JP2006224756A - サスペンションシステム - Google Patents
サスペンションシステム Download PDFInfo
- Publication number
- JP2006224756A JP2006224756A JP2005039172A JP2005039172A JP2006224756A JP 2006224756 A JP2006224756 A JP 2006224756A JP 2005039172 A JP2005039172 A JP 2005039172A JP 2005039172 A JP2005039172 A JP 2005039172A JP 2006224756 A JP2006224756 A JP 2006224756A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- drive command
- rolling angle
- command value
- actual
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Vehicle Body Suspensions (AREA)
- Vibration Prevention Devices (AREA)
Abstract
【課題】車両のロール剛性を制御可能なアクチュエータを備えたサスペンションシステムにおいて、ローリング抑制の制御精度を向上させる。
【解決手段】車両の車体に作用するローリングモーメントと、予め定められた駆動指令値決定規則とに基づいてアクチュエータに対する駆動指令値を決定し、出力する制御装置を設ける。車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、アクチュエータに予め定められた複数のテスト用駆動指令値を供給し(S5,S8,S24,S29,S42)、それらテスト用駆動指令値に対する複数の実ローリング角対応量を取得する(S7,S10,S27,S32,S44)。複数ずつのテスト用駆動指令値と実ローリング角対応量との関係である実関係が、予め設定されている標準関係と等しくなるように、制御装置の駆動指令値決定規則を補正する(S11,S34,S46)。
【選択図】 図5
【解決手段】車両の車体に作用するローリングモーメントと、予め定められた駆動指令値決定規則とに基づいてアクチュエータに対する駆動指令値を決定し、出力する制御装置を設ける。車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、アクチュエータに予め定められた複数のテスト用駆動指令値を供給し(S5,S8,S24,S29,S42)、それらテスト用駆動指令値に対する複数の実ローリング角対応量を取得する(S7,S10,S27,S32,S44)。複数ずつのテスト用駆動指令値と実ローリング角対応量との関係である実関係が、予め設定されている標準関係と等しくなるように、制御装置の駆動指令値決定規則を補正する(S11,S34,S46)。
【選択図】 図5
Description
本発明は、車両のロール剛性を制御可能なサスペンションシステムに関するものであり、特に、車体のローリング角制御の精度向上に関するものである。
車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置は既に知られている。例えば、下記特許文献1には、車両の前輪側と後輪側とにそれぞれアクティブスタビライザ装置を設けることが記載されている。各アクティブスタビライザ装置は、車両の左右方向に延びる本体部(トーションバー部)およびその本体部から前後方向の成分を有する方向に延びるアーム部をそれぞれ備え、本体部が車両に回転可能に保持され、各アーム部が左右前輪または左右後輪をそれぞれ保持する車輪保持部材に接続されている。これら本体部とアーム部とを備えたスタビライザバーが左スタビライザ部材および右スタビライザ部材に分かれており、両スタビライザ部材の本体部間に回転型のアクチュエータが設けられている。アクチュエータは、電動モータおよび減速装置により互いに相対回転させられる第一部材および第二部材を備え、上記左右のスタビライザ部材の一方が第一部材に、他方が第二部材に結合されている。したがって、上記電動モータが回転させられれば、第一部材と第二部材とが互いに逆向きに相対回転させられ、左スタビライザ部材と右スタビライザ部材との本体部が互いに逆向きにねじられ、前輪側と後輪側とのロール剛性が変えられる。上記減速装置として、波動歯車装置や多段または単段の遊星歯車装置等が使用可能であることも記載されている。
また、特許文献2には、前後左右の4つの車輪のうちのいずれかのタイヤの異常を、4つの車輪に対する荷重と車体の実際の傾きとの関係の異常に基づいて検出することが記載されている。前後方向および左右方向の加速度が作用していない状態において、前後左右の車輪に対応する車高から各車輪の荷重を推定するとともに、それら各推定荷重からタイヤの理論的変形量を演算し、その理論的変形量から各車輪の理論的車高を演算する一方、左前輪と右前輪,右前輪と右後輪,右後輪と左後輪,左後輪と左前輪の各々の間における車体の傾斜角を傾斜センサによって検出し、それら車体の傾斜角から上記各車輪間における車高差を演算し、その演算した実際の車高差と前記理論的車高から取得される理論的車高差とが不一致の場合に、タイヤの空気圧が異常であるとすることが記載されているのである。
特表2002−518245公報
特開平6−82327号公報
本発明は以上の事情の下に、車両のロール剛性を制御可能なアクチュエータを備えたサスペンションシステムにおける車体のローリング角制御の精度を向上させること、およびその向上したローリング角制御精度を利用してタイヤの異常を早期に検出可能にすることを課題としてなされたものである。
上記課題を解決するために、本発明に係るサスペンションシステムは、(a)車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置と、(b)前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、(c)前記車体の実ローリング角に一対一に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、(d)前記車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、前記アクチュエータに複数のテスト用駆動指令値を供給するテスト用駆動指令部と、(e)前記複数のテスト用駆動指令値と、それらに対応して前記実ローリング角対応量検出装置により検出された複数の前記実ローリング角対応量との関係である実関係が、予め設定されている標準関係と等しくなるように、前記制御装置の前記駆動指令値決定規則を補正する規則補正部とを含むものとされる。
また、本発明の望ましい態様のサスペンションシステムは、前記規則補正部により補正された規則に基づいて前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部を含むものとされる。
また、本発明の望ましい態様のサスペンションシステムは、前記規則補正部により補正された規則に基づいて前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部を含むものとされる。
本発明に係る上記サスペンションシステムにおいては、車両が停止している場合、車両が直進走行している場合、定常旋回している場合等、車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、テスト用駆動指令部によってアクチュエータに予め定められた複数のテスト用駆動指令値が供給される。その結果生じたテストローリング角対応量が実ローリング角対応量取得部により取得され、その実際のローリング角対応量と、上記複数のテスト用駆動指令値との関係である実関係が、設計上予定されている標準関係と等しくなるように、制御装置の駆動指令値決定規則が補正される。したがって、コイルスプリング,トーションバー,アクチュエータ等サスペンション装置を構成している機械部品のばね特性や寸法にばらつきがあっても、制御装置の電気,電子部品の特性にばらつきがあっても、サスペンションシステムの特性にばらつきが生じることが良好に回避され、ローリング角の制御精度が向上する。
また、望ましい態様の上記サスペンションシステムにおいては、規則補正部により補正された規則に基づいて制御装置により出力された駆動指令値に対する実際のローリング角対応量と、駆動指令値に対する理論的なローリング角対応量とが明らかに不一致の場合、例えば、両ローリング角対応量の差の絶対値が設定対応量差以上である場合に、タイヤが異常であるとされる。上記発明によって、ローリング角の制御精度が向上するため、例えば、タイヤの空気圧に比較的小さな変化が生じても、その変化が確実に検出されることとなり、タイヤの異常を早期に検出することが可能となるのである。
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。請求可能発明は、少なくとも、請求の範囲に記載された発明である「本発明」ないし「本願発明」を含むが、本願発明の下位概念発明や、本願発明の上位概念あるいは別概念の発明を含むこともある。)の態様をいくつか例示し、それらについて説明する。各態様は請求項と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載,実施例の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から構成要素を削除した態様も、請求可能発明の一態様となり得るのである。
なお、以下の各項において、(1)項が請求項1に相当し、(2)項が請求項2に、(6)項が請求項3に、(8)項が請求項4に、(9)項が請求項5にそれぞれ相当する。
(1)車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置と、
前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、
前記車体の実ローリング角に一対一に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、
前記車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、前記アクチュエータに複数のテスト用駆動指令値を供給するテスト用駆動指令部と、
前記複数のテスト用駆動指令値と、それらに対応して前記実ローリング角対応量検出装置により検出された複数の前記実ローリング角対応量との関係である実関係が、予め設定されている標準関係(例えば、設計上予定されている関係)と等しくなるように、前記制御装置の前記駆動指令値決定規則を補正する規則補正部と
を含むことを特徴とするサスペンションシステム。
駆動指令値決定規則が、後述の実施例におけるように、一次式を含み、規則補正部がその一次式を補正するものである場合には、テスト用駆動指令値および実ローリング角対応量が2つずつあれば、補正が可能である。それより多い場合には、規則補正部を、統計的処理により補正を行うものとし、あるいは一部のテスト用駆動指令値および実ローリング角対応量を選択し、その選択したテスト用駆動指令値および実ローリング角対応量に基づいて補正を行うものとすればよい。また、駆動指令値決定規則が、二次以上の式を含み、規則補正部がその二次以上の式を補正するものである場合には、3つ以上ずつのテスト用駆動指令値および実ローリング角対応量が必要となる。
(2)前記テスト用駆動指令部が、前記車両の停止中に前記複数のテスト用駆動指令値を供給する停車中駆動指令部を含む(1)項に記載のサスペンションシステム。
車両の停車中には、ローリングモーメントが一定に保たれるのが普通であり、複数のテスト用駆動指令値と複数の実ローリング角対応量との関係である実関係が標準関係と等しくなるはずである。したがって、本項の特徴によれば、制御装置における駆動指令値決定規則の適否を容易に判定し、補正することができる。
(3)前記テスト用駆動指令部が、前記車両の1回以上の定常旋回中に前記複数のテスト用駆動指令値を供給する定常旋回中駆動指令部を含む(1)項または(2)項に記載のサスペンションシステム。
定常旋回中駆動指令部は、1回の定常旋回中に複数のテスト用駆動指令値を供給するものとしても、複数回の定常走行の各々においてそれぞれ1つのテスト駆動指令値を供給するものとしてもよい。前者の場合には、定常走行中であるにもかかわらず、車体のローリング角が変化することになるため、運転者に多少の違和感を抱かせることを避け得ない。それに対し、後者の場合には、各定常走行中にローリング角が変化することはないので、運転者に違和感を抱かせることを回避することができる。ただし、駆動指令値決定規則を適切に補正するためには、複数の駆動指令値は互いに異なっていることが望ましい。例えば、定常旋回中駆動指令部を、車体に作用するローリングモーメントが異なる複数の定常旋回中に、各ローリングモーメントに対して最適であるはずのテスト用駆動指令値をそれぞれ供給するものとしたり、ローリングモーメントが同じである複数の定常旋回中に、互いに異なるテスト用駆動指令値をそれそれ供給するものとしたりするのである。ただし、後者の場合には、複数のテスト用駆動指令値の少なくとも1つは、車体に作用しているローリングモーメントに対して最適のものから外したものとせざるを得ないことになる。
なお、車両がテストコースを走行中にテストを行うのであれば、同じ旋回コースを走行する場合の走行速度を変えることによって、車体に作用するローリングモーメントを変え、適切なテストを行うことができる。それに対し、一般道を走行中にテストを行う場合には、テストのために走行速度を変えることは困難であるので、ローリング角が不適切になることを承知でテスト用駆動指令値を決定せざるを得ない。
本項によれば、車両の走行中に複数のテスト用駆動指令値と複数の実ローリング角対応量との実関係を取得することができる。
(4)前記複数のテスト用駆動指令値が0と0以外の1つの設定値とを含み、前記複数の実ローリング角対応量が少なくとも前記0以外の1つの設定値に対応するローリング角対応量を含む(1)項ないし(3)項のいずれかに記載のサスペンションシステム。
複数のテスト用駆動指令値を、0と0以外の1つの設定値との2つとし、0の駆動指令値が供給されている状態と、1つの設定値が供給されている状態とにおける2つの実ローリング角対応量を取得すれば、実関係が標準関係と合致するか否かを判定することができる。この場合、0の駆動指令値に対するローリング角対応量が0に決まっていれば、あたかも1つの駆動指令値を供給するのみで、駆動指令値決定規則の適否を判定することができるかのようであるが、実際は0の駆動指令値と0のローリング角対応量とを前提にしているので、2つのテスト用駆動指令値が供給され、2つの実ローリング角対応量が取得されることになる。
(5)前記複数のテスト用駆動指令値が、0以外の2つの設定値を含み、前記複数の実ローリング角対応量が、前記2つの設定値の各々に対応する2つの実ローリング角対応量を含む(1)項ないし(3)項のいずれかに記載のサスペンションシステム。
テスト用駆動指令値を0とすると、それに対応するローリング角が一定しにくい場合がある。その場合には、0ではない2つのテスト用駆動指令値が供給されるようにすることが有効である。
(6)前記実ローリング角対応量検出装置が、
前記車両の右側と左側とにそれぞれ1つ以上設けられた車高センサと、
それら車高センサにより検出された左車高と右車高との差に基づいて前記実ローリング角を取得する車高依拠実ローリング角対応量取得部と
を含む(1)項ないし(5)項のいずれかに記載のサスペンションシステム。
車両の右側と左側とにそれぞれ1つずつの車高センサを設けるのみでも、それら2つの検出結果に基づいてローリング角を取得することができる。
実ローリング角対応量検出装置は、例えば、車両の直進状態からのロールレートの積分によって実ローリング角を検出するものとしたり、車体の横方向における傾斜角度を検出する横傾斜角検出装置としたりすることも可能である。しかし、左車高と右車高との差に基づいて実ローリング角を検出するものとすれば、車高調整のために設けられている車高センサを有効に利用することができ、安価な実ローリング角対応量検出装置を得ることができる。
(7)前記車高センサが、
前記車両の左右前輪の各々に対応して設けられた2つの前輪対応車高センサと、
前記車両の左右後輪の各々に対応して設けられた2つの後輪対応車高センサと
を含み、前記車高依拠実ローリング角対応量取得部が、
前記2つの前輪対応車高センサにより取得された左前輪車高と右前輪車高との差に基づいて前記車両の前側における前記実ローリング角対応量を取得する前ローリング角対応量取得部と、
前記2つの後輪対応車高センサにより取得された左後輪車高と右後輪車高との差に基づいて前記車両の後側における前記実ローリング角対応量を取得する後ローリング角対応量取得部と
を含む(6)項に記載のサスペンションシステム。
本項の特徴によれば、車両の前側と後側とのそれぞれにおける実ローリング角対応量を取得することができ、駆動指令値決定規則を前側と後側との両方において個別に設定し、補正することが可能となって、ローリング角制御を一層良好に行うことができる。
(8)前記規則補正部により補正された規則に基づいて前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部を含む(1)項ないし(7)項のいずれかに記載のサスペンションシステム。
旋回外側の車輪において、タイヤの空気圧が異常に低くなった場合には、車体の絶対的なローリング角は勿論、実施例の項において説明するように、車高センサの検出結果に基づいて取得されるローリング角も大きくなるため、実際のローリング角と設計通りの標準ローリング角との比較によって、タイヤの空気圧異常の発生を検出することができる。例えば、実際のローリング角と設計通りの標準ローリング角との差の絶対値が設定差以上になればタイヤの空気圧異常が発生したとすることができる。
本項のタイヤ異常検出部は、後述の(11)項または(12)項に記載のサスペンションシステムにおけるように、(1)項〜(7)項の各々に記載された特徴とは別個に採用することもできる。しかし、(1)項〜(7)項の各々に記載された特徴と組み合わせて採用すれば、例えば、タイヤ空気圧の比較的小さい低下をも検出することができるため、タイヤ異常を早期に検出することができる。
(9)前記サスペンション装置が、前記車両の左右前輪に対応して設けられた前サスペンション装置および左右後輪に対応して設けられた後サスペンション装置を含み、
前記制御装置が、前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた前用駆動指令値決定規則と後用駆動指令値決定規則とに基づいて、前記前サスペンション装置および前記後サスペンション装置の前記アクチュエータである前用アクチュエータおよび後用アクチュータに対する駆動指令値を決定して出力する前用制御部および後用制御部を含み、
前記実ローリング角対応量検出装置が、前記左右前輪の各々に対応して設けられた2つの前輪対応車高センサ、前記車両の左右後輪の各々に対応して設けられた2つの後輪対応車高センサ、前記2つの前輪対応車高センサにより取得された左前輪車高と右前輪車高との差に基づいて前記車両の前側における前記実ローリング角対応量を取得する前ローリング角対応量取得部および前記2つの後輪対応車高センサにより取得された左後輪車高と右後輪車高との差に基づいて前記車両の後側における前記実ローリング角対応量を取得する後ローリング角対応量取得部を含み、
前記テスト用駆動指令部が、前記複数のテスト用駆動指令値を前記前用アクチュエータおよび前記後用アクチュエータにそれぞれ供給する前テスト用駆動指令部および後テスト用駆動指令部を含み、
前記テストローリング角対応量取得部が、前記前ローリング角対応量取得部および前記後ローリング角対応量取得部の検出値に基づいて、前記複数の実ローリング角対応量を前および後についてそれぞれ取得する前ローリング角対応量取得部および後ローリング角対応量取得部を含み、
前記規則補正部が、前テスト用駆動指令部および後テスト用駆動指令部からの複数ずつの前記テスト用駆動指令値と前記前ローリング角対応量取得部および後ローリング角対応量取得部により取得された複数ずつの前記実ローリング角対応量との前記実関係である前実関係および後実関係が、予め設定されている前記標準関係である前標準関係および後標準関係と等しくなるように、前記前用制御部および前記後用制御部の前記前用駆動指令値決定規則および前記後用駆動指令値決定規則を補正する前用規則補正部および後用規則補正部を含む(8)項に記載のサスペンションシステム。
本項の構成を採用すれば、タイヤの異常を特に確実に検出することができる。
(10)車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置と、
前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、
前記車体の実ローリング角に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、
前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部と
を含むサスペンションシステム。
(11)前記タイヤ異常検出部が、前記車両の前輪側について検出された前記実ローリング角対応量とそれに対応する前記標準ローリング角対応量との差と、前記車両の後輪側に対して検出された前記実ローリング角対応量とそれに対応する前記標準ローリング角対応量との差との少なくとも一方に基づいて、前記タイヤの異常を検出するものである(10)項に記載のサスペンションシステム。
前輪側の差と後輪側の差との両方に基づく場合には、例えば、和,平均値,大きい方の値等を使用することができる。
前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、
前記車体の実ローリング角に一対一に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、
前記車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、前記アクチュエータに複数のテスト用駆動指令値を供給するテスト用駆動指令部と、
前記複数のテスト用駆動指令値と、それらに対応して前記実ローリング角対応量検出装置により検出された複数の前記実ローリング角対応量との関係である実関係が、予め設定されている標準関係(例えば、設計上予定されている関係)と等しくなるように、前記制御装置の前記駆動指令値決定規則を補正する規則補正部と
を含むことを特徴とするサスペンションシステム。
駆動指令値決定規則が、後述の実施例におけるように、一次式を含み、規則補正部がその一次式を補正するものである場合には、テスト用駆動指令値および実ローリング角対応量が2つずつあれば、補正が可能である。それより多い場合には、規則補正部を、統計的処理により補正を行うものとし、あるいは一部のテスト用駆動指令値および実ローリング角対応量を選択し、その選択したテスト用駆動指令値および実ローリング角対応量に基づいて補正を行うものとすればよい。また、駆動指令値決定規則が、二次以上の式を含み、規則補正部がその二次以上の式を補正するものである場合には、3つ以上ずつのテスト用駆動指令値および実ローリング角対応量が必要となる。
(2)前記テスト用駆動指令部が、前記車両の停止中に前記複数のテスト用駆動指令値を供給する停車中駆動指令部を含む(1)項に記載のサスペンションシステム。
車両の停車中には、ローリングモーメントが一定に保たれるのが普通であり、複数のテスト用駆動指令値と複数の実ローリング角対応量との関係である実関係が標準関係と等しくなるはずである。したがって、本項の特徴によれば、制御装置における駆動指令値決定規則の適否を容易に判定し、補正することができる。
(3)前記テスト用駆動指令部が、前記車両の1回以上の定常旋回中に前記複数のテスト用駆動指令値を供給する定常旋回中駆動指令部を含む(1)項または(2)項に記載のサスペンションシステム。
定常旋回中駆動指令部は、1回の定常旋回中に複数のテスト用駆動指令値を供給するものとしても、複数回の定常走行の各々においてそれぞれ1つのテスト駆動指令値を供給するものとしてもよい。前者の場合には、定常走行中であるにもかかわらず、車体のローリング角が変化することになるため、運転者に多少の違和感を抱かせることを避け得ない。それに対し、後者の場合には、各定常走行中にローリング角が変化することはないので、運転者に違和感を抱かせることを回避することができる。ただし、駆動指令値決定規則を適切に補正するためには、複数の駆動指令値は互いに異なっていることが望ましい。例えば、定常旋回中駆動指令部を、車体に作用するローリングモーメントが異なる複数の定常旋回中に、各ローリングモーメントに対して最適であるはずのテスト用駆動指令値をそれぞれ供給するものとしたり、ローリングモーメントが同じである複数の定常旋回中に、互いに異なるテスト用駆動指令値をそれそれ供給するものとしたりするのである。ただし、後者の場合には、複数のテスト用駆動指令値の少なくとも1つは、車体に作用しているローリングモーメントに対して最適のものから外したものとせざるを得ないことになる。
なお、車両がテストコースを走行中にテストを行うのであれば、同じ旋回コースを走行する場合の走行速度を変えることによって、車体に作用するローリングモーメントを変え、適切なテストを行うことができる。それに対し、一般道を走行中にテストを行う場合には、テストのために走行速度を変えることは困難であるので、ローリング角が不適切になることを承知でテスト用駆動指令値を決定せざるを得ない。
本項によれば、車両の走行中に複数のテスト用駆動指令値と複数の実ローリング角対応量との実関係を取得することができる。
(4)前記複数のテスト用駆動指令値が0と0以外の1つの設定値とを含み、前記複数の実ローリング角対応量が少なくとも前記0以外の1つの設定値に対応するローリング角対応量を含む(1)項ないし(3)項のいずれかに記載のサスペンションシステム。
複数のテスト用駆動指令値を、0と0以外の1つの設定値との2つとし、0の駆動指令値が供給されている状態と、1つの設定値が供給されている状態とにおける2つの実ローリング角対応量を取得すれば、実関係が標準関係と合致するか否かを判定することができる。この場合、0の駆動指令値に対するローリング角対応量が0に決まっていれば、あたかも1つの駆動指令値を供給するのみで、駆動指令値決定規則の適否を判定することができるかのようであるが、実際は0の駆動指令値と0のローリング角対応量とを前提にしているので、2つのテスト用駆動指令値が供給され、2つの実ローリング角対応量が取得されることになる。
(5)前記複数のテスト用駆動指令値が、0以外の2つの設定値を含み、前記複数の実ローリング角対応量が、前記2つの設定値の各々に対応する2つの実ローリング角対応量を含む(1)項ないし(3)項のいずれかに記載のサスペンションシステム。
テスト用駆動指令値を0とすると、それに対応するローリング角が一定しにくい場合がある。その場合には、0ではない2つのテスト用駆動指令値が供給されるようにすることが有効である。
(6)前記実ローリング角対応量検出装置が、
前記車両の右側と左側とにそれぞれ1つ以上設けられた車高センサと、
それら車高センサにより検出された左車高と右車高との差に基づいて前記実ローリング角を取得する車高依拠実ローリング角対応量取得部と
を含む(1)項ないし(5)項のいずれかに記載のサスペンションシステム。
車両の右側と左側とにそれぞれ1つずつの車高センサを設けるのみでも、それら2つの検出結果に基づいてローリング角を取得することができる。
実ローリング角対応量検出装置は、例えば、車両の直進状態からのロールレートの積分によって実ローリング角を検出するものとしたり、車体の横方向における傾斜角度を検出する横傾斜角検出装置としたりすることも可能である。しかし、左車高と右車高との差に基づいて実ローリング角を検出するものとすれば、車高調整のために設けられている車高センサを有効に利用することができ、安価な実ローリング角対応量検出装置を得ることができる。
(7)前記車高センサが、
前記車両の左右前輪の各々に対応して設けられた2つの前輪対応車高センサと、
前記車両の左右後輪の各々に対応して設けられた2つの後輪対応車高センサと
を含み、前記車高依拠実ローリング角対応量取得部が、
前記2つの前輪対応車高センサにより取得された左前輪車高と右前輪車高との差に基づいて前記車両の前側における前記実ローリング角対応量を取得する前ローリング角対応量取得部と、
前記2つの後輪対応車高センサにより取得された左後輪車高と右後輪車高との差に基づいて前記車両の後側における前記実ローリング角対応量を取得する後ローリング角対応量取得部と
を含む(6)項に記載のサスペンションシステム。
本項の特徴によれば、車両の前側と後側とのそれぞれにおける実ローリング角対応量を取得することができ、駆動指令値決定規則を前側と後側との両方において個別に設定し、補正することが可能となって、ローリング角制御を一層良好に行うことができる。
(8)前記規則補正部により補正された規則に基づいて前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部を含む(1)項ないし(7)項のいずれかに記載のサスペンションシステム。
旋回外側の車輪において、タイヤの空気圧が異常に低くなった場合には、車体の絶対的なローリング角は勿論、実施例の項において説明するように、車高センサの検出結果に基づいて取得されるローリング角も大きくなるため、実際のローリング角と設計通りの標準ローリング角との比較によって、タイヤの空気圧異常の発生を検出することができる。例えば、実際のローリング角と設計通りの標準ローリング角との差の絶対値が設定差以上になればタイヤの空気圧異常が発生したとすることができる。
本項のタイヤ異常検出部は、後述の(11)項または(12)項に記載のサスペンションシステムにおけるように、(1)項〜(7)項の各々に記載された特徴とは別個に採用することもできる。しかし、(1)項〜(7)項の各々に記載された特徴と組み合わせて採用すれば、例えば、タイヤ空気圧の比較的小さい低下をも検出することができるため、タイヤ異常を早期に検出することができる。
(9)前記サスペンション装置が、前記車両の左右前輪に対応して設けられた前サスペンション装置および左右後輪に対応して設けられた後サスペンション装置を含み、
前記制御装置が、前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた前用駆動指令値決定規則と後用駆動指令値決定規則とに基づいて、前記前サスペンション装置および前記後サスペンション装置の前記アクチュエータである前用アクチュエータおよび後用アクチュータに対する駆動指令値を決定して出力する前用制御部および後用制御部を含み、
前記実ローリング角対応量検出装置が、前記左右前輪の各々に対応して設けられた2つの前輪対応車高センサ、前記車両の左右後輪の各々に対応して設けられた2つの後輪対応車高センサ、前記2つの前輪対応車高センサにより取得された左前輪車高と右前輪車高との差に基づいて前記車両の前側における前記実ローリング角対応量を取得する前ローリング角対応量取得部および前記2つの後輪対応車高センサにより取得された左後輪車高と右後輪車高との差に基づいて前記車両の後側における前記実ローリング角対応量を取得する後ローリング角対応量取得部を含み、
前記テスト用駆動指令部が、前記複数のテスト用駆動指令値を前記前用アクチュエータおよび前記後用アクチュエータにそれぞれ供給する前テスト用駆動指令部および後テスト用駆動指令部を含み、
前記テストローリング角対応量取得部が、前記前ローリング角対応量取得部および前記後ローリング角対応量取得部の検出値に基づいて、前記複数の実ローリング角対応量を前および後についてそれぞれ取得する前ローリング角対応量取得部および後ローリング角対応量取得部を含み、
前記規則補正部が、前テスト用駆動指令部および後テスト用駆動指令部からの複数ずつの前記テスト用駆動指令値と前記前ローリング角対応量取得部および後ローリング角対応量取得部により取得された複数ずつの前記実ローリング角対応量との前記実関係である前実関係および後実関係が、予め設定されている前記標準関係である前標準関係および後標準関係と等しくなるように、前記前用制御部および前記後用制御部の前記前用駆動指令値決定規則および前記後用駆動指令値決定規則を補正する前用規則補正部および後用規則補正部を含む(8)項に記載のサスペンションシステム。
本項の構成を採用すれば、タイヤの異常を特に確実に検出することができる。
(10)車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置と、
前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、
前記車体の実ローリング角に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、
前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部と
を含むサスペンションシステム。
(11)前記タイヤ異常検出部が、前記車両の前輪側について検出された前記実ローリング角対応量とそれに対応する前記標準ローリング角対応量との差と、前記車両の後輪側に対して検出された前記実ローリング角対応量とそれに対応する前記標準ローリング角対応量との差との少なくとも一方に基づいて、前記タイヤの異常を検出するものである(10)項に記載のサスペンションシステム。
前輪側の差と後輪側の差との両方に基づく場合には、例えば、和,平均値,大きい方の値等を使用することができる。
以下、請求可能発明の実施例を図を参照しつつ詳しく説明する。
図1に、サスペンションシステム10の一部を概念的に示す。本サスペンションシステム10は、車両の前輪側、後輪側の各々に配設され、それぞれがロール抑制装置として機能する2つのスタビライザ装置14,14′(後輪側の構成要素の符号に′を付けることとする)を含んでいる。スタビライザ装置14,14′はそれぞれ、両端部において左右の前輪16および後輪16′を保持する車輪保持部材(図2参照)に連結されたスタビライザバー20,20′を備えている。それらスタビライザバー20、20′は、中央部で分割されており、一対のスタビライザ部材、すなわち左スタビライザ部材22,22′と右スタビライザ部材24,24′とを含んでいる。それら一対のスタビライザ部材22,22′,24,24′がアクチュエータ30,30′を介して相対回転可能に接続されており、大まかに言えば、スタビライザ装置14、14′は、アクチュエータ30,30′が、左右のスタビライザ部材22,22′と24,24′とを相対回転させることによって(図の矢印を参照)、スタビライザバー20,20′全体の弾性力を変化させて車体のロール抑制を行う。
図1に、サスペンションシステム10の一部を概念的に示す。本サスペンションシステム10は、車両の前輪側、後輪側の各々に配設され、それぞれがロール抑制装置として機能する2つのスタビライザ装置14,14′(後輪側の構成要素の符号に′を付けることとする)を含んでいる。スタビライザ装置14,14′はそれぞれ、両端部において左右の前輪16および後輪16′を保持する車輪保持部材(図2参照)に連結されたスタビライザバー20,20′を備えている。それらスタビライザバー20、20′は、中央部で分割されており、一対のスタビライザ部材、すなわち左スタビライザ部材22,22′と右スタビライザ部材24,24′とを含んでいる。それら一対のスタビライザ部材22,22′,24,24′がアクチュエータ30,30′を介して相対回転可能に接続されており、大まかに言えば、スタビライザ装置14、14′は、アクチュエータ30,30′が、左右のスタビライザ部材22,22′と24,24′とを相対回転させることによって(図の矢印を参照)、スタビライザバー20,20′全体の弾性力を変化させて車体のロール抑制を行う。
図2には、前輪側のスタビライザ装置14の車幅方向の中央から左側の車輪16にかけての部分が概略的に示されている。本サスペンションシステム10は、それぞれが4つの車輪16,16′の各々に対して設けられた4つの独立懸架式の主サスペンション部34を含んでいる。図示の主サスペンション部34は、一般によく知られたダブルウィシュボーン式のものであり、一端部が車体に回動可能に連結され、他端部が車輪16に連結された車輪保持部材としてのアッパアーム42およびロアアーム44を備えている。それらアッパアーム42およびロアアーム44は、車輪16と車体との接近離間(相対的な上下動)に伴い、上記一端部(車体側)を中心に回動させられ、上記他端部(車輪側)が車体に対して上下させられる。また、主サスペンション部34は、ショックアブソーバ46と、サスペンションスプリング48(本装置では「エアばね」である)とを備えている。それらショックアブソーバ46およびサスペンションスプリング48は、それぞれが、車体側の部材と車輪側の部材とに連結されている。このような構造により、主サスペンション部34は、車輪16と車体とを弾性的に相互支持するとともに、それらの接近離間に伴う振動に対する減衰力を発生させる機能を果たす。また、この主サスペンション部34と前記スタビライザ装置14,14′とによってサスペンション装置36、36′が構成されている。
スタビライザ装置14,14′は、先に説明した一対のスタビライザ部材である左スタビライザ部材22,22′と右スタビライザ部材24,24′とをそれぞれ備える(図2にはそれらの一方のみが示されている)。各スタビライザ部材22,22′,24,24′は、それぞれ、ほぼ車幅方向に延びるトーションバー部60と、そのトーションバー部60と一体化されて概ね車両前方あるいは後方に延びるアーム部62とに区分することができる。各スタビライザ部材22,22′,24,24′のトーションバー部60は、アーム部62に近い箇所においてそれぞれ支持部材66に回転可能に支持され、それら支持部材66は車体の一部であるスタビライザ装置配設部64に固定的に設けられている。それらトーションバー部60の端部(車幅方向における中央側の端部)の間には、前述のアクチュエータ30,30′が配設されており、後に詳しく説明するように、各トーションバー部60の端部は、それぞれ、そのアクチュエータ30,30′に接続されている。一方、アーム部62の端部(トーションバー部60側とは反対側の端部)は、上述のロアアーム44に設けられたスタビライザバー連結部68に、それと相対回転可能に連結されている。
アクチュエータ30,30′は、図3に模式的に示すように、電動モータ70と、電動モータ70の回転を減速する減速装置72とを含んでいる。これら電動モータ70および減速機構72は、アクチュエータ30,30′のハウジング74内に収容されている。ハウジング74は、ハウジング保持部材76によって回転可能かつ軸方向(ほぼ車幅方向)に移動不能に保持され、ハウジング保持部材76はスタビライザ装置配設部64に固定的に配設されている。図2から解るように、ハウジング74の両端部の各々から、2つの出力軸80,82の各々が延び出させられている。それら出力軸80,82のハウジング74から延び出した突出端部が、それぞれ、各スタビライザ部材22,22′,24,24′の端部と、セレーション嵌合によって相対回転不能に接続されている。また、図3から解るように、一方の出力軸80は、ハウジング74の端部に固定されており、他方の出力軸82は、ハウジング74内に延び入る状態で配設されるとともに、ハウジング74に対して回転可能かつ軸方向に移動不能に支持されている。その出力軸82のハウジング74内に位置する端部が、後に詳しく説明するように、減速装置72に接続されている。
電動モータ70は、ハウジング74の内周壁に沿って一円周上に固定して配置された複数のステータコイル84と、ハウジング74に回転可能に保持された中空状のモータ軸86と、モータ軸86の外周においてステータコイル84と向き合うようにして一円周上に固定して配設された永久磁石88とを含んでいる。電動モータ70は、ステータコイル84がステータとして機能し、永久磁石88がロータとして機能するDCブラシレスモータである。
減速機構72は、波動発生器(ウェーブジェネレータ)90,フレキシブルギヤ(フレクススプライン)92およびリングギヤ(サーキュラスプライン)94を備え、波動歯車装置(ハーモニックドライブ機構(登録商標),ハーモニックギヤ機構,ストレイン・ウェーブ・ギヤリング機構等とも呼ばれる)として構成されている。波動発生器90は、楕円状カムの外周にボール・ベアリングが嵌められたものであり、モータ軸86の一端部の外周に固定されている。フレキシブルギヤ92は、周壁部が弾性変形可能なカップ形状をなすものとされており、周壁部の開口側の外周に複数の歯が形成されている。このフレキシブルギヤ92は、先に説明した出力軸82に支持されている。さらに詳しくは、出力軸82は、モータ軸86を貫通しており、それから延び出た端部にフレキシブルギヤ92の底部が固着されることで、フレキシブルギヤ92と出力軸82とが接続されているのである。リングギヤ94は、概してリング状をなし、その内周に複数(フレキシブルギヤの歯数よりやや多い数、例えば2つ多い数)の歯が形成されており、ハウジング74に固定されている。フレキシブルギヤ92は、その周壁部が波動発生器90に外嵌して楕円状に弾性変形させられ、楕円の長軸方向に位置する2箇所においてリングギヤ94と噛合し、他の箇所では噛合しない状態とされている。波動発生器90が1回転(360度)すると、フレキシブルギヤ92とリングギヤ94とが、それらの歯数の差分だけ相対回転させられる。
以上の構成から、電動モータ70が回転させられる場合、つまり、アクチュエータ30,30′が作動する場合に、左スタビライザ部材22,22′と右スタビライザ部材24,24′との各トーションバー部60が相対回転させられ、左スタビライザ部材22,22′と右スタビライザ部材24,24′とによって構成されて1つのスタビライザバー20,20′と観念できるものが捩じられることになる。このねじりにより生じる力は、左右の各々の車輪16と車体とを接近あるいは離間させる力として作用することになる。つまり、本スタビライザ装置14,14′では、アクチュエータ30,30′の作動によって、スタビライザバー20,20′の弾性力を変化させ、前輪側およ後輪側のロール剛性を個別に制御し得るようにされているのである。
以上説明したサスペンション装置36,36′はサスペンションECU(電子制御装置)100によって制御される。本サスペンションシステムは制御装置としてのサスペンションECU100と被制御装置としてのサスペンション装置36,36′とによって構成されているのである。したがって、前輪側のアクチュエータ30と後輪側のアクチュエータ30′とは、図1および図4に示すように、サスペンションECU100に接続されている。サスペンションECU100はマイクロコンピュータ102を主体とするものであり、マイクロコンピュータ102はCPU104,ROM106,RAM108および入出力部110を備えている。入出力部110には、前後左右の車輪16,16′に対応してそれぞれ設けられた4つの車高センサ、すなわち左前車高センサ112,右前車高センサ114,左後車高センサ116および右後車高センサ118と、車体横方向の加速度である横加速度(図示等、必要に応じて横Gと略称する)センサ120と、サスペンションECU100に対する入力のために運転者により操作される入力装置122とが接続されている。入出力部110にはさらに、駆動回路124,124′を介して上記アクチュエータ30,30′が接続されている。各アクチュエータ30,30′には、図3に示すように、エンコーダ126,126′がそれぞれ設けられており、駆動回路124,124′は、マイクロコンピュータ102からの駆動指令値たる回転角指令値(永久磁石88とステータコイル84との相対回転角の指令値)と、エンコーダ126,126′による検出回転角とが等しくなるように、アクチュエータ30,30′を制御する。
上記ROM106にはローリング抑制プログラムが格納されている。このプログラムはよく知られたものであるので詳細な説明は省略するが、横Gセンサ120により検出された横Gと、駆動指令値決定規則とに基づいて、アクチュエータ30,30′に対する駆動指令値を決定し、出力するものである。車両が旋回して車体に横Gが発生した場合には、それに比例するローリングモーメントが車体に作用するため、例えば、仮に、車体のローリングを完全に防止して車体を水平な状態に保つことを望むのであれば、スタビライザバー20,20′に、大きさが上記ローリングモーメントに等しく向きが逆である反モーメントを発生させる必要がある。そして、反モーメントの大きさはスタビライザバー20,20′がそれぞれ発生する反モーメントの和に等しく、スタビライザバー20,20′が分担すべき反モーメントの比率は設計上決められている。また、スタビライザバー20,20′が発生する反モーメントと、アクチュエータ30,30′の出力角、すなわちハウジング74とフレキシブルギヤ92との相対回転角とは比例しており、その相対回転角は電動モータ70の回転角に比例している。したがって、車体のローリングを完全に防止することを望む場合には、アクチュエータ30,30′の電動モータ70にそれぞれ横Gに比例する駆動指令値、すなわち、永久磁石88とステータコイル84との相対回転角の指令値を供給すればよいことになる。
しかし、車体にローリングモーメントが作用した場合に、ローリングを完全に防止して車体を水平に保つことは不可欠ではなく、少なくともローリングを軽減できればスタビライザ装置14,14′を設ける意義があり、むしろその方が乗員に自然な感じを与える。したがって、本サスペンションシステムはローリングを完全に防止するようには設計されておらず、車体に作用する各ローリングモーメントに対してそれぞれ決まる大きさのローリング角を許容するものとされている。この場合でも、車体のローリングを完全に防止することを望む場合とは比例係数は異なるものの、アクチュエータ30,30′の電動モータ70にそれぞれ横Gに比例する駆動指令値、すなわち、永久磁石88とステータコイル84との相対回転角の指令値を供給すればよいことになる。
車体のローリングを適切に抑制するためには、上記のように、アクチュエータ30,30′の電動モータ70にそれぞれ横Gに比例する駆動指令値、すなわち、永久磁石88とステータコイル84との相対回転角の指令値を供給すればよいのであるが、実際には、サスペンション装置36,36′を構成する各要素、特にスタビライザ装置14,14′の構成要素には、製造上、ばね定数をはじめとする種々の特性や寸法にばらつきが生じることを避け得ない。そのため、全ての車両に同じ駆動指令値決定規則を当てはめたのでは、個々の車両において常に正確に設計通りのローリング抑制が行われるとは限らない。そこで、上記ROM106にはさらに図5のフローチャートで表される指令値決定規則補正ルーチンが格納されている。このルーチンは、上記アクチュエータ30,30′に対する駆動指令値を決定するための駆動指令値決定規則を、個々のサスペンション装置36,36′の特性に合わせて補正し、各車両においてローリングの抑制が正確に行われるようにするための制御プログラムである。
指令値決定規則補正ルーチンは、イグニッションスイッチのオン操作等、車両の運転開始時に操作される起動操作部材の操作に応じて起動される。
ステップ1(以下、S1と略記する。他のステップについても同様とする)において、入力装置122の状態に基づいて、運転者が指令値決定規則の補正を望むかどうかが判定される。判定結果がNOであれば、実質的に何も行われることなく、本ルーチンの実行が終了する。判定結果がYESであれば、S2において、指令値決定規則の補正が済んでいるか否かの判定が行われるが、当初は判定結果がNOとなり、S3において、入力装置122の状態に基づいて、運転者が指令値決定規則の補正が停車中に実行されることを望むか否かが判定され、判定結果がYESであれば、S4において車両の走行が禁止される。そして、S5において、スタビライザ装置14,14′の電動モータ70へそれぞれ回転角α1およびα1′の回転指令が出される。その後、S5,S6が繰り返し実行されて、時間T1の経過が待たれる。時間T1は、、回転角α1およびα1′の回転指令が駆動回路124により実行され、電動モータ70の回転が停止するに必要で十分な時間に設定されている。S6の判定結果がYESとなれば、S7において車高センサ112等の出力値が読み込まれ、RAM108の車高値記憶部に記憶される。
ステップ1(以下、S1と略記する。他のステップについても同様とする)において、入力装置122の状態に基づいて、運転者が指令値決定規則の補正を望むかどうかが判定される。判定結果がNOであれば、実質的に何も行われることなく、本ルーチンの実行が終了する。判定結果がYESであれば、S2において、指令値決定規則の補正が済んでいるか否かの判定が行われるが、当初は判定結果がNOとなり、S3において、入力装置122の状態に基づいて、運転者が指令値決定規則の補正が停車中に実行されることを望むか否かが判定され、判定結果がYESであれば、S4において車両の走行が禁止される。そして、S5において、スタビライザ装置14,14′の電動モータ70へそれぞれ回転角α1およびα1′の回転指令が出される。その後、S5,S6が繰り返し実行されて、時間T1の経過が待たれる。時間T1は、、回転角α1およびα1′の回転指令が駆動回路124により実行され、電動モータ70の回転が停止するに必要で十分な時間に設定されている。S6の判定結果がYESとなれば、S7において車高センサ112等の出力値が読み込まれ、RAM108の車高値記憶部に記憶される。
続いて、S8〜S10がS5〜S7と同様に実行され、電動モータ70が回転角α2,α2′回転させられるとともに、その際の車高センサ112等の出力値が読み込まれ、RAM108の車高値記憶部に記憶される。このようにして取得された車高値に基づいてS11において指令値決定規則の補正が行われ、S12において車両の走行禁止が解除されて、本ルーチンの1回の実行が終了する。その結果、次にS2が実行される際には、判定結果がYESとなり、もはやS3以降は実行されないことになる。
上記S11における駆動指令値決定規則の補正は種々の方法で行うことができる。駆動指令値決定規則は、前述のように、車両の旋回によって生じた横Gから車体に作用するローリングモーメントを推定し、そのローリングモーメントに対してローリング角を予め定められた大きさに抑制し得る反モーメントをスタビライザ装置14,14′に発生させるために必要な各電動モータ70の回転角を決定するものであり、実際には複雑なものである。しかし、ここでは単純化のために、駆動指令値決定規則には電動モータ70の回転角αとそれによって生じるローリング角γとの関係を示す一次式γ=Aα+Bが含まれているものとし、個別のサスペンション装置36,36′の全ての構成要素の寸法や特性のばらつきを、上記式γ=Aα+Bに集約させ、この一次式が個別のサスペンション装置36,36′についてそれぞれγ=aα+b,γ=a′α+b′と補正されるようになっているものとする。この補正後の両式を用いて電動モータの駆動指令値たる回転角指令値が決定されることによって、その車両においてローリングが正確に抑制されるようにされているものとするのである。したがって、S11においては、スタビライザ装置14,14′の電動モータ70に回転角指令値α,α′が供給されたときに、左前車高センサ112と右前車高センサ114とによって検出された左右の車高差から演算される前輪側のローリング角γと、左後車高センサ116と右後車高センサ118とによって検出された左右の車高差から演算される後輪側のローリング角γ′とがそれぞれ設計通りの値となるようなγ=aα+b,γ′=a′α′+b′が求められるのである。
前輪側を例としてさらに具体的に説明する。設計上予定されている回転角指令値αとローリング角γとの関係が図7の直線γ=Aα+Bであるのに、実際の関係がγ=aα+bであるとし、回転角指令値α1,α2の場合におけるローリング角γの誤差がΔγ1,Δγ2であった場合における回転角指令値の補正値が−Δα1、−Δα2であるとすると、
Δγ1=(aα1+b)−(Aα1+B)
Δγ2=(aα2+b)−(Aα2+B)
a=Δγ1/Δα1=Δγ2/Δα2
が成り立つ。これらの式から補正値−Δα1、−Δα2を求めれば、
−Δα1=−Δγ1/{A+(Δγ1−Δγ2)/(α1−α2)}
−Δα2=−Δγ2/{A+(Δγ1−Δγ2)/(α1−α2)}
となる。
また、回転角αのときの回転角指令値の補正値−Δαは、
−Δα=−{(Δα2−Δα1)/(α2−α1)}α−(α2Δα1−α1Δα2)/(α2−α1)の式で求められる。
Δγ1=(aα1+b)−(Aα1+B)
Δγ2=(aα2+b)−(Aα2+B)
a=Δγ1/Δα1=Δγ2/Δα2
が成り立つ。これらの式から補正値−Δα1、−Δα2を求めれば、
−Δα1=−Δγ1/{A+(Δγ1−Δγ2)/(α1−α2)}
−Δα2=−Δγ2/{A+(Δγ1−Δγ2)/(α1−α2)}
となる。
また、回転角αのときの回転角指令値の補正値−Δαは、
−Δα=−{(Δα2−Δα1)/(α2−α1)}α−(α2Δα1−α1Δα2)/(α2−α1)の式で求められる。
前記S1の判定がYESでS3の判定結果がNOの場合は、運転者が走行中に指令値決定規則の補正が行われることを望んでいるのであり、S21において、入力装置122の状態に基づいて直進中の実施が選択されているか、旋回中の実施が選択されているかが判定される。判定結果がYESであれば、S22において車両が直進を始めることが待たれる。そして、車両が直進を始めればS22の判定結果がYESとなり、S23においてフラグがオンであるか否かが判定されるが、当初はオフとされているため判定結果がNOとなり、S24〜S27が実行され、フラグがオンとされた後はS29〜S32が実行される。これらの部分は、前述の停車中における補正のためのS5〜S7およびS8〜S10と殆ど同じであり、S25,S30において直進中か否かが判定され、直進中ではなくなればS35においてタイマのリセット,回転指令の解除等、駆動指令値決定規則の補正を中止するために必要な処理(フラグの変更は含まれない)が行われることと、S28でフラグがオンとされ、S33でフラグがオフとされることとにおいて異なっている。前者は、直進中に補正のための電動モータ70の制御が開始されたが、その制御が終了する前に車両が旋回を始めさせられる場合があることに対する処置であり、後者は、補正の前半が終わった(回転角指令値α1,α1′による左右車高差の取得が終わった)後に、車両が旋回を始めさせられた場合に、次は補正の後半(回転角指令値α2,α2′による左右車高差の取得)が実行されればよいようにするための処置である。回転角指令値α2,α2′による左右車高差の取得が行われた後は、S33においてフラグがオフとされ、S34において補正が行われる。この補正は前記S11における補正と同様である。
駆動指令値決定規則の補正が旋回中に実施されることが選択されている場合には、S21の判定結果がNOとなり、S41において車両が旋回し始めることが待たれる。旋回し始めれば、S42において、通常のローリング抑制制御が実行される。このローリング抑制制御は前述のローリング抑制制御プログラムの実行により行われる。そして、S41〜S43が繰り返し実行されて、定常旋回状態になることが待たれる。その途中に、車両が直進を開始させられれば、S41の判定結果がNOとなり、制御が終了させられて再び旋回を始めることが待たれる。それに対して、定常旋回状態となれば、S43の判定結果がYESとなり、S44において、そのときの横G値と車高値とが横Gセンサおよび車高センサ112〜118から読み込まれ、横G値車高値対記憶部に互いに対応付けられて記憶される。そして、S45において、横G値車高値対記憶部に、指令値決定規則の補正を適切に行うに必要かつ十分な横G値車高値対が記憶されたか否かが判定される。この判定は、種々の方法で行われるようにすることができるが、本実施例においては、記憶されている横G値の最大値と最小値との差が設定横G差以上になったか否かにより行われる。この判定結果がYESとなるということは、十分に広い範囲に対しての横G値車高値対が取得されたということであり、指令値決定規則の補正を適切に行うことができるのである。S45の判定結果がNOの間は、横G値車高値対の取得が繰り返されるが、YESになれば、S46において、横G値車高値対記憶部に記憶された2対の横G値車高値対に基づいて駆動指令値決定規則の補正が行われる。
前輪側を例としてさらに具体的に説明する。ここにおいても、単純化のために、設計上、横G値gに起因するローリング角γが予め定められている大きさになるようにするために、回転角指令値αが電動モータに70に供給されるようになっているとし、横G値gとローリング角γとの間には一次式γ=Cg+D、ローリング角γと回転角指令値αとの間には、一次式γ=Aα+Bの関係がそれぞれ成り立つものとする。これら両式から回転角指令値αと横G値gとの関係はα=g(C/A)+(D−B)/Aと求められる。また、回転角指令値αとローリング角γとの実際の関係がγ=aα+bで表され、横G値gがそれぞれg1,g2の場合のローリング角γの誤差がそれぞれΔγ1,Δγ2であったとすれば、回転角指令値α1,α2の場合における補正値−Δα1,−Δα2はそれぞれ
−Δα1=−Δγ1/{A+(Δγ1−Δγ2)/(α1−α2)}
−Δα2=−Δγ2/{A+(Δγ1−Δγ2)/(α1−α2)}
α1=(C/A)g1+(D−B)/A
α2=(C/A)g2+(D−B)/A
となる。
また、回転角αのときの回転角指令値の補正値−Δαは、
−Δα=−{(Δα2−Δα1)/(α2−α1)}α−(α2Δα1−α1Δα2)/(α2−α1)の式で求められる。
−Δα1=−Δγ1/{A+(Δγ1−Δγ2)/(α1−α2)}
−Δα2=−Δγ2/{A+(Δγ1−Δγ2)/(α1−α2)}
α1=(C/A)g1+(D−B)/A
α2=(C/A)g2+(D−B)/A
となる。
また、回転角αのときの回転角指令値の補正値−Δαは、
−Δα=−{(Δα2−Δα1)/(α2−α1)}α−(α2Δα1−α1Δα2)/(α2−α1)の式で求められる。
以上のようにして駆動指令値決定規則が補正された後は、前記ローリング抑制プログラムにおいて、その補正後の駆動指令値決定規則に従って駆動指令値が決定され、アクチュエータ30,30′が制御される。したがって、ローリングが正確に抑制されることとなるが、その場合には、タイヤの空気圧が低下する等の異常を早期に検出することが可能となる。この利点を享受するために、前記ROM106には、図6に示すフローチャートで表されるタイヤ異常検出ルーチンも格納されている。このルーチンも、イグニッションスイッチのオン操作等、車両の運転開始時に操作される起動操作部材の操作に応じて起動され、車両の運転が行われている間、繰り返し実行される。
まず、S51において、車両が定常旋回状態になることが待たれる。車両が旋回を開始すれば、前述のローリング抑制制御が実行されるが、その制御が行われつつ定常旋回状態になることが待たれるのである。S51の判定結果がYESとなれば、S52において、車高センサ112〜118の検出値が読み込まれ、それら検出値に基づいてS53において前輪側と後輪側とのローリング角が演算される。そして、S54において、それら両ローリング角の平均値と、設計上のローリング角(標準ローリング角)とが比較され、平均ローリング角の標準ローリング角からの外れ量に基づいて、前輪側と後輪側との少なくとも一方にタイヤ異常が発生しているか否かが判定される。例えば、前後の平均ローリング角と標準ローリング角との差や比が予め定められた許容差範囲や許容定比範囲から外れているか否かにより判定することができる。最後に判定結果に従って、S55における正常報知か、S56におけるタイヤ異常の報知が行われる。
上記S54におけるタイヤ異常の判定について、さらに具体的に説明する。ローリングが正確に抑制されている状態においては、前輪側と後輪側との両方において実際のローリング角が設計通りの大きさになるはずである。それに対して、例えば、左前輪のタイヤの空気圧が異常に低下した状態で車両が右に旋回したとすれば、前輪側と後輪側との両方において実際のローリング角が、左前輪のタイヤの空気圧が正常の場合に比較して大きくなる。したがって、S54におけるタイヤ異常発生の有無の判定が可能となるのである。左後輪のタイヤの空気圧が異常に低くなった場合にも同様にして検出することができる。また、車両が左旋回する場合に、右前輪と右後輪との少なくとも一方のタイヤの空気圧が異常に低いことも同様に検出することができる。
なお、タイヤ空気圧の異常検知を、前輪側と後輪側とのローリング角の平均値と標準ローリング角との比較により行う代わりに、前輪側と後輪側とにおいて、それぞれローリング角と標準ローリング角との比較により独立に行われるようにすることも可能であり、いずれか一方のみにおいて行われるようにすることも可能である。
なお、タイヤ空気圧の異常検知を、前輪側と後輪側とのローリング角の平均値と標準ローリング角との比較により行う代わりに、前輪側と後輪側とにおいて、それぞれローリング角と標準ローリング角との比較により独立に行われるようにすることも可能であり、いずれか一方のみにおいて行われるようにすることも可能である。
以上の説明から明らかなように、本実施例においては、4つの車高センサ112〜118とサスペンションECU100の車高の左右差に基づいて実際のローリング角を求める部分が実ローリング角対応量検出装置を構成しており、サスペンションECU100のS4〜S6,S8,S9を実行する部分が停車中駆動指令部を構成し、S22,S24〜S26,S29〜S31を実行する部分が直進中駆動指令部を構成し、S41〜S43を実行する部分が定常旋回中駆動指令部を構成し、これら各駆動指令部がそれぞれテスト用駆動指令部を構成している。なお、定常旋回中駆動指令部においては、車両の定常旋回中に現に車体に作用しているローリングモーメントに対応する反モーメントを発生させるに必要な回転角指令値が電動モータ70に供給されるが、それらのうち、横G値の最大値と最小値とにそれぞれ対応して供給された回転角指令値に対応して検出された車高値に基づいて駆動指令値決定規則の補正が行われる。したがって、横G値の最大値と最小値とにそれぞれ対応して供給された回転角指令値がテスト用駆動指令値であると考えることができる。
また、サスペンションECU100のS7,S10、S11を実行する部分、S27,S32,S34を実行する部分、およびS44〜S46を実行する部分が、それぞれ規則補正部を構成している。さらに、サスペンションECU100の図6のタイヤ異常検出ルーチンを実行する部分がタイヤ異常検出部を構成している。
また、サスペンションECU100のS7,S10、S11を実行する部分、S27,S32,S34を実行する部分、およびS44〜S46を実行する部分が、それぞれ規則補正部を構成している。さらに、サスペンションECU100の図6のタイヤ異常検出ルーチンを実行する部分がタイヤ異常検出部を構成している。
上記実施例におけるように、スタビライザバー20,20′が中央部において2つに分かれており、その中央部に設けられたアクチュエータ30,30′により上記2つの部分の基端部(アクチュエータ30,30′側の端部)が相対回転させられることにより、スタビライザバー20,20′を弾性変形させるスタビライザ装置14,14′は、本請求可能発明の実施に適したものであるが、これに限定されるわけではない。例えば、図8に示すスタビライザ装置130,130′の採用も可能である。スタビライザ装置130を代表的に説明する。本スタビライザ装置130は、車両の横方向に延びるトーションバー部132の両端から、前後方向の成分を有する方向に一対のアーム部134が延び出た一体的なスタビライザバー136を備えている。一対のアーム部134の自由端部がそれぞれ車輪保持部材138に相対回動可能に連結される一方、トーションバー部132の長手方向に隔たった2部分が、連結ロッド142と複動の液圧シリンダ144とによってそれぞれ車体に連結されている。液圧シリンダ144が伸長,収縮させられることにより、スタビライザバー136のねじり方向とねじり角とが任意に変えられ、反モーメントが制御される。後輪側については、前輪側の各構成要素の符号と同じ符号に′を付したものを使用して構成要素同士の対応関係を示し、説明は省略する。
その他、スタビライザバーを含まないサスペンション装置の採用も可能であり、請求可能発明に係るサスペンションシステムにおけるサスペンション装置は、車両のロール剛性を制御可能なアクチュエータを備えたものであればよく、サスペンション装置の構成のいかんを問わないのである。
以上説明した実施例は文字通り例示に過ぎず、本発明は、前記〔発明の態様〕の項に記載された態様をはじめとして、当業者の知識に基づいて種々の変更を施した態様で実施することができる。
以上説明した実施例は文字通り例示に過ぎず、本発明は、前記〔発明の態様〕の項に記載された態様をはじめとして、当業者の知識に基づいて種々の変更を施した態様で実施することができる。
10:サスペンションシステム 14,14′:スタビライザ装置 20,20′:スタビライザバー 22,22′:左スタビライザ部材 24,24′:右スタビライザ部材 30,30′:アクチュエータ 34:主サスペンション部 36,36′:サスペンション装置 46:ショックアブソーバ 48:サスペンションスプリング 60:トーションバー部 62:アーム部 64:スタビライザ装置配設部 66:支持部材 70:電動モータ 72:減速装置 100:サスペンションECU 102:マイクロコンピュータ 112:左前車高センサ 114:右前車高センサ 116:左後車高センサ 118:右後車高センサ 120:横加速度(横G)センサ 122:入力装置 126,126′:エンコーダ 130、130′:スタビライザ装置 132,132′:トーションバー部 134,134′:アーム部 136,136′:スタビライザバー 142,142′:連結ロッド 144,144′:液圧シリンダ
Claims (4)
- 車両のロール剛性を制御可能なアクチュエータを備えたサスペンション装置と、
前記車両の車体に作用するローリングモーメントと一対一に対応するローリングモーメント対応量と予め定められた駆動指令値決定規則とに基づいて前記アクチュエータに対する駆動指令値を決定し、出力する制御装置と、
前記車体の実ローリング角に一対一に対応する量である実ローリング角対応量を検出する実ローリング角対応量検出装置と、
前記車体に実際に作用しているローリングモーメントが不変とみなし得る時期に、前記アクチュエータに複数のテスト用駆動指令値を供給するテスト用駆動指令部と、
前記複数のテスト用駆動指令値と、それらに対応して前記実ローリング角対応量検出装置により検出された複数の前記実ローリング角対応量との関係である実関係が、予め設定されている標準関係と等しくなるように、前記制御装置の前記駆動指令値決定規則を補正する規則補正部と
を含むことを特徴とするサスペンションシステム。 - 前記テスト用駆動指令部が、前記車両の停止中に前記複数のテスト用駆動指令値を供給する停車中駆動指令部を含む請求項1に記載のサスペンションシステム。
- 前記実ローリング角対応量検出装置が、
前記車両の右側と左側とにそれぞれ1つ以上設けられた車高センサと、
それら車高センサにより検出された左車高と右車高との差に基づいて前記実ローリング角を取得する車高依拠実ローリング角対応量取得部と
を含む請求項1または2に記載のサスペンションシステム。 - 前記規則補正部により補正された規則に基づいて前記制御装置により出力された駆動指令値に対応して前記実ローリング角対応量検出装置により検出された実ローリング角対応量と、前記制御装置により出力された駆動指令値に対応する標準ローリング角対応量とに基づいて、前記車両のタイヤの異常を検出するタイヤ異常検出部を含む請求項1ないし3のいずれかに記載のサスペンションシステム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005039172A JP2006224756A (ja) | 2005-02-16 | 2005-02-16 | サスペンションシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005039172A JP2006224756A (ja) | 2005-02-16 | 2005-02-16 | サスペンションシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006224756A true JP2006224756A (ja) | 2006-08-31 |
Family
ID=36986486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005039172A Withdrawn JP2006224756A (ja) | 2005-02-16 | 2005-02-16 | サスペンションシステム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006224756A (ja) |
-
2005
- 2005-02-16 JP JP2005039172A patent/JP2006224756A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4506522B2 (ja) | サスペンションシステム | |
KR100995266B1 (ko) | 차량 스테빌라이져 시스템 | |
US9919574B2 (en) | Anti-roll bar for the rolling stabilization of a vehicle and method for operating such an anti-roll bar | |
KR101601494B1 (ko) | 안정화기 장치의 작동 방법 | |
EP1893429B1 (en) | Vehicle stabilizer system | |
EP2266863A1 (en) | Vehicle toe angle controller | |
JP2006151262A (ja) | 車両用サスペンションシステム | |
JP2009006798A (ja) | 車両用サスペンションシステム | |
JP4207029B2 (ja) | 車両挙動制御装置 | |
JP2006224756A (ja) | サスペンションシステム | |
JP2006321296A (ja) | 車両のロール抑制装置 | |
JP4962211B2 (ja) | 車両用スタビライザシステム | |
JP4752437B2 (ja) | 車両用センサ装置を用いた車両安定化システム | |
JP2007045225A (ja) | 車高調整装置 | |
JP2006182239A (ja) | 車両用サスペンションシステム | |
JP5062437B2 (ja) | キャンバ角可変機構 | |
US10155535B2 (en) | Control apparatus for electric power steering | |
JP5396936B2 (ja) | 車両用スタビライザシステム | |
JP5062436B2 (ja) | キャンバ角可変機構 | |
JP2007131215A (ja) | 車両用スタビライザシステム | |
JP2006008053A (ja) | 電動パワーステアリング装置 | |
JP2010058677A (ja) | 電動パワーステアリングの制御装置 | |
JP2007186073A (ja) | 車両用スタビライザシステム | |
JP4670445B2 (ja) | 車両のロール抑制システム | |
JP2006168386A (ja) | 車両用サスペンションシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080513 |