JP2006145060A - アルミニウム熱交換器 - Google Patents

アルミニウム熱交換器 Download PDF

Info

Publication number
JP2006145060A
JP2006145060A JP2004332018A JP2004332018A JP2006145060A JP 2006145060 A JP2006145060 A JP 2006145060A JP 2004332018 A JP2004332018 A JP 2004332018A JP 2004332018 A JP2004332018 A JP 2004332018A JP 2006145060 A JP2006145060 A JP 2006145060A
Authority
JP
Japan
Prior art keywords
tube
brazing
fin
powder
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004332018A
Other languages
English (en)
Inventor
Taketoshi Toyama
猛敏 外山
Yoshiharu Hasegawa
義治 長谷川
Yasunaga Ito
泰永 伊藤
Yuji Hisatomi
裕二 久富
Hirokazu Tanaka
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Denso Corp
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Sumitomo Light Metal Industries Ltd filed Critical Denso Corp
Priority to JP2004332018A priority Critical patent/JP2006145060A/ja
Priority to US11/280,632 priority patent/US20060102328A1/en
Publication of JP2006145060A publication Critical patent/JP2006145060A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】 板材にて構成されるチューブと板材にて構成されるフィンとをろう付けするアルミニウム熱交換器において、チューブおよびフィン双方の耐食性向上を図る。
【解決手段】 チューブ10用の板材は、芯材10bと、芯材10bのうち、チューブ10の外側面となる一方の面にクラッドされた犠牲腐食材10cとを有し、フィン用の板材は、ろう材をクラッドしていないアルミニウムベア材であり、チューブ10の外側面にろう材粉末とフラックスとの混合組成物10eを塗布し、この混合組成物10eを用いてチューブ10とフィンをろう付けし、このろう付け後もチューブ10の外側面に犠牲腐食材10cが残存している。
【選択図】 図3

Description

本発明は、板材により構成されるチューブの孔食防止と、板材により構成され、チューブの外側面にろう付けされるフィンの粒界腐食防止とを図るアルミニウム熱交換器に関するもので、車両用空調装置の凝縮器、蒸発器等に用いて好適なものである。
従来、車両用空調装置の凝縮器、蒸発器等に用いられるアルミニウム熱交換器では、チューブを押出多孔チューブで構成することが知られている(例えば、特許文献1参照)。
この従来技術では、チューブを押出多孔チューブで構成しているので、チューブにろう材をクラッドできない。そこで、Alと共晶合金を形成してろう材として作用するSi粉末とフラックスとの混合組成物を押出多孔チューブの表面に塗布することにより、この混合組成物のSi粉末がろう材作用を発揮して、チューブとフィンとをろう付けするようにしている。なお、チューブにろう付けされるフィンは、波形状に曲げ成形された板材からなるコルゲートフィンが代表的である。
また、チューブを板材により構成するアルミニウム熱交換器も種々知られており、この場合は、後述の図8に例示するように、チューブを構成する板材またはフィンを構成する板材の芯材にろう材をクラッドして、チューブとフィンとの間をろう付けするようにしている。
特許第3337416号公報
ところで、車両用アルミニウム熱交換器においては、軽量化および材料費の低減のためにその構成部材の薄肉化が要求されている。この薄肉化のためには、高強度アルミニウム材料、具体的には比較的高濃度のMgを含有したAl−Mn−Mg系合金の適用が有効である。
しかし、この高強度アルミニウム材料は、材料強度の上昇に伴って変形抵抗が増大するので、押し出し成形性が低下する。従って、高強度アルミニウム材料をチューブ材として用いると、押出多孔チューブの生産性が低下するという問題が生じる。
この結果、高強度アルミニウム材料をチューブ材として用いる場合は、押出多孔チューブよりも、板材により構成されたチューブの方が生産性確保のために有利である。
図8は、チューブを板材により構成する従来技術のアルミニウム熱交換器において、チューブ用板材とフィン用板材との具体的材質の組み合わせ例1〜4を示す。なお、例1〜3のチューブ材は、芯材の両面に外側ろう材と内側ろう材とをクラッドした両面クラッド材である。
この外側ろう材はチューブとフィンとの接合用であり、一方、内側ろう材はチューブ用板材自体の接合用である。このため、例1〜3では、フィン材としてろう材をクラッドしていないアルミニウムベア材を用いている。
例1では、アルミニウム合金からなる芯材にろう材をクラッドしているだけであるので、芯材に対する犠牲腐食作用を発揮できず、チューブ材の耐食性(孔食防止作用)が実用上不十分である。
そこで、例2では、チューブ材の芯材と外側ろう材との間にZnを添加したアルミニウム合金からなる犠牲腐食材を設けてチューブ材の耐食性(孔食防止作用)を向上させている。ここで、犠牲腐食材は、アルミニウムよりも電位が卑となって、犠牲腐食作用を発揮するZnを添加したアルミニウム合金である。
また、例3では、アルミニウムに対する犠牲腐食作用を発揮するZnをろう材中に添加して、チューブ材の耐食性(孔食防止作用)の向上を図っている。
更に、例4では、フィン材として、芯材の両面にろう材をクラッドした両面クラッド材を用い、このフィン側のろう材によりチューブとフィンとをろう付けする。これにより、チューブ材の芯材の外側面には犠牲腐食材のみをクラッドして、チューブ材の耐食性(孔食防止作用)を向上させている。一方、チューブ材の芯材の内側面にはチューブ用板材の合わせ面の接合を行う内側ろう材をクラッドしている。
例2の構成において、チューブ芯材の片側面に対するクラッド率は、製造上の理由から例1のごとく外側ろう材のみをクラッドする場合も、例2のごとく外側ろう材と犠牲腐食材の両方をクラッドする場合も同じである。そして、外側ろう材のクラッド厚さはろう付け性確保のために犠牲腐食材のクラッド厚さよりも優先して設定される。
この結果、犠牲腐食材のクラッド厚さの必要量の確保が困難となって、犠牲腐食作用が不足するので、チューブ材の耐食性が低下することになる。特に、近年ではチューブ材の薄肉化が進展しているので、例2の構成であると、犠牲腐食材のクラッド厚さの確保、ひいてはチューブ材の耐食性の確保がますます困難となる。
また、例3の構成ではろう材自体に犠牲腐食用のZnを添加しているので、熱交換器使用状態においてろう材の選択的腐食が発生して、ろう付け部の耐食性低下が起きる。この結果、フィンがチューブより脱離する等の現象が比較的早期に発生する。
また、例4の構成では、チューブ材の芯材の外側面にクラッドした犠牲腐食材によりチューブ材の耐食性を向上できるが、その反面、ろう材がクラッドされるフィン材においては、ろう材中のSiがフィン芯材に拡散して、フィン芯材に粒界腐食を引き起こす。
すなわち、ろう付け加熱時に、ろう材中のSiが芯材内部の結晶粒の境界部分(粒界)に沿って優先的に拡散するという現象が発生する。特に、フィン材の板厚が0.05mm程度の小さな値になっているので、Siの拡散がフィン材の板厚を貫通してしまう。
そして、この芯材内部へのSi拡散部分(粒界部分)が周囲のAl合金の結晶粒部分よりも電気化学的に電位が貴となる部分を形成するので、Si拡散部分(粒界部分)の周囲が相対的に電位が卑となる部分を形成する。この結果、このSi拡散部分(粒界部分)の周囲が選択的に腐食する。これがフィン芯材の粒界腐食であり、フィンの耐食性低下の大きな原因となっている。
なお、特許文献1では、チューブが押出多孔チューブであるので、ろう材と同様に犠牲腐食材もチューブにクラッドできない。そこで、押出多孔チューブの表面に犠牲腐食用のZn溶射層を形成して、チューブの耐食性を向上することが考えられるが、この対策であると、Zn溶射層の形成のための特別な工程を追加する必要があり、コスト面で不利である。
本発明は、上記諸点に鑑みてなされたもので、板材にて構成されるチューブと板材にて構成されるフィンとをろう付けするアルミニウム熱交換器において、チューブおよびフィン双方の耐食性向上を図ることを目的とする。
また、本発明は、製造コストの低減に有利なアルミニウム熱交換器を提供することを他の目的とする。
上記目的を達成するため、請求項1に記載の発明では、板材にて構成されるチューブ(10)と、板材にて構成されるフィン(12)とをろう付けするアルミニウム熱交換器において、
前記チューブ(10)用の板材は、芯材(10b)と、前記芯材(10b)のうち、前記チューブ(10)の外側面となる一方の面にクラッドされた犠牲腐食材(10c)とを有し、
前記フィン(12)用の板材は、ろう材をクラッドしていないアルミニウムベア材であり、
前記チューブ(10)と前記フィン(12)は、ろう材粉末を用いてろう付けされ、
前記チューブ(10)の外側面には、ろう付け後も前記犠牲腐食材(10c)が残存していることを特徴としている。
これによると、チューブ(10)とフィン(12)をろう材粉末を用いてろう付けするから、チューブ(10)用の板材およびフィン(12)用の板材のいずれにもろう材をクラッドする必要がない。
このため、チューブ(10)用の板材の外側面には犠牲腐食材(10c)のみをクラッドすればよく、そのため、チューブ(10)用の板材を薄肉化しても犠牲腐食材(10c)の必要厚さを確保して、チューブ(10)の耐食性(チューブ孔食防止効果)を確保できる。この結果、チューブ(10)の耐食性確保と、チューブ(10)の軽量化、材料コストの低減とを両立できる。
また、フィン(12)を、ろう材をクラッドしていないアルミニウムベア材で構成するから、ろう材をクラッドしたクラッド材でフィン(12)を構成する場合に比較して、ろう材成分であるSiのフィン材への拡散を格段と抑制でき、これにより、フィン(12)の粒界腐食を防止できる。
また、チューブ(10)を板材にて構成しているから、チューブ(10)用板材の芯材(10b)を、比較的高濃度のMgを含有した高強度のAl−Mn−Mg系合金で構成しても押出多孔チューブのような押出成形性の低下といった不具合が発生しない。従って、チューブ(10)の強度を向上できると同時に、チューブ(10)を高い生産性で効率よく成形できる。
請求項2に記載の発明では、請求項1に記載のアルミニウム熱交換器において、具体的には、前記ろう材粉末とフッ化物系フラックスとを混合した混合組成物(10e)を、前記チューブ(10)用の板材のうち、前記犠牲腐食材(10c)の表面に塗布することにより、前記チューブ(10)と前記フィン(12)とがろう付けされることを特徴としている。
これによると、フィン(12)用の板材に混合組成物(10e)を塗布する場合に比較して、ろう材成分のフィン材への拡散を抑制できるとともに、フッ化物系フラックスの使用によりAl合金に対する非腐食性を発揮でき、フラックス残留物の処理を廃止あるいは簡略化できる。
請求項3に記載の発明のように、請求項1または2に記載のアルミニウム熱交換器において、前記ろう材粉末は、具体的にはSi粉末を用いればよい。
請求項4に記載の発明のように、請求項1または2に記載のアルミニウム熱交換器において、前記ろう材粉末はSi粉末とAl粉末との混合粉末であってもよい。
このように、ろう材粉末としてSi粉末とAl粉末との混合粉末を用いると、ろう付け時にSi粉末がAl粉末と反応してAl−Si系合金(ろう材)を生成するから、Si粉末ろうによる犠牲腐食材(10c)の溶解深さを減少できる。従って、犠牲腐食材(10c)のろう付け後の残存厚さを確保しやすくなる。
請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器において、前記チューブ(10)用の板材の前記芯材(10b)のうち、前記チューブ(10)の内側面となる他方の面に、Al−Si系ろう材(10d)をクラッドし、このAl−Si系ろう材(10d)により前記チューブ(10)用板材の合わせ面(10a)をろう付けすればよい。
請求項6に記載の発明のように、請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器において、前記チューブ(10)用板材の前記芯材(10b)のうち、前記チューブ(10)の内側面となる他の片側面に、ろう材粉末とフッ化物系フラックスとの混合組成物を塗布することにより、前記チューブ(10)用板材の合わせ面(10a)をろう付けしてもよい。
請求項7に記載の発明のように、請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器において、前記チューブ(10)の内部に配置されるインナーフィン(13)を有し、
前記インナーフィン(13)は、芯材(10b)と、前記芯材(10b)にクラッドされたろう材(13b、13c)とを有する板材により構成され、
前記インナーフィン(13)のろう材(13b、13c)により前記チューブ(10)用板材の合わせ面(10a)をろう付けしてもよい。
これによると、インナーフィン(13)側のろう材(13b、13c)をそのまま用いて、チューブ合わせ面(10a)をろう付けできるので、チューブ(10)用の板材の内側面へのろう材供給が不要となる。
請求項8に記載の発明のように、請求項1ないし7のいずれか1つに記載のアルミニウム熱交換器において、前記犠牲腐食材(10c)のろう付け後残存層の厚さを0.015mm以上にすれば、犠牲腐食材(10c)によるチューブ孔食防止効果を確実に発揮できる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
本実施形態は車両用空調装置の蒸発器に本発明を適用した例であり、最初に、車両用空調装置の蒸発器の概要を図1〜図3により説明すると、蒸発器は冷媒が流れる多数本のチューブ10の長手方向の両端部をヘッダータンク11内部に連通させた状態にてチューブ10とヘッダータンク11をろう付けにより接合している。
チューブ10は本例では図3(a)に示すように1枚のアルミニウム板材を折り曲げることにより断面偏平状の通路形状を形成するようになっている。チューブ10の偏平断面の一端部に通路形状の結合部をなす合わせ面10aが設けてある。
ヘッダータンク11は、チューブ10の積層方向(図1、図2の左右方向)に延びる細長いタンク形状になっており、このタンク形状の内部にチューブ10の長手方向の両端部を連通させる連通空間を構成する。ヘッダータンク11には、図2に示すようにチューブ10の長手方向の両端部を挿入する偏平状の貫通穴11aが開けてある。
この貫通穴11aにチューブ10の長手方向の両端部を挿入して、貫通穴11aの部位にてヘッダータンク11とチューブ10とをろう付けするようになっている。
多数本のチューブ10の相互間には、アウターフィンをなすフィン12がチューブ長手方向に延びるように配置される。このフィン12はアルミニウム板材を波形状に折り曲げ成形したコルゲートフィンであり、その波形状の頂部は左右両隣りのチューブ10の外側面に接触してろう付けされる。
蒸発器では、チューブ10とフィン12により構成される熱交換コア部の空隙部を空気が図1の矢印A方向に送風され、この送風空気とチューブ10内を通過する冷媒とが、チューブ10およびフィン12を介して熱交換を行って、冷媒の蒸発潜熱が送風空気から吸熱されて、送風空気が冷却される。
次に、図3(b)および図4に基づいてチューブ10およびフィン12の具体的な材料構成を説明する。チューブ10は図3(b)に示すように芯材10bと、芯材10bの一方の面にクラッドされた犠牲腐食材10cと、芯材10bの他方の面にクラッドされたろう材10dとを有する板材(両面クラッド材)にて構成される。
ここで、犠牲腐食材10cは、芯材10bのうちチューブ10の外側面(空気側の面)となる一方の面にクラッドされ、ろう材10dは、芯材10bのうちチューブ10の内側面(冷媒側の面)となる他方の面にクラッドされる。
図4はチューブ10およびフィン12の具体的な材料組成を質量%で表している。チューブ10の芯材10bについては、(1)(2)の2つの例を示している。この(1)(2)の芯材10bはともに比較的高濃度のMgを含有したAl−Mn−Mg系の高強度アルミニウム合金である。なお、図4において記号(−)は、添加量が0.0質量%であること、あるいは不可避的な僅少量であることを示している。
ここで、Mgの好ましい添加範囲は0.1〜1.0質量%で、Mnの好ましい添加範囲は1.0〜1.8質量%である。なお、図示の例では、Mgの添加量が0.4質量%で、Mnの添加量が1.65質量%になっている。
(1)の芯材10bは、(2)の芯材10bに対してCuを0.5質量%添加しているものであって、このCuの添加は、チューブ芯材10bの強度向上のためである。
そして、外側クラッド層をなす犠牲腐食材10cは具体的にはZnを4.0質量%添加したアルミニウム合金である。ここで、犠牲腐食材10cはZnの添加により芯材10bよりも電位が卑となって、芯材10bに対する犠牲腐食作用を発揮する。
また、内側クラッド層をなすろう材10dは、一般的なAl−Si系合金であり、SiがAlと共晶合金を形成することにより、ろう材10dの融点は芯材10bの融点よりも所定温度低い温度となる。
一方、フィン12を構成する板材は、ろう材をクラッドしていないアルミニウムベア材からなる。このフィン用アルミニウムベア材は、Mgを添加していないAl−Mn系のアルミニウム合金である。このフィン用アルミニウムベア材にZnを1.4質量%添加しているのは、フィン12自体によってチューブ10に対する犠牲腐食効果を発揮するためである。
チューブ10用板材の外側面、すなわち、犠牲腐食材10cのクラッド層表面には、チューブ10とフィン12とのろう付けを行うためのろう材粉末とフラックスとの混合組成物10eを塗布している。ここで、ろう材粉末は具体的にはSi粉末である。ろう材粉末としてSi粉末を単独で用いてもよいが、Si粉末とAl粉末との混合粉末をろう材粉末として用いてもよい。
また、フラックスはフッ化物系のフラックス(非腐食性フラックス)であって、より具体的には、KAlF4、K3AlF6、K2AlF5、AlF3、およびKZnF3のうち、いずれか1つの単体、または複数の混合物を用いる。
また、チューブ10用板材の内側面、すなわち、ろう材10dのクラッド層表面にはフラックス10fを塗布している。このフラックス10fは上記混合組成物10eのフラックスと同じもの(フッ化物系フラックス)である。
なお、本実施形態では、チューブ10用板材の板厚t、すなわち、両面クラッド層10c、10dを含む全板厚tは0.20mmであって、外側クラッド層である犠牲腐食材10cのクラッド率を20%とし、内側クラッド層であるろう材10dのクラッド率は15%としている。従って、犠牲腐食材10cの厚さは0.04mmとなり、ろう材10dの厚さは0.03mmとなる。
そして、フィン12の板厚(フィン用アルミニウムベア材の板厚)は0.05mmである。また、ヘッダータンク11はチューブ10等を支持する強度部材であるため、その板厚は上記チューブ10およびフィン12に比して十分大きく、例えば0.6mmである。ヘッダータンク11は、芯材の両面にろう材をクラッドした両面クラッド材により構成される。
次に、本実施形態によるアルミニウム熱交換器の製造方法を説明する。本実施形態による製造方法は、(1)熱交換器構成部品への混合組成物10e、フラックス10f等の塗布工程および各部品の成形工程と、(2)熱交換器構成部品の組付工程と、(3)ろう付け工程とに大別される。
最初に、各部品のフラックス等の塗布工程および各部品の成形工程について説明すると、チューブ10用板材は、芯材10bと、外側クラッド層である犠牲腐食材10cと、内側クラッド層であるろう材10dとからなる両面クラッド材であり、この両面クラッド材が平板状であるときに、その外側面(犠牲腐食材10cの表面)にろう材用のSi粉末とフッ化物系フラックスとの混合組成物10eを塗布する。
ここで、混合組成物10eの塗布に際しては、樹脂系のバインダを含む溶剤中にSi粉末とフラックス粉末とを溶かし込んだ適度の粘度を持つ溶液を作り、この混合組成物10eの溶液を、ロールコート法、噴霧法等の公知の方法によりチューブ10用板材の外側面に塗布する。ここで、溶液とはペースト状のものを含む。
また、チューブ10用板材の内側面(ろう材10dの表面)には、フラックス10fを塗布する。このフラックス10fの塗布に際しても、具体的には樹脂系のバインダを含む溶剤中にフラックス粉末を溶かし込んだ適度の粘度を持つフラックス10fの溶液を上記公知の方法にてチューブ10用板材の内側面に塗布すればよい。
このように、混合組成物10eとフラックス10fを塗布した後に、チューブ10用板材を図3(a)に示すように断面扁平な通路形状となるように曲げ形成し、かつ、その曲げ端部に合わせ面10aを成形する。
フィン12用板材は前述のアルミニウムベア材をそのまま波状に曲げ成形してコルゲートフィンを形成する。
ヘッダータンク11用板材は前述のクラッド材を図2に示すタンク形状に成形する。ヘッダータンク11用板材にもフラックス(具体的にはフッ化物系フラックス)を上記公知の方法にて塗布する。
次に、組付工程を説明すると、熱交換器のチューブ10、ヘッダータンク11、フィン12等の各部品を図1、図2に示す所定構造に組み付け、その組付体(仮の組付状態)をワイヤ等の治具により締結して保持する。
次に、ろう付け工程を説明すると、上記組付体を治具にて保持してろう付け用加熱炉内に搬入して、上記組付体をろう付け温度に加熱することにより、熱交換器の各部品間を一体ろう付けする。
ここで、チューブ10の外側面(犠牲腐食材10cの表面)に塗布された混合組成物10eのSi粉末は、犠牲腐食材10cのAlと反応して共晶合金を作り、ろう付け温度にて溶融することによりろう材としての役割を果たす。すなわち、この混合組成物10eのSi粉末を用いて、チューブ10とフィン12とをろう付けすることができる。
また、チューブ10の合わせ面相互間は、チューブ10の内側面にクラッドされたろう材10fにてろう付けすることができる。
また、ヘッダータンク11とチューブ10の両端部との間は、ヘッダータンク11にクラッドされたろう材およびチューブ10側の混合組成物10eのSi粉末を用いてろう付けすることができる。
このろう付け工程において、チューブ10の外側面(犠牲腐食材10cの表面)に塗布された混合組成物10eのフラックス粉末、チューブ10の内側面に塗布されたフラックス10f、およびヘッダータンク11に塗布されたフラックスはろう付け温度で溶融状態(液体状態)となって、各部品間の接合面に均一に行き渡る。
この溶融フラックス成分により、各部品のアルミニウム材表面の酸化皮膜を還元して、溶融ろう材とアルミニウム母材表面との間の濡れ性を良好にする。また、ろう付け用加熱炉内はN2ガス等の不活性ガスの雰囲気に維持されており、アルミニウム材表面の再酸化を防止する。以上により、各部品相互間の良好なろう付け性を確保する。
また、上記各部のフラックスはいずれもフッ化物系フラックスであり、このフッ化物系フラックスはアルミニウム材に対して非腐食性であるから、ろう付け後のフラックス残留物除去のための水洗工程を廃止、若しくは簡略化できる。
ところで、本実施形態によると、混合組成物10eのSi粉末は前述のように犠牲腐食材10cのAlと反応して共晶合金を作り、ろう材としての役割を果たすため、犠牲腐食材10cにこのSi粉末ろうによる溶解孔が発生して、犠牲腐食材10cの板厚減少が発生する。
図5はこのSi粉末ろうによる溶解深さ(単位:mm)を示すもので、評価対象のチューブ10およびフィン12の材料組成は図4に示す通りである。なお、チューブ10の芯材10bは図4の(1)および(2)のいずれを用いても、溶解深さが同じ結果になっている。
図5において、評価対象の熱交換器合計数(Nの合計)は22個であり、Si粉末ろうによる溶解深さ(mm)の分布を0.001mm間隔で示している。評価対象の平均溶解深さは0.015mmであった。
ここで、チューブ10用板材の板厚tは前述のごとく0.20mmで、犠牲腐食材10cのクラッド率が20%であるから、犠牲腐食材10cのろう付け前の厚さ(クラッド厚さ)は0.04mmである。従って、犠牲腐食材10cのろう付け後の平均的な厚さは、0.04−0.015=0.025mmとなる。
本発明者らの検討によると、犠牲腐食材10cの厚さは、チューブ10の耐食性確保のためには最低でも0.015mm以上必要であることが分かっている。本実施形態のものでは、この最低必要厚さを大きく上回る犠牲腐食材10cの厚さをろう付け後に残存できるから、犠牲腐食材10cによるチューブ10の耐食性確保を良好に達成できる。
次に、図6は犠牲腐食材10cの最低必要厚さ=0.015mmを確保できる条件を示す図であって、横軸はチューブ10用板材の板厚tであり、縦軸はチューブ10用板材の外側面のクラッド厚さを示す。直線Aは、外側面のクラッド率=20%の条件における板厚tとクラッド厚さとの関係を示す。
上述のように、平均溶解深さ=0.015mm、犠牲腐食材10cの最低必要厚さ=0.015mmであるから、犠牲腐食材クラッド厚さは0.015mm+0.015mm=0.03mmあればよい。従って、板厚tは0.15mm以上あればよいことになる。
しかるに、従来技術の図8の例2のように犠牲腐食材とろう材の両方をチューブ10用板材の外側面に多層クラッドする構成であると、ろう材の必要厚さが最低でも0.035mmとされ、これに犠牲腐食材10cの最低必要厚さ=0.015mmを加えると、必要な合計クラッド厚さ=0.05mmとなり、板厚tは0.25mm以上にしなければなない。このことから、本実施形態に比較してチューブ10用板材の厚肉化が必要となる。
換言すると、本実施形態では、従来技術の図8の例2に比較して、チューブ10の耐食性の確保と、チューブ10の薄肉化との両立を達成できる。よって、アルミニウム熱交換器の軽量化、材料コストの低減に貢献できる。
なお、第1実施形態では、混合組成物10eのろう材粉末としてSi粉末を単独で用いているが、混合組成物10eのろう材粉末としてSi粉末とAl粉末との混合粉末を用いてもよい。
このように、ろう材粉末としてSi粉末とAl粉末との混合粉末を用いると、ろう付け時にSi粉末がAl粉末と反応してAl−Si系合金(ろう材)を生成するから、Si粉末ろうによる犠牲腐食材10cの溶解深さを減少できる。従って、犠牲腐食材10cのろう付け後の残存厚さを確保しやすくなるという利点がある。
(第2実施形態)
第1実施形態では、チューブ10用板材の内側面にクラッドしたろう材10dを用いて、チューブ10の合わせ面10aをろう付けしているが、第2実施形態では、図7に示すようにチューブ10の内部に配置されるインナーフィン13側のろう材13b、13cを用いてチューブ10の合わせ面10aをろう付けするようにしている。
第2実施形態をより具体的に説明すると、インナーフィン13は図7(a)のように波形状に曲げ成形されたコルゲートフィンであって、チューブ10の内部に配置されて内部流体(冷媒)側の伝熱面積を拡大するものである。インナーフィン13はチューブ10の長手方向(図1、図2の上下方向)の全長にわたって配置され、インナーフィン13の波形状の頂部はチューブ10の内側面に接触してろう付けされる。
このインナーフィン13用の板材は図7(b)に示すように心材13aの両面にろう材13b、13cをクラッドした両面クラッド材にて構成される。インナーフィン13用の板材の板厚tiは、チューブ10の外側面にろう付けされるフィン(アウターフィン)12と同様に0.050mmである。
インナーフィン13には、チューブ10の合わせ面10aの間にサンドウイッチ状に挟持される端部13dが設けてある。これにより、インナーフィン13側のろう材13b、13cをチューブ10の合わせ面10aに供給して、チューブ10の合わせ面10aをろう付けできる。
従って、第2実施形態では、チューブ10用の板材の芯材10bの内側面に第1実施形態のろう材10dをクラッドする必要がなくなる。これに伴って、第1実施形態におけるフラックス10fはチューブ10用の板材の芯材10bの内側面に直接塗布すればよい。ここで、フラックス10fをチューブ10用の板材の芯材10bの内側面ではなく、インナーフィン13用の板材のろう材13b、13cの表面に塗布するようにしてもよい。
なお、第1実施形態では、チューブ10用の板材の両端部を重合するだけでチューブ10の合わせ面10aを形成しているが、第2実施形態では、チューブ10用の板材の一端部を他端部上に巻締める巻締め形状を形成して、チューブ10の合わせ面10aを形成している。
(第3実施形態)
第1実施形態では、チューブ10用板材の内側面にクラッドしたろう材10dを用いて、チューブ10の合わせ面10aをろう付けしているが、第3実施形態では、チューブ10用の板材の芯材10bの内側面に第1実施形態のろう材10dをクラッドすることをやめて、その代わりに、第1実施形態のろう材粉末とフラックス粉末との混合組成物10eと同じ混合組成物をチューブ10用の板材の芯材10bの内側面に直接塗布し、この混合組成物のろう材粉末を用いて、チューブ10の合わせ面10aをろう付けする。
第2、第3実施形態のようなチューブ合わせ面10aのろう付け構造を採用しても、チューブ10とフィン12との間のろう付け構造としては第1実施形態と共通の構造を採用できるので、第1実施形態と同様の作用効果を発揮できる。
(他の実施形態)
なお、上記の実施形態では、チューブ10を板材により構成するに際して、1枚の板材を折り曲げて断面扁平状の通路形状を構成する場合を説明したが、2枚の板材を張り合わせてチューブ10の断面扁平状の通路形状を構成してもよい。
また、本発明は、車両用空調装置のアルミニウム熱交換器に限らず、種々な用途のアルミニウム熱交換器に広く適用できるものである。
本発明の第1実施形態を適用する車両空調用蒸発器の斜視図である。 図1の一部の模式的な概略破断斜視図である。 (a)は第1実施形態におけるチューブの破断斜視図、(b)はチューブ材の断面図である。 第1実施形態におけるチューブ材とフィン材の具体的材料組成を例示する図表である。 第1実施形態におけるSi粉末ろうによる溶解深さの評価結果の説明図である。 チューブ板材の板厚とクラッド厚さとの関係を示すグラフである。 (a)は第2実施形態におけるチューブの破断斜視図、(b)はインナーフィン材の断面図である。 従来技術によるチューブ材とフィン材の組み合わせ例を示す図表である。
符号の説明
10…チューブ、10a…合わせ面、10b…芯材、10c…犠牲腐食材、
10c…ろう材、10e…ろう材粉末とフラックスとの混合組成物、
12…フィン(アウターフィン)、13…インナーフィン。

Claims (8)

  1. 板材にて構成されるチューブ(10)と、板材にて構成されるフィン(12)とをろう付けするアルミニウム熱交換器において、
    前記チューブ(10)用の板材は、芯材(10b)と、前記芯材(10b)のうち、前記チューブ(10)の外側面となる一方の面にクラッドされた犠牲腐食材(10c)とを有し、
    前記フィン(12)用の板材は、ろう材をクラッドしていないアルミニウムベア材であり、
    前記チューブ(10)と前記フィン(12)は、ろう材粉末を用いてろう付けされ、
    前記チューブ(10)の外側面には、ろう付け後も前記犠牲腐食材(10c)が残存していることを特徴とするアルミニウム熱交換器。
  2. 前記ろう材粉末とフッ化物系フラックスとを混合した混合組成物(10e)を、前記チューブ(10)用の板材のうち、前記犠牲腐食材(10c)の表面に塗布することにより、前記チューブ(10)と前記フィン(12)とがろう付けされることを特徴とする請求項1に記載のアルミニウム熱交換器。
  3. 前記ろう材粉末はSi粉末であることを特徴とする請求項1または2に記載のアルミニウム熱交換器。
  4. 前記ろう材粉末はSi粉末とAl粉末との混合粉末であることを特徴とする請求項1または2に記載のアルミニウム熱交換器。
  5. 前記チューブ(10)用の板材の前記芯材(10b)のうち、前記チューブ(10)の内側面となる他方の面に、Al−Si系ろう材(10d)がクラッドされ、
    前記Al−Si系ろう材(10d)により前記チューブ(10)用板材の合わせ面(10a)がろう付けされることを特徴とする請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器。
  6. 前記チューブ(10)用板材の前記芯材(10b)のうち、前記チューブ(10)の内側面となる他の片側面に、ろう材粉末とフッ化物系フラックスとの混合組成物を塗布することにより、前記チューブ(10)用板材の合わせ面(10a)がろう付けされることを特徴とする請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器。
  7. 前記チューブ(10)の内部に配置されるインナーフィン(13)を有し、
    前記インナーフィン(13)は、芯材(10b)と、前記芯材(10b)にクラッドされたろう材(13b、13c)とを有する板材により構成され、
    前記インナーフィン(13)のろう材(13b、13c)により前記チューブ(10)用板材の合わせ面(10a)がろう付けされることを特徴とする請求項1ないし4のいずれか1つに記載のアルミニウム熱交換器。
  8. 前記犠牲腐食材(10c)のろう付け後残存層の厚さが0.015mm以上であることを特徴とする請求項1ないし7のいずれか1つに記載のアルミニウム熱交換器。
JP2004332018A 2004-11-16 2004-11-16 アルミニウム熱交換器 Withdrawn JP2006145060A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004332018A JP2006145060A (ja) 2004-11-16 2004-11-16 アルミニウム熱交換器
US11/280,632 US20060102328A1 (en) 2004-11-16 2005-11-16 Aluminum heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332018A JP2006145060A (ja) 2004-11-16 2004-11-16 アルミニウム熱交換器

Publications (1)

Publication Number Publication Date
JP2006145060A true JP2006145060A (ja) 2006-06-08

Family

ID=36624958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332018A Withdrawn JP2006145060A (ja) 2004-11-16 2004-11-16 アルミニウム熱交換器

Country Status (1)

Country Link
JP (1) JP2006145060A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039322A (ja) * 2006-08-08 2008-02-21 Univ Of Tokyo 熱交換器およびこれを備える熱交換装置
WO2008123603A1 (ja) * 2007-03-30 2008-10-16 Denso Corporation 熱交換装置
JP2008279507A (ja) * 2007-05-11 2008-11-20 Visteon Global Technologies Inc 高強度アルミニウム材料から作られた要素を接合する方法、及びこの方法によって組み立てられた熱交換器
JP2009291793A (ja) * 2008-06-02 2009-12-17 Kuroki Kogyosho:Kk 構造体の製造法
JP2010112671A (ja) * 2008-11-10 2010-05-20 Showa Denko Kk 熱交換器用チューブの製造方法
JP2010132986A (ja) * 2008-12-05 2010-06-17 Shinshu Univ ろう材層付きアルミニウム部材の製造方法及び熱交換器の製造方法
JPWO2012008463A1 (ja) * 2010-07-13 2013-09-09 古河スカイ株式会社 アルミニウム合金製内面溝付き伝熱管
WO2013150766A1 (ja) * 2012-04-04 2013-10-10 株式会社デンソー チューブ及び該チューブを備えた熱交換器
JP2013231579A (ja) * 2012-04-04 2013-11-14 Denso Corp 熱交換器
JP2013244496A (ja) * 2012-05-24 2013-12-09 Showa Denko Kk ろう付け用アルミニウム材の製造方法及びろう付け品の製造方法
JPWO2012043492A1 (ja) * 2010-09-27 2014-02-06 株式会社Uacj アルミニウム合金製内面溝付き伝熱管
JP2014034037A (ja) * 2012-08-07 2014-02-24 Denso Corp 蓄冷熱交換器およびその製造方法
EP2746711A1 (en) * 2012-12-21 2014-06-25 VALEO AUTOSYSTEMY Sp. Z. o.o. Heat exchanger core plate, heat exchanger provided with such plate and manufacturing process of such heat exchanger
JP2016133260A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置
KR102155778B1 (ko) * 2020-06-05 2020-09-15 구일공조(주) 열교환기

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039322A (ja) * 2006-08-08 2008-02-21 Univ Of Tokyo 熱交換器およびこれを備える熱交換装置
WO2008123603A1 (ja) * 2007-03-30 2008-10-16 Denso Corporation 熱交換装置
JP2008279507A (ja) * 2007-05-11 2008-11-20 Visteon Global Technologies Inc 高強度アルミニウム材料から作られた要素を接合する方法、及びこの方法によって組み立てられた熱交換器
JP2009291793A (ja) * 2008-06-02 2009-12-17 Kuroki Kogyosho:Kk 構造体の製造法
JP2010112671A (ja) * 2008-11-10 2010-05-20 Showa Denko Kk 熱交換器用チューブの製造方法
JP2010132986A (ja) * 2008-12-05 2010-06-17 Shinshu Univ ろう材層付きアルミニウム部材の製造方法及び熱交換器の製造方法
JPWO2012008463A1 (ja) * 2010-07-13 2013-09-09 古河スカイ株式会社 アルミニウム合金製内面溝付き伝熱管
JPWO2012043492A1 (ja) * 2010-09-27 2014-02-06 株式会社Uacj アルミニウム合金製内面溝付き伝熱管
JP2013217507A (ja) * 2012-04-04 2013-10-24 Denso Corp チューブ及び該チューブを備えた熱交換器
JP2013231579A (ja) * 2012-04-04 2013-11-14 Denso Corp 熱交換器
WO2013150766A1 (ja) * 2012-04-04 2013-10-10 株式会社デンソー チューブ及び該チューブを備えた熱交換器
JP2013244496A (ja) * 2012-05-24 2013-12-09 Showa Denko Kk ろう付け用アルミニウム材の製造方法及びろう付け品の製造方法
JP2014034037A (ja) * 2012-08-07 2014-02-24 Denso Corp 蓄冷熱交換器およびその製造方法
EP2746711A1 (en) * 2012-12-21 2014-06-25 VALEO AUTOSYSTEMY Sp. Z. o.o. Heat exchanger core plate, heat exchanger provided with such plate and manufacturing process of such heat exchanger
JP2016133260A (ja) * 2015-01-19 2016-07-25 ダイキン工業株式会社 空気調和装置
WO2016117447A1 (ja) * 2015-01-19 2016-07-28 ダイキン工業株式会社 空気調和装置
KR102155778B1 (ko) * 2020-06-05 2020-09-15 구일공조(주) 열교환기

Similar Documents

Publication Publication Date Title
JP4611797B2 (ja) ろう付性に優れたラジエータチューブ用アルミニウム合金板材、及びそれを備えたラジエータチューブと熱交換器
WO2011108460A1 (ja) アルミニウム合金製熱交換器
JP2006145060A (ja) アルミニウム熱交換器
JP5334086B2 (ja) 耐食性に優れたアルミニウム製熱交器およびその製造方法
JP2002011569A (ja) 熱交換器およびその製造方法
JP4236183B2 (ja) 自動車熱交換器用アルミニウム合金クラッド材
JP4236185B2 (ja) 自動車熱交換器用アルミニウム合金クラッド材
JP4541252B2 (ja) ラジエータチューブ用アルミニウム合金板材
JP3858685B2 (ja) アルミニウム熱交換器の製造方法
JP2010017721A (ja) 熱交換器のろう付け方法
JP5944626B2 (ja) 熱交換器の製造方法
JP5354912B2 (ja) アルミニウム製熱交換器及びその製造方法
JP6231800B2 (ja) 微細通路を備えた熱交換器用Al部材及びその製造方法
JP4236184B2 (ja) 自動車熱交換器用アルミニウム合金クラッド材
JP4411803B2 (ja) アルミニウム熱交換器のろう付け方法およびアルミニウム部材ろう付け用溶液
JP2004156108A (ja) ろう付け用アルミニウムクラッド材
JP4236187B2 (ja) 自動車熱交換器用アルミニウム合金クラッド材
JP4548829B2 (ja) アルミニウム熱交換器
JP3876180B2 (ja) アルミニウム合金三層クラッド材
JP5354909B2 (ja) 熱交換器用のアルミニウム合金ベアフィン材
JP2006205254A (ja) ろう付け性と耐食性に優れた熱交換器用アルミニウム合金材及びそれを備えた熱交換器
JP2004339582A (ja) 熱交換器用チューブ及び熱交換器
JP2009291840A (ja) アルミニウムのろう付け方法および該ろう付け方法により製造されるアルミニウム熱交換器用偏平チューブ
JP2009082971A (ja) 耐食性が良好なアルミニウム合金製熱交換器の継手及びそれを用いた熱交換器、並びにそれらの製造方法
JP2004232072A (ja) アルミニューム製熱交換器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100427