JP2006047981A - 電気光学装置用駆動回路及び電気光学装置用駆動方法、並びに電気光学装置及び電子機器 - Google Patents

電気光学装置用駆動回路及び電気光学装置用駆動方法、並びに電気光学装置及び電子機器 Download PDF

Info

Publication number
JP2006047981A
JP2006047981A JP2005142188A JP2005142188A JP2006047981A JP 2006047981 A JP2006047981 A JP 2006047981A JP 2005142188 A JP2005142188 A JP 2005142188A JP 2005142188 A JP2005142188 A JP 2005142188A JP 2006047981 A JP2006047981 A JP 2006047981A
Authority
JP
Japan
Prior art keywords
pulse width
signal
electro
pulse
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005142188A
Other languages
English (en)
Other versions
JP4400508B2 (ja
Inventor
Masaya Ishii
賢哉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005142188A priority Critical patent/JP4400508B2/ja
Priority to TW094122890A priority patent/TWI270048B/zh
Priority to US11/571,304 priority patent/US7920119B2/en
Priority to PCT/JP2005/013110 priority patent/WO2006006699A1/en
Publication of JP2006047981A publication Critical patent/JP2006047981A/ja
Application granted granted Critical
Publication of JP4400508B2 publication Critical patent/JP4400508B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0248Precharge or discharge of column electrodes before or after applying exact column voltages
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0209Crosstalk reduction, i.e. to reduce direct or indirect influences of signals directed to a certain pixel of the displayed image on other pixels of said image, inclusive of influences affecting pixels in different frames or fields or sub-images which constitute a same image, e.g. left and right images of a stereoscopic display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only

Abstract

【課題】 電気光学装置において高品質な表示を可能とする。
【解決手段】
走査線駆動部及びデータ線駆動部の少なくとも一方は、転送信号を順次出力するシフトレジスタと、転送信号よりも狭い第1のパルス幅を有する複数系列の第1イネーブル信号を供給する第1イネーブル供給線と、第1のパルス幅よりも狭い第2のパルス幅を有する一系列からなる第2イネーブル信号を供給する第2イネーブル供給線と、転送信号と第1及び第2イネーブル信号とが入力されるパルス幅制限手段とを含む。パルス幅制限手段は、入力された転送信号の各パルスを第1イネーブル信号の夫々を基に整形することによって転送信号のパルス幅を第1のパルス幅に制限すると共に、第1のパルス幅に制限された後の転送信号におけるパルス全体を第2イネーブル信号を基に整形することによって転送信号のパルス幅を第2のパルス幅に制限する。
【選択図】 図4

Description

本発明は、例えば液晶装置等の電気光学装置に搭載される電気光学装置用駆動回路及びその駆動方法、並びに、該電気光学装置、更に該電気光学装置を備えて構成される電子機器の技術分野に関する。
この種の駆動回路は、例えば液晶装置等の電気光学装置の基板上に、データ線を駆動するためのデータ線駆動回路や走査線を駆動するための走査線駆動回路等として作り込まれる。その動作時には、データ線駆動回路は、画像信号線に供給される画像信号をサンプリングパルスのタイミングでサンプリングし、データ線に供給するように構成されている。ここで特に高い駆動周波数になると、サンプリングに用いられる時間的に相前後するサンプリングパルスの先端と後端とが僅かに重なってしまうため、相異なる時間にサンプリングされる筈の画像信号が部分的に重畳されてデータ線に供給されてしまう。この結果、解像度劣化やゴーストが発生する。
このため従来から、高い駆動周波数に追従して高精細な画像表示を実現するために、サンプリングパルスの各パルスを、順に選択される複数系列のイネーブル信号により夫々規定する技術がある。但し、サンプリングパルスの位相がずれると、やはり、相異なる時間にサンプリングされる筈の画像信号が重畳されてしまい、解像度劣化やゴーストが発生することがある。例えば特許文献1に記載された技術によれば、シフトレジスタ出力(一次クロック信号)を、二次クロック信号で整形してサンプリングパルスを生成し、サンプリングスイッチの開閉制御に用いる。この場合、サンプリングパルスのばらつきは、二次クロック信号のばらつき内に収められる。
特開平8−286640号公報
しかしながら、サンプリングパルスの形状やパルス幅は、イネーブル信号の系列間誤差に起因して系列毎に異なる場合がある。その場合は、表示面に系列に対応した筋状の輝度斑が発生するおそれがあるが、特許文献1に記載されているような技術はこうした問題に十分に対応していない。駆動周波数が高くなる程、このようなイネーブル信号の系列間誤差の影響は相対的に増大するので、この問題は深刻さを増す。尚、以上の問題は液晶装置に限ったものではなく、他の電気光学装置であっても原理的に同様の問題が生じる可能性がある。
本発明は、例えば上記問題点に鑑みなされたものであり、高品質な表示を可能とする電気光学装置用駆動回路及び電気光学装置用駆動方法、並びに、これらを適用した電気光学装置及び電子機器を提供することを課題とする。
本発明の電気光学装置用駆動回路は、上記課題を解決するために、互いに交差して延びる複数のデータ線及び複数の走査線と、前記データ線及び前記走査線に夫々電気的に接続された複数の画素部とを備えた電気光学装置を駆動するために用いられる電気光学装置用駆動回路であって、前記複数の走査線に走査信号を供給する走査線駆動部と、前記複数のデータ線に画像信号を供給するデータ線駆動部とを備えており、前記走査線駆動部及び前記データ線駆動部の少なくとも一方は、所定周期のクロック信号に基づいて複数の段から夫々転送信号を順次出力するシフトレジスタと、前記複数の段から出力される前記転送信号のパルスよりも狭い第1のパルス幅を有する複数系列の第1イネーブル信号を供給する第1イネーブル供給線と、前記第1のパルス幅よりも狭い第2のパルス幅を有する一系列の第2イネーブル信号を供給する第2イネーブル供給線と、前記転送信号と前記第1及び第2イネーブル信号とが入力され、該入力された転送信号の各パルスを前記複数系列の第1イネーブル信号の夫々を基に整形することによって前記転送信号のパルス幅を前記第1のパルス幅に制限すると共に、前記第1のパルス幅に制限された後の前記転送信号におけるパルスを前記一系列の第2イネーブル信号を基に整形することによって前記転送信号のパルス幅を前記第2のパルス幅に制限するパルス幅制限手段とを含む。
本発明の電気光学装置用駆動回路によれば、駆動時に、走査線駆動部による水平走査で選択された画素部列に、データ線駆動部からデータ線を通じて画像信号が供給され、データが書き込まれる。走査線駆動部における走査信号、及びデータ線駆動部におけるサンプリングパルスのうち一方又は両方は、シフトレジスタから出力される転送信号のパルス幅をイネーブル信号のパルス幅で制限することで、パルス幅が一定となるように調整される。例えば、走査線駆動部では、調整後の転送信号が走査信号として、対応する走査線に入力される。例えば、データ線駆動部では、調整後の転送信号がサンプリングパルスとして画像信号をサンプリングし、サンプリングされた画像信号が対応するデータ線に入力される。尚、サンプリングパルスとは、前述のように、画像信号線に供給される画像信号をデータ線に選択的に供給するためのサンプリングの際のタイミング制御用の信号であり、一般には、画像信号線とデータ線との間に設けたサンプリングスイッチの開閉を制御するように構成されている。また、シフトレジスタからの転送信号は各段から「順次」出力されるが、これは、各段から次々に出力される、といった意味であり、必ずしも、転送信号の時系列が各段の物理的な配列と対応している場合に限定されない。
このような転送信号は、高周波化の常套手段として、パルス幅制限手段において複数系列のイネーブル信号によって整形される。即ち、転送信号のパルス幅は、より幅が狭い、複数系列のイネーブル信号のパルス幅によって制限される。ここで「複数系列」というのは、例えば同一構成又は異なる構成を有すると共に相互に独立して設けられる、複数のイネーブル信号生成回路や複数のイネーブル信号供給経路など、信号の発生起源又は供給経路が互いに異なっていることを指しており、最終的に重畳されて一つの連続信号として取り扱われる場合であっても、この概念に含まれる。そのような場合には、たとえ元々同一波形であることが意図されていても、回路素子の特性や素子や配線の電気的影響によって波形が僅かながら異なることがあり得る。複数系列のイネーブル信号は互いに独立した信号として取り扱うことができるため、一つの転送信号を時分割して複数の信号線に分配供給することができる。
但し、仮にこのような複数系列のイネーブル信号を用いた波形整形のみでは、系列差に起因して表示上の不具合が生じるおそれがある。例えば、データ線駆動部では、イネーブル信号のパルス形状が画像信号に反映されるため、系列間でのパルス幅の違いが輝度差として顕在化し、表示品質を低下させることがある。具体的には、系列周期に対応する縦筋状の輝度斑となって現れる。また、走査線駆動部では、イネーブル信号のパルス形状が走査信号に反映されるため、系列間でのパルス幅の違いが横筋状の輝度斑となることがある。
そこで、本発明の電気光学装置用駆動回路は、パルス幅制限手段において、このような複数系列のイネーブル信号による整形の後に、転送信号を更に一系列のイネーブル信号で整形するように構成されている。このイネーブル信号は、第2イネーブル信号線から供給され、例えば最終的な出力信号のパルス幅とパルス周波数とを備えている。ここで「一系列」というのは、発生起源又は供給経路が同一であることを指しており、そのような場合には、信号の各パルスの幅や間隔(即ち、周波数)、立ち上がり時及び立ち下がり時の歪み具合を含めた形状等はほぼ一定となる。少なくとも、複数系列のイネーブル信号と比べると、極めて顕著に同一系列のイネーブル信号におけるパルス幅等は均一になる。そのため、この整形により、転送信号における各パルスの幅は均一化される。即ち、先の整形段階で生じた転送信号のパルス幅の系列差による変動を、この整形段階で解消することが可能となる。尚、一系列のイネーブル信号のパルス幅(即ち、「第2のパルス幅」)は、パルス幅を複数系列のイネーブル信号のパルス幅(即ち、「第1のパルス幅」)で制限された転送信号を整形することから、複数系列のイネーブル信号のパルス幅よりも小さい。
このように、複数系列のイネーブル信号と一系列のイネーブル信号の各々を用い、転送信号に少なくとも2段階の整形を施すようにすれば、最終的にパルス幅一定の信号を得ることが可能である。或いは、このような2段階の整形を施すようにすれば、1段目の複数系列のイネーブル信号のみを用いて波形整形をおこなった場合と比較して、最終的に出力される、サンプリングパルス等の転送信号におけるパルス幅を、格段に一定にできると言える。即ち、本発明においては、少なくとも以上に説明した2段階の整形が必要であるが、例えば同様の整形工程を更に行うことも可能である。但し、その場合には、一系列のイネーブル信号による整形工程を必ず最後に入れるようにする必要がある。
走査線駆動部は転送信号に基づいて走査信号を生成出力し、データ線駆動部は転送信号に基づいて画像信号のサンプリングを行うことから、走査線駆動部及びデータ線駆動部の少なくとも一方において上述の2段階の整形がなされれば、画像信号及び走査信号の少なくとも一方は、整形後の転送信号のパルス幅に応じてパルス幅が一定化される。
従って、本発明の電気光学装置用駆動回路によれば、転送信号の処理に際して複数系列のイネーブル信号を用いながらも、イネーブル信号の系列差に起因する輝度斑を殆ど又は実践上全く生じさせないで済む。
本発明の電気光学装置用駆動回路の一態様では、前記パルス幅制限手段は、前記第1のパルス幅に制限された後の前記転送信号における全てのパルスを、前記一系列の第2イネーブル信号を基に整形する。
この態様によれば、1段目の複数系列の第1イネーブル信号を基にした整形がなされた転送信号のパルスの全てに対して、2段目の一系列の第2イネーブル信号を基にした整形がなされる。そのため、イネーブル信号の系列差に起因する輝度斑を時間的、空間的に、確実に低減させることが可能である。
本発明の電気光学装置用駆動回路の他の態様では、前記パルス幅制限手段は、前記第2イネーブル信号を基に前記転送信号のパルスを整形することによって、前記パルス幅制限手段の出力における前記転送信号のパルス周期を規定する。
この態様によれば、転送信号は、第2イネーブル信号による整形時に、パルス幅だけでなくパルス周期も規定されるので、タイミング信号を適正な形状(パルス幅及びパルス周期)に生成し出力することができる。また、このように第2イネーブル信号のパルス波形が適正な形状でありさえすれば、第1イネーブル信号のパルス波形はそれよりもかなりの誤差を含むことが許される。
本発明の電気光学装置用駆動回路の他の態様では、前記パルス幅制限手段は、前記転送信号の各パルスを前記複数系列の第1イネーブル信号の夫々を基に粗く整形する一次整形を行うと共に、前記第1のパルス幅に制限された後の前記転送信号のパルスを前記一系列の第2イネーブル信号を基に前記一次整形よりも高精度に整形する二次整形を行う。
この態様によれば、転送信号は、一次整形により粗く調整された後に、二次整形により、より高精度に調整される。ここでいう「整形」とは、パルス信号におけるパルス幅の他に、そのパルス周期や、立ち上がり時及び立ち下がり時の歪み具合を含めたパルス形状を所定値或いは所定形状に規定することを意味している。
一次整形では、転送信号に第1イネーブル信号の系列差による変動以外にもパルス形状の誤差が残されていてよく、それらの誤差は、二次整形にて第2イネーブル信号の精度に応じて修正することができる。また、一次整形では、第2イネーブル信号とのパルス幅やパルス形状の差を、二次整形におけるマージンとして意図的に残しておくこともできる。
本発明の電気光学装置用駆動回路の他の態様では、前記パルス幅制限手段は、前記転送信号と前記第1イネーブル信号との論理積を演算することによって前記転送信号のパルス幅を前記第1のパルス幅に制限すると共に、該論理積の演算結果に基づく信号に対して前記第2イネーブル信号との論理積を演算することによって前記第1のパルス幅に制限された後の前記転送信号のパルス幅を前記第2のパルス幅に制限する論理回路を有する。
この態様によれば、論理回路において論理積をとることで、転送信号のパルス幅がイネーブル信号によって制限される。この場合、上記2段階の整形工程は、論理的には通常は一段しか設けられないAND回路を2段にすることで実現でき、例えばその間やその前後で他の信号との論理演算を行う場合等には、等価な演算回路によって実際の回路規模を縮小することが可能である。また、整形工程を実現する極めて単純に行うには、TFT等のトランジスタのソース−ドレイン間に転送信号を供給し、そのゲートをイネーブル信号で制御する方法が考えられるが、論理回路で構成する方が入力信号に対する出力信号の動作安定性が格段に良好である。
本発明の電気光学装置用駆動回路の他の態様では、前記データ線駆動部は、前記シフトレジスタ、前記第1及び第2イネーブル供給線及び前記パルス幅制限手段を含むと共に、前記第2のパルス幅に制限された後の転送信号に規定されるタイミングで前記画像信号をサンプリングするサンプリング回路を更に備えている。
この態様によれば、前記タイミング信号は、前記データ線駆動部において前記画像信号のサンプリングタイミングを規定する。そのため、駆動時には、表示上の縦筋状の輝度斑を殆ど又は実践上全く生じさせないで済む。
この態様では、前記データ線駆動部における前記パルス幅制限手段は、前記画像信号がサンプリングされる期間に先行するプリチャージ期間内に前記転送信号に代えてプリチャージタイミング信号が入力されるようにしてもよい。
この場合、プリチャージ期間のデータ線駆動部では、パルス幅制限手段が転送信号に代えてプリチャージタイミング信号を整形して出力する。プリチャージとは、データ線自体の寄生容量等に起因してデータ線の電位に生じる画像信号の電圧レベルからの時間遅れを補正するため、画像信号の印加に先立ち、データ線を所定電位に充放電することをいう。具体的には、プリチャージ期間内のデータ線に、画像信号配線からプリチャージ信号を供給する“ビデオプリチャージ”が知られている。そのような方式でプリチャージを行うには、本発明のタイミング信号が、サンプリング回路がプリチャージ期間は画像信号線をデータ線と電気的に接続するように動作させる必要がある。ここで、プリチャージ期間におけるタイミング信号はプリチャージタイミング信号に応じて出力されるので、“ビデオプリチャージ”タイプのプリチャージ動作が実現可能となる。因みに、プリチャージタイミング信号は、AND回路からなるパルス幅制限手段内にOR回路として組み込むことができる。
本発明の電気光学装置は、上記課題を解決するために、上述した本発明の電気光学装置用駆動回路(但し、その各種態様を含む)と、前記複数のデータ線及び前記複数の走査線と、前記複数の画素部とを備える。
本発明の電気光学装置によれば、上述した本発明の電気光学装置用駆動回路を具備するので、高品位の表示が可能である。この電気光学装置は、例えば液晶装置、有機EL装置、電子ペーパ等の電気泳動装置、電子放出素子を利用した表示装置(Field Emission Display及びSurface-Conduction Electron-Emitter Display)等の各種表示装置を実現することが可能である。
本発明の電子機器は、上記課題を解決するために、上述した本発明の電気光学装置(但し、その各種態様を含む)を備える。
本発明の電子機器によれば、上述した本発明の電気光学装置を具備している。この電気光学装置は、本発明の電気光学装置用駆動回路を搭載していることから、高品位の表示が可能である。この電子機器は、例えば、投射型表示装置、テレビジョン受像機、携帯電話、電子手帳、ワードプロセッサ、ビューファインダ型又はモニタ直視型のビデオテープレコーダ、ワークステーション、テレビ電話、POS端末、タッチパネル等の各種の電子機器に適用が可能である。
本発明の電気光学装置用駆動方法は、上記課題を解決するために、互いに交差して延びる複数のデータ線及び複数の走査線と、前記データ線及び前記走査線に夫々電気的に接続された複数の画素部とを備えた電気光学装置に適用される電気光学装置用駆動方法であって、所定周期のクロック信号に基づいて順次出力された転送信号の各パルスを前記転送信号よりも狭い第1のパルス幅を有する複数系列の第1イネーブル信号を基に整形することによって、前記転送信号のパルス幅を前記第1のパルス幅に制限する一次整形工程と、前記一次整形工程の後に、前記第1のパルス幅に制限された前記転送信号のパルス全体を前記第1のパルス幅よりも狭い第2のパルス幅を有する一系列の第2イネーブル信号を基に整形することによって、前記転送信号のパルス幅を前記第2のパルス幅に制限する二次整形工程とを含んでいる。
本発明の電気光学装置用駆動方法によれば、本発明の電気光学装置用駆動回路の項で前述したように、複数系列のイネーブル信号による一次整形工程を行い、その後、一系列のイネーブル信号による二次整形工程を行うことで、転送信号には少なくとも2段階の整形が施される。二次整形工程後の信号のパルス幅は、単一系列からなる第2イネーブル信号の第2パルス幅により制限されていることから、最終的にパルス幅一定のタイミング信号を得ることが可能である。
従って、本発明の電気光学装置用駆動方法によれば、転送信号の処理に際して複数系列のイネーブル信号を用いながらも、イネーブル信号の系列差に起因する輝度斑を殆ど又は実践上全く生じさせないで済む。
本発明のこのような作用及び他の利得は次に説明する実施の形態から明らかにされる。
本発明の実施の形態について図1から図6を参照しつつ説明する。以下の実施形態は、本発明の電気光学装置を液晶装置に適用したものである。
<液晶装置の構成>
先ず、本実施形態における液晶装置の全体構成について、図1から図3を参照して説明する。図1は、対向基板側から見た液晶装置の平面図であり、図2は、図1のH−H'断面図である。
図1及び図2において、液晶装置は、対向配置されたTFTアレイ基板10と対向基板20とから構成されている。TFTアレイ基板10と対向基板20との間には液晶層50が封入されており、TFTアレイ基板10と対向基板20とは、画像表示領域10aの周囲に位置するシール領域に設けられたシール材52により相互に接着されている。シール材52は、両基板を貼り合わせるための、例えば紫外線硬化樹脂、熱硬化樹脂等からなり、製造プロセスにおいてTFTアレイ基板10上に塗布された後、紫外線照射、加熱等により硬化させられたものである。また、シール材52中には、TFTアレイ基板10と対向基板20との間隔(基板間ギャップ)を所定値とするためのグラスファイバ或いはガラスビーズ等のギャップ材が散布されている。シール材52が配置されたシール領域の内側に並行して、画像表示領域10aの額縁領域を規定する遮光性の額縁遮光膜53が、対向基板20側に設けられている。但し、このような額縁遮光膜53の一部又は全部は、TFTアレイ基板10側に内蔵遮光膜として設けられてもよい。
TFTアレイ基板10上における、画像表示領域10aの周辺に位置する周辺領域では、データ線駆動回路101及び外部回路接続端子102が、TFTアレイ基板10の一辺に沿って設けられている。走査線駆動回路104は、この一辺に隣接する2辺に沿い、且つ、額縁遮光膜53に覆われるようにして設けられている。更に、このように画像表示領域10aの両側に設けられた二つの走査線駆動回路104間をつなぐため、TFTアレイ基板10の残る一辺に沿い、且つ額縁遮光膜53に覆われるようにして複数の配線105が設けられている。また、TFTアレイ基板10及び対向基板20の間には、両基板間の電気的導通を確保するための上下導通端子106が配置されている。
図2において、TFTアレイ基板10上には、画素スイッチング用TFTや各種配線等の上に画素電極9aが、更にその上から配向膜が形成されている。他方、対向基板20上の画像表示領域10aには、液晶層50を介して複数の画素電極9aと対向する対向電極21が形成されている。即ち、夫々に電圧が印加されることで、画素電極9aと対向電極21との間には液晶保持容量が形成される。この対向電極21上には、格子状又はストライプ状の遮光膜23が形成され、更にその上を配向膜が覆っている。液晶層50は、例えば一種又は数種類のネマティック液晶を混合した液晶からなり、これら一対の配向膜間で、所定の配向状態をとる。
尚、ここでは図示しないが、TFTアレイ基板10上には、データ線駆動回路101、走査線駆動回路104の他に、後述するサンプリング回路7等が形成されている。これに加えて、製造途中や出荷時の当該液晶装置の品質、欠陥等を検査するための検査回路等が形成されていてもよい。また、対向基板20の投射光が入射する側及びTFTアレイ基板10の出射光が出射する側には各々、例えば、TN(ツイステッドネマティック)モード、 STN(スーパーTN)モード、D−STN(ダブル−STN)モード等の動作モードや、ノーマリーホワイトモード/ノーマリーブラックモードの別に応じて、偏光フィルム、位相差フィルム、偏光板などが所定の方向で配置される。以上が、この液晶装置の構成の概要である。
次に、この液晶装置の主要な構成について図3から図5を参照して説明する。ここに、図3は、当該液晶装置の要部の構成を示している。図4は、図3に示した構成のうち転送信号の整形に関する回路系を表しており、図5は、図4の回路系における論理回路の回路構成を表している。
図3において、液晶装置は、例えば石英基板、ガラス基板或いはシリコン基板等からなるTFTアレイ基板10と対向基板20(ここでは図示せず)とが液晶層を介して対向配置され、画像表示領域10aにおいて区画配列された画素電極9aに印加する電圧を制御し、液晶層にかかる電界を画素毎に変調する構成となっている。これにより、両基板間の透過光量が制御され、画像が階調表示される。この液晶装置はTFTアクティブマトリクス駆動方式を採り、TFTアレイ基板10における画素表示領域10aには、マトリクス状に配置された複数の画素電極9aと、互いに交差して配列された複数の走査線2及びデータ線3とが形成され、画素に対応する画素部が構築されている。尚、ここでは図示しないが、各画素電極9aとデータ線3との間には、走査線2を介して夫々供給される走査信号に応じて導通、非導通が制御されるトランジスタまたは薄膜トランジスタ(TFT)などのスイッチング素子や、画素電極9aに印加した電圧を維持するための蓄積容量が形成されている。また、画像表示領域10aの周辺領域には、データ線駆動回路101等の駆動回路が形成されている。
データ線駆動回路101は、シフトレジスタ51、論理回路52及びサンプリング回路7からなる。シフトレジスタ51は、データ線駆動回路101内に入力される所定周期のX側クロック信号CLX(及びその反転信号CLX')、シフトレジスタスタート信号DXに基づいて、各段から転送信号Pi(i=1、・・・、n)を順次出力するように構成されている。
論理回路52は、本発明の「パルス幅制限手段」の一具体例であり、転送信号Pi(i=1、・・・、n)をイネーブル信号に基づいて整形し、それを基にして最終的にサンプリング回路駆動信号Si(i=1、・・・、2n)を出力する機能を有している。図4において、論理回路52は、AND回路51A及びAND回路52Bからなる。AND回路52Aは、シフトレジスタ51から入力される転送信号Pi(i=1、・・・、n)と、4本のイネーブル供給線81の夫々から供給されるイネーブル信号ENB1〜ENB4のうちの一つとの論理積を、一次整形信号Qi(i=1、・・・、2n)として出力するように構成されている。AND回路52Bは、その後段に設けられ、一次整形信号Qi(i=1、・・・、n)とイネーブル供給線82から供給されるマスターイネーブル信号M−ENBとの論理積をサンプリング回路駆動信号Si(i=1、・・・、2n)として出力するように構成されている。論理積を求めることにより、転送信号Pi(i=1、・・・、n)や一次整形信号Qi(i=1、・・・、2n)の波形は、よりパルス幅の狭いイネーブル信号ENB1〜ENB4やマスターイネーブル信号M−ENBの波形に基づいてトリミングされ、パルス幅がイネーブル信号のパルス幅に制限される。ここで、イネーブル信号ENB1〜ENB4、及びマスターイネーブル信号M−ENBは、本発明の「複数系列の第1イネーブル信号」及び「一系列からなる第2イネーブル信号」の一例である。
また、AND回路52Aは、一対の組毎にシフトレジスタ51から転送信号Pi(i=1、・・・、n)が入力されるように構成されている。即ち、この部分では配線本数が半減されていることから、このような構成のデータ線駆動回路101では、レイアウトを省スペースに設計でき、狭ピッチ化に寄与する。そして、対をなすAND回路52Aは、転送信号Pi(i=1、・・・、n)が同時に入力されるので、夫々が相異なるタイミングで一次整形信号Qi(i=1、・・・、2n)を出力するように、イネーブル信号ENB1〜ENB4のうち相異なる信号が入力されるように構成されている。
論理回路52は、図5(A)に示したAND回路52AとAND回路52Bからなる単位回路54を一単位として構成されており、各単位回路54は転送信号Pi(i=1、・・・、n)の分岐した配線の夫々に対応するように配列されている。単位回路54は、図5(B)の論理回路52Cと等価であることから、具体的にはTFTを用いて図5(C)のように構築できる。
サンプリング回路7は、画像信号線6に供給される画像信号VIDを、基準クロック信号であるサンプリング回路駆動信号Si(i=1、・・・、2n)に応じてサンプリングし、夫々をデータ信号としてデータ線3に印加する。サンプリング回路7は、例えば図4に示したように、Pチャネル型又はNチャネル型の片チャネル型TFT若しくは相補型のTFTから構成されたサンプリングスイッチ71からなる。これらサンプリング回路駆動信号Siは、本発明の「タイミング信号」の一例である。
尚、ここでは説明の簡便のために画像信号線6は一本とし、いずれのサンプリングスイッチ71もこの画像信号線6から画像信号VIDが供給されるようにしたが、画像信号は、シリアル−パラレル展開(即ち、相展開)されていてもよい。例えば、画像信号を画像信号VID1〜VID6の6相にシリアル−パラレル展開した場合、これらの画像信号は、6本の画像信号線を夫々介してサンプリング回路7に入力される。複数の画像信号線に対し、シリアルな画像信号を変換して得たパラレルな画像信号を同時供給すると、データ線3への画像信号入力をグループ毎に行うことができ、駆動周波数が抑えられる。
走査線駆動回路104は、マトリクス状に配置された複数の画素電極9aをデータ信号及び走査信号により走査線2の配列方向に走査するために、走査信号印加の基準クロックであるY側クロック信号CLY(及びその反転信号CLY')、シフトレジスタスタート信号DYに基づいて生成される走査信号を、複数の走査線2に順次印加するように構成されている。その際には、各走査線2には、両端から同時に電圧が印加される。
尚、クロック信号等の各種タイミング信号は、図示しないタイミングジェネレータにて生成され、TFTアレイ基板10上の各回路に供給される。また、各駆動回路の駆動に必要な電源電圧等もまた外部回路から供給される。更に、上下導通端子106から引き出された信号線には、外部回路から対向電極電位LCCが供給される。対向電極電位LCCは、上下導通端子106を介して対向電極21に供給される。対向電極電位LCCは、画素電極9aとの電位差を適正に保持して液晶保持容量を形成するための対向電極21の基準電位となる。
<液晶装置の駆動方法>
次に、この液晶装置の動作、特に転送信号Pi(i=1、・・・、n)をサンプリング回路駆動信号Si(i=1、・・・、2n)に整形する過程について図3から図6を参照して説明する。図6は、図4に示した駆動系における各種信号のタイミングチャートである。
図6のタイミングチャートに示したように、データ線駆動回路101では、先ずシフトレジスタ51から転送信号Pi(i=1、・・・、n)がP1、P2、・・・と順に出力される。その際、奇数番目の転送信号P2k-1と偶数番目の転送信号P2k(但し、k=1、・・・、n/2)とは、相補のタイミングで出力される。転送信号Pi(i=1、・・・、n)の夫々は、AND回路52Aにおいて、イネーブル信号ENB1〜ENB4のいずれかとの論理積をとることによって、そのパルス幅がイネーブル信号ENB1〜ENB4のパルス幅d1に制限される(即ち、イネーブル信号ENB1〜ENB4によって整形される)。イネーブル信号ENB1〜ENB4は、互いのパルスが重なり合わないように位相がずれているため、同一の転送信号Pi(i=1、・・・、n)が分岐して入力されるAND回路52Aの対においては、夫々に入力されたイネーブル信号に基づいて相異なるタイミングのパルス波形が出力される。転送信号Pi(i=1、・・・、n)は、シフトレジスタ51に入力されるクロック信号CLX等に応じて出力されることから、その高周波化にはクロック周期による制限のために一定の限界があるが、このように論理回路52にてイネーブル信号との論理積をとることでパルス幅を制限すれば、狭小化することができる。
AND回路52Aの各出力は、ここで一次整形信号Qi(i=1、・・・、2n)とされる。ここで、イネーブル信号ENB1〜ENB4は夫々系列の異なる信号であるために、波形が完全に揃わない場合が考えられる。そのような場合、一次整形信号Qi(i=1、・・・、2n)内に他のパルスと比べて幅が異なるパルスが混在することになる。例えば、図6に示したように、イネーブル信号ENB3が、基準とするパルス幅d1よりも広いパルス幅d1'を有するとき、対応する一次整形信号Q3のパルス幅もまたパルス幅d1'となる。
以上のAND回路52Aにおける転送信号Pi(i=1、・・・、n)の整形工程は、一次整形工程に過ぎず、続いてAND回路52Bにおける二次整形工程が行われる。
一次整形信号Qi(i=1、・・・、2n)の夫々は、AND回路52Bにおいて、マスターイネーブル信号N−ENBとの論理積をとることによって、そのパルス幅がマスターイネーブル信号M−ENBのパルス幅d2に制限される(即ち、マスターイネーブル信号M−ENBによって整形される)。マスターイネーブル信号M−ENBは、イネーブル信号ENB1〜ENB4とは異なり、単一の系列からなることから、そのパルス幅d2は常に一定とされる。また、パルス幅d2は、パルス幅d1より更に狭い。そのため、AND回路52Bでは、一次整形信号Q3のパルス幅d1'もまたパルス幅d2によって制限され、サンプリング回路駆動信号S3が生成出力される。
このように、一次整形信号Qi(i=1、・・・、2n)の各パルスは、単一のマスターイネーブル信号M−ENBの波形に基づいて整形されるので、生成出力されるサンプリング回路駆動信号Si(i=1、・・・、2n)は、パルス幅がパルス幅d2に揃えられる。即ち、論理回路52では、最終的にパルス幅がパルス幅d2に規定されたサンプリング回路駆動信号Si(i=1、・・・、2n)が得られる。尚、本実施形態においては、一次整形工程及び二次整形工程の夫々で出力される信号は、パルス幅だけでなく、パルス周波数若しくはパルス同士の間隔、更に立ち上がり及び立ち下がりの歪み具合を含むパルス形状もまた、イネーブル信号の波形に支配されている。即ち、サンプリング回路駆動信号Si(i=1、・・・、2n)は、マスターイネーブル信号M−ENBによってパルス周波数若しくはパルス同士の間隔も所定値に規定され、パルス形状も所定形状に規定されている。
サンプリング回路駆動信号Si(i=1、・・・、2n)は、サンプリング回路7のサンプリングスイッチ71群を駆動し、サンプリングスイッチ71に画像信号線6から画像信号VIDを供給する。こうして画像信号VIDはサンプリングされるが、ここでサンプリング回路駆動信号Si(i=1、・・・、2n)のパルス幅がパルス幅d2に揃っているために、生成されるデータ信号のパルス幅もパルス幅d2に規定されており、また一様に揃えられている。また、サンプリング回路駆動信号Si(i=1、・・・、2n)のパルス周波数若しくはパルス間隔が所定値をとることから、生成されるデータ信号のパルス周波数若しくはパルス間隔も所定値に規定される。更に、ここではサンプリング回路駆動信号Si(i=1、・・・、2n)のパルス形状が所定形状に規定されているため、生成されるデータ信号のパルス形状も所定形状に規定される。よって、パルス幅やパルス形状等が適正に制御されたデータ信号を得ることができる。
データ信号は、各データ線3から選択画素列の画素電極9aに印加され、また図示しない蓄積容量を充電又は放電して、データの書き込みを行う。その際、データ信号は、上述したようにパルス幅やパルス形状等が揃っているために輝度を相対的な適正値として表すことができ、表示像におけるパルス幅の差に基づく輝度斑の発生を低減或いは防止することができる。即ち、表示上の輝度は、画素電極9aに供給されるデータ信号の高さ、幅、そして立ち上がり時及び立ち下がり時の歪み具合等によって左右されるからである。
このように本実施形態によれば、上述のように2段階の整形工程を経て生成されたサンプリング回路駆動信号Siによってデータ信号のパルス幅が規定されるようにしたので、一次整形工程に複数系列のイネーブル信号ENB1〜ENB4を用いながらも、イネーブル信号ENB1〜ENB4の系列差に起因する輝度斑を殆ど又は実践上全く生じさせないで済む。また、サンプリング回路駆動信号Siによりデータ信号のパルス周波数若しくはパルス間隔、及びパルス形状が夫々所定値及び所定形状に規定されるようにしたので、適正な駆動が可能である。
また、サンプリング回路駆動信号Si(i=1、・・・、2n)のパルス幅は、最終的にマスターイネーブル信号M−ENBのパルス幅d2に規定され、そのパルス形状も所定形状に規定されることから、一次整形工程における出力波形はそれほど形状精度が良くなくともよい。そこで、転送信号Pi(i=1、・・・、n)のパルス幅や周期、パルス形状等を、一次整形により粗く調整し、更に二次整形により高精度に調整することが考えられる。例えば、一次整形工程では、転送信号Pi(i=1、・・・、n)にイネーブル信号ENB1〜ENB4の系列差による変動以外にも形状誤差が残されていてよく、それらの誤差は、二次整形工程においてマスターイネーブル信号M−ENBの精度に応じて修正することができる。尚、一次整形工程では、マスターイネーブル信号M−ENBとのパルス幅やパルス形状等の差を、二次整形工程におけるマージンとして意図的に残しておいてもよい。
尚、上記実施形態では、一次整形工程のイネーブル信号をイネーブル信号ENB1〜ENB4の4系列としたが、イネーブル信号の系列数はこれより少なくても(例えば2系列)、多くても(例えば8系列、或いはそれ以上)よい。高精細化に対応して駆動周波数の高周波化が更に進めば、パルス幅を狭めるためにイネーブル信号の系列数は増大する。そのような場合は、系列間でパルス形状が異なる状況が一層起こりやすいので、このように複数系列のイネーブル信号による整形後に一系列のイネーブル信号による整形を行う手法が表示品質保持に有効である。
<2:変形例>
上記実施形態では、画像信号VIDの書き込み期間(即ち、サンプリング期間)の動作について説明したが、このような液晶装置は、サンプリング期間に先立ってプリチャージ動作を行うようにしてもよい。その場合の液晶装置は、例えば以下のように構成することができる。ここで、図7は、実施形態の変形例に係る液晶装置のうち、転送信号の整形に関する回路系を表している。図8は、図7の回路系における論理回路の回路構成を表している。
本変形例における液晶装置は、実施形態と基本構成はほぼ同様であるが、データ線駆動回路101の論理回路52を論理回路55に置き換え、駆動時にプリチャージを行うように構成されている点で異なっている。従って、実施形態と同様の構成要素については同一の符号を付し、その説明を適宜省略するものとする。
図7において、論理回路55はAND回路52A、OR回路52D及びAND回路52Bの3段で構成されている。OR回路52Dは、AND回路52Aの後段、かつ、AND回路52Bの前段に設けられており、AND回路52Aの出力、及び、プリチャージタイミング信号NRG(Noise Reduction Gate)が入力されるように構成され、これらの信号の少なくとも一方が入力されたときに“High”を出力する。プリチャージタイミング信号NRGは、TFTアレイ基板10の外部から供給される。
このようなデータ線駆動回路は、例えば以下のようにして駆動される。
プリチャージタイミング信号NRGは、画像信号VIDのサンプリング期間に先立つプリチャージ期間を規定し、OR回路52Dに一斉に供給される。その間、AND回路52Bには、イネーブル供給線82を介してプリチャージタイミング信号NRGと同様の信号が入力される。従って、プリチャージタイミング信号NRGの入力期間には、全てのサンプリングスイッチ71が同時に導通し、全データ線3が一斉に画素信号線6に接続された導通状態とされる。論理回路55は、プリチャージタイミング信号NRGの入力期間には、全てのサンプリングスイッチ71が同時に導通し、全データ線3が一斉に画素信号線6に接続された導通状態とされるように動作する。このとき、データ線3は、プリチャージ期間において画像信号線6から画像信号の供給を受けるようにされてもよいし、画像信号の電位とは別の所定電位に接続されてもよい。或いは、画像信号線6により導通状態とされるのみで、画像信号線6から信号の供給は受けないようにされてもよい。
そして、サンプリング期間では、論理回路55は、論理回路52と同様に、イネーブル信号ENB1〜ENB4とマスターイネーブル信号M−ENBとに応じてサンプリング回路駆動信号Si(i=1、・・・、2n)を生成出力する。即ち、この期間のOR回路52Dは、プリチャージタイミング信号NRGが入力されないので、AND回路52Aが出力する一次整形信号Qi(i=1、・・・、2n)に対応して“High”を出力する。
プリチャージ期間では、データ線3と対向電極21との間に生じる容量や、サンプリングスイッチ71のトランジスタ容量及び画像信号線6の配線容量が、画像信号線6を通じて、充電又は放電される。そのため、プリチャージ後のデータ線3相互間の電位ばらつきは殆ど又は実践上全く問題となることは無くなる。その結果、後続するサンプリング期間でのデータ信号の書き込みばらつきが抑制され、表示斑が低減された高品位の表示が可能となる。
以上、本発明の実施形態及びその変形例について具体的に説明したが、本発明はそれに限定されず、種々の変形実施が可能である。例えば、上記実施形態では、シフトレジスタ51からの各出力を、AND回路52Aの各対に分岐して入力させるようにしたが、そのような分岐入力は必ずしも必要とされない。例えば、データ線駆動回路全体を個々のデータ線に対応する単位回路の集合として構成する場合には、各種信号は複数の回路で共用されず、単位回路毎に入出力される。
また、実施形態では、転送信号に対する整形工程はAND回路52A及び52Bの夫々による2段階しか行わないが、本発明においては少なくとも以上に説明した2段階の工程を行えばよく、例えば同様の整形工程を更に行うようにしてもよい。但し、その場合には、一系列のイネーブル信号による整形工程を必ず最後に入れるようにする必要がある。
また、実施形態では、データ線駆動回路101における転送信号の整形について説明したが、走査線駆動回路104における転送信号もまた同様に整形することができる。
次に、図10を参照しながら図8(A)に示した転送信号に整形に関する回路系として実用的な回路構成を説明する。図10は、図8に示した転送信号に整形に関する回路系の他の例を示す論理回路図である。
すなわち、図4、5、7及び8に示した各論理回路52(AND回路及びOR回路)はそれぞれの否定論理回路(NAND回路やNOR回路)で構成することができる。図10に示した回路はこのことを具体的に示した例であり、図7における論理回路55の実用的な回路構成の一例である。
なお、図10の論理回路からプリチャージのための構成(OR回路62D及びインバータ回路64及びプリチャージタイミング信号NRGの入力)を取り除けば、図4の論理回路52の実用的な回路構成の一例となる。
図10において、論理回路66はNAND回路62A、OR回路62D、NAND回路62B及びインバータ回路63の4段で構成されている。OR回路62Dは、NAND回路62Aの後段、かつ、NAND回路62Bの前段に設けられており、NAND回路62Aの出力、及び、インバータ回路64を介してプリチャージタイミング信号NRG(Noise Reduction Gate)が入力されるように構成され、これらの信号の少なくとも一方が入力されたときに“High”を出力する。プリチャージタイミング信号NRGは、TFTアレイ基板10の外部から供給される。インバータ回路63は、NAND回路62Bの後段に順次接続された3つのインバータ回路63A、63B及び63Cを備えている。インバータ回路63A、63B及び63Cは、この順で信号の出力を増大させるようにチャネル幅が順に大きく形成されたトランジスタで形成されている。より具体的には、インバータ回路63Bが備えるトランジスタのチャネル幅はインバータ回路63Aが備えるトランジスタのチャネル幅より大きい。インバータ回路63Cが備えるトランジスタのチャネル幅はインバータ回路63Bのトランジスタのチャネル幅より大きい。論理回路66によれば、論理回路55を用いる場合に比べて大きな出力のサンプリング回路駆動信号Siによって、論理回路66の後段に電気的に接続されるサンプリングスイッチ71を駆動できる。
次に、図11を参照しながらAND回路52B及びNAND回路62Bに置き換え可能な論理回路の一例を説明する。図11は、AND回路52B及びNAND回路62Bに置き換え可能な等価回路の一例を示した論理回路図である。
図11において、等価回路72Bは、nチャネル型トランジスタ74n及びpチャネル型トランジスタ74pを一組とするトランスミッションゲート74と、トランスミッションゲート74を構成するトランジスタのゲート間を電気的に接続するインバータ回路73とを備えている。マスターイネーブル信号M−ENBは、トランジスタ74nのゲートに入力される。等価回路72Bによれば、AND回路52B及びNAND回路62Bを介してサンプリング回路駆動信号Siを出力する場合に比べて、パルス幅を狭く整形することができ、高周波数でサンプリングスイッチ71を駆動する場合に好適なサンプリング回路駆動信号Siを出力できる。また、回路規模を大幅に縮小することができるので、画素ピッチを狭める際により有利な構成である。
<3:電子機器>
以上に説明した液晶装置は、例えばプロジェクタに適用される。ここでは、上記実施形態の液晶装置をライトバルブとして用いたプロジェクタについて説明する。
図9は、プロジェクタの構成例を示す平面図である。この図に示されるように、プロジェクタ1100内部には、ハロゲンランプ等の白色光源からなるランプユニット1102が設けられている。このランプユニット1102から射出された投射光は、ライトガイド内に配置された4枚のミラー1106及び2枚のダイクロイックミラー1108によってRGBの3原色に分離され、各原色に対応するライトバルブとしての液晶装置100R、100B及び100Gに入射される。液晶装置100R、100B及び100Gの構成は上述した液晶装置と同等であり、それぞれにおいて画像信号処理回路から供給されるR、G、Bの原色信号が変調される。これらの液晶装置によって変調された光は、ダイクロイックプリズム1112に3方向から入射される。ダイクロイックプリズム1112では、各色の画像が合成され、カラー画像として射出される。カラー画像は、投射レンズ1114を介して、スクリーン1120等に投写される。
この投射型カラー表示装置では、上記実施形態の液晶装置を用いたことにより、輝度斑が少ない或いは殆ど生じない、高品位な表示が可能である。
尚、上記実施形態の液晶装置は、プロジェクタ以外の直視型や反射型のカラー表示装置に適用することもできる。その場合、対向基板20上における画素電極9aに対向する領域に、RGBのカラーフィルタをその保護膜と共に形成すればよい。或いは、TFTアレイ基板10上のRGBに対向する画素電極9a下にカラーレジスト等でカラーフィルタ層を形成することも可能である。更に、以上の各場合において、対向基板20上に画素と1対1に対応するマイクロレンズを設けるようにすれば、入射光の集光効率が向上し、表示輝度を向上させることができる。更にまた、対向基板20上に、何層もの屈折率の相違する干渉層を堆積することで、光の干渉を利用してRGB色を作り出すダイクロイックフィルタを形成してもよい。このダイクロイックフィルタ付き対向基板によれば、より明るい表示が可能となる。
以上では、液晶装置及び液晶プロジェクタを例に挙げて本発明について説明したが、液晶装置以外のマトリクス駆動が可能な電気光学装置も本発明の適用範囲である。そのような電気光学装置としては、例えば、エレクトロルミネッセンス装置や電気泳動装置、電子放出素子を利用した表示装置(Field Emission Display及びSurface-Conduction Electron-Emitter Display)等が挙げられる。また、本発明の電子機器は、このような本発明の電気光学装置を備えることで実現され、上述したプロジェクタの他に、テレビジョン受像機や、ビューファインダ型或いはモニタ直視型のビデオテープレコーダ、カーナビゲーション装置、ページャ、電子手帳、電卓、ワードプロセッサ、ワークステーション、テレビ電話、POS端末、タッチパネルを備えた装置等の各種の電子機器として実現可能である。
本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨、あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電気光学装置用駆動回路及び電気光学装置用駆動方法、並びに、該電気光学装置及びそれを具備する電子機器もまた本発明の技術的範囲に含まれるものである。
実施形態に係る電気光学装置の全体構成を示す平面図である。 図1のH−H´断面図である。 実施形態に係る電気光学装置のTFアレイ基板上の回路構成を示す平面図である。 実施形態に係る電気光学装置の主要な駆動系の構成を示すブロック図である。 図4の回路系における論理回路の構成を示す図であり、(A)は論理回路図、(B)は(A)の等価回路を示す論理回路図、(C)は回路図である。 実施形態に係る電気光学装置の駆動方法を説明するためのタイミングチャートである。 実施形態の変形例に係る電気光学装置の主要な駆動系の構成を示すブロック図である。 図7の回路系における論理回路の構成を示す図であり、(A)は論理回路図、(B)は(A)の等価回路を示す論理回路図、(C)は回路図である。 本発明の電気光学装置を適用した電子機器の実施形態としての投射型カラー表示装置の一例を示す図式的断面図である。 図7に示す回路系における論理回路の他の例を示す論理回路図である。 図8に示す論理回路の一部を他の回路で置き換えた論理回路図である。
符号の説明
2・・・走査線、3・・・データ線、6・・・画像信号線、7・・・サンプリング回路、10・・・TFTアレイ基板、10a・・・画像表示領域、51・・・シフトレジスタ、52、55・・・論理回路、52A、52B・・・AND回路、52D・・・OR回路、54・・・単位回路、71・・・サンプリングスイッチ、81、82・・・イネーブル供給線、101・・・データ線駆動回路、104・・・走査線駆動回路、d1、d2・・・パルス幅、Pi・・・転送信号、ENB1〜ENB4・・・イネーブル信号、M−ENB・・・マスターイネーブル信号、Qi・・・一次整形信号、Si・・・サンプリング回路駆動信号、NRG・・・プリチャージタイミング信号

Claims (10)

  1. 互いに交差して延びる複数のデータ線及び複数の走査線と、前記データ線及び前記走査線に夫々電気的に接続された複数の画素部とを備えた電気光学装置を駆動するために用いられる電気光学装置用駆動回路であって、
    前記複数の走査線に走査信号を供給する走査線駆動部と、前記複数のデータ線に画像信号を供給するデータ線駆動部とを備えており、
    前記走査線駆動部及び前記データ線駆動部の少なくとも一方は、
    所定周期のクロック信号に基づいて複数の段から夫々転送信号を順次出力するシフトレジスタと、
    前記複数の段から出力される前記転送信号のパルスよりも狭い第1のパルス幅を有する複数系列の第1イネーブル信号を供給する第1イネーブル供給線と、
    前記第1のパルス幅よりも狭い第2のパルス幅を有する一系列の第2イネーブル信号を供給する第2イネーブル供給線と、
    前記転送信号と前記第1及び第2イネーブル信号とが入力され、該入力された転送信号の各パルスを前記複数系列の第1イネーブル信号の夫々を基に整形することによって前記転送信号のパルス幅を前記第1のパルス幅に制限すると共に、前記第1のパルス幅に制限された後の前記転送信号におけるパルスを前記一系列の第2イネーブル信号を基に整形することによって前記転送信号のパルス幅を前記第2のパルス幅に制限するパルス幅制限手段と
    を含むことを特徴とする電気光学装置用駆動回路。
  2. 前記パルス幅制限手段は、前記第1のパルス幅に制限された後の前記転送信号における全てのパルスを、前記一系列の第2イネーブル信号を基に整形することを特徴とする請求項1に記載の電気光学装置用駆動回路。
  3. 前記パルス幅制限手段は、前記第2イネーブル信号を基に前記転送信号のパルスを整形することによって、前記パルス幅制限手段の出力における前記転送信号のパルス周期を規定することを特徴とする請求項1又は2に記載の電気光学装置用駆動回路。
  4. 前記パルス幅制限手段は、前記転送信号の各パルスを前記複数系列の第1イネーブル信号の夫々を基に粗く整形する一次整形を行うと共に、前記第1のパルス幅に制限された後の前記転送信号のパルスを前記一系列の第2イネーブル信号を基に前記一次整形よりも高精度に整形する二次整形を行うことを特徴とする請求項1から3のいずれか一項に記載の電気光学装置用駆動回路。
  5. 前記パルス幅制限手段は、前記転送信号と前記第1イネーブル信号との論理積を演算することによって前記転送信号のパルス幅を前記第1のパルス幅に制限すると共に、該論理積の演算結果に基づく信号に対して前記第2イネーブル信号との論理積を演算することによって前記第1のパルス幅に制限された後の前記転送信号のパルス幅を前記第2のパルス幅に制限する論理回路を有することを特徴とする請求項1から4のいずれか一項に記載の電気光学装置用駆動回路。
  6. 前記データ線駆動部は、前記シフトレジスタ、前記第1及び第2イネーブル供給線及び前記パルス幅制限手段を含むと共に、前記第2のパルス幅に制限された後の転送信号によって規定されるタイミングで前記画像信号をサンプリングするサンプリング回路を更に含むことを特徴とする請求項1から5のいずれか一項に記載の電気光学装置用駆動回路。
  7. 前記データ線駆動部における前記パルス幅制限手段は、前記画像信号がサンプリングされる期間に先行するプリチャージ期間内に前記転送信号に代えてプリチャージタイミング信号が入力されることを特徴とする請求項6に記載の電気光学装置用駆動回路。
  8. 請求項1から請求項7のいずれか一項に記載の電気光学装置用駆動回路と、前記複数のデータ線及び前記複数の走査線と、前記複数の画素部とを備えたことを特徴とする電気光学装置。
  9. 請求項8に記載の電気光学装置を備えたことを特徴とする電子機器。
  10. 互いに交差して延びる複数のデータ線及び複数の走査線と、前記データ線及び前記走査線に夫々電気的に接続された複数の画素部とを備えた電気光学装置に適用される電気光学装置用駆動方法であって、
    所定周期のクロック信号に基づいて順次出力された転送信号の各パルスを前記転送信号よりも狭い第1のパルス幅を有する複数系列の第1イネーブル信号を基に整形することによって、前記転送信号のパルス幅を前記第1のパルス幅に制限する一次整形工程と、
    前記一次整形工程の後に、前記第1のパルス幅に制限された前記転送信号のパルス全体を前記第1のパルス幅よりも狭い第2のパルス幅を有する一系列の第2イネーブル信号を基に整形することによって、前記転送信号のパルス幅を前記第2のパルス幅に制限する二次整形工程と
    を含むことを特徴とする電気光学装置用駆動方法。
JP2005142188A 2004-07-09 2005-05-16 電気光学装置用駆動回路並びに電気光学装置及び電子機器 Expired - Fee Related JP4400508B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005142188A JP4400508B2 (ja) 2004-07-09 2005-05-16 電気光学装置用駆動回路並びに電気光学装置及び電子機器
TW094122890A TWI270048B (en) 2004-07-09 2005-07-06 Drive circuit for electro-optical apparatus, method of driving electro-optical apparatus, electro-optical apparatus, and electronic equipment
US11/571,304 US7920119B2 (en) 2004-07-09 2005-07-08 Drive circuit for electro-optical apparatus, method of driving electro-optical apparatus, electro-optical apparatus, and electronic system
PCT/JP2005/013110 WO2006006699A1 (en) 2004-07-09 2005-07-08 Drive circuit for electro-optical apparatus, method of driving electro-optical apparatus, electro-optical apparatus, and electronic system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004203254 2004-07-09
JP2005142188A JP4400508B2 (ja) 2004-07-09 2005-05-16 電気光学装置用駆動回路並びに電気光学装置及び電子機器

Publications (2)

Publication Number Publication Date
JP2006047981A true JP2006047981A (ja) 2006-02-16
JP4400508B2 JP4400508B2 (ja) 2010-01-20

Family

ID=35197743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142188A Expired - Fee Related JP4400508B2 (ja) 2004-07-09 2005-05-16 電気光学装置用駆動回路並びに電気光学装置及び電子機器

Country Status (4)

Country Link
US (1) US7920119B2 (ja)
JP (1) JP4400508B2 (ja)
TW (1) TWI270048B (ja)
WO (1) WO2006006699A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145899A (ja) * 2004-11-19 2006-06-08 Seiko Epson Corp 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
JP2006145900A (ja) * 2004-11-19 2006-06-08 Seiko Epson Corp 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
CN105489185A (zh) * 2016-01-25 2016-04-13 京东方科技集团股份有限公司 驱动装置、显示装置和驱动方法
JP2018136528A (ja) * 2017-01-26 2018-08-30 株式会社半導体エネルギー研究所 半導体装置、及び該半導体装置を有する電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102182092B1 (ko) * 2013-10-04 2020-11-24 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
US10777153B1 (en) * 2019-05-16 2020-09-15 Himax Display, Inc. Method for calculating pixel voltage for liquid crystal on silicon display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451717B2 (ja) 1994-04-22 2003-09-29 ソニー株式会社 アクティブマトリクス表示装置及びその駆動方法
JP2625390B2 (ja) 1994-10-27 1997-07-02 日本電気株式会社 液晶表示装置およびその駆動方法
JP3329136B2 (ja) 1995-04-11 2002-09-30 ソニー株式会社 アクティブマトリクス表示装置
JPH10105126A (ja) 1996-09-30 1998-04-24 Sanyo Electric Co Ltd 液晶表示装置
JP3498570B2 (ja) 1998-04-15 2004-02-16 セイコーエプソン株式会社 電気光学装置の駆動回路及び駆動方法並びに電子機器
JP2000227784A (ja) 1998-07-29 2000-08-15 Seiko Epson Corp 電気光学装置の駆動回路および電気光学装置
JP2000047643A (ja) 1998-07-29 2000-02-18 Seiko Epson Corp 電気光学装置の駆動回路及びこれを備えた電気光学装置
JP3729163B2 (ja) * 2001-08-23 2005-12-21 セイコーエプソン株式会社 電気光学パネルの駆動回路、駆動方法、電気光学装置および電子機器
JP4391128B2 (ja) 2002-05-30 2009-12-24 シャープ株式会社 表示装置のドライバ回路およびシフトレジスタならびに表示装置
JP3826902B2 (ja) 2003-07-22 2006-09-27 セイコーエプソン株式会社 電気光学装置及び電子機器
US7274341B2 (en) * 2003-07-31 2007-09-25 Yokowo Co., Ltd. Antenna mounting structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006145899A (ja) * 2004-11-19 2006-06-08 Seiko Epson Corp 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
JP2006145900A (ja) * 2004-11-19 2006-06-08 Seiko Epson Corp 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
JP4513524B2 (ja) * 2004-11-19 2010-07-28 セイコーエプソン株式会社 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
JP4661182B2 (ja) * 2004-11-19 2011-03-30 セイコーエプソン株式会社 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
CN105489185A (zh) * 2016-01-25 2016-04-13 京东方科技集团股份有限公司 驱动装置、显示装置和驱动方法
US10504464B2 (en) 2016-01-25 2019-12-10 Boe Technology Group Co., Ltd. Driving apparatus, display apparatus with output enable signal driving circuit and driving method thereof
JP2018136528A (ja) * 2017-01-26 2018-08-30 株式会社半導体エネルギー研究所 半導体装置、及び該半導体装置を有する電子機器
JP7054630B2 (ja) 2017-01-26 2022-04-14 株式会社半導体エネルギー研究所 半導体装置および電子機器
US11373612B2 (en) 2017-01-26 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device

Also Published As

Publication number Publication date
US7920119B2 (en) 2011-04-05
JP4400508B2 (ja) 2010-01-20
TWI270048B (en) 2007-01-01
US20070222481A1 (en) 2007-09-27
WO2006006699A1 (en) 2006-01-19
TW200617867A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
KR100758869B1 (ko) 전기 광학 장치용 구동 회로 및 그 구동 방법, 그리고 전기광학 장치 및 전자 기기
US8102346B2 (en) Electro-optical device and electronic apparatus including the same
JP4400508B2 (ja) 電気光学装置用駆動回路並びに電気光学装置及び電子機器
KR100722732B1 (ko) 전기 광학 장치용 구동 회로 및 전기 광학 장치, 및 전자기기
JP4957190B2 (ja) 電気光学装置及び電子機器
KR100658418B1 (ko) 전기광학장치 및 전자기기
KR20080033848A (ko) 전기 광학 장치 및 전자 기기
JP4513524B2 (ja) 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
JP4661182B2 (ja) 電気光学装置用駆動回路及び方法、並びに電気光学装置及び電子機器
KR100845763B1 (ko) 전기 광학 장치를 위한 구동 회로, 전기 광학 장치를구동시키는 방법, 전기 광학 장치, 및 전자 시스템
JP2010127955A (ja) 電気光学装置及び電子機器
JP2009109707A (ja) 電気光学装置及び電子機器
JP4457811B2 (ja) 電気光学装置及び電子機器
KR100637642B1 (ko) 전기 광학 장치의 구동 회로 및 구동 방법, 전기 광학 장치그리고 전자 기기
CN100485765C (zh) 驱动电路、驱动方法、电气光学设备和电子系统
JP2007086653A (ja) 電気光学装置及び電子機器
JP2006208599A (ja) 電気光学装置及び電子機器
JP2008122747A (ja) 電気光学装置用駆動回路、電気光学装置の駆動方法、電気光学装置、及び電子機器
JP2006220979A (ja) 電気光学装置及び電子機器
JP2006235282A (ja) 電気光学装置及びその駆動方法、並びに電子機器
JP2007114343A (ja) 電気光学装置及び電子機器
JP2005266575A (ja) 電気光学装置及び電子機器
JP2009180969A (ja) 電気光学装置及び電子機器
JP2010224220A (ja) 駆動回路及び駆動方法、並びに電気光学装置及び電子機器

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees