WO2012111128A1 - 車両の回生制御システム - Google Patents

車両の回生制御システム Download PDF

Info

Publication number
WO2012111128A1
WO2012111128A1 PCT/JP2011/053385 JP2011053385W WO2012111128A1 WO 2012111128 A1 WO2012111128 A1 WO 2012111128A1 JP 2011053385 W JP2011053385 W JP 2011053385W WO 2012111128 A1 WO2012111128 A1 WO 2012111128A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power generation
vehicle
low
high voltage
Prior art date
Application number
PCT/JP2011/053385
Other languages
English (en)
French (fr)
Inventor
小山 崇
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180004134.5A priority Critical patent/CN102763320B/zh
Priority to EP11827772.2A priority patent/EP2677658B1/en
Priority to PCT/JP2011/053385 priority patent/WO2012111128A1/ja
Priority to US13/500,555 priority patent/US9172314B2/en
Priority to JP2012517940A priority patent/JP5344090B2/ja
Publication of WO2012111128A1 publication Critical patent/WO2012111128A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a technique for regenerating kinetic energy of a vehicle into electric energy when the vehicle decelerates.
  • Patent Document 2 describes a technology for alternately charging a low-voltage battery and a high-voltage battery in a vehicle equipped with a low-voltage battery and a high-voltage battery having different rated voltages.
  • Patent Document 3 describes a technique for reducing the charging voltage of a lithium ion battery below a specified value when an overvoltage occurs in any one of the lithium ion batteries composed of a plurality of cells connected in series. Yes.
  • Patent Document 4 describes a technique for selectively supplying surplus power that cannot be charged to a battery to a plurality of electric loads during regenerative braking of a hybrid vehicle equipped with an internal combustion engine and an electric motor as a prime mover.
  • Patent Document 5 in a vehicle having a changeover switch for switching the output of a generator to a low-voltage storage battery and a high-voltage electric load, the output voltage of the generator is temporarily set when the changeover switch is switched. It describes the technology to reduce.
  • JP 2002-135993 A JP 2000-184613 A JP 2007-018871 A JP 2006-174543 A Japanese Patent Application Laid-Open No. 09-074693
  • the present invention has been made in view of the above-described circumstances, and its purpose is to regenerate the kinetic energy of the vehicle into electric energy when the vehicle is decelerating and to convert the regenerated electric energy into a low voltage system circuit.
  • An object of the present invention is to provide a technique capable of increasing the regeneration rate while suppressing the fluctuation of the regenerative braking force accompanying the change in the generated voltage in the vehicle regenerative control system that alternately supplies the high voltage system circuit.
  • the vehicle regeneration control system of the present invention is A low-voltage circuit including a low-voltage battery; A high voltage system circuit including a high voltage battery having a higher rated voltage than the low voltage battery; A power generation unit for generating low voltage electrical energy suitable for the low voltage system circuit or high voltage electrical energy suitable for the high voltage system circuit using kinetic energy of the vehicle; When the vehicle is in a decelerating running state, the power generation unit is controlled so as to alternately generate the low-voltage electrical energy and the high-voltage electrical energy, and the time during which the low-voltage electrical energy is generated And control means for duty-controlling the ratio of the time during which the high-voltage electrical energy is generated; I was prepared to.
  • the power generation unit uses a low voltage electric energy (hereinafter referred to as “low voltage energy”) and a high voltage electric energy. (Hereinafter referred to as “high voltage energy”) alternately. That is, the power generation unit continuously generates power while alternately switching the power generation voltage between a low voltage and a high voltage. At that time, the sum of the time for generating the low voltage energy and the time for generating the high voltage energy (duty control cycle) by the power generation unit is short enough for the occupant to feel that the magnitude of the regenerative braking force is substantially constant. It shall be set to the period.
  • the low-voltage circuit and the high-voltage circuit are used to reduce the change in regenerative braking force that accompanies switching of the power generation voltage, It becomes possible to supply to both. Moreover, since it is not necessary to stop the power generation operation of the power generation unit intermittently, the amount of kinetic energy regenerated can be increased as much as possible. Furthermore, since the ratio between the power generation time of the low voltage energy and the power generation time of the high voltage energy can be set arbitrarily, a desired amount of electricity can be supplied to both the low voltage system circuit and the high voltage system circuit in one deceleration run. It is also possible to supply energy.
  • the vehicle regeneration control system regenerates the kinetic energy of the vehicle to electrical energy when the vehicle is decelerating and supplies the regenerated electrical energy to the low voltage system circuit and the high voltage system circuit alternately.
  • the regeneration rate can be increased while suppressing the fluctuation of the regenerative braking force accompanying the change in the generated voltage.
  • the ratio of the time during which the power generation unit generates the low-voltage electrical energy and the time during which the high-voltage electrical energy is generated is determined according to the deceleration required for the vehicle. You may make it further provide the determination means to determine. In that case, the control means may perform duty control on the power generation voltage of the power generation unit in accordance with the ratio determined by the determination means.
  • the regenerative braking force is suitable for the required deceleration. It will be. For example, when the required deceleration is high, the power generation time for the high-voltage energy may be lengthened and the power generation time for the low-voltage energy may be shortened compared to when the required deceleration is low.
  • the power generation voltage during regenerative braking is controlled in this way, it becomes possible to supply electric energy regenerated from the kinetic energy of the vehicle to both the low voltage system circuit and the high voltage system circuit. Furthermore, since it is not necessary to stop the power generation operation of the power generation unit intermittently, the amount of regenerative kinetic energy can be increased as much as possible.
  • the vehicle regeneration control system regenerates the kinetic energy of the vehicle to electrical energy when the vehicle is decelerating and supplies the regenerated electrical energy to the low voltage system circuit and the high voltage system circuit alternately.
  • the regeneration rate can be increased while suppressing fluctuations in the braking force accompanying changes in the generated voltage.
  • the control means may temporarily stop the power generation of the power generation unit when changing the power generation voltage of the power generation unit.
  • the control means may temporarily stop the field current applied to the power generation unit.
  • the stop period at that time does not need to be so long that the power generation voltage of the power generation unit is reduced to zero, and may be a short time period such that the power generation voltage decreases to a voltage lower than the low voltage.
  • the control means When the charge amount of the low voltage battery or the high voltage battery has reached an upper limit value, the control means according to the present invention reduces the power consumption of the electric load included in the low voltage system circuit or the high voltage system circuit. You may make it increase.
  • the low voltage battery or the high voltage battery When the electric energy regenerated by the power generation unit is supplied to the low voltage battery or the high voltage battery when the charge amount of the low voltage battery or the high voltage battery has reached the upper limit value, the low voltage battery or the high voltage battery May fall into an overcharged state.
  • a method of suppressing the overcharge of the low voltage battery or the high voltage battery by reducing the ratio of the low voltage power generation time or the high voltage power generation time in the duty control period is also conceivable. In that case, the magnitude of the regenerative braking force becomes inappropriate for the required deceleration, which may give the passenger a sense of discomfort.
  • the regenerative braking force is increased. It is possible to avoid overcharging of the low voltage battery or the high voltage battery while maintaining the size suitable for the required deceleration.
  • the ratio of the time during which the power generation unit generates low voltage energy and the time during which high voltage energy is generated is determined based on the required deceleration of the vehicle, the high voltage electrical energy is reduced during the duty control period.
  • the proportion of time for generating electricity exceeds 100% or falls below 0%.
  • the power generation voltage of the power generation unit is fixed to the high voltage or the low voltage described above, the magnitude of the regenerative braking force may become inappropriate for the required deceleration.
  • the control means of the present invention may make the power generation voltage of the power generation unit higher than the high voltage when the proportion of time for generating the high voltage electrical energy exceeds 100%. In this case, it is possible to avoid a situation in which the magnitude of the regenerative braking force is excessive with respect to the required deceleration of the vehicle. Moreover, the control means of this invention may make the power generation voltage of a power generation unit lower than the said low voltage, when the ratio of the time which produces
  • a regeneration control system for a vehicle that regenerates kinetic energy of the vehicle to electrical energy when the vehicle decelerates and charges the regenerated electrical energy alternately to a low-voltage battery and a high-voltage battery.
  • Regeneration efficiency can be increased while suppressing torque fluctuations associated with changes in the generated voltage.
  • FIG. 1 is a diagram showing a schematic configuration of a vehicle to which the present invention is applied.
  • the vehicle is equipped with an internal combustion engine 1 as a prime mover.
  • the output shaft of the internal combustion engine 1 is connected to the input shaft of the transmission 2.
  • An output shaft of the transmission 2 is connected to a differential gear 4 via a propeller shaft 3.
  • Two drive shafts 5 are connected to the differential gear 4, and the drive shafts 5 are connected to the left and right drive wheels 6, respectively.
  • the power (rotational torque of the output shaft) output from the internal combustion engine 1 is transmitted to the propeller shaft 3 after being converted in speed by the transmission 2, and then transmitted to the drive shaft 5 and the drive wheels 6 after being decelerated by the differential gear 4. Is done.
  • the internal combustion engine 1 is provided with an electric circuit 100.
  • the electric circuit 100 includes a power generation unit 101, a high voltage system circuit 102, and a low voltage system circuit 103.
  • the power generation unit 101 includes an alternator 110 and a changeover switch 120.
  • the alternator 110 is connected to the output shaft of the internal combustion engine 1 (or a member that rotates in conjunction with the output) via a pulley, a belt, or the like, and generates power that converts the kinetic energy (rotational energy) of the output shaft into electrical energy.
  • the alternator 110 includes a stator coil having a three-phase winding, a field coil wound around the rotor, a rectifier that rectifies an alternating current generated in the stator coil into a direct current, and a field current for the field coil.
  • the alternator 110 configured as described above generates an induced current (three-phase AC current) in the stator coil when a field current (field current) is supplied to the field coil, and the generated three-phase AC current is converted to DC. Rectified into current and output.
  • the changeover switch 120 is a device for inputting the output of the alternator 110 to either the low voltage system circuit 103 or the high voltage system circuit 102.
  • the changeover switch 120 includes one input terminal 120a and two output terminals 120b and 120c, and electrically connects one of the two output terminals 120b and 120c to the input terminal 120a.
  • the output of the alternator 110 is input to the input terminal 120a.
  • One output terminal (hereinafter referred to as “first output terminal”) 120 b of the two output terminals 120 b and 120 c is connected to the high voltage system circuit 102.
  • the other of the two output terminals 120 b and 120 c (hereinafter referred to as “second output terminal”) 120 c is connected to the low voltage system circuit 103.
  • a contact switch can be used, but a contactless switch is preferably used.
  • the high voltage system circuit 102 is a circuit that can input and output electricity of a high voltage Vh (for example, about 43.5 V), and is a circuit in which a high voltage battery 102a and a high voltage load 102b are connected in parallel.
  • the high voltage battery 102a is, for example, a heater for heating the lubricating oil of the internal combustion engine 1, a heater for heating the cooling water of the internal combustion engine 1, a heater for heating an exhaust purification device such as a catalyst, or a motor assist.
  • the low voltage system circuit 103 is a circuit that can input and output electricity of a low voltage Vl (for example, about 14.5 V), and is a circuit in which a low voltage battery 103a and a low voltage load 103b are connected in parallel.
  • the low voltage load 103b is, for example, various actuators or a radiator fan.
  • the vehicle is provided with an electronic control unit (ECU) 20 for electrically controlling the internal combustion engine 1, the transmission 2, and the electric system circuit 100.
  • ECU electronice control unit
  • FIG. 1 there is only one ECU 20, but the ECU 20 is divided into an ECU for controlling the internal combustion engine 1, an ECU for controlling the transmission 2, and an ECU for controlling the electric circuit 100. Also good.
  • the ECU 20 receives output signals from various sensors such as an accelerator position sensor 21, a shift position sensor 22, a brake sensor 23, a crank position sensor 24, and a vehicle speed sensor 25. Moreover, the discharge voltage of the high voltage battery 102a and the low voltage battery 103a is also input to the ECU 20.
  • the accelerator position sensor 21 is a sensor that outputs an electrical signal corresponding to the operation amount (depression amount) of the accelerator pedal.
  • the shift position sensor 22 is a sensor that outputs an electrical signal corresponding to the operation position of the shift lever.
  • the brake sensor 23 is a sensor that outputs an electrical signal corresponding to the operation amount (depression amount) of the brake pedal.
  • the crank position sensor 24 is a sensor that outputs an electrical signal corresponding to the rotational position of the output shaft (crankshaft) of the internal combustion engine 1.
  • the vehicle speed sensor 25 is a sensor that outputs an electrical signal corresponding to the traveling speed of the vehicle.
  • ECU20 controls the internal combustion engine 1, the transmission 2, the electric system circuit 100, etc. based on the output signal of various sensors mentioned above.
  • a method for controlling the electric circuit 100 will be described.
  • the ECU 20 changes the generated voltage of the alternator 110 by duty-controlling on / off of the regulator 110a. For example, when increasing the power generation voltage of the alternator 110, the ECU 20 determines the duty ratio so that the on time of the regulator 110a is long (off time is short). When reducing the power generation voltage of the alternator 110, the ECU 20 determines the duty ratio so that the ON time of the regulator 110a is short (off time is long). The ECU 20 senses the actual generated voltage of the alternator 110, and also performs feedback control of the duty ratio according to the difference between the actual generated voltage and the target generated voltage.
  • the ECU 20 controls the duty of the regulator 110a so that the generated voltage of the alternator 110 matches the voltage (high voltage) Vh suitable for the high voltage system circuit 102, and
  • the changeover switch 120 is controlled so that the input terminal 120a and the first output terminal 120b are connected.
  • the ECU 20 controls the duty of the regulator 110a so that the power generation voltage of the alternator 110 matches the voltage (low voltage) Vl suitable for the low voltage system circuit 103, and inputs
  • the changeover switch 120 is controlled so that the terminal 120a and the second output terminal 120c are connected.
  • the kinetic energy of the drive wheels 6 is the drive shaft 5, the differential gear 4, the propeller shaft 3, It is transmitted to the alternator 110 via the transmission 2 and the internal combustion engine 1. That is, the rotor of the alternator 110 rotates in conjunction with the drive wheels 6. At this time, if a field current is applied to the alternator 110, the kinetic energy of the drive wheels 6 can be converted (regenerated) into electric energy.
  • the ECU 20 performs regenerative control for converting (regenerating) the kinetic energy of the drive wheels 6 into electric energy by applying a field current to the alternator 110 when the vehicle is in a decelerating traveling state.
  • the power generation voltage of the alternator 110 When the power generation voltage of the alternator 110 is set to the high voltage Vh when the regenerative control is performed, the amount of kinetic energy regenerated as electric energy can be increased. However, there are problems that the regenerative braking force becomes excessive and the low voltage battery 103a cannot be charged. On the other hand, if the power generation voltage of the alternator 110 is set to the low voltage Vl when the regenerative control is performed, the amount of kinetic energy regenerated as electric energy is reduced, or the high voltage battery 102a cannot be charged. There is a problem of doing.
  • the ECU 20 alternately generates high voltage energy and low voltage energy, and the input terminal 120 a is alternately switched to the first output terminal 120 b and the second output terminal 120 c.
  • the changeover switch 120 is controlled so as to be connected to. Specifically, the ECU 20 determines that the alternator 110 generates high voltage energy (time when the input terminal 120a is connected to the first output terminal 120b) th and the time when the alternator 110 generates low voltage energy (the input terminal 120a is Duty control is performed on the ratio of the time (t1) connected to the second output terminal 120c).
  • the required deceleration of the vehicle can be calculated using parameters such as the operation amount of the brake pedal, the accelerator opening, the gear position of the transmission 2 and the friction coefficient of the road surface. At that time, the relationship among the operation amount of the brake pedal, the accelerator opening, the gear position of the transmission 2, the friction coefficient of the road surface, and the required deceleration may be mapped in advance.
  • the ECU 20 calculates a deceleration force (required deceleration force) Ntrg necessary to obtain the requested deceleration according to the following equation (1).
  • Ntrg (required deceleration) * (vehicle weight) (1)
  • the ECU 20 calculates a torque (requested deceleration torque) Ttrg necessary for obtaining the requested deceleration force according to the following equation (2).
  • Ttrg Ntrg * (tire diameter) * (gear ratio) ⁇ (friction torque) (2)
  • “Friction torque” in the above equation (2) is the sum of the friction of the internal combustion engine 1 and the friction of the drive system.
  • the ECU 20 calculates the work rate (required deceleration work rate) Wtrg necessary to obtain the requested deceleration by substituting the requested deceleration torque Ttrg into the following equation (3).
  • Wtrg Ttrg * (engine speed) * (2 ⁇ / 60) (3)
  • the ECU 20 calculates the duty ratio ⁇ (%) by substituting the required deceleration power Wtrg into the following equation (4).
  • Wtrg Whigh * ( ⁇ / 100) + Wlow * ⁇ (100 ⁇ ) / 100 ⁇ (4)
  • “Whigh” in the above equation (4) is the electric energy (working rate) that the high voltage system circuit 102 can consume per unit time
  • “Wlow” in the equation (4) is the low voltage system circuit 103. The electric energy (working rate) that can be consumed per unit time is shown.
  • the power factor High of the high voltage system circuit 102 is the sum of electrical energy (chargeable power) that can be received by the high voltage battery 102a and electrical energy (consumable power) that can be consumed by the high voltage load 102b.
  • the work rate Wlow of the low voltage system circuit 103 is the sum of the electrical energy (chargeable power) that can be received by the low voltage battery 103a and the electrical energy (consumable power) that can be consumed by the low voltage load 103b.
  • the chargeable power of the high voltage battery 102a can be obtained using the charge state (SOC) and temperature of the high voltage battery 102a as parameters.
  • the chargeable power of the low voltage battery 103a can also be obtained using the charge state (SOC) and temperature of the low voltage battery 103a as parameters.
  • the power generation time of high voltage energy becomes longer when the required deceleration is large than when it is small.
  • the example shown in FIG. 3 described above shows an example of control when the required deceleration is small, and the power generation time th of high voltage energy is set short.
  • the power generation time th of the high voltage energy is set to be long as shown in FIG.
  • the regenerative braking force when high voltage energy is generated is larger than the regenerative braking force when low voltage energy is generated. Therefore, when the power generation time th of the high voltage energy is set long, the regenerative braking force generated during the period t is larger than when the power generation time th is set short. As a result, the regenerative braking force becomes a magnitude corresponding to the required deceleration.
  • the magnitude of the regenerative braking force is determined according to the requested deceleration without making the driver aware of fluctuations in the regenerative braking force due to switching of the generated voltage. It becomes possible to.
  • the amount of regenerative kinetic energy can be increased as much as possible, and at the time of deceleration traveling
  • the control logic can also be simplified. Further, since electric energy can be supplied to both the high voltage system circuit 102 and the low voltage system circuit 103, both the high voltage battery 102a and the low voltage battery 103a can be charged.
  • FIG. 6 is a control routine that is executed when the ECU 20 performs regenerative control.
  • This control routine is a routine stored in advance in the ROM or the like of the ECU 20 and is periodically executed by the ECU 20.
  • the ECU 20 first determines whether or not the vehicle is in a decelerating running state in S101. For example, when the output signal (accelerator opening) of the accelerator position sensor 21 is zero (fully closed) and the output signal (vehicle speed) of the vehicle speed sensor 25 is greater than zero, the ECU 20 judge.
  • the ECU 20 determines the output signal (accelerator opening) of the accelerator position sensor 21, the output signal (gear position) of the shift position sensor 22, the output signal of the brake sensor 23 (operation amount of the brake pedal), and the friction coefficient of the road surface.
  • the required deceleration of the vehicle is calculated as a parameter.
  • the ECU 20 calculates the duty ratio ⁇ based on the required deceleration calculated in S102 and the equations (1) to (4) described above.
  • the determination means concerning this invention is implement
  • the duty ratio ⁇ when the duty ratio ⁇ is determined according to the required deceleration, the duty ratio ⁇ may exceed 100% or may be less than 0%. If the generated voltage of the alternator 110 is fixed to the high voltage Vh when the duty ratio ⁇ exceeds 100%, the regenerative braking force may be too small for the required deceleration. Further, if the generated voltage of the alternator 110 is fixed to the low voltage Vl when the duty ratio ⁇ is less than 0%, the regenerative braking force may be excessive with respect to the required deceleration.
  • the ECU 20 determines in S104 whether or not the duty ratio ⁇ calculated in S103 is greater than 100%. If an affirmative determination is made in S104, the ECU 20 proceeds to S105, and makes the generated voltage of the alternator 110 higher than the high voltage Vh. At that time, as shown in FIG. 7, the ECU 20 may increase the generated voltage as the duty ratio ⁇ increases. When the power generation voltage of the alternator 110 is changed in this way, it is possible to avoid a situation where the magnitude of the regenerative braking force is too small with respect to the required deceleration.
  • the ECU 20 proceeds to S106, and determines whether or not the duty ratio ⁇ calculated in S103 is smaller than 0%. If an affirmative determination is made in S106, the ECU 20 proceeds to S107 and makes the power generation voltage of the alternator 110 lower than the low voltage Vl. At that time, the ECU 20 may lower the generated voltage as the duty ratio ⁇ decreases as shown in FIG. When the power generation voltage of the alternator 110 is changed in this way, it is possible to avoid a situation in which the magnitude of the regenerative braking force is excessive with respect to the required deceleration.
  • the ECU20 progresses to S108 after performing the process of said S105 or said S107, or when negative determination is carried out in said S106.
  • the power generation voltage of the alternator 110 is controlled according to the duty ratio ⁇ calculated in S103, and the selector switch 120 is switched in synchronization with the switching of the power generation voltage.
  • the control means according to the present invention is realized.
  • the driver when the vehicle is in a decelerating running state, the driver is made aware of fluctuations in the regenerative braking force accompanying the switching of the generated voltage, or the regenerative amount of kinetic energy is greatly reduced. Therefore, the magnitude of the regenerative braking force can be set to a magnitude corresponding to the required deceleration.
  • the difference between the first embodiment and the present embodiment is that the application of the field current to the alternator 110 is temporarily stopped when the power generation voltage of the alternator 110 is switched.
  • the stop period at that time does not need to be so long that the power generation voltage of the alternator 110 decreases to zero, and a short period is sufficient so that the power generation voltage of the alternator 110 is lower than the low voltage Vl.
  • the terminal voltage of the alternator 110 increases rapidly, and an overvoltage may act on the components of the alternator 110. Further, when the changeover switch 120 is configured by a contact switch, a spark may occur at the contact.
  • the ECU 20 temporarily stops the application of the field current to the alternator 110 when switching the power generation voltage of the alternator 110 from either the high voltage Vh or the low voltage Vl to the other. I did it.
  • the ECU 20 since the power generation voltage of the alternator 110 falls below the low voltage Vl when the changeover switch 120 is switched, a situation in which the terminal voltage of the alternator 110 suddenly increases, It is possible to avoid the occurrence of a spark at the contact point of the changeover switch 120. As a result, it is possible to suppress a decrease in durability of the alternator 110 and the changeover switch 120.
  • the difference between the first embodiment and the present embodiment is that the power consumption of the high voltage load 102b or the low voltage battery 103a is reduced when the state of charge (SOC) of the high voltage battery 102a or the low voltage battery 103a is large.
  • SOC state of charge
  • the regenerative braking force is made suitable for the required deceleration while suppressing overcharging of the high voltage battery 102a or the low voltage battery 103a.
  • the duty ratio ⁇ may exceed 100%.
  • the duty ratio ⁇ tends to exceed 100%.
  • the ECU 20 determines whether the high voltage load 102b or the low voltage load 103b is in a state where the state of charge (SOC) of the high voltage battery 102a or the low voltage battery 103a exceeds the upper limit value. While increasing the power consumption as much as possible, the duty ratio ⁇ is determined after setting the power generation voltage of the alternator 110 lower than the chargeable voltage (for example, the discharge voltage of each battery) of the high voltage battery 102a and the low voltage battery 103a. I tried to do it. When the regenerative control is performed by such a method, the duty ratio ⁇ is suppressed to 100% or less.
  • SOC state of charge
  • the “upper limit value” described above is a value obtained by subtracting a margin from the minimum value of the state of charge (SOC) in which the high voltage battery 102a or the low voltage battery 103a is overcharged.
  • FIG. 10 is a control routine executed when the ECU 20 performs the regeneration control.
  • the same reference numerals are given to the processes equivalent to the control routine (see FIG. 6) of the first embodiment described above.
  • the ECU 20 proceeds to S201 after executing the process of S102.
  • the ECU 20 determines whether or not the state of charge SOCh of the high voltage battery 102a is equal to or lower than the upper limit value. If a negative determination is made in S201 (SOCh> upper limit value), the ECU 20 proceeds to S202, and corrects the high voltage Vh to a voltage lower than the chargeable voltage of the high voltage battery 102a. For example, the ECU 20 sets a value obtained by subtracting a predetermined amount ⁇ vh from the discharge voltage (or rated voltage) Vhs of the high voltage battery 102a as the high voltage Vh. Furthermore, the ECU 20 increases the power consumption of the high voltage load 102b as much as possible. The ECU 20 proceeds to S203 when an affirmative determination is made in S201 (SOCh ⁇ upper limit value) and when the process of S202 is completed.
  • the ECU 20 determines whether or not the state of charge SOCl of the low voltage battery 103a is equal to or lower than the upper limit value. If a negative determination is made in S203 (SOCl> upper limit value), the ECU 20 proceeds to S204 and corrects the low voltage Vl to a voltage lower than the chargeable power voltage of the low voltage battery 103a. For example, the ECU 20 sets a value obtained by subtracting a predetermined amount ⁇ vl from the discharge voltage (or rated voltage) Vls of the low-voltage battery 103a to the low voltage Vl. Further, the ECU 20 increases the power consumption of the low voltage load 103b as much as possible. The ECU 20 proceeds to S103 when an affirmative determination is made in S203 (SOCl ⁇ upper limit) and when the process of S204 is completed.
  • the ECU 20 calculates the duty ratio ⁇ based on the equations (1) to (4) described in the first embodiment and the required deceleration calculated in S102. At that time, if the correction process of the high voltage Vh and the power consumption increase process of the high voltage load 102b are performed in S202, the ECU 20 is based on the high voltage Vh after the correction process and the power consumption after the power consumption increase process. , White in formula (4) is determined. Further, if the correction process for the low voltage Vl and the power consumption increase process for the low voltage load 103b are performed in S204, the ECU 20 determines the low voltage Vl after the correction process and the power consumption after the power consumption increase process. Assume that Wlow in equation (4) is determined.
  • the duty ratio ⁇ is determined in this way, the duty ratio ⁇ is suppressed to 100% or less even when the state of charge (SOC) of the high voltage battery 102a or the low voltage battery 103a exceeds the upper limit value. And the high voltage battery 102a or the low voltage battery 103a can be prevented from being charged.
  • SOC state of charge
  • the ECU 20 proceeds to S108 after executing the process of S103, and controls the generated voltage of the alternator 110 and the changeover switch 120 according to the duty ratio ⁇ determined in S103.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Charge By Means Of Generators (AREA)

Abstract

 本発明は、車両の減速走行時に該車両の運動エネルギを電気エネルギへ回生し、回生された電気エネルギを低電圧系回路と高電圧系回路へ交互に供給する車両の回生制御システムにおいて、発電電圧の変化に伴う回生制動力の変動を抑えつつ回生率を高めることを課題とする。この課題を解決するために、本発明の車両の回生制御システムは、車両が減速走行状態にあるときに、該車両の運動エネルギを利用して、低電圧系回路に適した低電圧の電気エネルギと高電圧系回路に適した高電圧の電気エネルギを交互に発電するシステムにおいて、車両に要求される減速度にしたがって低電圧の電気エネルギを発電する時間と高電圧の電気エネルギを発電する時間との比率を決定し、決定された比率にしたがって発電電圧をデューティ制御するようにした。

Description

車両の回生制御システム
 本発明は、車両の減速走行時に、該車両の運動エネルギを電気エネルギへ回生させる技術に関する。
 近年、定格電圧が相異する複数のバッテリを搭載した車両が提案されている。このような車両では、発電機の発電電圧を切り替える際に、発電機の駆動トルクが変化するため、振動や騒音が発生する可能性があった。これに対し、高電圧バッテリの充電時に発電機の発電動作を断続的に停止させることにより、低電圧バッテリの充電時における駆動トルクと高電圧バッテリの充電時における駆動トルクとの差を縮小させる技術が提案されている(たとえば、特許文献1を参照)。
 特許文献2には、定格電圧が相異する低電圧バッテリと高電圧バッテリとを搭載した車両において、低電圧バッテリと高電圧バッテリを交互に充電する技術について述べられている。
 特許文献3には、直列接続される複数のセルにより構成されるリチウムイオンバッテリの何れかのセルに過電圧が発生した場合に、リチウムイオンバッテリの充電電圧を規定値より低下させる技術について述べられている。
 特許文献4には、内燃機関と電動機を原動機として搭載したハイブリット車両の回生制動時において、バッテリに充電しきれない余剰電力を複数の電気負荷へ選択的に供給する技術について述べられている。
 特許文献5には、発電機の出力を低電圧系の蓄電池と高電圧系の電気負荷とに振り分ける切り替える切替スイッチを備えた車両において、切替スイッチの切り替えを行うときに発電機の出力電圧を一旦低下させる技術について述べられている。
特開2002-135993号公報 特開2000-184613号公報 特開2007-018871号公報 特開2006-174543号公報 特開平09-074693号公報
 ところで、車両の運動エネルギを電気エネルギへ回生させて低電圧バッテリと高電圧バッテリを交互に充電する場合において、高電圧バッテリの充電時に発電機の発電動作が断続的に停止されると、高電圧バッテリの充電量が減少したり、電気エネルギへ回生される運動エネルギが減少したりする可能性がある。
 本発明は、上記したような実情に鑑みてなされたものであり、その目的は、車両の減速走行時に該車両の運動エネルギを電気エネルギへ回生し、回生された電気エネルギを低電圧系回路と高電圧系回路へ交互に供給する車両の回生制御システムにおいて、発電電圧の変化に伴う回生制動力の変動を抑えつつ回生率を高めることができる技術の提供にある。
 本発明は、上記した課題を解決するために、以下のような手段を採用した。すなわち、本発明の車両の回生制御システムは、
 低電圧バッテリを含む低電圧系回路と、
 前記低電圧バッテリより定格電圧が高い高電圧バッテリを含む高電圧系回路と、
 車両の運動エネルギを利用して、前記低電圧系回路に適した低電圧の電気エネルギ又は前記高電圧系回路に適した高電圧の電気エネルギを発電する発電ユニットと、
 車両が減速走行状態にあるときに、前記低電圧の電気エネルギと前記高電圧の電気エネルギとを交互に発電するように前記発電ユニットを制御するとともに、前記低電圧の電気エネルギが発電される時間と前記高電圧の電気エネルギが発電される時間との比率をデューティ制御する制御手段と、
を備えるようにした。
 かかる構成において、減速走行状態にある車両の運動エネルギを電気エネルギに変換(回生)する場合に、発電ユニットは低電圧の電気エネルギ(以下、「低電圧エネルギ」と称する)と高電圧の電気エネルギ(以下、「高電圧エネルギ」と称する)とを交互に発電する。すなわち、発電ユニットは、発電電圧を低電圧と高電圧とに交互に切り替えながら連続的に発電を行う。その際、発電ユニットが低電圧エネルギを発電する時間と高電圧エネルギを発電する時間との和(デューティ制御の周期)は、回生制動力の大きさが略一定であると乗員が感じる程度に短い周期に設定されるものとする。
 このように回生制動時の発電電圧が制御されると、発電電圧の切り替えに伴う回生制動力の変化を抑えつつ、車両の運動エネルギから回生された電気エネルギを低電圧系回路と高電圧系回路の双方へ供給することが可能になる。また、発電ユニットの発電動作を断続的に停止させる必要もないため、運動エネルギの回生量を可及的に多くすることができる。さらに、低電圧エネルギの発電時間と高電圧エネルギの発電時間との比率を任意に設定することができるため、1回の減速走行において低電圧系回路と高電圧系回路の双方へ所望量の電気エネルギを供給することも可能になる。
 したがって、本発明によれば、車両の減速走行時に該車両の運動エネルギを電気エネルギへ回生し、回生された電気エネルギを低電圧系回路と高電圧系回路へ交互に供給する車両の回生制御システムにおいて、発電電圧の変化に伴う回生制動力の変動を抑えつつ回生率を高めることができる。
 本発明にかかる車両の回生制御システムは、車両に要求される減速度にしたがって、前記発電ユニットが前記低電圧の電気エネルギを発電する時間と前記高電圧の電気エネルギを発電する時間との比率を決定する決定手段を更に備えるようにしてもよい。その場合、制御手段は、前記決定手段により決定された比率にしたがって、前記発電ユニットの発電電圧をデューティ制御すればよい。
 かかる構成において、発電ユニットが低電圧エネルギを発電する時間と高電圧エネルギを発電する時間との比率は車両の要求減速度に応じて決定されるため、回生制動力が要求減速度に適した大きさになる。たとえば、要求減速度が高い場合は低い場合に比して、高電圧エネルギの発電時間を長くするとともに、低電圧エネルギの発電時間を短くすればよい。
 このように回生制動時の発電電圧が制御されると、車両の運動エネルギから回生された電気エネルギを低電圧系回路と高電圧系回路の双方へ供給することが可能になる。さらに、発電ユニットの発電動作を断続的に停止させる必要もないため、運動エネルギの回生量を可及的に多くすることができる。
 したがって、本発明によれば、車両の減速走行時に該車両の運動エネルギを電気エネルギへ回生し、回生された電気エネルギを低電圧系回路と高電圧系回路へ交互に供給する車両の回生制御システムにおいて、発電電圧の変化に伴う制動力の変動を抑えつつ回生率を高めることができる。
 本発明に係わる制御手段は、発電ユニットの発電電圧を変更する際に発電ユニットの発電を一旦停止させるようにしてもよい。たとえば、制御手段は、発電ユニットに印加されるフィールド電流を一旦停止させるようにしてもよい。その際の停止期間は、発電ユニットの発電電圧が零に低下するほど長くする必要はなく、発電電圧が低電圧より低い電圧に低下する程度の短い期間で足りる。
 このような制御によれば、発電電圧の切り替え時に発電ユニットなどの電気部品に過電圧が作用する事態を回避することができる。その結果、発電ユニットなどの耐久性低下を抑制することが可能になる。
 本発明に係わる制御手段は、前記低電圧バッテリ又は前記高電圧バッテリの充電量が上限値に達している場合は、前記低電圧系回路又は前記高電圧系回路に含まれる電気負荷の消費電力を増加させるようにしてもよい。
 低電圧バッテリ又は高電圧バッテリの充電量が上限値に達している場合に、前記発電ユニットにより回生された電気エネルギが低電圧バッテリ又は高電圧バッテリに供給されると、低電圧バッテリ又は高電圧バッテリが過充電状態に陥る可能性がある。これに対し、デューティ制御の周期において低電圧発電時間又は高電圧発電時間が占める割合を低下させることにより、低電圧バッテリ又は高電圧バッテリの過充電を抑制する方法も考えられる。その場合は、回生制動力の大きさが要求減速度に不適当な大きさとなり、乗員に違和感を与える可能性がある。
 そこで、低電圧バッテリ又は高電圧バッテリの充電量が上限値に達しているときに、低電圧系回路又は高電圧系回路に含まれる電気負荷の消費電力が増加させられると、回生制動力の大きさを要求減速度に適した大きさに保ちつつ、低電圧バッテリ又は高電圧バッテリの過充電を回避することが可能になる。
 なお、車両の要求減速度に基づいて、発電ユニットが低電圧エネルギを発電する時間と高電圧エネルギを発電する時間との比率が決定されると、デューティ制御の周期において前記高電圧の電気エネルギを発電する時間の割合が100%を超える場合や0%を下回る場合が発生し得る。そのような場合に、発電ユニットの発電電圧が前記した高電圧や低電圧に固定されると、回生制動力の大きさが要求減速度に対して不適当な大きさになる可能性がある。
 そこで、本発明の制御手段は、前記高電圧の電気エネルギを発電する時間の割合が100%を超える場合は、発電ユニットの発電電圧を前記高電圧より高くしてもよい。その場合、車両の要求減速度に対して回生制動力の大きさが過少となる事態を回避することができる。また、本発明の制御手段は、前記高電圧の電気エネルギを発電する時間の割合が0%を下回る場合は、発電ユニットの発電電圧を前記低電圧より低くしてもよい。その場合、車両の要求減速度に対して回生制動力の大きさが過大となる事態を回避することができる。
 本発明によれば、車両の減速走行時に該車両の運動エネルギを電気エネルギへ回生し、回生された電気エネルギを低電圧系バッテリと高電圧系バッテリに交互に充電させる車両の回生制御システムにおいて、発電電圧の変化に伴うトルク変動を抑えつつ、回生効率を高めることができる。
本発明を適用する車両の概略構成を示す図である。 電気系回路の構成を模式的に示す図である。 第1の実施例における回生制御の実行方法を示すタイミングチャートである。 高電圧バッテリの充電状態(SOC)と温度と充電可能電力との関係を示す図である。 要求減速度が高い場合における回生制御の実行方法を示すタイミングチャートである。 第1の実施例においてECUが回生制御を実施する際に実行する制御ルーチンを示すフローチャートである。 デューティ比γが100%を超える場合におけるデューティ比γと発電電圧との関係を示す図である。 デューティ比γが0%を下回る場合におけるデューティ比γと発電電圧との関係を示す図である。 第2の実施例における回生制御の実行方法を示すタイミングチャートである。 第3の実施例においてECUが回生制御を実施する際に実行する制御ルーチンを示すフローチャートである。
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施形態に記載される構成部品の寸法、材質、形状、相対配置等は、特に記載がない限り発明の技術的範囲をそれらのみに限定する趣旨のものではない。
 <実施例1>
 先ず、本発明の第1の実施例について図1乃至図8に基づいて説明する。図1は、本発明を適用する車両の概略構成を示す図である。
 図1において、車両には、原動機としての内燃機関1が搭載されている。内燃機関1の出力軸はトランスミッション2の入力軸に連結されている。トランスミッション2の出力軸はプロペラシャフト3を介してデファレンシャルギア4に連結されている。デファレンシャルギア4には、二本のドライブシャフト5が接続され、ドライブシャフト5は左右の駆動輪6にそれぞれ接続されている。
 前記したトランスミッション2としては、トルクコンバータまたはクラッチ機構と、変速比を段階的または無段階に変更する変速機構と、を組み合わせたものを例示することができる。
 内燃機関1から出力された動力(出力軸の回転トルク)は、トランスミッション2により速度変換された後にプロペラシャフト3に伝達され、次いでデファレンシャルギア4により減速された後にドライブシャフト5及び駆動輪6に伝達される。
 内燃機関1には、電気系回路100が併設されている。電気系回路100は、図2に示すように、発電ユニット101、高電圧系回路102、低電圧系回路103を備えている。
 発電ユニット101は、オルタネータ110と切替スイッチ120を備えている。オルタネータ110は、内燃機関1の出力軸(または、該出力に連動して回転する部材)とプーリやベルトなどを介して連結され、出力軸の運動エネルギ(回転エネルギ)を電気エネルギに変換する発電機である。詳細には、オルタネータ110は、三相の捲線を有するステータコイルと、ロータに巻回されたフィールドコイルと、ステータコイルに発生した交流電流を直流電流に整流する整流器と、フィールドコイルに対する界磁電流(フィールド電流)の通電(オン)と非通電(オフ)を切り替えるレギュレータ110aと、を具備する三相交流発電機である。このように構成されたオルタネータ110は、フィールドコイルに界磁電流(フィールド電流)が通電されたときに、ステータコイルに誘起電流(三相交流電流)を発生させ、発生した三相交流電流を直流電流に整流して出力する。
 切替スイッチ120は、オルタネータ110の出力を低電圧系回路103又は高電圧系回路102の何れか一方に入力させるための機器である。切替スイッチ120は、一つの入力端子120aと二つの出力端子120b,120cを具備し、2つの出力端子120b,120cの何れか一方を入力端子120aと導通させる。入力端子120aには、オルタネータ110の出力が入力されるようになっている。2つの出力端子120b,120cの一方の出力端子(以下、「第1出力端子」と称する)120bは、高電圧系回路102に接続されている。二つの出力端子120b,120cの他方(以下、「第2出力端子」と称する)120cは、低電圧系回路103に接続されている。なお、切替スイッチ120としては、有接点スイッチを利用することもできるが、無接点スイッチを利用することが望ましい。
 高電圧系回路102は、高電圧Vh(たとえば、43.5V程度)の電気を入出力可能な回路であり、高電圧バッテリ102aや高電圧負荷102bが並列に接続された回路である。高電圧バッテリ102aは、たとえば、内燃機関1の潤滑油を加熱するためのヒータ、内燃機関1の冷却水を加熱するためのヒータ、触媒などの排気浄化装置を加熱するためのヒータ、或いはモータアシスト式の過給機などである。一方、低電圧系回路103は、低電圧Vl(たとえば、14.5V程度)の電気を入出力可能な回路であり、低電圧バッテリ103aや低電圧負荷103bが並列に接続された回路である。低電圧負荷103bは、たとえば、各種のアクチュエータやラジエータ用ファンなどである。
 ここで図1に戻り、車両には、内燃機関1、トランスミッション2、及び電気系回路100を電気的に制御するための電子制御ユニット(ECU)20が併設されている。なお、図1においては、ECU20は一つであるが、内燃機関1を制御するためのECUとトランスミッション2を制御するためのECUと電気系回路100を制御するためのECUとに分割されていてもよい。
 ECU20には、アクセルポジションセンサ21、シフトポジションセンサ22、ブレーキセンサ23、クランクポジションセンサ24、車速センサ25等の各種センサの出力信号が入力されるようになっている。また、ECU20には、高電圧バッテリ102aおよび低電圧バッテリ103aの放電電圧も入力されるようになっている。
 アクセルポジションセンサ21は、アクセルペダルの操作量(踏み込み量)に応じた電気信号を出力するセンサである。シフトポジションセンサ22は、シフトレバーの操作位置に応じた電気信号を出力するセンサである。ブレーキセンサ23は、ブレーキペダルの操作量(踏み込み量)に応じた電気信号を出力するセンサである。クランクポジションセンサ24は、内燃機関1の出力軸(クランクシャフト)の回転位置に応じた電気信号を出力するセンサである。車速センサ25は、車両の走行速度に応じた電気信号を出力するセンサである。
 ECU20は、上記した各種センサの出力信号に基づいて、内燃機関1、トランスミッション2、電気系回路100などを制御する。以下、電気系回路100の制御方法について述べる。
 ECU20は、レギュレータ110aのオン/オフをデューティ制御することにより、オルタネータ110の発電電圧を変更する。たとえば、ECU20は、オルタネータ110の発電電圧を高める場合は、レギュレータ110aのオン時間が長く(オフ時間が短く)なるようにデューティ比を決定する。オルタネータ110の発電電圧を低める場合は、ECU20は、レギュレータ110aのオン時間が短く(オフ時間が長く)なるようにデューティ比を決定する。ECU20は、オルタネータ110の実際の発電電圧をセンシングし、実際の発電電圧と目標発電電圧との差に応じてデューティ比のフィードバック制御も行う。
 高電圧系回路102に電気を供給するときは、ECU20は、オルタネータ110の発電電圧圧を高電圧系回路102に適した電圧(高電圧)Vhと一致するようにレギュレータ110aをデューティ制御するとともに、入力端子120aと第1出力端子120bとが接続されるように切替スイッチ120を制御する。
 低電圧系回路103に電気を供給するときは、ECU20は、オルタネータ110の発電電圧を低電圧系回路103に適した電圧(低電圧)Vlと一致するようにレギュレータ110aをデューティ制御するとともに、入力端子120aと第2出力端子120cとが接続されるように切替スイッチ120を制御する。
 また、車両が減速走行状態にあるとき、たとえば、車速が零より大きく且つアクセルペダルの操作量が零であるときは、駆動輪6の運動エネルギがドライブシャフト5、デファレンシャルギア4、プロペラシャフト3、トランスミッション2、及び内燃機関1を介してオルタネータ110へ伝達される。つまり、オルタネータ110のロータが駆動輪6に連動して回転する。その際、オルタネータ110にフィールド電流が印加されれば、駆動輪6の運動エネルギを電気エネルギに変換(回生)することができる。このような方法により得られた電気エネルギが高電圧バッテリ102aや低電圧バッテリ103aに充電されると、内燃機関1の発生動力を利用してオルタネータ110を作動させる機会を減らすことができるため、内燃機関1の燃料消費量を減少させることができる。そこで、ECU20は、車両が減速走行状態にあるときにオルタネータ110にフィールド電流を印加させることにより、駆動輪6の運動エネルギを電気エネルギへ変換(回生)させる回生制御を実行する。
 回生制御が実施される際にオルタネータ110の発電電圧が高電圧Vhに設定されると、電気エネルギとして回生される運動エネルギの量を多くすることができる。しかしながら、回生制動力が過大になったり、低電圧バッテリ103aの充電が行えなくなったりするという問題がある。一方、回生制御が実施される際にオルタネータ110の発電電圧が低電圧Vlに設定されると、電気エネルギとして回生される運動エネルギの量が少なくなったり、高電圧バッテリ102aの充電が行えなくなったりするという問題がある。
 これに対し、車両の減速走行中にオルタネータ110の発電電圧を切り替えることにより、高電圧バッテリ102aと低電圧バッテリ103aの双方を充電する方法が考えられる。しかしながら、オルタネータ110の発電電圧が切り替えられる際に、回生制動力が大きく変動する。そのため、発電電圧の切り替え時に発電動作を断続的に停止させる制御や、摩擦ブレーキの制動力を調整する制御などを行う必要がある。
 本実施例の回生制御では、ECU20は、図3に示すように、高電圧エネルギと低電圧エネルギが交互に発電されるとともに、入力端子120aが第1出力端子120bと第2出力端子120cに交互に接続されるように切替スイッチ120を制御する。詳細には、ECU20は、オルタネータ110が高電圧エネルギを発電する時間(入力端子120aが第1出力端子120bと接続される時間)thとオルタネータ110が低電圧エネルギを発電する時間(入力端子120aが第2出力端子120cと接続される時間)tlとの比率をデューティ制御する。デューティ制御の周期t(=th+tl)は、回生制動力の大きさが略一定であると乗員が感じる程度に短い周期(たとえば、20ms程度)に設定される。さらに、オルタネータ110が低電圧エネルギを発電する時間thと高電圧エネルギを発電する時間tlとの比率は、車両の要求減速度に応じて決定されるようにした。
 車両の要求減速度は、ブレーキペダルの操作量とアクセル開度とトランスミッション2のギアポジションと路面の摩擦係数などをパラメータとして演算することができる。その際、ブレーキペダルの操作量とアクセル開度とトランスミッション2のギアポジションと路面の摩擦係数と要求減速度との関係は、予めマップ化されていてもよい。
 ECU20は、以下の式(1)にしたがって、要求減速度を得るために必要な減速力(要求減速力)Ntrgを演算する。
 Ntrg=(要求減速度)*(車両重量)・・(1)
 続いて、ECU20は、以下の式(2)にしたがって、要求減速力を得るために必要なトルク(要求減速トルク)Ttrgを演算する。
 Ttrg=Ntrg*(タイヤ径)*(ギア比)-(フリクショントルク)・・(2)
 上記した式(2)中の「フリクショントルク」は、内燃機関1のフリクションや駆動系のフリクションなどの総和である。
 ECU20は、上記要求減速トルクTtrgを以下の式(3)に代入することにより、要求減速度を得るために必要な仕事率(要求減速仕事率)Wtrgを演算する。
 Wtrg=Ttrg*(機関回転数)*(2π/60)・・(3)
 ECU20は、上記要求減速仕事率Wtrgを以下の式(4)に代入することにより、デューティ比γ(%)を算出する。なお、ここでいうデューティ比γは、デューティ制御の周期において高電圧エネルギの発電時間が占める割合(={th/(th+tl)}*100)である。
 Wtrg=Whigh*(γ/100)+Wlow*{(100-γ)/100}
・・(4)
 上記した式(4)中の「Whigh」は高電圧系回路102が単位時間あたりに消費可能な電気エネルギ(仕事率)であり、式(4)中の「Wlow」は低電圧系回路103が単位時間あたりに消費可能な電気エネルギ(仕事率)を示す。
 高電圧系回路102の仕事率Whighは、高電圧バッテリ102aが受け入れ可能な電気エネルギ(充電可能電力)と高電圧負荷102bが消費可能な電気エネルギ(消費可能電力)との和である。低電圧系回路103の仕事率Wlowは、低電圧バッテリ103aが受け入れ可能な電気エネルギ(充電可能電力)と低電圧負荷103bが消費可能な電気エネルギ(消費可能電力)との和である。なお、高電圧バッテリ102aの充電可能電力は、図4に示すように、高電圧バッテリ102aの充電状態(SOC)と温度とをパラメータとして求めることができる。同様に、低電圧バッテリ103aの充電可能電力も、低電圧バッテリ103aの充電状態(SOC)と温度をパラメータとして求めることができる。
 このような方法によりデューティ比γが決定されると、要求減速度が大きいときは小さいときに比べ、高電圧エネルギの発電時間が長くなる。たとえば、前述した図3に示した例は、要求減速度が小さいときの制御例を示すものであり、高電圧エネルギの発電時間thが短く設定されている。これに対し、要求減速度が大きいときは、図5に示すように、高電圧エネルギの発電時間thが長く設定される。
 高電圧エネルギが発電されるときの回生制動力は、低電圧エネルギが発電されるときの回生制動力より大きくなる。そのため、高電圧エネルギの発電時間thが長く設定された場合は短く設定された場合に比べ、周期tの期間に発生する回生制動力が大きくなる。その結果、回生制動力が要求減速度に応じた大きさになる。
 したがって、上記した方法により回生制御が実行されると、発電電圧の切り替えに起因した回生制動力の変動を運転者に意識させることなく、回生制動力の大きさを要求減速度に応じた大きさにすることが可能になる。また、発電電圧を断続的に停止させる制御や摩擦ブレーキの制動力を調整する制御などを行う必要がなくなるため、運動エネルギの回生量を可及的に多くすることができるとともに、減速走行時の制御ロジックを簡略化することもできる。さらに、高電圧系回路102と低電圧系回路103の双方に電気エネルギを供給することができるため、高電圧バッテリ102aと低電圧バッテリ103aの双方を充電することも可能となる。
 以下、本実施例における回生制御の実行手順について図6に沿って説明する。図6は、ECU20が回生制御を実施する際に実行する制御ルーチンである。この制御ルーチンは、予めECU20のROMなどに記憶されているルーチンであり、ECU20によって周期的に実行される。
 図6の制御ルーチンでは、ECU20は、先ずS101において車両が減速走行状態にあるか否かを判別する。たとえば、ECU20は、アクセルポジションセンサ21の出力信号(アクセル開度)が零(全閉)、且つ、車速センサ25の出力信号(車速)が零より大きいときに、車両が減速走行状態にあると判定する。
 前記S101において否定判定された場合は、ECU20は、回生制御を実施せずに本ルーチンの実行を終了する。一方、前記S101において肯定判定された場合は、ECU20は、S102へ進む。S102では、ECU20は、アクセルポジションセンサ21の出力信号(アクセル開度)とシフトポジションセンサ22の出力信号(ギアポジション)とブレーキセンサ23の出力信号(ブレーキペダルの操作量)と路面の摩擦係数をパラメータとして、車両の要求減速度を演算する。
 S103では、ECU20は、前記S102で算出された要求減速度と、前述した式(1)乃至(4)と、に基づいて、デューティ比γを演算する。このようにECU20がS102及びS103の処理を実行することにより、本発明に係わる決定手段が実現される。
 なお、要求減速度に応じてデューティ比γが決定されると、デューティ比γが100%を上回る場合や0%を下回る場合も発生し得る。デューティ比γが100%を超える場合にオルタネータ110の発電電圧が高電圧Vhに固定されると、要求減速度に対して回生制動力が過少となる可能性がある。また、デューティ比γが0%を下回る場合にオルタネータ110の発電電圧が低電圧Vlに固定されると、要求減速度に対して回生制動力が過大となる可能性がある。
 そこで、ECU20は、S104において、前記S103で算出されたデューティ比γが100%より大きいか否かを判別する。前記S104において肯定判定された場合は、ECU20は、S105ヘ進み、オルタネータ110の発電電圧を高電圧Vhより高くする。その際、ECU20は、図7に示すように、デューティ比γが大きくなるほど発電電圧を高くしてもよい。このようにオルタネータ110の発電電圧が変更されると、要求減速度に対して回生制動力の大きさが過少となる事態を回避することができる。
 前記S104において否定判定された場合は、ECU20は、S106へ進み、前記S103で算出されたデューティ比γが0%より小さいか否かを判別する。前記S106において肯定判定された場合は、ECU20は、S107へ進み、オルタネータ110の発電電圧を低電圧Vlより低くする。その際、ECU20は、図8に示すように、デューティ比γが小さくなるほど発電電圧を低くしてもよい。このようにオルタネータ110の発電電圧が変更されると、要求減速度に対して回生制動力の大きさが過大となる事態を回避することができる。
 ECU20は、前記S105若しくは前記S107の処理を実行した後、又は前記S106において否定判定された場合に、S108へ進む。S108では、前記S103で算出されたデューティ比γに従ってオルタネータ110の発電電圧を制御するとともに、発電電圧の切り替えに同期して切替スイッチ120の切り替えを行う。このようにECU20がS108の処理を実行することにより、本発明に係わる制御手段が実現される。
 以上述べた制御ルーチンによれば、車両が減速走行状態にあるときに、発電電圧の切り替えに伴う回生制動力の変動を運転者に意識させたり、運動エネルギの回生量を大幅に減少させたりすることなく、回生制動力の大きさを要求減速度に見合った大きさとすることができる。
 <実施例2>
 次に、本発明の第2の実施例について図9に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、オルタネータ110の発電電圧を切り替える際に、オルタネータ110に対するフィールド電流の印加を一旦停止させる点にある。その際の停止期間は、オルタネータ110の発電電圧が零に低下するほど長くされる必要はなく、オルタネータ110の発電電圧が低電圧Vlより低くなる程度の短い期間で足りる。
 オルタネータ110の発電電圧が高電圧Vh又は低電圧Vlの何れか一方から他方へ切り替えられると、オルタネータ110の端子電圧が急激に上昇し、オルタネータ110の構成部品に過電圧が作用する可能性がある。また、切替スイッチ120が有接点スイッチにより構成される場合は、接点において火花が発生する可能性がある。
 これに対し、本実施例の回生制御では、ECU20は、オルタネータ110の発電電圧を高電圧Vh又は低電圧Vlの何れか一方から他方へ切り替える際に、オルタネータ110に対するフィールド電流の印加を一旦停止させるようにした。このような方法によれば、図9に示すように、切替スイッチ120が切替動作するときにオルタネータ110の発電電圧が低電圧Vlより低下するため、オルタネータ110の端子電圧が急激に上昇する事態や切替スイッチ120の接点において火花が発生する事態の発生を回避することが可能となる。その結果、オルタネータ110や切替スイッチ120の耐久性低下を抑制することが可能となる。
 <実施例3>
 次に、本発明の第3の実施例について図10に基づいて説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
 前述した第1の実施例と本実施例との相違点は、高電圧バッテリ102a又は低電圧バッテリ103aの充電状態(SOC)が大きい場合に、高電圧負荷102b又は低電圧バッテリ103aの消費電力を増加させることにより、高電圧バッテリ102a又は低電圧バッテリ103aの過充電を抑制しつつ、回生制動力の大きさを要求減速度に適した大きさにする点にある。
 前述した第1の実施例で述べた式(1)乃至(4)に基づいてデューティ比γが決定されると、デューティ比γが100%を超える場合がある。特に、高電圧バッテリ102a又は低電圧バッテリ103aの充電状態(SOC)が上限値を超えていると、デューティ比γが100%を超えやすくなる。
 これに対し、本実施例の回生制御では、ECU20は、高電圧バッテリ102a又は低電圧バッテリ103aの充電状態(SOC)が上限値を超えている場合に、高電圧負荷102b又は低電圧負荷103bの消費電力を可能な限り増加させるとともに、オルタネータ110の発電電圧を高電圧バッテリ102a及び低電圧バッテリ103aの充電可能電圧(たとえば、各バッテリの放電電圧)より低く設定した上で、デューティ比γを決定するようにした。このような方法により回生制御が実施されると、デューティ比γが100%以下に抑えられるようになるため、高電圧バッテリ102a及び低電圧バッテリ103aの過充電を回避しつつ回生制動力の大きさを要求減速度に見合った大きさにすることができる。なお、前記した「上限値」は、高電圧バッテリ102a又は低電圧バッテリ103aが過充電となる充電状態(SOC)の最小値からマージンを差し引いた値である。
 以下、本実施例における回生制御の実行手順について図10に沿って説明する。図10は、ECU20が回生制御を実施する際に実行する制御ルーチンである。図10中において、前述した第1の実施例の制御ルーチン(図6を参照)と同等の処理には、同一の符号が付されている。
 図10の制御ルーチンにおいて、ECU20は、S102の処理を実行した後にS201へ進む。S201では、ECU20は、高電圧バッテリ102aの充電状態SOChが上限値以下であるか否かを判別する。S201において否定判定された場合(SOCh>上限値)は、ECU20は、S202へ進み、高電圧Vhを高電圧バッテリ102aの充電可能電圧より低い電圧に補正する。たとえば、ECU20は、高電圧バッテリ102aの放電電圧(または、定格電圧)Vhsから所定量Δvhを減算した値を高電圧Vhに設定する。さらに、ECU20は、高電圧負荷102bの消費電力を可能な限り増加させる。ECU20は、前記S201において肯定判定された場合(SOCh≦上限値)、及び前記S202の処理を実行し終えた場合に、S203へ進む。
 S203では、ECU20は、低電圧バッテリ103aの充電状態SOClが上限値以下であるか否か判別する。S203において否定判定された場合(SOCl>上限値)は、ECU20は、S204へ進み、低電圧Vlを低電圧バッテリ103aの充電可能電力電圧より低い電圧に補正する。たとえば、ECU20は、低電圧バッテリ103aの放電電圧(または、定格電圧)Vlsから所定量Δvlを減算した値を低電圧Vlに設定する。さらに、ECU20は、低電圧負荷103bの消費電力を可能な限り増加させる。ECU20は、前記S203において肯定判定された場合(SOCl≦上限値)、及び前記S204の処理を実行し終えた場合に、S103へ進む。
 S103では、ECU20は、前述した第1の実施例で述べた式(1)乃至(4)と、前記S102で算出された要求減速度と、に基づいて、デューティ比γを演算する。その際、S202において高電圧Vhの補正処理及び高電圧負荷102bの消費電力増加処理が行われていれば、ECU20は、補正処理後の高電圧Vh及び消費電力増加処理後の消費電力に基づいて、式(4)中のWhighを決定する。また、S204において低電圧Vlの補正処理及び低電圧負荷103bの消費電力増加処理が行われていれば、ECU20は、補正処理後の低電圧Vl及び消費電力増加処理後の消費電力に基づいて、式(4)中のWlowを決定するものとする。このようにしてデューティ比γが決定されると、高電圧バッテリ102a又は低電圧バッテリ103aの充電状態(SOC)が上限値を超えている場合であっても、デューティ比γを100%以下に抑えることが可能になるとともに、高電圧バッテリ102a又は低電圧バッテリ103aへの充電を控えることができる。
 ECU20は、前記S103の処理を実行した後にS108へ進み、前記S103で決定されたデューティ比γにしたがって、オルタネータ110の発電電圧及び切替スイッチ120を制御する。
 以上述べた実施例によれば、高電圧バッテリ102a及び低電圧バッテリ103aの過充電を回避しつつ、回生制動力の大きさを要求減速度に適した大きさにすることが可能となる。
 なお、上記した実施例1乃至3は可能な限り組み合わせることができる。
1     内燃機関
2     トランスミッション
3     プロペラシャフト
4     デファレンシャルギア
5     ドライブシャフト
6     駆動輪
20   ECU
21   アクセルポジションセンサ
22   シフトポジションセンサ
23   ブレーキセンサ
24   クランクポジションセンサ
25   車速センサ
100 電気系回路
101 発電ユニット
102 高電圧系回路
102a      高電圧バッテリ
102b      高電圧負荷
103 低電圧系回路
103a      低電圧バッテリ
103b      低電圧負荷
110 オルタネータ
110a      レギュレータ
120 切替スイッチ
120a      入力端子
120b      第1出力端子
120c      第2出力端子

Claims (6)

  1.  低電圧バッテリを含む低電圧系回路と、
     前記低電圧バッテリより定格電圧が高い高電圧バッテリを含む高電圧系回路と、
     車両の運動エネルギを利用して、前記低電圧系回路に適した低電圧の電気エネルギ又は前記高電圧系回路に適した高電圧の電気エネルギを発電する発電ユニットと、
     車両が減速走行状態にあるときに、発電電圧を前記低電圧と前記高電圧とに交互に切り替えつつ発電が行われるように前記発電ユニットを制御するとともに、前記低電圧の電気エネルギが発電される時間と前記高電圧の電気エネルギが発電される時間との比率をデューティ制御する制御手段と、
    を備える車両の回生制御システム。
  2.  請求項1において、車両に要求される減速度にしたがって、前記発電ユニットが前記低電圧の電気エネルギを発電する時間と前記高電圧の電気エネルギを発電する時間との比率を決定する決定手段を更に備え、
     前記制御手段は、前記決定手段により決定された比率にしたがって、前記発電ユニットの発電電圧をデューティ制御する車両の回生制御システム。
  3.  請求項2において、前記制御手段は、前記発電ユニットの発電電圧が切り替わる際に前記発電ユニットによる発電を一旦停止させる車両の回生制御システム。
  4.  請求項2または3において、前記制御手段は、前記低電圧バッテリ又は前記高電圧バッテリの充電量が上限値に達している場合は、前記低電圧系回路又は前記高電圧系回路に含まれる電気負荷の消費電力を増加させる車両の回生制御システム。
  5.  請求項2乃至4の何れか1項において、前記制御手段は、前記高電圧の電気エネルギを発電する時間の割合が100%を超える場合は、前記発電ユニットの発電電圧を前記高電圧より高くする車両の回生制御システム。
  6.  請求項2乃至5の何れか1項において、前記制御手段は、前記高電圧の電気エネルギを発電する時間の割合が0%を下回る場合は、前記発電ユニットの発電電圧を前記低電圧より低くする車両の回生制御システム。
PCT/JP2011/053385 2011-02-17 2011-02-17 車両の回生制御システム WO2012111128A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180004134.5A CN102763320B (zh) 2011-02-17 2011-02-17 车辆的再生控制系统
EP11827772.2A EP2677658B1 (en) 2011-02-17 2011-02-17 Regenerative control system of a vehicle
PCT/JP2011/053385 WO2012111128A1 (ja) 2011-02-17 2011-02-17 車両の回生制御システム
US13/500,555 US9172314B2 (en) 2011-02-17 2011-02-17 Regenerative control system of a vehicle
JP2012517940A JP5344090B2 (ja) 2011-02-17 2011-02-17 車両の回生制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/053385 WO2012111128A1 (ja) 2011-02-17 2011-02-17 車両の回生制御システム

Publications (1)

Publication Number Publication Date
WO2012111128A1 true WO2012111128A1 (ja) 2012-08-23

Family

ID=46672090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053385 WO2012111128A1 (ja) 2011-02-17 2011-02-17 車両の回生制御システム

Country Status (5)

Country Link
US (1) US9172314B2 (ja)
EP (1) EP2677658B1 (ja)
JP (1) JP5344090B2 (ja)
CN (1) CN102763320B (ja)
WO (1) WO2012111128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912160B2 (en) 2018-03-29 2024-02-27 Honda Motor Co., Ltd. Hybrid-type engine generator controller

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10086818B2 (en) * 2015-01-07 2018-10-02 GM Global Technology Operations LLC Systems and methods for managing vehicular energy consumption
US9694712B2 (en) * 2015-05-01 2017-07-04 Hyliion Inc. Motor vehicle accessory to increase power supply and reduce fuel requirements
JP2018086933A (ja) * 2016-11-29 2018-06-07 トヨタ自動車株式会社 ハイブリッド自動車
JP6900883B2 (ja) * 2017-11-22 2021-07-07 トヨタ自動車株式会社 車両用制御装置
ES2944606B2 (es) * 2021-12-22 2024-04-17 Ojmar Sa Metodo y sistema mecatronico de activacion en cascada

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974693A (ja) 1995-09-06 1997-03-18 Mitsubishi Electric Corp 車両用交流発電機の制御装置
JP2000184613A (ja) 1998-12-11 2000-06-30 Shindengen Electric Mfg Co Ltd 多出力バッテリ充電装置
JP2002135993A (ja) 2000-10-23 2002-05-10 Shindengen Electric Mfg Co Ltd バッテリ充電装置
JP2006174543A (ja) 2004-12-13 2006-06-29 Honda Motor Co Ltd ハイブリッド車両における回生電力制御装置
JP2007018871A (ja) 2005-07-07 2007-01-25 Toyota Motor Corp 二次電池の制御装置及びこの装置を搭載するシステム
JP2009033794A (ja) * 2007-07-24 2009-02-12 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
JP2011055639A (ja) * 2009-09-01 2011-03-17 Toyota Motor Corp 車両の発電制御システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2349052Y (zh) * 1998-12-14 1999-11-17 黄华伟 节能型电驱动车辆
DE60007917T2 (de) * 1999-05-26 2004-10-28 Toyota Jidosha K.K., Toyota Hybrid Kraftfahrzeug mit eingebauten Brennstoffzellen und Steuerverfahren dafür
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle
US6522105B2 (en) 2000-10-23 2003-02-18 Shindengen Electric Manufacturing Co., Ltd. Battery charging apparatus
JP3651448B2 (ja) * 2002-04-09 2005-05-25 トヨタ自動車株式会社 回生装置の制御装置
US7336002B2 (en) * 2003-02-17 2008-02-26 Denso Corporation Vehicle power supply system
JP4291235B2 (ja) * 2004-08-20 2009-07-08 株式会社日立製作所 車両用電源装置
CN100548736C (zh) * 2005-03-25 2009-10-14 王怀成 电动车能量回收控制电路及由该电路构成的汽车底盘
JP4374351B2 (ja) * 2006-04-12 2009-12-02 矢崎総業株式会社 充電状態調整装置
JP5535531B2 (ja) * 2009-06-25 2014-07-02 矢崎総業株式会社 断線検出装置
US20110133920A1 (en) * 2010-03-12 2011-06-09 Meadors Ives B Method & Apparatus for Improving Fuel Efficiency of Mass-Transit Vehicles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0974693A (ja) 1995-09-06 1997-03-18 Mitsubishi Electric Corp 車両用交流発電機の制御装置
JP2000184613A (ja) 1998-12-11 2000-06-30 Shindengen Electric Mfg Co Ltd 多出力バッテリ充電装置
JP2002135993A (ja) 2000-10-23 2002-05-10 Shindengen Electric Mfg Co Ltd バッテリ充電装置
JP2006174543A (ja) 2004-12-13 2006-06-29 Honda Motor Co Ltd ハイブリッド車両における回生電力制御装置
JP2007018871A (ja) 2005-07-07 2007-01-25 Toyota Motor Corp 二次電池の制御装置及びこの装置を搭載するシステム
JP2009033794A (ja) * 2007-07-24 2009-02-12 Auto Network Gijutsu Kenkyusho:Kk 車両用電源装置
JP2011055639A (ja) * 2009-09-01 2011-03-17 Toyota Motor Corp 車両の発電制御システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11912160B2 (en) 2018-03-29 2024-02-27 Honda Motor Co., Ltd. Hybrid-type engine generator controller

Also Published As

Publication number Publication date
CN102763320B (zh) 2015-04-29
US20140210384A1 (en) 2014-07-31
EP2677658A1 (en) 2013-12-25
EP2677658A4 (en) 2017-10-11
JPWO2012111128A1 (ja) 2014-07-03
JP5344090B2 (ja) 2013-11-20
EP2677658B1 (en) 2020-05-06
CN102763320A (zh) 2012-10-31
US9172314B2 (en) 2015-10-27

Similar Documents

Publication Publication Date Title
JP4991555B2 (ja) ハイブリッド自動車及びハイブリッド自動車の動作制御法
JP5311839B2 (ja) ハイブリッドドライブの充電ストラテジのための方法および実施に適した制御装置
US9401617B2 (en) Hybrid drive device
KR101742397B1 (ko) 하이브리드 차량
JP5836068B2 (ja) 車両用電源装置、電動車両
WO2014109064A1 (ja) ハイブリッド車両及びその制御方法
JP5569211B2 (ja) 車両の回生発電制御システム
JP5344090B2 (ja) 車両の回生制御システム
WO2011089708A1 (ja) バッテリ充電制御システム
JPWO2011074482A1 (ja) ハイブリッド車両及びその制御方法
JP4026013B2 (ja) トルク制御装置
US9252630B2 (en) Battery charge control apparatus
WO2011117994A1 (ja) 車両の回生制御システム
JP5533716B2 (ja) 車両の発電制御システム
JP5637029B2 (ja) 車両用発電制御装置
JP2012040928A (ja) ハイブリッド車両用制御装置
JP5069484B2 (ja) ハイブリッド車両の制御装置
JP6636840B2 (ja) ハイブリッド車両の制御装置及びハイブリッド車両システム
JP2006341708A (ja) ハイブリッド車の制御装置
JP2007223560A (ja) ハイブリッド車両の充電制御装置
JP2012121555A (ja) ハイブリッド車両の制御装置およびハイブリッド車両の制御方法
JP2019080398A (ja) 駆動装置
JP7222620B2 (ja) 車両の制御装置
JP2006174555A (ja) 動力出力装置およびこれを搭載する自動車並びに動力出力装置の制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004134.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011827772

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13500555

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012517940

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11827772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE