JP2006060922A - 車両用電源装置 - Google Patents

車両用電源装置 Download PDF

Info

Publication number
JP2006060922A
JP2006060922A JP2004240347A JP2004240347A JP2006060922A JP 2006060922 A JP2006060922 A JP 2006060922A JP 2004240347 A JP2004240347 A JP 2004240347A JP 2004240347 A JP2004240347 A JP 2004240347A JP 2006060922 A JP2006060922 A JP 2006060922A
Authority
JP
Japan
Prior art keywords
generator
power supply
voltage battery
supply device
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004240347A
Other languages
English (en)
Other versions
JP4291235B2 (ja
Inventor
Tokuaki Hino
徳昭 日野
Shinichi Fujino
伸一 藤野
Hiroyuki Kanazawa
宏至 金澤
Toshiyuki Innami
敏之 印南
Koji Kobayashi
孝司 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004240347A priority Critical patent/JP4291235B2/ja
Priority to US11/195,604 priority patent/US7215034B2/en
Priority to EP05017299A priority patent/EP1628379A2/en
Publication of JP2006060922A publication Critical patent/JP2006060922A/ja
Application granted granted Critical
Publication of JP4291235B2 publication Critical patent/JP4291235B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】
回路異常時にも発電を可能にし、運転者が修理工場等まで自走可能な車両用電源装置を提供することにある。
【解決手段】
交流発電機1は、回転子に永久磁石と界磁巻線を有する。交流発電機1の出力は、高圧バッテリ12に充電される。低圧バッテリ11には、高圧バッテリ12の電圧をDC/DCコンバータ6により降圧して供給される。モータコントローラ9が、界磁巻線に通電してないことを検出すると、上位コントローラ40は、交流発電機1の永久磁石による発電により低圧バッテリ12に充電する。この発電により回路異常時にも発電が可能となる。
【選択図】図1

Description

本発明は、車両用電源装置に係り、とくに自動車用発電機の異常時に対応可能な電源装置に関する。
近年、自動車用電装品が増えるに従い、従来の12V系の低圧バッテリだけでは、電力が不足してきている。そこで、12V系の低圧バッテリと、36V系の高圧バッテリの二つの系統のバッテリを持つ車両用電源装置が提案されてる。例えば、特開2001−28832号公報に記載のように、低圧と高圧のバッテリをDC/DCコンバータを介して電気的に接続し、発電機は通常36V系バッテリに充電し、DC/DCコンバータを介して12Vバッテリに充電するものが知られている。また、例えば、特開平11−299123号公報に記載のように、交流発電機の界磁巻線に供給する直流電流の制御を行う調節回路が故障した場合の対策として、予備の系統をもう一つ設け、故障した場合には予備系統に切り替えて発電し、そのまま運転走行を継続するものが知られている。
特開2001−28832号公報 特開平11−299123号公報
しかしながら、予備系統を設けるものでは、コスト高になるため現実的でないという問題がある。一方、予備系統を設けない場合には、自動車用交流発電機の界磁電流の回路がオープン状態になる異常時に、発電できないために車両を停止させる必要があるという問題があった。
本発明の目的は、回路異常時にも発電を可能にし、運転者が修理工場等まで自走可能な車両用電源装置を提供することにある。
(1)上記目的を達成するために、本発明は、回転子に永久磁石と界磁巻線を有する交流発電機と、この交流発電機に電気的に接続され、充電される高圧バッテリと、前記高圧バッテリよりも電圧の低い低圧バッテリと、前記高圧バッテリの電圧を降圧して前記低圧バッテリに供給するDC/DCコンバータと、前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石による発電により前記低圧バッテリに充電する制御手段を備えるようにしたものである。
かかる構成により、回路異常時にも発電を可能となる。
(2)上記(1)において、好ましくは、前記交流発電機は、クローポール型の回転子と、この回転子の対向する1対の回転子ヨークの爪の間に配置された永久磁石とを備えるようにしたものである。
(3)上記(1)において、好ましくは、前記交流発電機は、クローポール型の回転子と、この回転子のそれぞれの回転子ヨークの爪の根本に配置された永久磁石とを備えるようにしたものである。
(4)上記(2)又は(3)において、好ましくは、前記界磁巻線の巻かれている部分の回転子ヨークの面積S1を、前記回転子ヨークの爪の根本の面積S3よりも小さく(S1<S3)したものである。
(5)上記(1)において、好ましくは、前記制御手段は、前記界磁巻線に通電しない場合に、前記交流発電機を回転駆動するエンジンの発生する回転駆動力を変速する変速機の変速比を下げ、エンジン回転数を上げる制御を実行するようにしたものである。
(6)上記(1)において、好ましくは、前記交流発電機は、前記低圧バッテリから電力が供給される補助界磁巻線を備え、前記制御手段は、前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石及び前記補助界磁巻線による発電により前記低圧バッテリに充電するようにしたものである。
(7)また、上記目的を達成するために、本発明は、回転子に界磁巻線と補助界磁巻線を有する交流発電機と、この交流発電機に電気的に接続され、充電される高圧バッテリと、前記高圧バッテリよりも電圧の低い低圧バッテリと、前記高圧バッテリの電圧を降圧して前記低圧バッテリに供給するDC/DCコンバータと、前記界磁巻線に通電しない場合に、前記低圧バッテリに接続された前記交流発電機の前記補助界磁巻線による発電により前記低圧バッテリに充電する制御手段を備えるようにしたものである。
かかる構成により、回路異常時にも発電を可能となる。
(8)さらに、上記目的を達成するために、本発明は、回転子に永久磁石と界磁巻線を有する交流発電機と、この交流発電機の出力を昇圧する昇圧手段と、この昇圧手段により昇圧された電圧により充電される低圧バッテリと、前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石による発電により前記低圧バッテリに充電する制御手段を備えるようにしたものである。
かかる構成により、回路異常時にも発電を可能となる。
(9)上記(8)において、好ましくは、前記昇圧手段は、DC/DCコンバータとしたものである。
(10)上記(8)において、好ましくは、前記昇圧手段は、前記交流発電機の出力電圧を整流するパワー回路である。
本発明によれば、回路異常時にも発電を可能にし、運転者が修理工場等まで自走可能となる。
以下、図1〜図7を用いて、本発明の第1の実施形態による車両用電源装置の構成について説明する。
最初に、図1を用いて、本実施形態による車両用電源装置を搭載した車両の構成について説明する。
図1は、本発明の第1の実施形態による車両用電源装置を搭載した車両の構成を示すブロック図である。
エンジン4の回転は、CVT30によって変速され、デファレンシャルギア50を介して、車輪52A,52Bに伝達され、車両を走行させる。エンジン4における燃料噴射制御や点火時期制御は、上位コントローラ40からのエンジン回転数指令に基づいて、エンジンコントローラ42によって行われる。CVT30は、上位コントローラ40からのギア比指令に基づいて、CVTコントローラ44によって行われる。
エンジン4の回転は、プーリ2A,ベルト3,プーリ2Bを介して電動発電機1に伝達される。電動発電機(M/G)1は、パワー回路8を介して、モータコントローラ9により制御される。このとき、電動発電機1は、モータコントローラ9の制御により発電機として動作しており、エンジン4の回転エネルギーを交流電力に変換する。インバータ等のパワー回路8は、発電機1によって発電された交流電力を直流電力に変換して、36V高圧バッテリ12を充電する。通常の動作では、上位コントローラ40は、パワー回路8と36V高圧バッテリ12が接続されるように、スイッチ29を切り替えている。
このシステムの特徴は、36Vの大容量のバッテリ12を搭載することでアイドリングストップを行い、燃費を良くすることにある。アイドリングストップ時のエンジンリスタートを行うためには、電動発電機1を電動機として動作させ、高圧バッテリ12からパワー回路8に電力を供給し、パワー回路8によって電動発電機1を駆動させ、モータとして力行させる。発電と力行の切替は、モータコントローラ9によって行なわれる。
本実施形態では、車両用電源としては、12V低圧バッテリ11と、36V高圧バッテリ12を併用するシステムとし、12Vの低圧バッテリ11には、36Vバッテリから降圧型DC/DCコンバータ6で12Vに電圧変換して充電する。この12Vの低圧バッテリ11は、例えば、エンジンスタータ(ST)7や、上位コントローラ40,モータコントローラ9,エンジンコントローラ42,SVTコントローラ44などのコントローラなど、自動車が走行するための基本的な機能を有する自動車の殆どの電装品に電力を供給する。36Vの高電圧バッテリ12には、付随的な機能、例えばアイドルストップ時のホットスタートや、電動パワステ27や、オーディオ28など大電力を必要とするが車両走行には不可欠ではない機能を割り振り、その機能がなくても走行に支障ないようなシステム構成とする。
電動発電機1はアイドルストップ用のスタータとして用い、最初の始動時にはエンジンスタータ7を別途設けるのは、次の理由による。エンジンを起動する場合、自動車内部のオイルなどがすべて冷えている状態で起動する時(コールドスタート時)は、必要トルクは約60Nmと非常に大きいものである。このため通常のスタータ7は、低速回転で大トルクを瞬間的に供給するための特殊なブラシ付き直流機であり、燃費対策のアイドリングストップのように頻繁に用いるにはブラシ寿命などの点で問題がある。一方、エンジンが暖まった後の起動時(ホットスタート時)は、必要なトルクは20〜40Nmと比較的小さいものである。このため、電動発電機1でも高圧バッテリ12から高いエネルギーを受け取ることにより、モータとして力行させてホットスタートが可能となる。また、電動発電機1は連続運転を基本とした設計となっており、寿命の点でも問題ないものである。また、自動車に不可欠な発電機をモータとして利用するため、コスト増加も少ない。発電機1をさらに高出力化し、コールドスタート可能な60Nm程度のトルクを出すことができれば、スタータ7が不要になることは言うまでもないものである。
本実施形態による車両用電源装置の特徴は、電動発電機1として、永久磁石付きのブラシレスの交流発電機を用いたことにある。電動発電機1の構成については、図3を用いて後述する。そして、永久磁石付きの交流発電機を用いることにより、発電機の界磁電流無しでも永久磁石の漏れ磁束だけである程度の電圧を発生できることに着目し、これを活かして車両用電源装置全体の信頼性の向上をねらった点にある。従来の自動車システムでは発電機に、界磁電流が流れなくなる異常が発生した場合には、発電機が電圧を発生せずにバッテリに充電ができないので自動車が走行できなくなる。
それに対して、本実施形態では、発電機の界磁に永久磁石を取り付けることにより、その漏れ磁束により界磁電流が流れない異常時にも電圧を発生できるようにする。漏れ磁束だけでは高電圧を発生することは難しく、高電圧側のバッテリへの充電は難しいので、モータコントローラ9が異常時と判定すると、上位コントローラ40は、スイッチ29を低圧バッテリ11側に切り替えて、磁石の漏れ磁束で発生する低い電圧で、低圧系の12Vのバッテリ11を充電するようにしている。かかる構成により、永久磁石付きの交流発電機を用いることにより、回路異常時にも走行可能にすることができる。漏れ磁束による発電量は、全体の発電量の約20%程度であるが、12V低圧バッテリ11に充電し、自動車を走行可能にする程度の発電量が得られる。
通常時には、電動発電機1は36V高圧バッテリ12に充電したり、逆に36V高圧バッテリ12からエネルギーを受け取り、アイドルストップ時のエンジンの再始動や、エンジントルクのアシストを行う。ブレーキ時には、電動発電機1によってエネルギーを回生し、高圧バッテリ12に充電する。12V低圧バッテリ11には、DC/DCコンバータ6により高圧バッテリ12の電圧を降圧させて充電する。界磁電流が流れない等の異常時には、電動発電機1から12V低圧バッテリ11だけに充電するようにしている。12V低圧バッテリ11は、自動車が走行するための基本的な機能を有する自動車の殆どの電装品に電力を供給する構成であるため、異常時でも、12V低圧バッテリ11の電力により、車両は自力走行可能となっている。
モータコントローラ9は、パワー回路(インバータ)8にPWM信号を送り、逆に電流、電圧を監視する。特に、モータコントローラ9は、界磁電流の指令値と実際の電流の一致不一致を監視して、界磁電流が指令値通りに流れない場合には発電機の異常と判断し、上位コントローラ40に通知する。上位コントローラ40は、異常時には、スイッチ29を切り替え、36Vバッテリを切り離して12Vバッテリに直接充電する。永久磁石の漏れ磁束により発電機の発生する電圧が36V以下12V以上とすれば、12Vバッテリに連続的に発電することができる。このような構成にすれば、発電機の異常、特に界磁巻線に電流が流れなくなる異常が発生しても、少なくとも12Vバッテリに連続充電可能であり、12V系だけで最低限、車両の自走が可能な電源をまかなっているので、自動車は異常時にも走行可能となり、運転者が修理工場まで自走できる。
次に、図2を用いて、本実施形態による車両用電源装置の電気回路構成について説明する。
図2は、本発明の第1の実施形態による車両用電源装置の電気回路構成を示す回路図である。なお、図1と同一符号は、同一部分を示している。
電動発電機1は、U相,V相,W相の3相の電機子巻線1U,1V,1Wと、界磁巻線18とを備えている。界磁巻線18は、スイッチング素子25により可変に電流を制御して、電動発電機1の磁束量を調節して発電量やトルクを制御する。
パワー回路8は、U相,V相,W相の3相毎に2個づつの合計6個のMOS−FET8UH,8UL,8VH,8VL,8WH,8WLから構成され、各相毎に直列接続されている。パワー回路8は、電動発電機1をモータとして駆動する場合には、インバータとして動作し、電動発電機1を発電機として駆動する場合には整流器として動作する。発電モードの場合には、図1に示した上位コントローラ40は、モータコントローラ9に負のトルク指令を出すことにより、モータコントローラ9は、パワー回路8を整流器として制御し、力行モードの場合には、正のトルク指令を出してインバータとして制御する。出力トルクを調節するには、モータコントローラ9は、スイッチング素子25を制御して、界磁巻線18に流れる界磁電流を制御する。さらに、モータのd軸とq軸のベクトル制御を行うことで、より広範囲のモータ出力特性、あるいは高効率なモータ特性を得ることができる。ベクトル制御とは、モータの電流位相と界磁の磁極位置を変化させ、最適な運転条件でモータを駆動する方法である。これにより、モータの出力特性が向上するので、発電機をアイドリングストップ時の起動だけでなく、エンジン回転数の高い場合にモータトルクでエンジンをアシストすることもできる。
界磁巻線18に電流が流れなくなる異常は、おもにスイッチング素子25が故障することによって発生する。スイッチング素子25がオープン状態になると界磁電流が流れないため、永久磁石を備えていない発電機では発電できないが、本実施形態のように、永久磁石を備えた発電機を用いることにより、永久磁石の漏れ磁束を用いて、車両走行に必要な最低限の発電量を確保できるものである。
次に、図3〜図6を用いて、本実施形態による車両用電源装置に用いる電動発電機1の構成について説明する。
最初に、図3を用いて、本実施形態による車両用電源装置に用いる電動発電機1の全体構成について説明する。
図3は、本発明の第1の実施形態による車両用電源装置に用いる電動発電機の構成を示す断面図である。なお、図1と同一符号は、同一部分を示している。
電動発電機1は、固定子15と、回転子16とを備えている。固定子15は、鉄心15Aと、固定子巻線15Bとからなる。回転子16は、回転子ヨーク17A,17Bと、界磁巻線18と、永久磁石19とからなる。回転子ヨーク17A,17Bには冷却フィン22が取付けられており、回転時に発電機内部に風を送ることで冷却効率を高めている。
界磁巻線18は、回転子ヨーク17A,17Bに取り囲まれ、スリップリング20を介して直流電流を界磁巻線18に供給し、回転子16を励磁する。プーリー2をエンジンによって回転駆動することにより、回転子16のシャフト23が回転し、励磁された回転子16が回転することで、固定子巻線16に電圧が誘起され、発電電流が流れるである。さらに、本実施形態の発電機システムでは、回転子ヨーク17A,17Bの間に永久磁石19を入れたことにより、界磁巻線18に電流が流れなくなっても、永久磁石19の漏れ磁束だけで電圧を発生させることができる。
また、固定子巻線15Bに電流を流すことで、回転子16が回転し、プーリー2が回転することで、エンジンを再始動するための電動機として用いることができる。
次に、図4及び図5を用いて、本実施形態による車両用電源装置に用いる電動発電機1の回転子ヨークの構成について説明する。
図4は、本発明の第1の実施形態による車両用電源装置に用いるクローポール型電動発電機の回転子ヨークの片側構成を示す斜視図である。図5は、本発明の第1の実施形態による車両用電源装置に用いる電動発電機の一対の回転子ヨークの間に永久磁石を配置した構成を示す斜視図である。なお、図3と同一符号は、同一部分を示している。
図4は、一対の回転子ヨーク17A,17Bの内、片側の回転子ヨーク17Aの形状を示している。図示するように、回転子ヨーク17Aは、6個の爪磁極17A1を備えている。そして、図5に示すように、一対の回転子ヨーク17A,17Bの爪磁極を互いにずらすようにして組合せ、爪磁極の内部にソレノイド状の界磁巻線を巻き、通電することで爪磁極に磁界を発生させるクローポール型電動発電機の回転子ヨークである。ここで、片側の爪はN極、反対側はS極に励磁される。
この爪磁極回転子構造はロータヨークを一体で作るため、高速回転時の遠心力に対する強度も十分に確保することができるため、18000rpmという高速回転の発電機を実現することができる。設計では遠心力で爪が広がらないように根本部分の厚さを有る程度確保することが必要になる。
回転子の界磁による磁束のうち、回転子に渡るものが有効磁束となるが、爪の磁極の空隙には磁束が漏れて回転子内部に閉磁路をつくり、回転子の界磁コイルの起磁力が無駄になる。これを改善するために爪磁極のそれぞれの極間に、合計6個の永久磁石18を入れている。磁石18の着磁方向N→Sは、図5に示すように界磁巻線が爪に作る磁極とは逆向きになっており、永久磁石の磁束と爪磁極の磁束が反発して爪磁極の表面に磁束が出てゆきやすいようになっている。このように永久磁石19は、界磁巻線の励磁時に磁石の着磁方向とは反対の強い磁界を受けるので、永久磁石19は減磁して磁力を失わないように磁石の残留磁束密度と保磁力特性の高いネオジウム系の焼結磁石などを用いる。
次に、図6を用いて、本実施形態による車両用電源装置に用いる電動発電機1の回転子ヨークの詳細構成について説明する。
図6は、本発明の第1の実施形態による車両用電源装置に用いる電動発電機の回転子ヨークの詳細構成を示す斜視図である。なお、図3と同一符号は、同一部分を示している。
本実施形態では、磁石の漏れ磁束を有効に活用できるように、ロータヨーク17の形状に特徴がある。図6は、図4の点線に沿ってロータヨーク17を6分割した時の1つの形状について、ロータヨーク17Aと爪磁極17A1の関係を詳細に示している。
回転子の起磁力は界磁巻線18から起磁力を供給し、矢印MLの方向に磁束が流れる。磁石が無い爪磁極のロータでは、磁束はだんだん外に漏れていくため、ボビンから距離が遠い爪表面では磁束が少なくなる。従って、爪部分の磁気回路の断面積は小さいのが通常である。界磁巻線の巻かれている部分S1の面積が最も多く、爪の根本は少し面積S3が小さくなる。図6でいえば、S1>S2>S3となっている。
しかし、本実施形態の磁石付の発電機においては、永久磁石19も磁束を発生するため、部分S1の面積が大きいと永久磁石の磁束が短絡し、固定子側に有効磁束が渡らなくなる。そこで、界磁巻線18の中心の面積S1を小さくし、永久磁石の磁束でS1を磁気飽和させることにより、永久磁石の磁束を固定子側に漏れさせるようにした。従って、本実施形態では、S1<S2,S3となっている。ここで、S2の面積を狭くすると、上述したように遠心力に対する機械強度が持たなくなり爪が広がるので、実際の設計ではS2を小さくすることは難しいので、本実施例ではS1だけを小さくしている。
次に、図7を用いて、本実施形態による車両用電源装置に用いる電動発電機1に用いる回転子ヨークの他の構成について説明する。
図7は、本発明の第1の実施形態による車両用電源装置に用いる電動発電機の回転子ヨークの詳細構成を示す斜視図である。図7(A)は、一方の回転子ヨーク17Aを示し、図7(B)は、他方の回転子ヨーク17Bを示している。なお、図3と同一符号は、同一部分を示している。
図7(A)に示すように、回転子ヨーク17Aの隣接する爪磁極17A1の根本の部分に、永久磁石19Aを配置している。永久磁石19Aを配置した後、固定プレート19Cによって、磁石19Aを保持している。もう一方の回転子ヨーク17Bについても、図7(B)に示すように、回転子ヨーク17Bの隣接する爪磁極17B1の根本の部分に、永久磁石19Bを配置している。したがって、永久磁石19A,19Bの個数は12個となり、この部分の永久磁石によりさらに磁石量分の漏れ磁束を増やすことができる。したがって、永久磁石のみによる発電時の発電量を増やすことができる。
以上説明したように、本実施形態によれば、発電機の異常、特に界磁巻線に電流が流れなくなる異常が発生しても、少なくとも12Vバッテリに連続充電可能であり、12V系だけで最低限、車両の自走が可能な電源をまかなっているので、自動車は異常時にも走行可能となり、運転者が修理工場まで自走できる。
次に、図8〜図10を用いて、本発明の第2の実施形態による車両用発電機を用いた車両用電源装置の構成について説明する。
最初に、図8を用いて、本実施形態による車両用電源装置を搭載した車両の要部構成について説明する。
図8は、本発明の第2の実施形態による車両用電源装置を搭載した車両の要部構成を示すブロック図である。なお、図1と同一符号は、同一部分を示している。
本実施形態における電源回路構成は、図4とは異なり、切り替えスイッチが用いられていないものである。界磁電流が流れない異常時には、上位コントローラ40が異常を検出すると、連続可変伝動装置CVTコントローラ44にギア比を下げる指令を出し、同じ車速に対してエンジン回転数を高く保つように指令する。そして、CVTコントローラ44は、ギア比を下げる。界磁電流が流れないと、磁石の漏れ磁束だけによる誘起電圧は低いが、ギア比を下げて、エンジン回転数を上げることで、電動発電機1の回転数も上がるため、発電電圧を上げることができる。なお、変速機が通常のオートマチックトランスミッションならば、ギアをひとつ落とすように指令する。また、マニュアルトランスミッションの車両の場合には、ギアを落として回転数を維持するように運転者に警告する。これにより、漏れ磁束だけでも発電が可能になる。
また、DCDCコンバータ6の高圧側MOS−FET37及び低圧側MOS−FET38は通常はオフであり、高圧バッテリ12に充電している。しかし、界磁電流が流れない等の異常時には、モータコントローラ9は、異常を検出した後は、界磁電流指令やモータトルク指令はオフとして、単純な発電モードに切り替える。パワー回路8を構成するMOS−FETのゲート信号をオフすることにより、MOS−FETをダイオードとして機能し、通常の自動車用発電機と全く同じ構成になる。高圧側MOS37をオンにすることにより、発電機1の発電電圧により、低圧バッテリ11を充電できる。
次に、図9及び図10を用いて、本実施形態による車両用電源装置の動作について説明する。
図9は、本発明の第2の実施形態による車両用電源装置の動作を示すフローチャートである。図10は、本発明の第2の実施形態による車両用電源装置の動作を示すタイミングチャートである。
図9のステップs10において、上位コントローラ40は、モータコントローラ9に界磁電流If*とモータ電流Im*を指令し、ステップs15において、上位コントローラ40は、モータコントローラ9から得られる実際の値IfとImを読み込む。次に、ステップs20において、上位コントローラ40は、界磁電流の指令値If*がゼロ以上であり、かつ、実際の界磁電流Ifが流れていないかどうかを判定する。この条件を満たす場合には、異常と判断し、ステップs30以降の緊急発電モードに入る。この条件を満たさない場合には、正常と判断し、ステップs25において、上位コントローラ40は、正常運転を実行する。
ここで、図10を用いて、正常運転時の動作について説明する。図10の横軸は、時間を示す。図10(A)の縦軸は発電量を示し、図10(B)は12V低圧バッテリの残量を示し、図10(C)は界磁異常信号を示している。図10(D)は界磁電流Ifを示し、図10(E)は界磁電流指令If*を示し、図10(F)はモータトルク指令を示している。図10(G)は変速比を示し、図10(H)はエンジン回転数を示し、図10(I)は車速を示している。図10(J)はアクセルペダルの踏込み量を示し、図10(K)はキースイッチのオンオフ状態を示している。
時刻t1に運転者がキースイッチをONにすると(図10(K))、12V系のスタータによりエンジンが始動し、時刻t2にアイドルする(図10(H))。コールドスタート時には、バッテリからエネルギーをもらうため、12Vバッテリのエネルギー残量が減る(図10(B))。エンジンがアイドルを始めると共に発電機の界磁電流指令If*により界磁電流Ifが流れ(図10(E),(D))、発電を開始する(図10(A))。このとき、モータコントローラは、発電機に回転方向とは逆の負のトルク指令を出力する(図10(F))。
次に、時刻t3において、運転者がアクセルを踏み(図10(J))、自動車が加速する場合には、車速と共にエンジン回転数が上がる(図10(I),(H))。同時に、CVTの変速比が徐々に大きくなり(図10(G))、エンジン回転数を抑制しながら車速が増加する(図10(H),(I))。このとき、モータコントローラは正のトルク指令を出し(図10(F))、電動発電機1はモータとして動作して、車両の加速をアシストする。このエネルギーは36Vバッテリから受け取るため、発電量は負になる(図10(A))。アシストに必要なトルクは発電時のトルクよりも大きいので、界磁電流Ifは増える(図10(D))。
次に、時刻t4において、運転者の所望の車速になり、一定速度走行状態になると(図10(I))、変速比が上がり(図(G))、エンジン回転数は下がり(図10(H)))、エンジン回転数と車速と変速比が一定となる。発電機はエンジンからエネルギーをもらうために、トルク指令は負になる(図10(F))。次に、時刻t5において、運転者が減速するためにアクセルを緩め(図10(J))、ブレーキを踏むと、加速の時とは逆の手順でエンジン回転数とCVTの変速比が下がり(図10(H),(G))、時刻t6において、停止状態となるとアイドリング状態に戻る。減速時に発電機は負のトルク指令を増加させ回生ブレーキをかける。回生したエネルギーは36Vバッテリに充電する。
時刻t6の停止の状態では、エンジンがアイドルして車両が停止している状態で、通常の発電を行っている。時刻t6において、アイドル時間が一定時間になると、燃費向上のためエンジンを停止させる(図10(H))。このときの車内電装品の電力は36Vバッテリから12Vバッテリを通して供給する。36Vバッテリに十分なバッテリ残量がなければアイドリングストップは行わない。エンジン停止中は発電はできないので、界磁電流やモータトルク指令はゼロになる(図10(E),(D),(F))。
次に、時刻t8において、運転者がアイドルストップ状態から発進しようとするホットスタート状態では、アクセルを踏むと(図10(J))、モータが車両を加速させる。モータトルクを出すために界磁に電流が流れる(図10(D))。やがてエンジンが再始動して(図10(H))、エンジントルクとモータのトルクで車が加速する(図10(I))。以上が。正常時の動作である。
ここで、時刻t10において、界磁電流を制御している半導体スイッチがオープンになり、界磁断線が発生したものとする。
そして、図9のステップs20の判定で、YESとなると、ステップs30において、モータコントローラ9が界磁異常として検出し、異常信号を上位コントローラ40に出力する(図10(C))。
異常を検出すると、時刻t13において緊急モードとなり、ステップs35において、上位コントローラ40は、界磁電流指令やモータトルク指令はオフとするとともに(図10(E),(F))、モータコントローラ9は、パワー回路6のPWMを停止する。次に、ステップs40において、モータコントローラ9は、DC/DCコンバータの高圧側のMOS37はオンして、充電対象のバッテリーを36V高圧バッテリから12V低圧バッテリに切り替える。
次に、ステップs45において、上位コントローラ40は、車速を一定に保ちながら、発電機の電圧を上げるようにエンジンの回転数を上げると共にCVTの変速比を下げていき(図(H),(G))、バッテリの電圧が下がらないように発電を続ける。車速に応じてエンジン回転数と変速比を変化させ、常に発電可能にする。発電機の設計により、予め、ある程度の回転数で、発電機の電圧がバッテリ電圧を超えるように漏れ磁束を調節している。漏れ磁束の調整は、爪磁極と対向する永久磁石の側面の面積を増減することで行える。
ここで、具体的な発電量と、回転数について説明する。エンジンの回転速度範囲は、例えば、600rpmから6000rpm程度までで、常用回転数は約2000rpm程度である。エンジンと発電機のプーリ比は約2〜3なので発電機の回転数は1200〜18000rpmであり、常用回転数は4000〜6000rpmとなる。自動車を連続走行可能にするために必要な電力が最低400W程度である。従って、発電機が約5000rpmの時に12V系のバッテリに約400W、つまり電流で30A程度発電できるように漏れ磁束量を調節すればよいものである。
なお、ステップs50において、12V低圧バッテリの残量を検出し、残量が低下した場合には緊急モードを停止し、また、ステップs55において、キースイッチのオンオフ状態を検出し、オン状態であれば、ステップs45に戻り、緊急モードを継続する。
緊急モードで走行可能な状態を維持し、修理工場等まで移動した後は、時刻t14から減速し、時刻t15にてアイドル状態となり、時刻t16においてエンジン停止する。
以上説明したように、本実施形態によっても、発電機の異常、特に界磁巻線に電流が流れなくなる異常が発生しても、少なくとも12Vバッテリに連続充電可能であり、12V系だけで最低限、車両の自走が可能な電源をまかなっているので、自動車は異常時にも走行可能となり、運転者が修理工場まで自走できる。
次に、図11を用いて、本発明の第3の実施形態による車両用発電機を用いた車両用電源装置の構成について説明する。
図11は、本発明の第3の実施形態による車両用電源装置の構成を示すブロック図である。なお、図1,図2と同一符号は、同一部分を示している。
図1,図2に示した実施形態と異なる点は、図2に示したMOS−FETによるパワー回路の代わりに、6個のダイオード31から整流回路を用いた点にある。この実施形態では、発電機1Aはモータとして利用しないので、単なる高圧用発電機である。36Vと12Vの二つの系統の電源を持ち、通常時には発電機1が高電圧側の36Vバッテリ11に充電するように、上位コントローラ40はスイッチ29を切り替えている。発電機1Aは36V系のバッテリよりも高い電圧を発生することでバッテリに充電する。
界磁電流の制御をするスイッチング素子25がオープン状態で故障した場合、発電機1Aとして磁石付き発電機を用いているため、永久磁石の漏れ磁束により電圧が発生する。
本実施形態では、発電機1Aを通常36V以上電圧が発生するように高圧用にするため、12V系の発電機と界磁の磁束は同じでも、発生する誘起電圧は12V系の発電機よりも高くなるようにステータの巻数が多くなっている。したがって、磁石の漏れ磁束が弱くても、誘起電圧が12Vのバッテリ電圧を上回るようにすることができる。
界磁電流が流れない異常時には、スイッチ29により36Vバッテリは切り離すことにより、発電機1の発電電圧は12V低圧バッテリ11に充電することができる。なお、DC/DCコンバータ6が36V→12Vの降圧型の場合には、動作させないようにする。
なお、第2の実施形態で説明したように、異常時には、エンジン回転数を上げてもよいものである。
以上説明したように、本実施形態によっても、発電機の異常、特に界磁巻線に電流が流れなくなる異常が発生しても、少なくとも12Vバッテリに連続充電可能であり、12V系だけで最低限、車両の自走が可能な電源をまかなっているので、自動車は異常時にも走行可能となり、運転者が修理工場まで自走できる。
次に、図12を用いて、本発明の第4の実施形態による車両用発電機を用いた車両用電源装置の構成について説明する。
図12は、本発明の第4の実施形態による車両用電源装置の構成を示すブロック図である。なお、図1,図2と同一符号は、同一部分を示している。
本実施形態では、電動発電機1は、通常の界磁巻線18の他に、補助界磁巻線26を備えている。補助界磁巻線26は、界磁巻線18におけるスイッチ25のようなスイッチを有していないため、壊れにくいという特性があるが、かかる構成においても、本発明は適用できるものである。
本実施形態では、補助巻線26を設け、補助巻線26に12V系から電源を供給し、少なくとも弱い界磁磁束を供給するようにしている。補助巻線は12Vのバッテリ11から接続しており、スイッチ25がないためスイッチの故障はないものである。補助巻線26の磁束による発電と、永久磁石の漏れ磁束による発電を用いて、スイッチ25の故障時には、12V低圧バッテリ11に充電する。
また、永久磁石を用いないで、補助巻線26には常に電流が流れるため、この界磁磁束による発電量は自動車走行に必要な最低限の発電量となるような補助巻線の巻数と巻線径を設定してもよいものである。
以上説明したように、本実施形態によっても、発電機の異常、特に界磁巻線に電流が流れなくなる異常が発生しても、少なくとも12Vバッテリに連続充電可能であり、12V系だけで最低限、車両の自走が可能な電源をまかなっているので、自動車は異常時にも走行可能となり、運転者が修理工場まで自走できる。
次に、図13〜図16を用いて、本発明の第5の実施形態による車両用発電機を用いた車両用電源装置の構成について説明する。
最初に、図13,図14を用いて、本実施形態による車両用電源装置を搭載した車両の構成について説明する。
図13は、本発明の第5の実施形態による車両用電源装置を搭載した車両の構成を示すブロック図である。図14は、本発明の第5の実施形態による車両用発電機を用いた車両用電源装置の構成を示すブロック図である。なお、図1,図2と同一符号は、同一部分を示している。
図13において、電動発電機1Bは、12Vバッテリ11にのみ充電するとともに、発電機とインバータが一体になったモータジェネレータである。電動発電機1Bは、永久磁石入りの回転子を備えている。
パワー回路8と12Vバッテリ11の間に設けられたDC/DCコンバータ6Aは、パワー回路8の出力を昇圧してバッテリ11に供給する昇圧型のコンバータである。
図14の構成において、電動発電機1Bを発電機として運転する場合には、通常の自動車用発電機と同様に発電量を励磁コイル18の電流を調整する。あるいは、MOS−FETを備えたパワー回路8により発電電流を整流する。モータコントローラ9がパワー回路8に負のトルクを指令すると、発電モードとなる。
ここで、図15を用いて、発電機の一般的な特性について説明する。
図15は、発電機の一般的な特性を示す特性図である。
通常、自動車用発電機は、回転数がある一定回転数(カットイン回転数)以上になると誘起電圧が直流側のバッテリ電圧を上回り、発電を始める。誘起電圧は回転数と共に大きくなるため、高回転になるほどバッテリ電圧と誘起電圧の差が広がり、発電量も多くなる。一方、発電機のインピーダンスZはコイルの電気抵抗RとインダクタンスLで決まり、一般にZ=R+jωLで表される。ここでωは周波数である。発電機が高速で回転すると、ωLの項が大きくなり、やがてRに対して無視できるようになる。すると、回転数の上昇とインピーダンスZの上昇がほぼ比例するようになるため、ある一定速度以上では発電量は増加しなくなる。
発電機の固定子巻線のターン数を増やすとLが大きくなるため、高速域での発電量は減るが、カットイン回転数が下がる。逆に巻線数を減らすとLが小さくなるため、高速域での発電量は増えるが、カットイン回転数は上がる。
エンジンアイドル時の発電機の回転数が、カットイン回転数よりも低ければ発電できないので、車両用発電機にはある程度の巻数が必要となる。自動車のアイドリング時にも発電機は発電可能でなければならないので、ある程度以上巻数は減らせない。このため、従来の発電機では高速側での発電量を増やすのが難しいものである。
そこで、本実施形態では、図13,図14に示すように、パワー回路8と12Vバッテリ11の間に、パワー回路8の出力を昇圧してバッテリ11に供給する昇圧型のDC/DCコンバータ6Aを設けている。これにより、電動発電機1Bの電圧が不足した場合に、DC/DCコンバータ6Aにより電圧を昇圧し、バッテリ11に供給することができる。従ってステータ巻線の巻数が少ない発電機でもカットイン回転数を低くすることができる。また、ステータ巻数が少ないため、高速領域で多くの出力を得ることができる。
さらに、DC/DCコンバータ6Aを、バッテリ側から電動発電機側に対する昇圧型コンバータとしてすることにより、パワー回路8の入力電圧をバッテリ電圧よりも上げることができる。このようにすると、電動発電機1Bをモータとして駆動する場合に、電動発電機1Bへの入力を増やすことができるので、モータの出力範囲を広げることができる。発電機を高出力化することにより、アイドルストップ時のエンジンのホットスタートだけでなく、エンジンの初動時に60Nmもの大トルクが必要なコールドスタートをも可能にすることができる。さらにエンジンのトルクアシストを高回転領域まで広範囲にわたって作用させることができる。
さらに、パワー回路8を、電動発電機側からバッテリ側に対する昇圧型コンバータとして利用することもできる。
ここで、図16を用いて、昇圧型DC/DCコンバータ6Aの構成について説明する。
図16は、昇圧型DC/DCコンバータの構成を示す回路図である。
昇圧型のDC/DCコンバータは、図示するように、コンデンサC1,C2と、リアクトルL1と、ダイオードD1,D2と、スイッチング素子SW1とが結線されており、スイッチング素子SW1を昇圧用のデューティ信号によってオンオフして、昇圧する構成となっている。
一方、図14に示すパワー回路8は、上述の昇圧型DC/DCコンバータと同じ役目をすることもできる。図16に示した昇圧用DC/DCコンバータと。図14の回路を比較すると、発電機1を図16のリアクトルL1と見なせば、パワー回路8の内部のMOSスイッチング素子8UH,8UL,8VH,8VL,8WH,8WLは、DC/DCコンバータ内のスイッチング素子SW1やダイオードD1,D2を同じ働きをさせることができる。このような運転状態が発電機に負のトルク指令を出した状態である。具体的には、MOSスイッチング素子8VH,8VL,8WH,8WLをオフとした状態において、MOSスイッチング素子8UHのソース・ドレイン間にはダイオードが並列接続されているので、MOSスイッチング素子8UHのゲート信号をオフにすると、MOSスイッチング素子8UHは図16のダイオードD2と等価となる。したがって、MOSスイッチング素子8ULは、図16のスイッチング素子SW1と等価となり、MOSスイッチング素子8ULのゲートに昇圧用デューティ信号を入力すると、パワー回路8によって昇圧することができる。実際には、電動発電機1Bは回転しているので、その回転に応じて、MOSスイッチング素子8UL,8VL,8WLのゲートにに順次切り替えて昇圧用デューティ信号を入力する必要がある。
このようにパワー回路8を昇圧回路として使えば、図15に示した発電機の発電特性のうち、固定子の巻数を従来の4ターンや5ターンよりも少なく3ターン等にしても低速域で発電が可能になる。すなわち低速領域ではパワー回路8により発電電圧を昇圧すればよいものである。このようにして、図15に示したように、高速域で大きな発電が可能で、且つ、アイドリングなどの低速時にも発電可能な高出力の発電機を得ることができる。
本実施形態の電動発電機1Bも永久磁石の漏れ磁束を利用しているので、界磁電流を制御するスイッチング素子がオープン状態で故障した場合でも、DC/DCコンバータやインバータを使って発電機の電圧を上昇させ、車両の走行が可能となる。
本発明の第1の実施形態による車両用電源装置を搭載した車両の構成を示すブロック図である。 本発明の第1の実施形態による車両用電源装置の電気回路構成を示す回路図である。 本発明の第1の実施形態による車両用電源装置にに用いる電動発電機の構成を示す断面図である。 本発明の第1の実施形態による車両用電源装置に用いるクローポール型電動発電機の回転子ヨークの片側構成を示す斜視図である。 本発明の第1の実施形態による車両用電源装置に用いる電動発電機の一対の回転子ヨークの間に永久磁石を配置した構成を示す斜視図である。 本発明の第1の実施形態による車両用電源装置に用いる電動発電機の回転子ヨークの詳細構成を示す斜視図である。 本発明の第1の実施形態による車両用電源装置に用いる電動発電機の回転子ヨークの詳細構成を示す斜視図である。 本発明の第2の実施形態による車両用電源装置を搭載した車両の要部構成を示すブロック図である。 本発明の第2の実施形態による車両用電源装置の動作を示すフローチャートである。 本発明の第2の実施形態による車両用電源装置の動作を示すタイミングチャートである。 本発明の第3の実施形態による車両用電源装置の構成を示すブロック図である。 本発明の第4の実施形態による車両用電源装置の構成を示すブロック図である。 本発明の第5の実施形態による車両用電源装置を搭載した車両の構成を示すブロック図である。 本発明の第5の実施形態による車両用発電機を用いた車両用電源装置の構成を示すブロック図である。 発電機の一般的な特性を示す特性図である。 昇圧型DC/DCコンバータの構成を示す回路図である。
符号の説明
1,1A…車両用交流発電機
4…エンジン
6,6A…DC/DCコンバータ
7…スタータ
8,8A…パワー回路
9…モータコントローラ
11…低電圧バッテリー
12…高電圧バッテリ
15…固定子
16…回転子
19…永久磁石
40…上位コントローラ

Claims (10)

  1. 回転子に永久磁石と界磁巻線を有する交流発電機と、
    この交流発電機に電気的に接続され、充電される高圧バッテリと、
    前記高圧バッテリよりも電圧の低い低圧バッテリと、
    前記高圧バッテリの電圧を降圧して前記低圧バッテリに供給するDC/DCコンバータと、
    前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石による発電により前記低圧バッテリに充電する制御手段を備えたことを特徴とする車両用電源装置。
  2. 請求項1記載の車両用電源装置において、
    前記交流発電機は、クローポール型の回転子と、この回転子の対向する1対の回転子ヨークの爪の間に配置された永久磁石とを備えたことを特徴とする車両用電源装置。
  3. 請求項1記載の車両用電源装置において、
    前記交流発電機は、クローポール型の回転子と、この回転子のそれぞれの回転子ヨークの爪の根本に配置された永久磁石とを備えたことを特徴とする車両用電源装置。
  4. 請求項2又は請求項3のいずれかに記載の車両用電源装置において、
    前記界磁巻線の巻かれている部分の回転子ヨークの面積S1を、前記回転子ヨークの爪の根本の面積S3よりも小さく(S1<S3)したことを特徴とする車両用電源装置。
  5. 請求項1記載の車両用電源装置において、
    前記制御手段は、前記界磁巻線に通電しない場合に、前記交流発電機を回転駆動するエンジンの発生する回転駆動力を変速する変速機の変速比を下げ、エンジン回転数を上げる制御を実行することを特徴とする車両用電源装置。
  6. 請求項1記載の車両用電源装置において、
    前記交流発電機は、前記低圧バッテリから電力が供給される補助界磁巻線を備え、
    前記制御手段は、前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石及び前記補助界磁巻線による発電により前記低圧バッテリに充電することを特徴とする車両用電源装置。
  7. 回転子に界磁巻線と補助界磁巻線を有する交流発電機と、
    この交流発電機に電気的に接続され、充電される高圧バッテリと、
    前記高圧バッテリよりも電圧の低い低圧バッテリと、
    前記高圧バッテリの電圧を降圧して前記低圧バッテリに供給するDC/DCコンバータと、
    前記界磁巻線に通電しない場合に、前記低圧バッテリに接続された前記交流発電機の前記補助界磁巻線による発電により前記低圧バッテリに充電する制御手段を備えたことを特徴とする車両用電源装置。
  8. 回転子に永久磁石と界磁巻線を有する交流発電機と、
    この交流発電機の出力を昇圧する昇圧手段と、
    この昇圧手段により昇圧された電圧により充電される低圧バッテリと、
    前記界磁巻線に通電しない場合に、前記交流発電機の前記永久磁石による発電により前記低圧バッテリに充電する制御手段を備えたことを特徴とする車両用電源装置。
  9. 請求項8記載の車両用電源装置において、
    前記昇圧手段は、DC/DCコンバータであることを特徴とする車両用電源装置。
  10. 請求項8記載の車両用電源装置において、
    前記昇圧手段は、前記交流発電機の出力電圧を整流するパワー回路であることを特徴とする車両用電源装置。
JP2004240347A 2004-08-20 2004-08-20 車両用電源装置 Expired - Fee Related JP4291235B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004240347A JP4291235B2 (ja) 2004-08-20 2004-08-20 車両用電源装置
US11/195,604 US7215034B2 (en) 2004-08-20 2005-08-03 Power supply system for vehicle
EP05017299A EP1628379A2 (en) 2004-08-20 2005-08-09 Power supply system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240347A JP4291235B2 (ja) 2004-08-20 2004-08-20 車両用電源装置

Publications (2)

Publication Number Publication Date
JP2006060922A true JP2006060922A (ja) 2006-03-02
JP4291235B2 JP4291235B2 (ja) 2009-07-08

Family

ID=35432762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240347A Expired - Fee Related JP4291235B2 (ja) 2004-08-20 2004-08-20 車両用電源装置

Country Status (3)

Country Link
US (1) US7215034B2 (ja)
EP (1) EP1628379A2 (ja)
JP (1) JP4291235B2 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296792A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp コイル界磁式同期モーター回生システムおよびその制御方法
WO2013171843A1 (ja) * 2012-05-15 2013-11-21 三菱電機株式会社 界磁巻線式回転電機および界磁巻線式回転電機の界磁電流制御方法
JP2016214051A (ja) * 2015-04-30 2016-12-15 憲治 本田 U字マグネットを用いた電池方法
WO2017209248A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 回転電機駆動システム
WO2017209245A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 回転電機
JP2017221097A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 回転電機
JP2017221098A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 回転電機駆動システム
WO2018143377A1 (ja) * 2017-02-02 2018-08-09 株式会社デンソー 回転電機
CN110539643A (zh) * 2018-05-29 2019-12-06 河南森源重工有限公司 一种电动汽车下高压控制方法及装置
JP2022136136A (ja) * 2016-09-02 2022-09-15 ガイ-ヤブロンスキ,ウォイチェフ エンジンシリンダアセンブリ及びそれを用いて構築された逆回転燃焼エンジン

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4170315B2 (ja) * 2005-05-30 2008-10-22 インターナショナル・ビジネス・マシーンズ・コーポレーション 異常判断装置、制御方法、自動車およびプログラム
US20070156335A1 (en) 2006-01-03 2007-07-05 Mcbride Sandra Lynn Computer-Aided Route Selection
JP4228237B2 (ja) * 2006-06-06 2009-02-25 トヨタ自動車株式会社 電動パワーステアリング装置
JP4275704B2 (ja) * 2007-03-13 2009-06-10 三菱電機株式会社 車両用電力変換装置
JP4620709B2 (ja) * 2007-07-27 2011-01-26 日立オートモティブシステムズ株式会社 車載用アクチュエータシステム
WO2009082010A1 (ja) * 2007-12-26 2009-07-02 Sumitomo Heavy Industries, Ltd. ハイブリッド型建設機械及びハイブリッド型建設機械の制御方法
JP5627842B2 (ja) 2008-04-23 2014-11-19 株式会社ジェイテクト 操舵制御装置
US20100006351A1 (en) * 2008-07-08 2010-01-14 Howard J Scott Electric vehicle with contra-recgarge system
JP4450095B2 (ja) * 2008-07-11 2010-04-14 トヨタ自動車株式会社 ハイブリッド車両の制御システム及び制御方法
TWM354572U (en) * 2008-10-21 2009-04-11 Pan World Control Technologies Inc Electric bicycle with the function of self charging
US9067483B2 (en) * 2008-10-21 2015-06-30 Maurice W. Raynor Electric vechicle drive mechanism for driving multiple alternators
DE102009000051A1 (de) * 2009-01-07 2010-07-08 Robert Bosch Gmbh Verfahren zum Betreiben eines Bordnetzes mit mindestens zwei Bordteilnetzen
WO2011010493A1 (ja) 2009-07-24 2011-01-27 三菱電機株式会社 車両用電源システム
KR101103877B1 (ko) * 2009-07-30 2012-01-12 현대자동차주식회사 하이브리드차량의 가변 전압 제어 방법
WO2012111128A1 (ja) * 2011-02-17 2012-08-23 トヨタ自動車株式会社 車両の回生制御システム
EP2698298A4 (en) * 2011-04-14 2016-06-15 Toyota Motor Co Ltd HYBRID VEHICLE AND PERFORMANCE CONTROL METHOD FOR A POWER STORAGE DEVICE INSTALLED THEREIN
EP2537715B1 (en) * 2011-06-22 2018-01-24 Volvo Car Corporation Method and arrangement for improving the performance of a electric safety-critical vehicle actuator
US8727067B2 (en) * 2011-06-30 2014-05-20 Ford Global Technologies, Llc Method for supplying power to an electrically assisted steering system
KR102209165B1 (ko) * 2013-03-13 2021-01-29 알리손 트랜스미션, 인크. 차량 클러치 터치 포인트를 검출하기 위한 시스템 및 방법
DE102014201345A1 (de) * 2014-01-27 2015-07-30 Robert Bosch Gmbh Bordnetz und Verfahren zum Betrieb eines Bordnetzes
JP6641600B2 (ja) * 2016-06-03 2020-02-05 株式会社デンソー 回転電機の回転子
AU2017210650C1 (en) * 2016-08-16 2023-11-23 Laa Industries Pty Ltd Motor starting and control system and method utilised by directly connected islanded reciproacting engine powered generators
DE102016217955A1 (de) * 2016-09-20 2018-03-22 Voith Patent Gmbh Verfahren zum Betreiben eines Hybridfahrzeugs
EP3847742A4 (en) 2018-09-03 2022-08-31 Milspec Technologies Pty Ltd DC CURRENT CONVERTER FOR A VEHICLE ALTERNATOR
JP7108139B2 (ja) * 2019-06-21 2022-07-27 ジヤトコ株式会社 車両の電源装置及びその制御方法
DE102019130944A1 (de) * 2019-11-15 2021-05-20 Denys Maul Energiegewinnungs- und/oder Rückgewinnungsvorrichtung eines Elektrofahrzeuges
KR20220161688A (ko) * 2021-05-31 2022-12-07 현대자동차주식회사 하이브리드 차량의 림폼 주행 제어 방법

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248827B2 (ja) * 1995-01-18 2002-01-21 三菱電機株式会社 エンジン発電機の制御装置
US5841201A (en) * 1996-02-29 1998-11-24 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle drive system having a drive mode using both engine and electric motor
JP3663958B2 (ja) 1998-03-05 2005-06-22 株式会社日立製作所 車両用交流発電機
JPH11299123A (ja) 1998-04-15 1999-10-29 Hino Motors Ltd 車両用発電機の制御回路
JP3438589B2 (ja) * 1998-06-04 2003-08-18 日産自動車株式会社 車両の駆動力制御装置
JP3395708B2 (ja) * 1999-04-27 2003-04-14 株式会社日立製作所 ハイブリッド車両
EP1055545B1 (en) * 1999-05-26 2004-01-28 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle with fuel cells incorporated therein and method of controlling the same
JP2001028832A (ja) 1999-07-12 2001-01-30 Yazaki Corp Dc/dcコンバータ保護装置
JP2001103721A (ja) 1999-09-30 2001-04-13 Hitachi Ltd 車両用交流発電機
JP3542938B2 (ja) * 1999-10-29 2004-07-14 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3506975B2 (ja) * 1999-10-29 2004-03-15 本田技研工業株式会社 ハイブリッド車両の制御装置
JP3775562B2 (ja) * 2000-03-07 2006-05-17 ジヤトコ株式会社 パラレルハイブリッド車両
JP3736268B2 (ja) * 2000-03-21 2006-01-18 日産自動車株式会社 ハイブリッド車両の制御装置
US6707169B2 (en) * 2000-07-19 2004-03-16 Honda Giken Kogyo Kabushiki Kaisha Engine generator, controller, starter apparatus, and remote control system for the engine generator
US6455978B1 (en) * 2000-08-28 2002-09-24 Delphi Technologies, Inc. Hybrid twin coil electrical machine
JP3740375B2 (ja) 2001-02-27 2006-02-01 株式会社日立製作所 車両用交流発電機
JP2003018793A (ja) 2001-06-27 2003-01-17 Hitachi Ltd 車両用交流発電システム及びそれに用いられる車両用交流発電機
JP3624841B2 (ja) * 2001-03-06 2005-03-02 日産自動車株式会社 車両の制御装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009296792A (ja) * 2008-06-05 2009-12-17 Mitsubishi Electric Corp コイル界磁式同期モーター回生システムおよびその制御方法
WO2013171843A1 (ja) * 2012-05-15 2013-11-21 三菱電機株式会社 界磁巻線式回転電機および界磁巻線式回転電機の界磁電流制御方法
JPWO2013171843A1 (ja) * 2012-05-15 2016-01-07 三菱電機株式会社 界磁巻線式回転電機および界磁巻線式回転電機の界磁電流制御方法
US9294025B2 (en) 2012-05-15 2016-03-22 Mitsubishi Electric Corporation Field winding rotating electrical machine and method for controlling field current of a field winding rotating electrical machine
JP2016214051A (ja) * 2015-04-30 2016-12-15 憲治 本田 U字マグネットを用いた電池方法
WO2017209248A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 回転電機駆動システム
WO2017209245A1 (ja) * 2016-06-03 2017-12-07 株式会社デンソー 回転電機
JP2017221097A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 回転電機
JP2017221098A (ja) * 2016-06-03 2017-12-14 株式会社デンソー 回転電機駆動システム
JP2022136136A (ja) * 2016-09-02 2022-09-15 ガイ-ヤブロンスキ,ウォイチェフ エンジンシリンダアセンブリ及びそれを用いて構築された逆回転燃焼エンジン
WO2018143377A1 (ja) * 2017-02-02 2018-08-09 株式会社デンソー 回転電機
CN110539643A (zh) * 2018-05-29 2019-12-06 河南森源重工有限公司 一种电动汽车下高压控制方法及装置

Also Published As

Publication number Publication date
US7215034B2 (en) 2007-05-08
JP4291235B2 (ja) 2009-07-08
EP1628379A2 (en) 2006-02-22
US20060038406A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JP4291235B2 (ja) 車両用電源装置
JP4116292B2 (ja) ハイブリッド車用電動発電システム
Cai Comparison and review of electric machines for integrated starter alternator applications
EP1596494B1 (en) AC rotating electric machine control method and electrical power train system
US7279855B2 (en) Electric drive device for vehicle and hybrid engine/motor-type four wheel drive device
JP3797972B2 (ja) 車両用発電電動機システム
JP2008520485A (ja) ハイブリッド自動車及びハイブリッド自動車の動作制御法
JP2006304390A (ja) ハイブリッド車両用電源装置
JP2002084672A (ja) 車両用電源システム
EP1503074A1 (en) Drive circuit for rotating electric device and electrical unit for vehicle
JP4098331B2 (ja) 車両用電動駆動装置及びエンジン・モータ複合型の四輪駆動装置
JP4351792B2 (ja) スタータを兼用したオルタネータ
KR100623745B1 (ko) 4륜 하이브리드 전기자동차의 인버터 제어장치 및 방법
Lee et al. Design considerations for low voltage claw pole type integrated starter generator (ISG) systems
JP4478185B2 (ja) 車両用エンジン始動装置
JP2007267514A (ja) 電動4輪駆動車及び電動4輪駆動車に用いられる電動モータ
JP5692027B2 (ja) 二輪車用のエンジン補機システム
JP3904218B2 (ja) 車両用電動駆動装置及びエンジン・モータ複合型の四輪駆動装置
JP7367373B2 (ja) モータ制御システム
KR20180014512A (ko) 차량의 시동 발전 시스템 및 그 방법
US11345333B2 (en) Hybrid motor vehicle and method for operating a hybrid motor vehicle
JP3146743B2 (ja) リターダ装置
JP2008259362A (ja) 電動車両用駆動装置
JP2006316768A (ja) エンジン始動システム、方法及びエンジン始動用回転電機
KR20150005261A (ko) 전기자동차 구동장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees