JP2006067558A - 増幅回路、それを用いた信号処理回路およびデジタルカメラ - Google Patents

増幅回路、それを用いた信号処理回路およびデジタルカメラ Download PDF

Info

Publication number
JP2006067558A
JP2006067558A JP2005187872A JP2005187872A JP2006067558A JP 2006067558 A JP2006067558 A JP 2006067558A JP 2005187872 A JP2005187872 A JP 2005187872A JP 2005187872 A JP2005187872 A JP 2005187872A JP 2006067558 A JP2006067558 A JP 2006067558A
Authority
JP
Japan
Prior art keywords
circuit
amplifier
gain
vga
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005187872A
Other languages
English (en)
Inventor
Kuniyuki Tani
邦之 谷
Atsushi Wada
淳 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005187872A priority Critical patent/JP2006067558A/ja
Priority to US11/186,917 priority patent/US20060017827A1/en
Publication of JP2006067558A publication Critical patent/JP2006067558A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/148Video amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/005Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0088Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated
    • H03G1/0094Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal using discontinuously variable devices, e.g. switch-operated using switched capacitors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45134Indexing scheme relating to differential amplifiers the whole differential amplifier together with other coupled stages being fully differential realised
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45514Indexing scheme relating to differential amplifiers the FBC comprising one or more switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45551Indexing scheme relating to differential amplifiers the IC comprising one or more switched capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

【課題】 高速動作と低消費電力を両立した、ゲインが可変の増幅回路を提供する。
【解決手段】 増幅回路130は4段の可変ゲインアンプVGA1(132)、VGA2(134)、VGA3(136)、VGA4(138)により構成され、4段のVGAの可変ゲイン幅は、すべて1倍〜2倍となっており、全体として最小ゲインは1倍、最大ゲインは16倍に設定されている。1つのVGAの最大ゲインが小さいため、小さなバイアス電流で高速動作を図ることができる。
【選択図】 図1

Description

本発明は、増幅率を可変にできる増幅回路、及びCCD(Charge Coupled Device)などの撮像装置からの出力信号を処理する信号処理回路に関する。
近年、携帯電話等の携帯機器に、CCDなどの撮像装置が搭載されるようになり、その画素数は百万画素を超え、今後もさらに増加していく傾向にある。このような状況において、撮像装置からの出力信号を処理するアナログフロントエンド(AFE:Analog Front End)回路には、処理の高速化、低消費電力化、高精度化が求められている。
この撮像装置用AFE回路は、色の階調性を高めるため、撮像装置からの入力信号を、その振幅に応じてゲインを可変にして増幅する機能を有する。すなわち、入力信号が一定期間小さい場合はゲインを大きくして信号振幅を調整(増幅)し、後段のAD(Analog to Digital)変換器の分解能を引き出す。
図8は、このような機能を有する従来の撮像装置用AFE回路10の構成を示す回路図である(例えば、非特許文献1)。このAFE回路10は、CCD1より入力された信号から、画像信号に相当する電圧を取り出し、ゲインは1倍で固定である相関2重サンプリング(CDS:Correlated Double Sampling)回路20と、CDS回路20より出力された信号を、可変のゲインによって増幅する増幅回路30と、増幅回路30で増幅された信号をデジタル信号に変換するADC(Analog to Digital Converter)40とを含む。
増幅回路30は、2段の可変ゲインアンプVGA(Variable Gain Amplifier)32とVGA34により構成されている。2段のVGAの可変ゲイン幅は、VGA32で1倍〜8倍、VGA34で1倍〜2倍となっており、増幅回路30全体の最小ゲインは1倍、最大ゲインは16倍に設定されている。
図9は、スイッチト・キャパシタ回路構成によるVGAの回路図である。このVGAは、差動増幅器OPと、キャパシタC1〜C6、スイッチSW1〜SW4で構成されている。VGAのゲインは差動増幅器OPの入力容量とフィードバック容量の比で決定される。例えば、キャパシタC1〜C4の容量を2C、キャパシタC5、C6の容量をCとした場合、SW1とSW4のみをONしたときは、入力容量が2C、フィードバック容量がCとなり、ゲインは2倍となる。また、SW1〜SW4をすべてONにしたときは、入力容量が4C、フィードバック容量がCとなり、ゲインは4倍となる。
このように、スイッチト・キャパシタ回路構成によるVGAは、入力容量値やフィードバック容量値をスイッチで切り替えることにより、ゲインを可変にできる。また、スイッチト・キャパシタ回路構成によるVGAは、スイッチを切り替える制御信号はデジタル信号であることから、PGA(Programmable Gain Amplifier)とも呼ばれる。
Y. Fujimoto et al, "A Switched-Capacitor Variable Gain Amplifier for CCD Image Sensor Interface System", ESSCIRC 2002, pp.363-366, 2002
さて、スイッチト・キャパシタ回路構成によるVGAの最大動作周波数fは次の式で表される。
f=Gm/(CL・(G+1)) ・・・(1)
ここで、GmはVGAの相互コンダクタンス、CLはVGAの負荷容量、GはVGAのゲインである。
また、VGAの相互コンダクタンスGmとバイアス電流Iの間には以下の関係がある。
Gm∝(β・I)1/2 ・・・(2)
ここで、βはトランジスタの製造プロセスと形状で決まる定数である。
VGAのゲインを大きく設定した場合にVGAを高速動作させるには、式(1)より、相互コンダクタンスGmが大きくなるようにVGAを設計しなければならない。一方、相互コンダクタンスGmを大きくすると、式(2)より、必要なバイアス電流Iも指数関数的に増加することが分かる。従来のAFE回路の回路構成では、一部のVGAの最大ゲインが大きいため、VGAを高速動作させるには、非常に大きなバイアス電流を流す必要があり、低消費電力化の妨げとなる。
本発明はこうした課題に鑑みてなされたものであり、その目的は、高速動作と低消費電力を両立した増幅回路を提供することである。
本発明のある態様は、増幅回路に関する。この回路は、アンプを複数段備え、それぞれのアンプは、その増幅率を1倍から2倍の範囲で少なくとも2種類に可変に構成され、個々のアンプの増幅率を制御することにより、前記増幅回路全体の増幅率を決定することを特徴とする。
この態様によれば、アンプの増幅率が1倍から2倍と小さいため、小さなバイアス電流でアンプの高速化を図ることができ、増幅回路の低消費電力と高速動作を両立することができる。
なお、ここで「増幅率は1倍から2倍の範囲で」とは、増幅回路等の理想的な性能の設計仕様において増幅率が1倍から2倍の範囲内であるが、現実的な性能上において増幅率が1倍から2倍の範囲からはずれた「実質的に1倍から2倍の範囲」にある場合をも含む。
この態様のアンプの増幅率は、1倍又は2倍に選択設定するものであってよい。これにより、増幅回路全体のゲイン制御を簡単にすることができ、各アンプの増幅率を制御する制御回路の低コスト化あるいは省面積化を図ることができる。
この態様のアンプは、スイッチト・キャパシタ回路構成による可変ゲインアンプであってよい。スイッチト・キャパシタ回路は、スイッチとキャパシタにより、可変抵抗を簡単に実現することができ、可変ゲインアンプを集積回路に容易に実装することができる。
本発明の別の態様も、増幅回路に関する。この増幅回路は、アンプを複数段備え、全体のゲインの最大値(以下、最大ゲインともいう)がGmaxで与えられる増幅回路において、アンプ1段の増幅率を1倍からX倍(X≦2)の範囲の少なくとも2値で可変に設定可能とするとともに、アンプを、n段(nは、Gmax≦Xを満たす自然数)縦列に接続することを特徴とする。
この態様によれば、最大ゲインGmaxが得られるように増幅率が1倍から2倍と小さいアンプをn段、縦列に接続することにより、各アンプのバイアス電流を低減した状態で高速化を図ることができ、増幅回路の低消費電力と高速動作を両立することができる。
また、Xは2であって、アンプ一段の増幅率は、1倍および2倍の2値で可変に設定されてもよい。これにより、増幅回路全体のゲイン制御を簡単にすることができ、制御回路の低コスト化を図ることができる。
本発明の別の態様は、信号処理回路に関する。この回路は、撮像装置より入力された信号から画像信号に相当する電圧を取り出すサンプリング回路と、サンプリング回路により取り出された電圧を増幅する本発明の態様である増幅回路と、増幅回路により増幅された電圧をデジタル信号に変換するAD変換回路と、を具備したことを特徴とする。
この態様によれば、アンプの増幅率が2倍以下と小さいため、小さなバイアス電流でアンプの高速化を図ることができ、信号処理回路の低消費電力と高速動作を両立することができる。
本発明の更に別の態様も、信号処理回路に関する。この回路は、本発明の態様である増幅回路と、前記増幅回路により増幅された電圧をデジタル信号に変換するAD変換回路と、を具備し、前記増幅回路の初段のアンプが、撮像装置より入力された信号から画像信号に相当する電圧をサンプリングすることを特徴とする。
サンプリング回路及びアンプは熱雑音の影響を受けるため、本発明の態様のように、サンプリング回路と複数のアンプを縦列接続した場合、精度劣化を生じる。しかし、この態様によれば、増幅回路の初段のアンプによって、サンプリング回路の役割を果たすため、サンプリング回路及びアンプの段数を減らすことができ、熱雑音の影響を少なくことができる。
本発明の更に別の態様は、デジタルカメラに関する。このカメラは、撮像装置と、前記撮像装置より入力された信号から画像信号に相当する電圧を取り出し、増幅して、デジタル信号に変換する本発明の態様である信号処理回路と、前記デジタル信号に対し、画像圧縮処理を行う画像圧縮回路と、を具備したことを特徴とする。この態様によれば、信号処理回路に含まれる増幅回路を構成するアンプ1段の増幅率が2倍以下と小さいため、小さなバイアス電流でアンプの高速化を図ることができ、デジタルカメラの低消費電力と高速動作を両立することができる。
なお、以上の構成要素の任意の組合せや、本発明の構成要素や表現を方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。
本発明によれば、アンプの増幅率を小さく設定するため、増幅回路の低消費電力と高速動作を両立することが可能である。
以下、本発明の好適な実施の形態をもとに説明する。この実施の形態は、撮像装置(例えばCCD)のアナログ出力信号に対し所定の処理を施した後デジタル信号に変換して、画像圧縮処理を行うデジタルカメラに関する。
(実施の形態1)
図1は、本発明の実施の形態1に係るデジタルカメラ100の構成図である。このデジタルカメラ100は、CCD1と、CCD1より入力された信号から画像信号に相当する電圧を取り出し、増幅して、デジタル信号に変換するアナログフロントエンド(AFE)回路110と、AFE回路110の出力であるデジタル信号に対し、画像圧縮処理を行い、記録媒体160に圧縮された信号を書き込む画像圧縮回路150と、を備えている。
AFE回路110は、更に、CCD1より入力された信号を受け、その信号から画像信号に相当する電圧を取り出す相関2重サンプリング(CDS)回路120と、CDS回路120より出力された信号を、可変のゲインによって増幅する増幅回路130と、増幅回路130で増幅された信号をデジタル信号に変換するADC140とを含む。
CDS回路120のゲインは1倍に固定されている。増幅回路130は、全体の最大ゲインGmaxが16倍、最小ゲインが1倍になるように設定されている。増幅回路130は、ゲインをいずれも1倍〜2倍の範囲で制御可能な4つのVGA132、VGA134、VGA136、VGA138が縦列接続されて構成されている。そして、増幅回路130全体として、最大ゲインが16倍、最小ゲインが1倍となるように設定されている。
増幅回路130の設計は、以下の指針にもとづいて行ってもよい。
まず、増幅回路130の最大ゲインGmaxがAFE回路110の設計仕様から決定される。その上で、増幅回路130に用いるVGAの1段のゲインの最大値Xおよび最小値Yを設定する。VGA1段のゲインの範囲は、消費電流や動作速度など増幅回路130に要求される仕様に応じて設定すればよい。増幅回路130の全体としてのゲインGmaxおよびVGA1段のゲインの最大値Xが決まると、VGAの段数を決定することができる。すなわち、その段数nは、Gmax≦Xを満たす自然数となるように設定すればよい。このように増幅回路130を設計することにより、増幅回路130の全体のゲインGを、Y≦G≦Xの範囲で調節することができる。
たとえば、本実施の形態では、VGA1段のゲインを、その最大値がX=2倍、最小値がY=1倍となるように設定している。また、増幅回路130の全体のゲインの最大値Gmaxは、16倍である。したがって、VGAをn=4段接続すれば、所望のゲイン範囲(1倍から16倍)で増幅回路130のゲインを設定することができる。
図2はVGA132〜138をスイッチト・キャパシタ回路で構成した場合の一例を示した図である。この回路は、差動増幅器OP、入力容量C1、C2、フィードバック容量C3〜C12とスイッチSW1〜SW16で構成されている。各容量の大きさは、入力容量C1、C2が16C、フィードバック容量C3、C8が8C、フィードバック容量C4、C9が4C、フィードバック容量C5、C10が2C、フィードバック容量C6、C7、C11、C12がCとなっている。ここでCは所定の基準容量値である。
入力容量C1は差動増幅器OPの+入力端子に、入力容量C2は差動増幅器OPの−入力端子に接続されている。また、フィードバック容量C3〜C7は、それぞれ差動増幅器OPの+入力端子と+出力端子との間に並列に配置され、フィードバック容量C8〜C12は、それぞれ差動増幅器OPの−入力端子と−出力端子との間に並列に配置されている。
さらに、フィードバック容量C4〜C7は、それぞれスイッチSW1、SW3、SW5、SW7を介して、差動増幅器OPの+入力端子と接続され、スイッチSW2、SW4、SW6、SW8を介して、差動増幅器OPの+出力端子と接続されている。また、フィードバック容量C9〜C12は、それぞれスイッチSW9、SW11、SW13、SW14を介して、差動増幅器OPの−入力端子と接続され、スイッチSW10、SW12、SW14、SW16を介して、差動増幅器OPの−出力端子と接続されている。一方、フィードバック容量C3とC8は差動増幅器の入力端子及び出力端子に直接接続されている。
スイッチSW1〜SW16は、後述の方法により決定された個々のVGA132〜138のゲインにしたがって、ON・OFFを行う。例えば、VGAのゲインが2倍の場合は、すべてのスイッチをOFFする。これにより、フィードバック容量全体の大きさが+側、−側とも8Cとなり、入力容量が+側、−側とも16Cであることから、VGAのゲインは2倍となる。また、VGAのゲインが1倍の場合は、すべてのスイッチをONする。これにより、フィードバック容量全体の大きさが+側、−側とも16Cとなり、入力容量が+側、−側とも16Cであることから、VGAのゲインは1倍となる。
図3は、VGAのゲインに対するスイッチSW1〜SW16のON/OFF状態、及びそれぞれのスイッチの状態における全体のフィードバック容量を示したものである。この表のように、SW1、SW2、SW9、SW10のON/OFFは常に同じになるように制御される。同様に、SW3、SW4、SW11、SW12のON/OFF、SW5、SW6、SW13、SW14のON/OFF、又SW7、SW8、SW15、SW16のON/OFFも、常に同じになるように制御される。そして、この表の関係にしたがって、スイッチを制御することにより、各VGAは所望のゲインを得ることができる。
斯かる構成に基づき、図1に示したデジタルカメラの動作を以下に説明する。CCD1は図示しない駆動信号によって画像信号を取り込むと、この画像信号を含んだ信号が順次出力され、AFE回路110に入力される。次に、AFE回路110に入力された信号は、CDS回路120によって画像信号をアナログ電圧信号として取り出され、このアナログ電圧信号が増幅回路130へ入力される。
増幅回路130は、図示しない制御回路によって生成されたゲイン制御信号にしたがって、回路全体のゲインが所望の倍率Gとなるように、VGA132、VGA134、VGA136、VGA138それぞれのゲインを、1倍〜2倍の範囲で制御する。各VGAのゲインは、次のような方法で決定する。
例えば、個々のVGAのゲインがGの四乗根G1/4となるようにする。より一般的には、VGAの段数をnとすると、ゲインがGのn乗根G1/nとなるように設定してもよい。もしくは、予めGの大きさに対応した個々のVGAのゲインを図示しないメモリに記憶させておき、図示しない制御回路はこのメモリに記憶された内容にしたがって、回路全体のゲインがGになるようにそれぞれのVGAのゲインを決定する。または、初段(或いは最終段)のVGAから順にゲインが優先的に大きくなるように各VGAのゲインを決定する。更には、初段と最終段のVGAのゲインが中段に位置するVGAのゲインよりも優先的に大きくなるように各VGAのゲインを決定する方法もある。
アナログ電圧信号は、上述の方法によって設定されたゲインGにしたがって増幅回路130で増幅される。増幅された信号は、ADC140によってデジタル信号に変換される。このデジタル信号は画像圧縮回路150によって、たとえばJPEGやJPEG2000などの規格に従って画像圧縮処理され、記録媒体160に記録される。
さて、本実施の形態において特徴的なのは、ゲイン幅が1倍〜2倍と小さいVGAを複数、縦列接続することである。式(1)、式(2)から分かるように、トランジスタのプロセス及び形状を同じとし、バイアス電流がある一定値となるようにVGAを設計すると、VGAの相互コンダクタンスが一定となるため、最大ゲインを大きくすると動作速度は低下する。したがって、ゲイン幅の異なる複数のVGAを縦列接続した場合、全体の動作速度は一番大きなゲインを持つVGAの動作速度に律速される。一方、一番大きなゲインを持つVGAの動作速度が、一番小さいゲインを持つVGAの動作速度と同じになるように各VGAを設計すると、式(1)、式(2)から、一番大きなゲインを持つVGAのバイアス電流は、一番小さいゲインを持つVGAのバイアス電流と比較して、それぞれのゲイン比の2乗で大きくなる。すなわち、増幅回路全体の消費電力が増加する。したがって、増幅回路は次のような構成をとることが、動作速度と消費電力の観点から、最も効率がよい。
(ア) ゲインが可能な限り小さいVGAを複数段接続する。
(イ) 複数のVGAのゲインの大きさを同一とする。
一方、VGAのゲインを制御する際、その最大値を2の乗数(1倍、2倍、4倍、8倍・・・)とするほうが、個々のVGAの制御が容易となる。この観点からすると、1倍〜4倍のVGAを用いてもよいが、式(1)、式(2)からも分かるように、速度を同じに設計した場合、最大ゲインが大きいほうが指数関数的に電流を多く必要とするため、1倍〜4倍のVGAを1個使用するよりも、1倍〜2倍のVGAを2個縦列接続したほうが、低消費電力化を測ることができる。
以上のような理由から、1倍〜2倍のVGAを複数段接続することによって、高速化と低消費電力化の両立を容易に図ることができる。
ここで、具体的な比較として、図1に示した本発明の実施の形態に係るAFE回路110の増幅回路130と、図8に示した従来例に係るAFE回路10の増幅回路30とを比較する。可変ゲイン範囲はともに最小で1倍、最大で16倍と同一である。また、従来例の増幅回路30は2段のVGAで構成され、それぞれのゲインは、1倍〜8倍と、1倍〜2倍である。一方、本実施の形態の増幅回路130は、前述の通り、4段のVGAで構成され、それぞれのゲインはすべて1倍〜2倍である。
今、最大ゲインが2倍のVGAのバイアス電流をIすると、最大ゲインが8倍のVGAを、最大ゲインが2倍のVGAと同じ動作速度で動作させる場合、最大ゲイン8倍のVGAに必要なバイアス電流Iは、式(1)、式(2)から次のように求められる(ただし、負荷容量を同一とした場合)。
=9×I ・・・(3)
したがって、従来例の増幅回路30に必要なバイアス電流の合計は10×Iである。一方、本実施の形態の増幅回路130に必要なバイアス電流の合計は4×Iとなる。
このように、最大ゲインの小さなVGAを多段数接続して構成した増幅回路のほうが、最大限の大きなVGAを用いて少ない段数で構成した増幅回路よりも小さなバイアス電流で高速動作を得られることが分かる。これは、VGAのゲインを大きく設定すると、それを高速動作させるのに必要なバイアス電流が指数関数的に増加するためである。
したがって、以上の構成によれば、次の効果を生じる。
(1) ゲインが実質的に1倍から2倍の範囲にあるアンプを多段数接続して増幅回路を構成することで、小さなバイアス電流で高速動作を図ることができるので、増幅回路の低消費電力と高速動作を両立することが可能となる。
(2) また、このような構成の増幅回路を用いたAFE回路や、このAFE回路を用いたデジタルカメラにおいても、低消費電力と高速動作を同時に図ることができる。
(実施の形態2)
図4は、本発明の実施の形態2に係るデジタルカメラ100の構成図である。この構成は、図1に示したデジタルカメラ100の構成と類似しているので、本実施の形態に特徴的な点のみ説明し、それ以外の説明は割愛する。
本実施の形態では、増幅回路130を構成する4つのVGA132、VGA134、VGA36、138として、ゲインが1倍又は2倍に設定可能なスイッチト・キャパシタ回路構成による可変ゲインアンプを用いている。
ゲインを1倍又は2倍に選択設定可能なVGAは、図9で示したスイッチト・キャパシタ回路構成によって容易に実現できる。すなわち、キャパシタC1〜C6をすべて同じ容量となるように構成することにより、SW1とSW4のみをONした場合に1倍のゲイン、SW1〜SW4をすべてONした場合に2倍のゲインを得ることができる。このように、1倍又は2倍にゲインが選択設定可能なスイッチト・キャパシタ回路構成によるVGAは、回路構成が簡単なほか、入力容量(C1〜C4)を小さくすることも可能である。
斯かる構成によるデジタルカメラの動作は、図1に示したデジタルカメラの動作とほぼ同じであるが、増幅回路130に含まれるVGA132、VGA134、VGA136、VGA138それぞれのゲインの決定方法が若干異なる。増幅回路130は、図示しない制御回路によって生成されたゲイン制御信号によって、回路全体のゲインが所望の倍率Gとなるように要求されると、VGA132、VGA134、VGA136、VGA138それぞれのゲインは、1倍又は2倍となるように制御される。
例えば、予めGの大きさに対応した個々のVGAのゲインを図示しないメモリに記憶させておき、図示しない制御回路はこのメモリに記憶された内容にしたがって、回路全体のゲインがGになるようにそれぞれのVGAのゲインを1倍又は2倍に決定する。もしくは、Gの大きさにしたがって、初段(或いは最終段)のVGAから順にゲインを1倍又は2倍に選択設定していく。または、Gの大きさにしたがって、初段のVGA132と最終段のVGA138のゲインを1倍又は2倍に選択設定した後、中段に位置するVGA134、VGA136のゲインを1倍又は2倍に選択設定する方法もある。
以上の構成によれば、図1の構成による効果に加えて、以下のような効果を有する。
(1) スイッチト・キャパシタ回路構成によるVGAは、そのゲインを1倍又は2倍と切り替えて制御できるため、増幅回路全体のゲイン制御を簡単にすることができ、制御回路の低コスト化を図ることができる。
(2) スイッチト・キャパシタ回路構成によるVGAを縦列接続にした場合、各VGAの入力容量は、前段のVGAの負荷容量となるため、この入力容量が動作速度の律速要因の一つとなるが、設定可能なゲインを1倍又は2倍の2種類とすることにより、各VGAの入力容量を小さくすることができる。したがって、小さな面積で、高速化と低消費電力化を実現することが可能である。
(実施の形態3)
図5は、本発明の実施の形態3に係るデジタルカメラ100の構成図である。この構成は、図1示したデジタルカメラ100の構成と類似しているので、本実施の形態に特徴的な点のみ説明し、それ以外の説明は割愛する。
本実施の形態では、図1に示したデジタルカメラ100において、CCD1より入力された信号を受け、その信号から画像信号に相当する電圧を取り出すCDS回路120をなくし、増幅回路130の初段に位置するVGA132に、CDS回路としての役割を付加したVGA133を用いる点が、本発明の実施の形態2と異なる。
VGA133は、図6で示したスイッチト・キャパシタ回路構成によって容易に実現でき、キャパシタC1〜C6の大きさは、すべて同じ容量値Cとなるように構成される。また、VGA133の入力VOSPには、CCD1から出力された電圧が入力され、入力VOSMには所定の電圧VFが入力される。
CCD1から出力される電圧波形は、図7のように、リセット期間と画像信号出力期間に分けられ、リセット期間に出力された電圧VRと、画像信号出力期間に出力された電圧VSとの差分が、画像信号に相当する電圧VIとなる。
VGA133の動作を以下に説明する。CCD1から出力されている電圧がVRである期間、すなわちリセット期間である時、スイッチSW5、SW6をONして、差動増幅器OPの+側の入力端子と出力端子、及び−側の入力端子と出力端子を短絡すると同時に、スイッチSW1〜SW4のON/OFFを制御して、入力容量を決定する。スイッチSW1とSW4のみをONすれば、キャパシタC1が+側の入力容量、C4が−側の入力容量となり、それぞれの容量値はCとなる。また、スイッチSW1〜SW4をすべてONすれば、キャパシタC1、C2が+側の入力容量、C3、C4が−側の入力容量となり、それぞれの容量値は2Cとなる。また、この状態では、差動増幅器OPの入力端子及び出力端子は、+側、−側ともに短絡されているため、すべて端子における電圧は同じになる。今、この電圧をVAZとする。
このとき、+側入力容量に蓄積される電荷量QIRと、−側の入力容量に蓄積される電荷量QIRは、以下の式で表される。
QIR=CI(VR−VAZ) ・・・(4)
QIR=CI(VF−VAZ) ・・・(5)
ここで、CIは入力容量値である。
なお、この状態において、+側のフィードバック容量であるC5、及び−側のフィードバック容量であるC6は、SW5、SW6によって短絡されているため、電荷は充電されない。すなわち、これらのキャパシタの電荷量はゼロである。
次に、リセット期間が終了する直前にSW5、SW6をOFFする。これにより、差動増幅器OPの2つの入力端子(+入力端子及び−入力端子)が接続されているノードA及びノードBが同電位VLとなるように仮想接地される。そして、CCD1からの出力が画像信号出力期間となり、VGA133の入力VOSPに入力される電圧がVRからVSに変化すると、+側の入力容量に蓄積される電荷量QISと、−側の入力容量に蓄積される電荷量QISは、以下の式で表される。
QIR=CI(VS−VL) ・・・(6)
QIR=CI(VF−VL) ・・・(7)
また、+側のフィードバック容量に蓄積される電荷量QFSと、−側のフィードバック容量に蓄積される電荷量QFSは、以下の式で表される。
QFR=CF(VOUTP−VL) ・・・(8)
QFR=CF(VOUTM−VL) ・・・(9)
ここで、CFはフィードバック容量値である。
さて、電荷量保存の法則により、リセット期間に入力容量に蓄積された電荷量と、画像信号出力期間における入力容量及びフィードバック容量に蓄積された電荷量の合計は、等しくなる。すなわち、以下の式が成り立つ。
CI(VR−VAZ)=CI(VS−VL)+CF(VOUTP−VL) ・・・(10)
CI(VF−VAZ)=CI(VF−VL)+CF(VOUTM−VL) ・・・(11)
式(10)、式(11)の左辺同士と右辺同士を減算すると、次の式が成り立つ。
CI(VR−VF)=CI(VS−VF)+CF(VOUTP−VOUTM) ・・・(12)
したがって、この式(12)を変形すると、最終的に以下の式を得ることができる。
(VOUTP−VOUTM)=(CI/CF)・(VR−VS)=(CI/CF)・VI ・・・(13)
式(13)から、画素信号出力期間にCCD1からの出力電圧がVRからVSに変化すると、画像信号に相当する電圧VIが、入力容量とフィードバック容量の比により定めらたゲインで増幅されたうえで、出力VOUTPとVOUTMの差分として出力されることが分かる。すなわち、VGA133によって、CCD1から画像信号に相当する電圧を取り出し、その電圧を増幅することが可能である。VGA133のゲイン(C1/CF)は、スイッチSW1とSW4のみをONしている場合は、入力容量がC、フィードバック容量もCであるため1倍となり、スイッチSW1〜SW4をすべてONしている場合は、入力容量が2C、フィードバック容量がCであるため、2倍となる。このように、SW1〜SW4を切り替えることで、VGA133のゲインを1倍又は2倍のどちらかに選択設定することができる。
なお、スイッチSW5及びSW6のON/OFFのタイミングは、図示しないCCD1の駆動回路より出力された駆動信号により判断することができる。
増幅回路130全体のゲインが所望の倍率Gを得るために、VGA133、VGA134、VGA136、VGA138それぞれにおけるゲインの決定方法は、本発明の実施の形態2で説明した方法と同様に行うことができる。すなわち、図示しない制御回路によって生成されたゲイン制御信号によって、増幅回路全体のゲインが所望の倍率Gとなるように要求されると、VGA133、VGA134、VGA136、VGA138それぞれのゲインは、本発明の実施の形態2で説明した方法と同様の方法で、1倍又は2倍となるように制御される。
以上のように、本実施の形態では、CDS回路の役割を含めたVGAの総数は4段となる。これに対し、図2で示した本発明の実施の形態2では、CDS回路及びVGAの総数は5段である。一方、どちらの実施の形態においても、増幅回路130全体のゲインは、最大ゲインが16倍、最小ゲインが1倍と同じである。
抵抗成分を介してキャパシタの充電を行う回路の場合、抵抗と容量との接続ノードに熱雑音が発生する。例えば、スイッチト・キャパシタ回路構成によってCDS回路やアンプを実装した場合、スイッチが抵抗成分となるため、熱雑音が発生する。したがって、CDS回路及びアンプを多段に接続した場合、熱雑音による精度劣化が発生してしまう。
一方、本実施の形態3に示した構成によれば、信号処理回路に含まれるCDS回路及びVGAの総数を削減できるので、熱雑音による精度劣化を抑えることが可能である。
なお、本実施の形態では、VGA133として、ゲインが1倍又は2倍に切替可能な例を示したが、これを本発明の実施の形態1で示したような1倍から2倍の範囲で多段に切替可能なVGAを用いてもよい。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
例えば、本発明の実施の形態では、スイッチト・キャパシタ回路構成によるVGAの例を示したが、これに限るものではなく、ゲインが可変であるアンプであれば本発明の範疇にある。
また、本発明の実施の形態では、1倍〜2倍のゲインを持つVGAを4段縦列接続して、全体として1倍〜16倍の増幅回路を構成した。さらに16倍以上(32倍、64倍など)の増幅回路を実現する場合は、1倍〜2倍のゲインを持つVGAをさらに複数段(32倍の場合5段、64倍の場合6段)縦列接続して構成してもよい。いずれの場合においても、最大ゲインGmaxと、VGA1段のゲインの最大値Xと用いて、X≧Gmaxが成り立つようにnを設定すればよい。低消費電力化と高速化を両立するには、VGAの段数を少なくするよりも、1倍〜2倍の小さなゲインを持つVGAを複数段接続するほうがよい。
また、本発明の実施の形態では、増幅回路130の出力をADC140に接続する例を示したが、一般にADCの入力容量が大きいため、増幅回路130の最終段に位置するVGAにおいて大きな負荷となり、VGAのゲインを小さくしたにもかかわらず、動作速度を律速する原因となる場合がある。これに対し、増幅回路130とADC140の間に、入力容量が小さく、駆動能力の高い回路を挿入してもよい。入力容量が小さく、駆動能力の高い回路は、サンプル・ホールド回路、ボルテージ・フォロア回路、或いはソース・フォロア回路であってもよい。これにより、増幅回路130の最終段に位置するVGAを高速に動作させることができる。
また、本発明の実施の形態では、デジタルカメラについて説明したが、これに限るものではない。ゲインが1倍から2倍の範囲で可変であるアンプを複数段接続し、個々のアンプのゲインを制御することにより、増幅回路全体のゲインを決定する増幅回路、及びこの増幅回路を含むものであれば、本発明に含まれる。
本発明の実施の形態1に係るデジタルカメラの構成図である。 ゲインが1倍から2倍の範囲で設定可能なスイッチト・キャパシタ回路構成のVGAの回路図である。 図2に示したVGAのゲインとスイッチのON/OFF状態の関係を示した図である。 本発明の実施の形態2に係るデジタルカメラの構成図である。 本発明の実施の形態3に係るデジタルカメラの構成図である。 撮像装置の出力から画像に相当する電圧をサンプリング可能なVGAの回路図である。 CCDの出力電圧波形である。 従来のAFE回路の構成図である。 スイッチト・キャパシタ回路構成のVGAの回路図である。
符号の説明
100 デジタルカメラ
110 AFE回路
120 相関2重サンプリング(CDS)回路
130 増幅回路
132、133、134、136、138 可変ゲインアンプ(VGA)
140 ADC

Claims (8)

  1. アンプを複数段備えた増幅回路において、
    それぞれのアンプは、その増幅率を1倍から2倍の範囲で少なくとも2種類に可変に構成され、個々のアンプの増幅率を制御することにより、前記増幅回路全体の増幅率を決定することを特徴とする増幅回路。
  2. 前記アンプの増幅率を1倍又は2倍に選択設定することを特徴とする請求項1に記載の増幅回路。
  3. アンプを複数段備え、全体のゲインの最大値がGmaxで与えられる増幅回路において、
    前記アンプ1段の増幅率を1倍からX倍(X≦2)の範囲の少なくとも2値で可変に設定可能とするとともに、前記アンプを、n段(nは、Gmax≦Xを満たす自然数)縦列に接続することを特徴とする増幅回路。
  4. 前記Xは2であって、前記アンプ一段の増幅率は、1倍および2倍の2値で可変に設定されることを特徴とする請求項3に記載の増幅回路。
  5. 前記アンプは、スイッチト・キャパシタ回路構成による可変ゲインアンプであることを特徴とする請求項1から4のいずれかに記載の増幅回路。
  6. 撮像装置より入力された信号から画像信号に相当する電圧を取り出すサンプリング回路と、
    前記サンプリング回路により取り出された電圧を増幅する請求項1から5のいずれかに記載の増幅回路と、
    前記増幅回路により増幅された電圧をデジタル信号に変換するAD変換回路と、
    を具備した信号処理回路。
  7. 請求項1から5のいずれかに記載の増幅回路と、
    前記増幅回路により増幅された電圧をデジタル信号に変換するAD変換回路と、
    を具備し、
    前記増幅回路の初段のアンプが、撮像装置より入力された信号から画像信号に相当する電圧をサンプリングすることを特徴とした信号処理回路。
  8. 撮像装置と、
    前記撮像装置より入力された信号から画像信号に相当する電圧を取り出し、増幅して、デジタル信号に変換する請求項6または7に記載の信号処理回路と、
    前記デジタル信号に対し、画像圧縮処理を行う画像圧縮回路と、
    を具備したデジタルカメラ。
JP2005187872A 2004-07-23 2005-06-28 増幅回路、それを用いた信号処理回路およびデジタルカメラ Withdrawn JP2006067558A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005187872A JP2006067558A (ja) 2004-07-23 2005-06-28 増幅回路、それを用いた信号処理回路およびデジタルカメラ
US11/186,917 US20060017827A1 (en) 2004-07-23 2005-07-22 Variable-gain amplifier circuit

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004215366 2004-07-23
JP2004222925 2004-07-30
JP2005187872A JP2006067558A (ja) 2004-07-23 2005-06-28 増幅回路、それを用いた信号処理回路およびデジタルカメラ

Publications (1)

Publication Number Publication Date
JP2006067558A true JP2006067558A (ja) 2006-03-09

Family

ID=35656721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005187872A Withdrawn JP2006067558A (ja) 2004-07-23 2005-06-28 増幅回路、それを用いた信号処理回路およびデジタルカメラ

Country Status (2)

Country Link
US (1) US20060017827A1 (ja)
JP (1) JP2006067558A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539793A (ja) * 2007-09-14 2010-12-16 アナログ デバイシーズ インク 改良されたローパワー、ローノイズアンプシステム
JP2011124648A (ja) * 2009-12-08 2011-06-23 Fujifilm Corp 可変利得増幅回路、撮像装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961127B2 (en) * 2007-07-23 2011-06-14 Micron Technology, Inc. Variable gain stage having same input capacitance regardless of the stage gain
KR100968807B1 (ko) * 2007-11-26 2010-07-08 한국전자통신연구원 가변이득증폭기 및 이를 포함하는 수신기
US20100164768A1 (en) * 2008-12-31 2010-07-01 Texas Instruments Incorporated Providing digital codes representing analog samples with enhanced accuracy while using an adc of lower resolution
JP5858652B2 (ja) * 2011-06-08 2016-02-10 キヤノン株式会社 固体撮像装置及び固体撮像装置の駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539793A (ja) * 2007-09-14 2010-12-16 アナログ デバイシーズ インク 改良されたローパワー、ローノイズアンプシステム
JP2011124648A (ja) * 2009-12-08 2011-06-23 Fujifilm Corp 可変利得増幅回路、撮像装置

Also Published As

Publication number Publication date
US20060017827A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4523599B2 (ja) 信号のダイナミックレンジを増加するための複数の信号利得を有するデータ信号増幅器及びプロセッサ
JP3621385B2 (ja) スイッチトキャパシタ増幅器、および、それを用いた電荷結合素子用アナログインターフェース回路
US6661283B1 (en) Wide gain range and fine gain step programmable gain amplifier with single stage switched capacitor circuit
US8344930B2 (en) Successive approximation register analog-to-digital converter
NL1028084C2 (nl) Gecorreleerde dubbele bemonstering (CDS) met versterking in beeldmeetinrichting.
US7760019B2 (en) Adaptive operational transconductance amplifier load compensation
JPH11261764A (ja) 可変ゲイン増幅装置
JP2006067558A (ja) 増幅回路、それを用いた信号処理回路およびデジタルカメラ
CN101861697A (zh) 具有改善的重置阶段的开关电容放大器
JP2009538074A (ja) イメージ・センサ回路
TWI419558B (zh) 放大類比訊號之裝置與方法、類比處理電路以及影像拾取電路
KR100937403B1 (ko) 높은 전압 이득 선형성을 갖는 스위치드-커패시터 가변이득 증폭기
JP2007019821A (ja) スイッチトキャパシタ型可変利得増幅回路
JPWO2016170622A1 (ja) 半導体装置
WO2016203525A1 (ja) 半導体装置
JP4489914B2 (ja) A/d変換装置および固体撮像装置
US6940342B2 (en) Method and apparatus for exponential gain variations with a linearly varying input code
US6628164B2 (en) Method and apparatus for exponential gain variations with a linearly varying input code
KR100719189B1 (ko) 반도체 장치 및 카메라
Fujimoto et al. A switched-capacitor variable gain amplifier for CCD image sensor interface system
JP4869868B2 (ja) 増幅装置
JP2005277778A (ja) 増幅回路およびそれを用いたアナログデジタル変換器
JP2006340046A (ja) 可変利得回路及びそれを用いた応用装置
JP4121969B2 (ja) アナログデジタル変換器
JP2004336129A (ja) 可変インピーダンス回路を用いた可変利得増幅回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080820