像形成装置。
- 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の電荷輸送性構造が、トリアリールアミン構造であることを特徴とする請求項25乃至28のいずれかに記載の画像形成装置。
- 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(1)又は(2)の少なくとも一種以上であることを特徴とする請求項25乃至29のいずれかに記載の画像形成装置。
- 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物が、下記一般式(3)の少なくとも一種以上であることを特徴とする請求項25乃至30のいずれかに記載の画像形成装置。
- 前記保護層に用いられる電荷輸送性構造を有しない3官能以上のラジカル重合性モノマーの成分割合が、保護層全量に対し30〜70重量%であることを特徴とする請求項25乃至31のいずれかに記載の画像形成装置。
- 前記保護層に用いられる1官能の電荷輸送性構造を有するラジカル重合性化合物の成分割合が、保護層全量に対し30〜70重量%であることを特徴とする請求項25乃至32のいずれかに記載の画像形成装置。
- 前記保護層の硬化手段が加熱又は光エネルギー照射手段であることを特徴とする請求項25乃至33のいずれかに記載の画像形成装置。
- 前記帯電手段に用いられる放電ワイヤーの直径が、30μm以上80μm未満であることを特徴とする請求項1乃至34の何れかに記載の画像形成装置。
- 前記画像形成装置に用いられる転写手段が、感光体上に形成されたトナー像を直接被転写体に転写する直接転写方式であることを特徴とする請求項1乃至35の何れかに記載の画像形成装置。
- 前記画像形成装置において、非書き込み部における転写後の感光体表面電位が絶対値で、100V以下であることを特徴とする請求項36に記載の画像形成装置。
- 前記画像形成装置において、光除電機構を用いないことを特徴とする請求項1乃至37の何れかに記載の画像形成装置。
- 少なくとも帯電手段、露光手段、現像手段、及び電子写真感光体からなる画像形成要素を複数配列したことを特徴とする請求項1乃至38の何れかに記載の画像形成装置。
- 感光体と少なくとも帯電手段、露光手段、現像手段、クリーニング手段から選ばれる1つ以上の手段とが一体となった、装置本体と着脱自在なカートリッジを搭載していることを特徴とする請求項1乃至39の何れかに記載の画像形成装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005038630A JP4541177B2 (ja) | 2005-02-16 | 2005-02-16 | 画像形成装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005038630A JP4541177B2 (ja) | 2005-02-16 | 2005-02-16 | 画像形成装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006227137A true JP2006227137A (ja) | 2006-08-31 |
JP4541177B2 JP4541177B2 (ja) | 2010-09-08 |
Family
ID=36988583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005038630A Active JP4541177B2 (ja) | 2005-02-16 | 2005-02-16 | 画像形成装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4541177B2 (ja) |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895351A (ja) * | 1981-12-01 | 1983-06-06 | Canon Inc | 電子写真感光体 |
JPS63289554A (ja) * | 1987-05-22 | 1988-11-28 | Ricoh Co Ltd | 電子写真感光体 |
JPH03248161A (ja) * | 1990-02-27 | 1991-11-06 | Canon Inc | 電子写真感光体 |
JPH03288157A (ja) * | 1990-04-04 | 1991-12-18 | Nec Corp | 電子写真感光体 |
JPH0572787A (ja) * | 1991-09-06 | 1993-03-26 | Fuji Xerox Co Ltd | 電子写真感光体 |
JPH07140807A (ja) * | 1993-11-22 | 1995-06-02 | Sanyo Electric Co Ltd | 画像形成装置 |
JPH096019A (ja) * | 1995-06-22 | 1997-01-10 | Konica Corp | 画像形成方法、画像形成装置及び装置ユニット |
JP2000056494A (ja) * | 1998-08-05 | 2000-02-25 | Canon Inc | 電子写真感光体、該電子写真感光体の製造方法及び該電子写真感光体を有するプロセスカ−トリッジ並びに電子写真装置 |
JP2000206721A (ja) * | 1999-01-13 | 2000-07-28 | Konica Corp | 電子写真感光体、画像形成方法、画像形成装置及び装置ユニット |
JP2001175016A (ja) * | 1999-12-13 | 2001-06-29 | Canon Inc | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP2003098705A (ja) * | 2001-09-21 | 2003-04-04 | Ricoh Co Ltd | 電子写真感光体、該電子写真感光体を用いた電子写真方法、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2004083859A (ja) * | 2002-06-13 | 2004-03-18 | Ricoh Co Ltd | チタニルフタロシアニン結晶、チタニルフタロシアニン結晶の製造方法、電子写真感光体、電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジ |
JP2004101886A (ja) * | 2002-09-10 | 2004-04-02 | Ricoh Co Ltd | 電子写真装置 |
JP2004219485A (ja) * | 2003-01-09 | 2004-08-05 | Ricoh Co Ltd | 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジ |
JP2004287070A (ja) * | 2003-03-20 | 2004-10-14 | Ricoh Co Ltd | 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジ |
JP2004302452A (ja) * | 2003-03-20 | 2004-10-28 | Ricoh Co Ltd | 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ |
-
2005
- 2005-02-16 JP JP2005038630A patent/JP4541177B2/ja active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5895351A (ja) * | 1981-12-01 | 1983-06-06 | Canon Inc | 電子写真感光体 |
JPS63289554A (ja) * | 1987-05-22 | 1988-11-28 | Ricoh Co Ltd | 電子写真感光体 |
JPH03248161A (ja) * | 1990-02-27 | 1991-11-06 | Canon Inc | 電子写真感光体 |
JPH03288157A (ja) * | 1990-04-04 | 1991-12-18 | Nec Corp | 電子写真感光体 |
JPH0572787A (ja) * | 1991-09-06 | 1993-03-26 | Fuji Xerox Co Ltd | 電子写真感光体 |
JPH07140807A (ja) * | 1993-11-22 | 1995-06-02 | Sanyo Electric Co Ltd | 画像形成装置 |
JPH096019A (ja) * | 1995-06-22 | 1997-01-10 | Konica Corp | 画像形成方法、画像形成装置及び装置ユニット |
JP2000056494A (ja) * | 1998-08-05 | 2000-02-25 | Canon Inc | 電子写真感光体、該電子写真感光体の製造方法及び該電子写真感光体を有するプロセスカ−トリッジ並びに電子写真装置 |
JP2000206721A (ja) * | 1999-01-13 | 2000-07-28 | Konica Corp | 電子写真感光体、画像形成方法、画像形成装置及び装置ユニット |
JP2001175016A (ja) * | 1999-12-13 | 2001-06-29 | Canon Inc | 電子写真感光体、プロセスカートリッジ及び電子写真装置 |
JP2003098705A (ja) * | 2001-09-21 | 2003-04-04 | Ricoh Co Ltd | 電子写真感光体、該電子写真感光体を用いた電子写真方法、電子写真装置及び電子写真装置用プロセスカートリッジ |
JP2004083859A (ja) * | 2002-06-13 | 2004-03-18 | Ricoh Co Ltd | チタニルフタロシアニン結晶、チタニルフタロシアニン結晶の製造方法、電子写真感光体、電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジ |
JP2004101886A (ja) * | 2002-09-10 | 2004-04-02 | Ricoh Co Ltd | 電子写真装置 |
JP2004219485A (ja) * | 2003-01-09 | 2004-08-05 | Ricoh Co Ltd | 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジ |
JP2004287070A (ja) * | 2003-03-20 | 2004-10-14 | Ricoh Co Ltd | 電子写真感光体の製造方法、電子写真感光体、画像形成方法、画像形成装置ならびに画像形成装置用プロセスカートリッジ |
JP2004302452A (ja) * | 2003-03-20 | 2004-10-28 | Ricoh Co Ltd | 電子写真感光体、それを用いた画像形成方法、画像形成装置及び画像形成装置用プロセスカートリッジ |
Also Published As
Publication number | Publication date |
---|---|
JP4541177B2 (ja) | 2010-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4793913B2 (ja) | 画像形成装置 | |
JP4249679B2 (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4570045B2 (ja) | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ | |
JP2006078614A (ja) | 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP2006201744A (ja) | 塗工液、電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4070700B2 (ja) | 電子写真感光体、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP2005189821A (ja) | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP4554409B2 (ja) | 画像形成装置 | |
JP2006047454A (ja) | 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4563843B2 (ja) | 画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP4761911B2 (ja) | 塗工液、電子写真感光体、画像形成装置並びに画像形成装置用プロセスカートリッジ | |
JP4541195B2 (ja) | 画像形成装置 | |
JP4424668B2 (ja) | 電子写真感光体、画像形成方法、画像形成装置、画像形成装置用プロセスカートリッジ | |
JP2006220819A (ja) | 画像形成装置 | |
JP4541177B2 (ja) | 画像形成装置 | |
JP4319643B2 (ja) | 電子写真感光体、電子写真装置及び電子写真装置用プロセスカートリッジ | |
JP4719617B2 (ja) | 画像形成装置 | |
JP4554408B2 (ja) | 画像形成装置 | |
JP4711689B2 (ja) | 電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4549208B2 (ja) | 画像形成装置 | |
JP4938292B2 (ja) | 画像形成装置 | |
JP2006189595A (ja) | 電子写真感光体およびそれを用いた画像形成装置及び画像形成装置用プロセスカートリッジ | |
JP4541932B2 (ja) | 画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP2006208764A (ja) | 画像形成装置 | |
JP2006220812A (ja) | 画像形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090715 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090911 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100622 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100623 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4541177 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130702 Year of fee payment: 3 |