JP2006064397A - 振動子および加速度検出素子 - Google Patents

振動子および加速度検出素子 Download PDF

Info

Publication number
JP2006064397A
JP2006064397A JP2004243808A JP2004243808A JP2006064397A JP 2006064397 A JP2006064397 A JP 2006064397A JP 2004243808 A JP2004243808 A JP 2004243808A JP 2004243808 A JP2004243808 A JP 2004243808A JP 2006064397 A JP2006064397 A JP 2006064397A
Authority
JP
Japan
Prior art keywords
vibration
vibrator
acceleration
detection
drive vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004243808A
Other languages
English (en)
Inventor
Takayuki Kikuchi
菊池  尊行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2004243808A priority Critical patent/JP2006064397A/ja
Publication of JP2006064397A publication Critical patent/JP2006064397A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)

Abstract

【課題】 振動子を利用して加速度を検出するのに際して、感度の高い検出を可能とすることである。
【解決手段】 振動子1は、少なくとも一対の駆動振動部3、4、および駆動振動部と分離された検出振動部5を備えている。駆動振動部3,4に駆動振動Aを励振し、例えばX軸、Y軸方向の加速度を振動子に加えたときに、検出振動部の振幅Cが変化する。この振幅の変化を検出して加速度を算出する。
【選択図】 図3

Description

本発明は、振動子および加速度検出素子に関するものである。
従来、加速度センサとしては、周波数変化型の加速度センサが知られている(特許文献1)。このセンサにおいては、いわゆるバイモルフ型加速度検出素子を使用し、加速度検出素子を加速度の印加に伴って板厚方向に撓むように固定する。そして、加速度の印加によって加速度検出素子が撓むと、その撓みによって周波数変化が生ずる。この周波数変化に基づいて加速度を検出する。
特開2002−122614号公報
しかし、このように加速度による振動片の周波数変化に基づいて加速度を検出する方法では、検出感度を高くすることが難しく、また所望の軸方向の加速度を測定することができない。更に、温度ドリフトが大きくなる傾向がある。
本発明の課題は、振動子を利用して加速度を検出するのに際して、所望軸の加速度の検出が可能な振動子構造を提供することである。
本発明は、少なくとも一対の駆動振動部、および駆動振動部と分離された検出振動部を備えている振動子であって、駆動振動部に駆動振動を励振し、加速度を振動子に加えたときに検出振動部の振幅が変化することを特徴とする、加速度測定用の振動子に係るものである。
また、本発明は、この振動子を用いて所定軸に沿った加速度を検出することを特徴とする、加速度検出素子に係るものである。
本発明者は、加速度検出用の振動子において、少なくとも一対の駆動振動部、および駆動振動部と分離された検出振動部を設けた。そして、駆動振動部に駆動振動を励振したときに、検出振動部における振幅が所定値、例えばゼロになるように、各駆動振動部の質量を調整した。この時点では、例えば一対の駆動振動部の振動は検出振動部において釣り合っており、検出振動部における振動は例えばゼロに調整されている。このときの出力値は0としてもよいが、一定のバイアス値に調整していてもよい。
この上で、この振動子に所定軸の加速度を加えると、各駆動振動部には同じ加速度vが印加される。しかし、このときに各駆動振動部の質量mが異なっていると、加速度vが加わったときに、各駆動振動部における各モーメントmvが互いに異なってくる。この結果、検出振動部から見たときの、駆動振動部の駆動振動の全体のバランスが失われ、検出振動部に振動が励起される。この励起された振動の振幅は、加速度vが大きくなるのにつれて、大きくなる。したがって、検出振動部に励起された検出振動の振幅を、例えば検出振動部に設けられた検出手段によって電気的に検出することによって、加速度vを測定することができる。
各駆動振動アームに加わる加速度に起因する個々の駆動振動アームの振動周波数の変化を測定する場合と異なり、本発明においては、複数の駆動振動部の駆動振動のバランスの崩れを検出振動部の振動によって検出する。したがって、所定軸の加速度を検出可能とすることができるとともに、加速度の検出感度を向上させる余地が高いものと考えられる。
以下、適宜図面を参照しつつ、本発明を更に詳細に説明する。
図1は、本発明の一実施形態に係る振動子1を示す平面図である。
本例の振動子1は紙面に平行に(X−Y面内に)延びるように形成されている。振動子1は、基部2、基部2のエッジから突出する一対の駆動振動部3、4、および一対の駆動振動部3、4によって挟まれた検出振動部5を備えている。本例では、駆動振動部、検出振動部はそれぞれ細長い屈曲振動アームであり、ほぼ同じ方向に向かって直線的に延びている。
ここで一方の駆動振動部3には、図2(c)に示すように一対の溝6A、6Bが形成されており、これによって駆動振動部3の横断面形状は略H字形状となっている。駆動振動部3の溝6A、6B内および側壁面上には、駆動振動部3を図3の矢印Aのように紙面と平行な方向へと励振するための電極8が設けられている。また駆動振動部3の先端側に幅広部16が設けられている。
他方の駆動振動部4には溝も幅広部も設けられておらず、図2(a)に示すように、略平板状を呈している。駆動振動部4の表面には、駆動振動部4を図3の矢印Aのように紙面と平行な方向へと励振するための電極7が設けられている。一方の駆動振動部3と他方の駆動振動部4との間に、細長い平板状の検出振動部5が設けられている。検出振動部5には、図2(b)に示すように一対の溝9A、9Bが形成されており、これによって検出振動部5の横断面形状は略H字形状となっている。検出振動部5の溝9A、9B内および側壁面上には、検出振動部の矢印C(図3(b)参照)方向への振動を検出可能な電極10が設けられている。
振動子を使用する際には、図3(a)に示すように、各駆動振動部3と4とを、紙面に平行な方向へと向かって、矢印Aのように、各駆動振動部の基部2への付け根を中心として屈曲振動させる。この際、駆動振動部3における振動と駆動振動部4における振動とは逆相になるようにする。そして、各駆動振動部3と4との各質量を調整することによって、各駆動振動部3と4との自励振時の周波数がともに同じ値fとなるようにし、これによって中央にある検出振動部5の振幅が、加速度および角速度の非印加時にはゼロとなるようにする。
各駆動振動部の質量調整方法は特に限定されない。例えば、各駆動振動部の一部をレーザー加工等によって削除することによって、駆動時に検出振動部5からの出力信号がほぼゼロとなるように調整できる。
あるいは、あらかじめ調整用の金属膜を各駆動振動部3、4に形成することができる。この質量調整膜の材質は、金属膜と金属酸化物膜とが特に好ましい。金属膜と金属酸化物膜との場合には、経時変化によるドリフトが生じにい点で有利である。質量調整膜を構成する金属膜としては、金膜、金とクロムとの多層膜、金とチタンとの多層膜、銀膜、銀とクロムとの多層膜、銀とチタンとの多層膜、鉛膜、白金膜が好ましい。金属酸化物としては、TiOが好ましい。特に金膜を採用することによって、金の比重が大きいことから、振動に対する制御性能が高くなり、かつ質量調整膜の特性が経時変化しにくい。ただし、金膜と酸化物単結晶、例えば水晶とは密着性が低いので、金膜と振動アーム、特に水晶アームとの間には、下地層、例えば少なくともクロム層またはチタン層を介在させることが好ましい。この質量調整膜はレーザー加工によって容易に一部除去し、その質量を調整することができる。
次いで、この振動子に対して、図3(b)に示すように矢印B方向(X軸方向)に加速度が加わったものとする。すると、各駆動振動部3,4にはX軸方向へと力が加わるので、X軸方向へと向かって延び、各駆動振動部3、4の振動周波数がいずれも上昇する。この際、駆動振動部4はその全長にわたって略一定幅であるが、駆動振動部3の根元近くには溝6A、6Bが設けられているのでX軸方向に延び易い上、駆動振動部3の先端には、質量の大きい幅広部16が設けられているので、駆動振動部3はX軸方向へと向かって一層伸び易い。したがって、駆動振動部3の周波数の変化(増分)は、駆動振動部4の周波数の変化(増分)よりも大きい。
この結果、中央の検出振動部5には、図3(b)に矢印Cで示すように、Y軸方向への屈曲振動が発生する。この屈曲振動Cの振幅は、X軸方向への加速度Bの大きさに対して単調増加する。また、この屈曲振動Cの振幅は、検出振動部5の検出電極からの出力にほぼ比例する。したがって、検出振動部5からの出力と加速度Bの大きさとの関係の検量線をあらかじめ得ておくことによって、検出電極からの出力に基づいて、加速度Bを得ることができる。
好適な実施形態においては、例えば図1〜3に示すように、駆動振動部3、4が、所定面X−Yに沿って屈曲振動するアームであり、検出振動部5が、屈曲振動するアームである。この場合には加速度の検出感度を一層向上させ易い。
また、好適な実施形態においては、例えば図1〜3に示すように、振動子が所定面X−Yに沿って形成されている。
また、好適な実施形態においては、例えば図1〜3に示すように、振動子が更に基部2を備えており、基部2から駆動振動部3、4および検出振動部5が突出しており、駆動振動部3と4との間に検出振動部5が設けられている。このような設計を採用すると、駆動振動部3、4に自励振される駆動振動による検出振動へのノイズを抑制することができるし、また加速度を印加していない状態で、検出振動部5における出力を調整しやすい。
また、好適な実施形態においては、少なくとも一つの駆動振動部に幅広部が設けられている。例えば図1〜3の例においては、一方の駆動振動部3に幅広部16が設けられており、他方の駆動振動部4には幅広部16が設けられていない。これによって、振動子に加速度Bが加わったときに、駆動振動部3の伸びが駆動振動部4の伸びに比べて大きくなる。この結果、加速度印加時の検出振動部5の振幅を調整できる。
また、好適な実施形態においては、少なくとも一つの駆動振動部に溝が形成されている。例えば図1〜3の例においては、駆動振動部3には一対の溝6A、6Bが形成されており、駆動振動部4には溝が形成されていない。駆動振動部3に溝を形成することによって、駆動振動部3の長手方向の剛性が低下し、振動子に加速度Bが加わったときに、駆動振動部3の伸びが駆動振動部4の伸びに比べて大きくなる。
また、駆動振動部に溝を形成する代わりに、貫通孔を形成することもできる。駆動振動部3に貫通孔を形成することによって、駆動振動部3の長手方向の剛性が低下し、振動子に加速度Bが加わったときに、駆動振動部3の伸びが駆動振動部4の伸びに比べて大きくなる。
また、好適な実施形態においては、振動子が、少なくとも一対の検出振動部を備えており、加速度を振動子に加えたときに一対の検出振動部が逆位相で振動する。図4〜14はこの実施形態に係るものである。
また、好適な実施形態においては、振動子が、基部および少なくとも一対の細長い支持部を備えており、検出振動部が基部から突出しており、駆動振動部が支持部から突出している。図4〜14はこの実施形態に係るものである。
図4(a)の振動子11は、基部2A、基部2Aから突出する一対の支持部20、各支持部20の先端からそれぞれ突出する一対の駆動振動部3A、3B、4A、4B、および基部2Aから突出する一対の検出振動部5A、5Bを備えている。図4において右側にある一対の駆動振動部3A、3Bには、図4(b)に示すように、一対の細長い溝6A、6Bが形成されており、かつ駆動電極8が形成されている。また各駆動振動部3A、3Bの先端には幅広部16が設けられている。図4において左側の各駆動振動部4A、4Bには、溝や幅広部は設けられておらず、平板形状をしており、その表面に駆動電極7が形成されている。一対の検出振動部5A、5Bには、図1と同様に、一対の細長い溝9A、9Bが形成されており、かつ検出電極10が形成されている。また各検出振動部5A、5Bの先端には幅広部17が設けられている。
振動子を使用する際には、図5に示すように、各駆動振動部3A、3B、4A、4Bを、紙面に平行な方向へと向かって、矢印Aのように、各支持部20への付け根を中心として屈曲振動させる。この際、駆動振動部3A、3Bにおける振動と駆動振動部4A、4Bにおける振動とは、振動子の重心GOから見たときに逆相になるようにする。そして、各駆動振動部3A、3Bと4A、4Bとの各質量を調整することによって、各駆動振動部3A、3Bと4A、4Bとの自励振時の周波数がともに同じ値fとなるようにし、これによって中央にある検出振動部5A、5Bの振幅が、加速度および角速度の非印加時にはゼロとなるようにする。
次いで、この振動子に対して、図6に示すように、矢印B方向(X軸方向)に加速度が加わったものとする。すると、各駆動振動部3A、3B、4A、4BにはX軸方向へと力が加わる。ここで、図6において上側にある駆動振動部3A、4Aには引張応力が加わり、駆動振動部が伸び、周波数が高くなる。この際、駆動振動部4Aはその全長にわたって略一定幅であるが、駆動振動部3Aの根元近くには溝6A、6Bが設けられているのでX軸方向に伸び易い上、駆動振動部3の先端には、質量の大きい幅広部16が設けられているので、駆動振動部3はX軸方向へと向かって一層延び易い。したがって、駆動振動部3Aの周波数の変化(増分)は、駆動振動部4Aの周波数の変化(増分)よりも大きい。これに対応して、中央の検出振動部5Aには、図6に矢印Cで示すように、Y軸方向への屈曲振動が発生する。この屈曲振動Cの振幅は、X軸方向への加速度Bの大きさに対して単調増加する。また、この屈曲振動Cの振幅は、検出振動部5Aの検出電極からの出力にほぼ比例する。
これと同時に、図6において下側にある駆動振動部3B、4Bには圧縮応力が加わり、駆動振動部が縮むので、周波数は低下する。この際、駆動振動部4Bはその全長にわたって略一定幅であるが、駆動振動部3Bの根元近くには溝6A、6Bが設けられているのでX軸方向に延び易い上、駆動振動部3Bの先端には、質量の大きい幅広部16が設けられているので、駆動振動部3はX軸方向へと向かって一層縮み易い。したがって、駆動振動部3Bの周波数の変化(減少分)は、駆動振動部4Aの周波数の変化(減少分)よりも大きい。これに対応して、中央の検出振動部5Bには、図6に矢印Cで示すように、Y軸方向への屈曲振動が発生する。この屈曲振動Cの振幅は、X軸方向への加速度Bの大きさに対して単調増加する。また、この屈曲振動Cの振幅は、検出振動部5Bの検出電極からの出力にほぼ比例する。
そして、検出振動部5Aにおける振動方向と駆動振動部5Bにおける振動方向とは、図6において逆方向となり、重心GOに対して2回の回転対称となる。したがって、各検出電極10から出力される値は、検出振動部5Aと5Bとにおいて逆相となる。この結果、検出振動部5Aからの出力と検出振動部5Bからの出力とを減算することによって、より高い精度で加速度Bの大きさを算出することができる。
また、本実施形態においては、所望軸以外の軸方向の加速度をキャンセルし、所望軸(本例ではX軸)方向の加速度を検出することができる。振動子を用いた従来の加速度センサでは、このように一軸方向の加速度を取り出して検出する方法は知られていない。
すなわち、図7に示すように、例えばY軸方向の加速度Dが印加されたものとする。ここで、この加速度Dの印加によって、駆動振動部3Aと4Aとの周波数変化は異なり、また駆動振動部3Bと4Bとの周波数変化は異なる。したがって、各検出振動部5A、5Bは矢印Fのように屈曲振動する。ここで、加速度D方向(Y軸)に対して振動子は略線対称となるので、この振動Fに起因する各検出振動部5A、5Bからの出力は等しくなる。したがって、検出振動部5Aからの出力と検出振動部5Bからの出力とを減算することによって、加速度Dに起因する信号を相殺し,ゼロとすることができる。
Z軸方向の加速度Eに対しても、これと同様にして振動子の形態はZ軸に対して略線対称であるので、加速度Eに起因する検出振動部5A、5Bからの出力は同じ値となる。したがって、検出振動部5Aからの出力と検出振動部5Bからの出力とを減算することによって、加速度Eに起因する信号を相殺し、ゼロとすることができる。
更に、本実施形態においては、図7、図8に示すように、Y軸方向の加速度に基づく出力は、検出振動部5Aと5Bとにおいて同じであり、またZ軸方向の加速度に基づく出力も、検出振動部5Aと5Bとにおいて同じである。Y−Z面内における任意の加速度は、Y軸方向の加速度とZ軸方向の加速度との合成ベクトルとして表されるので、Y−Z面内の加速度に基づく出力も、検出振動部5Aと5Bとにおいて同じである。従って、検出振動部5Aからの出力と検出振動部5Bからの出力とを加算することによって、Y−Z面内の加速度を算出することができる。ただし、Y軸方向の加速度とZ軸方向の加速度とを分離することは、この方法ではできない。
また、好適な実施形態においては、少なくとも一つの駆動振動部に、振動子とは別体の質量が付加されている。例えば図9(a)、(b)に示す振動子11Aにおいては、駆動振動部3A、3Bの各幅広部16上に、別体の質量18を付着させる。この質量18を設けることによって、振動子に矢印BのようにX軸方向の加速度が加わったときに、駆動振動部3A、3Bの伸びが大きくなり、周波数変化が大きくなるので、検出感度を向上させることができる。
この質量の具体的形態は特に限定されない。例えば、上記したような質量調整膜であってよい。この質量調整膜の材質は、上記したような金属膜と金属酸化物膜とが特に好ましい。
また、加速度が加わったときの各対の駆動振動部の周波数変化の差を大きくするためには、他方の駆動振動部の周波数変化を小さくすることも有効である。このためには、加速度が振動子に印加されたときに駆動振動部が伸びにくい(変形しにくい)ようにすればよい。この方法は特に限定されないが、例えば駆動振動部の付け根部分を肉厚にしたり、あるいは付け根部分の幅を広くすることができる。
図10は、この実施形態に係る振動子11Bを示す平面図である。本例では、他方の駆動振動部4C、4DのX−Y面内の幅Wが、付け根から先端へと向かって徐々に小さくなっている。この結果、駆動振動部4A、4B(幅が一定)の場合と比べて、矢印Bのように加速度が加わったときに駆動振動部が伸びにくくなり、その周波数変化が小さくなる。なお、駆動振動部の幅Wは、本例のように連続的になめらかに小さくすることもできるが、階段状(ステップ状)に小さくすることもできる。
図11の振動子11Cにおいては、一方の駆動振動部3C、3Dには、一対の溝6C、6Dは設けられているが、幅広部は設けられていない。
また、好適な実施形態においては、少なくとも一つの駆動振動部が相対向する一対の表面と一対の側面とを備えており、一対の表面に、それぞれ駆動振動部の長手方向に延びる突起が設けられている。図12はこの実施形態に係るものである。
図12の振動子11Dにおいては、一方の駆動振動部3E、3Fにおいて、一対の表面から、それぞれ駆動振動部の長手方向に延びる突起21A、21Bが設けられている。駆動振動部3E、3Fには、駆動電極28A、28B、28C、28Dが設けられており、駆動振動部3E、3FをY軸方向に向かって屈曲振動させることができる。
本例では、駆動振動部3E、3Fに対してZ軸方向の加速度が加わったときに、突起21A、21Bの作用によって、Z軸方向の変形がきわめて小さく、駆動振動部3E、3Fからの出力は現れない。従って、駆動振動部3Eの出力と駆動振動部3Fの出力とを加算することによって、Y軸方向の加速度に対応する出力が得られる。また、駆動振動部3Eの出力と駆動振動部3Fの出力とを減算することによって、X軸方向の加速度に対応する出力が得られるので、二軸の加速度が得られることになる。
また、好適な実施形態においては、少なくとも一つの駆動振動部が、目的とする所定軸とは異なる方向に向かって延びている。これによって、所定軸方向の加速度が振動子に加わったときに、この駆動振動部の周波数の変化を小さくすることができる。図13、図14はこの実施形態に係る振動子11E、11Fを示すものである。
振動子11Eにおいては、支持部20の先端から延びる一対の駆動振動部22A、22Bの方向が、加速度検出を目的とする所定軸Xに対して、基部2Aの方へと向かって角度θだけ傾斜している。この結果、X軸方向に加速度が加わったときに、駆動振動部22A、22Bの伸びを小さくし、周波数変化を小さくすることができる。
振動子11Fにおいては、支持部20の先端から延びる一対の駆動振動部23A、23Bの方向が、加速度検出を目的とする所定軸Xに対して、外側へと向かって角度θだけ傾斜している。この結果、X軸方向に加速度が加わったときに、駆動振動部22A、22Bの伸びを小さくし、周波数変化を小さくすることができる。
上記した傾斜角度θは特に限定されず、目的とする検出感度に応じて設計する。例えば、水晶のように3回対称のa軸を有する結晶によって振動子を形成した場合には、θを60°とすることが好ましい。
また、好適な実施形態においては、駆動振動が厚み滑り振動である。例えば図15に示す振動子36の場合には、振動子本体31に、一対の駆動電極32A、32Bと、検出電極33が設けられている。図面において上側および下側には重量部34、35が設けられている。この状態で、駆動電極32A、32Bの直下に厚み滑り振動Fを生じさせ、両方の厚み滑り振動を同振幅、逆相とする。この状態では検出電極33下では振動はなくなり、出力値はゼロあるいは所定のバイアス値となる。
ここで矢印G方向(厚み滑り振動Fに垂直な方向)へと向かって加速度が加わると、駆動電極32Aによって生ずる振動の周波数は高くなり、駆動電極32Bによって生ずる振動の周波数は低くなる。この結果、検出電極33に出力が生ずる。この出力は加速度Gの大きさに対して短調増加する。従って両者の関係を示す検量線をあらかじめ得ておくことによって、検出電極33からの出力から加速度を算出することができる。
好適な実施形態においては、本発明の振動子の変位が所定面内で生ずる。このため、振動子の全体を、同一の圧電単結晶によって形成することができる。この場合には、まず圧電単結晶の薄板を作製し、この薄板をエッチングにより加工することによって、振動子を作製できる。振動子の各部分は、別の部材によってそれぞれ形成することもできるが、一体で構成することが特に好ましい。
平板形状の材料、例えば水晶等の圧電単結晶の平板状の材料から、エッチングプロセスによって振動子を形成する場合には、エッチング溶液や材料の性質から発生する振動子の各屈曲振動片等の各構成片に特定形状の突起が生成することや、寸法ばらつきが発生することがある。このような振動子の理想形状からのずれは、厳密には設計時に意図された振動子の対称性を低下させる原因となる。
圧電単結晶を使用すると、検出感度を良好にすることができるとともに、検出ノイズを小さくできる。しかも、圧電単結晶を使用すると、温度変化に対して特に鈍感な振動子を作製でき、このような振動子は、温度安定性を必要とする車載用として好適である。
駆動信号の波形は限定されないが、好ましくは正弦波、余弦波あるいは矩形波である。
振動子の構成は特に限定されない。振動子を構成する材質のQ値は、3000以上であることが好ましく、10000以上であることが一層好ましい。振動子を構成する材質としては、エリンバー等の恒弾性合金、強誘電性単結晶(圧電性単結晶)を例示できる。こうした単結晶としては、水晶、ニオブ酸リチウム、タンタル酸リチウム、ニオブ酸リチウム−タンタル酸リチウム固溶体、ホウ酸リチウム、ランガサイトを例示できる。
また、振動子の封止方法は限定されないが、好ましくはCANパッケージやセラミックパッケージ内で、窒素封止あるいは真空封止されることが望ましい。
本発明の振動子は、加速度センサと同時に角速度センサとしても利用できる。この角速度センサの詳細は特開2001−12955号公報等に記載されており、周知である。
図4〜図8に示す振動子11を作製した。具体的には、厚さ0.1mmの水晶のZ板のウエハーに、スパッタ法によって、所定位置に、厚さ100オングストロームのクロム膜と、厚さ1500オングストロームの金膜とを形成した。ウエハーの両面にレジストをコーティングした。
このウエハーを、ヨウ素とヨウ化カリウムとの水溶液に浸漬し、余分な金膜をエッチングによって除去し、更に硝酸セリウムアンモニウムと過塩素酸との水溶液にウエハーを浸漬し、余分なクロム膜をエッチングして除去した。温度80℃の重フッ化アンモニウムに20時間ウエハーを浸漬し、ウエハーをエッチングし、振動子11の外形を形成した。メタルマスクを使用して、厚さ100オングストロームのクロム膜上に厚さ2000オングストロームの金膜を電極膜として形成した。
得られた振動子11に共振周波数45kHzの駆動振動を自励発振させ、加速度および角速度を加えない状態で、検出振動部5Aからの出力と5Bからの出力との差が0.1mVとなるように、各駆動振動部の質量を微調整した。次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にX軸方向の加速度Bを1G印加した。各検出振動部5Aからの出力と5Bとの差は4.2mVに上昇した。
次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にY軸方向の加速度Dを1G印加した。各検出振動部5Aからの出力と5Bとの差は0.1mVであった。すなわち、Y軸方向の加速度Dによる出力は、検出振動部5Aの出力と5Bの出力とを減算する段階で相殺された。
次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にZ軸方向の加速度Eを1G印加した。各検出振動部5Aからの出力と5Bとの差は0.1mVであった。すなわち、Z軸方向の加速度Eによる出力は、検出振動部5Aの出力と5Bの出力とを減算する段階で相殺された。
次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にX軸方向の加速度Bを1G印加した。各検出振動部5Aからの出力と5Bからの出力との和は0.1mVであった。すなわち、X軸方向の加速度Bによる出力は、検出振動部5Aの出力と5Bの出力とを加算する段階で相殺された。
次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にY軸方向の加速度Dを1G印加した。各検出振動部5Aからの出力と5Bとの和は2.3mVに上昇した。
次いで、共振周波数45kHzの駆動振動を励振した状態で、振動子にZ軸方向の加速度Eを1G印加した。各検出振動部5Aからの出力と5Bとの和は2.2mVに上昇した。
本発明例の振動子1を概略的に示す平面図である。 (a)は、駆動振動部4を概略的に示す横断面図であり、(b)は、検出振動部5を概略的に示す横断面図であり、(c)は、駆動振動部3を概略的に示す横断面図である。 (a)は、振動子1の駆動モードを示す平面図であり、(b)は、加速度の検出モードを示す平面図である。 (a)は、他の実施形態に係る振動子11を概略的に示す平面図であり、(b)は、駆動振動部3A(3B)の横断面図である。 振動子11の駆動モードを示す平面図である。 振動子11の加速度検出モードを示す平面図である。 振動子11による矢印D(E)方向の加速度に対応するモードを示す平面図である。 振動子11による矢印D(E)方向の加速度に対応するモードを示す平面図である。 (a)は、更に他の実施形態に係る振動子11Aを示す平面図であり、(b)は、幅広部16の拡大斜視図である。 振動子11Bを概略的に示す平面図である。 更に他の実施形態に係る振動子11Cを概略的に示す平面図である。 (a)は、更に他の実施形態に係る振動子11Dを概略的に示す平面図であり、(b)は、駆動振動部3E、3Fの横断面図である。 更に他の実施形態に係る振動子11Eを概略的に示す平面図である。 更に他の実施形態に係る振動子11Fを概略的に示す平面図である。 厚み滑り振動を駆動振動として利用する振動子36を模式的に示す平面図である。
符号の説明
1、11、11A、11B、11C、11D、36 振動子 2 基部 3、3A、3B、4、4A、4B、22A、22B、22C、22D 駆動振動部 5、5A、5B 検出振動部 6A、6B、9A、9B 溝 7、8 駆動電極 10、33 検出電極 16、17 幅広部 18 質量 20 支持部 32A、32B 厚み滑り振動用の駆動電極 A 駆動振動 B X軸方向の加速度 C X軸方向の加速度Bによる検出振動 D Y軸方向の加速度 E Z軸方向の加速度 F Y軸、Z軸方向の加速度に対応する検出振動

Claims (15)

  1. 少なくとも一対の駆動振動部、および前記駆動振動部と分離された検出振動部を備えている振動子であって、前記駆動振動部に駆動振動を励振し、加速度を前記振動子に加えたときに前記検出振動部の振幅が変化することを特徴とする、加速度測定用の振動子。
  2. 前記駆動振動部が所定面に沿って屈曲振動するアームであり、前記検出振動部が屈曲振動するアームであることを特徴とする、請求項1記載の振動子。
  3. 前記所定面に沿って形成されたことを特徴とする、請求項2記載の振動子。
  4. 基部を備えており、この基部から前記駆動振動部および前記検出振動部が突出しており、前記駆動振動部の間に前記検出振動部が設けられていることを特徴とする、請求項1〜3のいずれか一つの請求項に記載の振動子。
  5. 少なくとも一対の前記検出振動部を備えており、前記加速度を前記振動子に加えたときに一対の前記検出振動部が逆位相で振動することを特徴とする、請求項1〜4のいずれか一つの請求項に記載の振動子。
  6. 基部および少なくとも一対の細長い支持部を備えており、前記検出振動部が前記基部から突出しており、前記駆動振動部が前記支持部から突出していることを特徴とする、請求項5記載の振動子。
  7. 少なくとも一つの前記駆動振動部に幅広部が設けられていることを特徴とする、請求項1〜6のいずれか一つの請求項に記載の振動子。
  8. 少なくとも一つの前記駆動振動部に溝が形成されていることを特徴とする、請求項1〜7のいずれか一つの請求項に記載の振動子。
  9. 少なくとも一つの前記駆動振動部に貫通孔が形成されていることを特徴とする、請求項1〜7のいずれか一つの請求項に記載の振動子。
  10. 少なくとも一つの前記駆動振動部に、前記振動子とは別体の質量が付加されていることを特徴とする、請求項1〜9のいずれか一つの請求項に記載の振動子。
  11. 少なくとも一つの前記駆動振動部が、相対向する一対の表面と一対の側面とを備えており、前記一対の表面に、それぞれ前記駆動振動部の長手方向に延びる突起が設けられていることを特徴とする、請求項1〜10のいずれか一つの請求項に記載の振動子。
  12. 前記駆動振動が厚み滑り振動であることを特徴とする、請求項1記載の振動子。
  13. 請求項1〜12のいずれか一つの請求項に記載の振動子を用いて所定軸に沿った加速度を検出することを特徴とする、加速度検出素子。
  14. 前記少なくとも一対の前記検出振動部の各振動に基づく各出力を減算することによって、所定軸に沿った加速度を検出することを特徴とする、請求項13記載の素子。
  15. 前記少なくとも一対の前記検出振動部の各振動に基づく各出力を加算することによって、所定軸以外の平面内における加速度を検出することを特徴とする、請求項13記載の素子。
JP2004243808A 2004-08-24 2004-08-24 振動子および加速度検出素子 Withdrawn JP2006064397A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243808A JP2006064397A (ja) 2004-08-24 2004-08-24 振動子および加速度検出素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243808A JP2006064397A (ja) 2004-08-24 2004-08-24 振動子および加速度検出素子

Publications (1)

Publication Number Publication Date
JP2006064397A true JP2006064397A (ja) 2006-03-09

Family

ID=36111024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243808A Withdrawn JP2006064397A (ja) 2004-08-24 2004-08-24 振動子および加速度検出素子

Country Status (1)

Country Link
JP (1) JP2006064397A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271498A (ja) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp 加速度センサ
US8225662B2 (en) 2008-04-09 2012-07-24 Seiko Epson Corporation Acceleration sensing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271498A (ja) * 2006-03-31 2007-10-18 Kyocera Kinseki Corp 加速度センサ
US8225662B2 (en) 2008-04-09 2012-07-24 Seiko Epson Corporation Acceleration sensing device

Similar Documents

Publication Publication Date Title
JP3973742B2 (ja) 振動型ジャイロスコープ
US7043986B2 (en) Vibrators and vibratory gyroscopes
JP2001255152A (ja) 圧電振動ジャイロスコープおよびその周波数調整方法
JP2005037235A (ja) 物理量測定方法および装置
JPH1054725A (ja) 角速度検出装置
JP2011117944A (ja) 加速度センサー
JP4911690B2 (ja) 振動ジャイロ用振動子
JPH11325917A (ja) 振動子、振動型ジャイロスコ―プ、直線加速度計および回転角速度の測定方法
JP2004301734A (ja) 慣性センサ
JP2009236674A (ja) 振動ジャイロセンサ
JP4356881B2 (ja) 振動型ジャイロスコープ
JP4305625B2 (ja) 振動子および物理量測定用信号発生素子
JP2006064397A (ja) 振動子および加速度検出素子
JP3966719B2 (ja) 角速度測定装置
JP4233088B2 (ja) 回転角速度の測定方法および回転角速度測定装置
JP2001208545A (ja) 圧電振動ジャイロスコープ
JPH0762616B2 (ja) 振動ジャイロ
JP4035264B2 (ja) 振動型ジャイロスコープ
JPH11304494A (ja) 振動ジャイロ及びその使用方法
JP2005249746A (ja) 振動子および物理量測定装置
JP4361174B2 (ja) 振動型ジャイロスコープ
JP3958455B2 (ja) 振動子、振動型ジャイロスコープおよび直線加速度計
JPH10153432A (ja) 振動型ジャイロスコープ
JP3206299B2 (ja) 圧電振動子
JP3701785B2 (ja) 振動子、振動型ジャイロスコープ、直線加速度計および回転角速度の測定方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106