JP2006047003A - レーザー露光装置のために用いられる光量分布測定装置 - Google Patents
レーザー露光装置のために用いられる光量分布測定装置 Download PDFInfo
- Publication number
- JP2006047003A JP2006047003A JP2004225747A JP2004225747A JP2006047003A JP 2006047003 A JP2006047003 A JP 2006047003A JP 2004225747 A JP2004225747 A JP 2004225747A JP 2004225747 A JP2004225747 A JP 2004225747A JP 2006047003 A JP2006047003 A JP 2006047003A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light quantity
- quantity distribution
- laser
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
【課題】レーザー露光装置において、光量分布の測定結果と写真プリントの発色濃度との相関性を良好にすることができ、光量分布の測定結果に基づいてユニフォミティ補正を行うことが可能な光量分布測定装置を提供する。
【解決手段】光変調されたレーザー光を主走査方向に走査することでペーパーの表面に画像を露光形成するレーザー露光装置8のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置40であって、光量測定用のデータに基づいて光変調され、主走査方向に走査されるレーザー光の光量を測定するための光量測定センサー部41と、光量測定センサー部41により主走査方向におけるレーザー光の光量分布信号を取得する光量分布取得部47とを備え、この光量分布取得部47は、光量測定用のデータに基づき光変調された画素信号成分の第1光量分布を取得する第1データ取得手段と、ノイズ成分による第2光量分布を取得する第2データ取得手段とを備える。
【選択図】図3
【解決手段】光変調されたレーザー光を主走査方向に走査することでペーパーの表面に画像を露光形成するレーザー露光装置8のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置40であって、光量測定用のデータに基づいて光変調され、主走査方向に走査されるレーザー光の光量を測定するための光量測定センサー部41と、光量測定センサー部41により主走査方向におけるレーザー光の光量分布信号を取得する光量分布取得部47とを備え、この光量分布取得部47は、光量測定用のデータに基づき光変調された画素信号成分の第1光量分布を取得する第1データ取得手段と、ノイズ成分による第2光量分布を取得する第2データ取得手段とを備える。
【選択図】図3
Description
本発明は、光変調されたレーザー光を主走査方向に走査することで写真感光材料の表面に画像を露光形成するレーザー露光装置のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置に関するものである。
レーザー露光装置は、写真感光材料(ペーパー)に表面に画像を焼付露光する装置として用いられており、レーザー光を出力するレーザー光源や、出力されたレーザー光を光変調するためのAOM(音響光学素子)、光変調されたレーザー光を主走査方向に沿って繰り返し走査させるためのポリゴンミラー、fθレンズなどから構成される(例えば、下記特許文献1)。
かかるレーザー露光装置において、写真感光材料の乳剤面にある濃度の画素を形成するためには、ある値の画素データが与えられ、この画素データに基づき光変調されたレーザー光が乳剤面に照射されることで、所定の画素濃度が潜像として形成される。この場合、同じ画素データが与えられた場合、主走査方向のどの画素位置においても同じ濃度が形成されなければならないが、実際には種々の要因により同じ画素データを与えても均一な濃度にはならない。これを図8により示す。
図8は、画像形成位置(写真感光材料の乳剤面の位置あるいは乳剤面の近傍位置)における光量分布を示すグラフであり、横軸は主走査方向における測定位置(mm)を表し、縦軸は光量測定値を表す。また、カラー画像を形成するためのレーザー露光装置であるので、赤レーザー光源(R)、緑レーザー光源(G),青レーザー光源(B)の夫々について測定されたデータである。このデータは、全面グレーの写真プリントを作成するような画素データを付与することで測定されたものであり、理想的には、どの測定位置においても光量測定値は同じにならなければならない。なお、図8では測定位置のほぼ中央部が0となるように、各R,G,Bの測定データをオフセットしている。
しかしながら、図8を見てもわかるように、実際には光量は均一にならず、ばらつきが生じている。このばらつきは、写真感光材料に形成される画素濃度のばらつきの原因となり画質低下を招く。上記のように、光量分布が均一にならない理由としては、レーザー露光装置を構成する光学部品(ポリゴンミラーの反射面やfθレンズなど)の個体差における光学特性のばらつきと、これらから生じるノイズがある。このようなばらつきを補正して光量分布が実質的に均一となるように、すなわち、形成される画素濃度が均一になるように、電子的な補正を行っている。つまり、各測定位置に対応した画素データを補正することで、画素濃度の均一化を行う。これを主走査方向におけるユニフォミティ補正とも称している。
一方、図8に示す光量分布の状態で、写真プリントを作成した場合の、実際の画像濃度を測定した結果を図9に示す。横軸は測定位置であり、縦軸は濃度値を示す。発色濃度は、Y(イエロー)、M(マゼンタ)、C(シアン)で示され、各色の平均値でグラフはオフセットしている。青・緑・赤レーザーにより、Y・M・Cの各色が発色される。この図9を見るとわかるように、各色の発色濃度と、図8の光量分布とは、ほぼ同じような傾向が見られる。
しかしながら、Yのグラフには、測定位置50mm以下のエリアで濃度値がはねあがっており、図8の光量分布とは対応しない部分が存在する。従って、光量分布と濃度分布が対応しないため、光量分布のみに基づいて前述のユニフォミティ補正を行うと、正確な補正が行われないことがありうる。
上記の跳ねあがり部分が生じる原因は、次のようなものが考えられている。まず第一に、ポリゴンミラーにより主走査可能な範囲のうちで、それよりも狭い範囲(以下、有効走査範囲と称する。)でのみ光変調されたレーザー光が出力され、有効走査範囲の外側領域ではレーザー光による露光は行われないようにしなければならない。しかし、レーザー光の出力制御(光変調)は、AOMで行われており、レーザー光源からのレーザー光は常時出力された状態である。従って、AOMで完全にレーザー光が遮断されるように制御するが、現実的には完全に遮光されず、幾分かの漏れ光が生じる。これがノイズ成分として発色濃度に影響を与える。また、ポリゴンミラーを防塵するために保護ガラスが設けられているが、ポリゴンミラーへ入射されるレーザー光がこの保護ガラスに乱反射して、発色濃度に影響を与えることも考えられる。これもノイズ成分として影響を与える。
図10は、ある1画素を露光させる時の光量分布を示している。横軸は主走査方向(測定位置)であり、縦軸は光量測定値を示している。露光させるべき画素の位置はGで示されている。Gの位置で光量測定値はピークS(画素信号成分)となっており、これにより、画素位置Gの写真感光材料が発色させられる。Sのレベルに対応したデータに基づいて、レーザー光が変調される。一方、ノイズ成分Nも含まれており、これは画素信号成分Sに比べるとごくわずかな量であり、例えば、1/10000程度のレベルである。このノイズ成分は、画素位置G以外の位置で発色に対して影響を与えるが、1/10000程度のレベルであれば、画質に影響を及ぼすレベルではない。
しかしながら、実際に主走査方向に画像を形成するためには、図10に示すような走査が主走査方向に画素数分繰り返されることになる。例えば、主走査方向の画素数が3600画素であれば、3600回走査が繰り返されるので、たとえ1/10000程度のわずかなレベルであっても、これが蓄積されると3600/10000のレベルとなり、無視できないレベルとなる。このようなノイズ成分は、前述したように種々の要因により発生するため、発生形態も一定しているとは限らず、図9に示すように特定の場所で跳ねあがったような発色濃度が発生することがある。
これを図11で説明する。図11は、ペーパーの乳剤に対する露光量と濃度との関係を示すグラフである。横軸が露光量、縦軸が濃度を表わしている。例えば、E1の露光量を与えた場合の発色濃度はD1で示されている。この場合、ΔEの量で示すノイズ成分があったとすると、実際の露光量はE1+ΔE=E1’となり、実際の発色濃度はD1’に変化する。図11からも分かるように、ノイズ成分が大きいほど、発色濃度に対する影響も大きくなる。
従って、光量分布を測定する場合には、かかるノイズ成分も考慮した測定を行うべきであるが、実際には、ピーク成分にのみ着目した光量分布測定しか行われていなかったため、光量分布の測定結果と写真プリントの濃度測定結果とが必ずしも対応しないことがあった。その結果、光量分布の測定結果のみでユニフォミティ補正を行うと、正確な補正が行われないという事態が生じていた。
特開2003−1868号公報
本発明は上記実情に鑑みてなされたものであり、その課題は、レーザー露光装置において、光量分布の測定結果と写真プリントの発色濃度との相関性を良好にすることができ、光量分布の測定結果に基づいてユニフォミティ補正を行うことが可能な光量分布測定装置を提供することである。
上記課題を解決するため本発明に係る光量分布測定装置は、
光変調されたレーザー光を主走査方向に走査することで写真感光材料の表面に画像を露光形成するレーザー露光装置のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置であって、
光量測定用のデータに基づいて光変調され、主走査方向に走査されるレーザー光の光量を測定するための光量測定センサー部と、
この光量測定センサー部により主走査方向におけるレーザー光の光量分布信号を取得する光量分布取得部とを備え、
この光量分布取得部は、
前記光量測定用のデータに基づき光変調された画素信号成分の第1光量分布を取得する第1データ取得手段と、
ノイズ成分による第2光量分布を取得する第2データ取得手段とを備え、
レーザー光の主走査方向における走査開始位置から、次の走査開始位置までの間の光量を時系列に測定して各画素位置ごとに積分することで、各画素位置における光量測定データとすることを特徴とするものである。
光変調されたレーザー光を主走査方向に走査することで写真感光材料の表面に画像を露光形成するレーザー露光装置のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置であって、
光量測定用のデータに基づいて光変調され、主走査方向に走査されるレーザー光の光量を測定するための光量測定センサー部と、
この光量測定センサー部により主走査方向におけるレーザー光の光量分布信号を取得する光量分布取得部とを備え、
この光量分布取得部は、
前記光量測定用のデータに基づき光変調された画素信号成分の第1光量分布を取得する第1データ取得手段と、
ノイズ成分による第2光量分布を取得する第2データ取得手段とを備え、
レーザー光の主走査方向における走査開始位置から、次の走査開始位置までの間の光量を時系列に測定して各画素位置ごとに積分することで、各画素位置における光量測定データとすることを特徴とするものである。
この構成による光量分布測定装置の作用・効果を説明する。光量測定センサー部は、主走査方向に走査されるレーザー光の光量を測定する。測定するに当たり、光量測定用のデータに基づいてレーザー光が光変調される。光量測定センサー部を用いて、主走査方向におけるレーザー光の光量分布を測定する。光量分布の取得に際して、画素信号成分(図10のSで示される成分)による第1光量分布を第1データ取得手段により取得する。また、ノイズ成分による第2光量分布を第2データ取得手段により取得する。このように、光量レベルの異なる第1光量分布と第2光量分布を分けて取得することができ、ノイズ成分も考慮した形で、ユニフォミティ補正を行うことができる。
また、図10で説明したように、主走査方向の画素数分のデータを積算することで、各画素位置におけるノイズ成分を積分して求めることができ、これにより、正確なノイズ成分のデータとすることができる。その結果、光量分布の測定結果と写真プリントの発色濃度との相関性を良好にすることができ、光量分布の測定結果に基づいてユニフォミティ補正を行うことが可能な光量分布測定装置を提供することができる。
本発明において、光量測定センサー部の感度を切り替えるための感度切替手段を備えており、
感度を第1レベルに設定することで、前記第1光量分布を取得し、第2レベルに設定することで、前記第2光量分布を取得するように構成することが好ましい。
感度を第1レベルに設定することで、前記第1光量分布を取得し、第2レベルに設定することで、前記第2光量分布を取得するように構成することが好ましい。
この構成によると、各光量分布を取得するための専用の光センサーは設ける必要はなく、光センサーは1種類で、感度レベルを切り替える手段を設ける。画素信号成分とノイズ成分は、信号レベルが大きく異なるので、夫々の信号レベルに適切な感度に設定することで、第1光量分布と第2光量分布とを別個に取得することができる。これにより、画素信号成分とノイズ成分の信号レベルの特性に合わせた形で測定データを得ることができ、ノイズ成分を考慮したユニフォミティ補正を精度良く行うことができる。
本発明において、前記光量測定センサー部は、第1光量分布を取得するための第1光センサーと、
第2光量分布を取得するための第2光センサーとを備えていることが好ましい。
第2光量分布を取得するための第2光センサーとを備えていることが好ましい。
第1光量分布と第2光量分布を取得するために、それぞれに専用の第1光センサーと第2光センサーとを設けることができる。これにより、画素信号成分とノイズ成分の信号レベルの特性に合わせた形で測定データを得ることができ、ノイズ成分を考慮したユニフォミティ補正を精度良く行うことができる。
本発明に係るレーザー露光装置が用いられる写真処理装置の好適な実施形態を図面を用いて説明する。図1は、写真処理装置の構成を示す模式図である。
<写真処理装置の構成>
この写真処理装置は、ネガフィルム等の写真フィルムに形成されたコマ画像を読み取り写真プリントを作成する機能を有する。また、メディア媒体に記憶されている画像データを読み取り写真プリントを作成する機能を有する。
この写真処理装置は、ネガフィルム等の写真フィルムに形成されたコマ画像を読み取り写真プリントを作成する機能を有する。また、メディア媒体に記憶されている画像データを読み取り写真プリントを作成する機能を有する。
フィルムスキャナー1は、現像済みの写真フィルムに形成されているコマ画像を読み取りデジタルデータ化する。メディア画像入力部2は、デジタルカメラの記憶媒体、MOディスク、CD−R等に保存されている画像データを取り込む機能を有する。画像データ保存部3は、フィルムスキャナー1やメディア画像入力部2により取得した画像データを保存する。画像処理部4は、取得したオリジナルの画像データに画像処理を施して、写真プリントを作成するためのプリント用画像データを生成する。画像処理としては、色・濃度を適切にするための色・濃度の補正、赤目補正、逆光補正、画像の拡大処理、トリミング等がある。画像処理された画像データは、画像転送部5を介して、後述のレーザー露光装置8へと転送される。
ペーパーマガジン6は、ペーパー(写真感光材料)がロールRの形態で収容されている。ペーパーマガジン6から引き出されたペーパーは、所定の搬送経路に沿って搬送される。ペーパーカッター7は、引き出されたペーパーを所定のプリントサイズに切断する。切断されたペーパーは、レーザー露光装置8へと搬送機構により搬送される。レーザー露光装置8は、レーザーエンジン9と、ペーパーを一定速度で搬送させるための露光搬送ローラ10を備えている。レーザーエンジン9は、画像転送部5から転送されてきた画像データに基づいてレーザー光により走査露光を行い、ペーパーの乳剤面に画像を露光形成させる。
画像が焼付露光されたペーパーは、現像処理部11及び乾燥処理部12で夫々、現像処理と乾燥処理が施された後、装置外部に写真プリントとして排出される。
<レーザー露光装置の構成>
次に、レーザー露光装置8の構成を図2により説明する。遮光された筐体の適所に、3原色用の3個のレーザー光源20R、20G、20Bが設けられている。レーザー光源20Rは、例えば波長680nmのR(赤色)のレーザ光を射出する半導体レーザ(LD)で構成されている。レーザー光源20Gは、半導体レーザと半導体レーザから射出されたレーザ光を例えば波長532nmのG(緑色)のレーザ光に変換する第2高調波発生器(SHG)とで構成されている。レーザー光源20Bは、半導体レーザと半導体レーザから射出されたレーザ光を例えば473nmのB(青色)のレーザ光に変換する第2高調波発生器(SHG)とで構成されている。
次に、レーザー露光装置8の構成を図2により説明する。遮光された筐体の適所に、3原色用の3個のレーザー光源20R、20G、20Bが設けられている。レーザー光源20Rは、例えば波長680nmのR(赤色)のレーザ光を射出する半導体レーザ(LD)で構成されている。レーザー光源20Gは、半導体レーザと半導体レーザから射出されたレーザ光を例えば波長532nmのG(緑色)のレーザ光に変換する第2高調波発生器(SHG)とで構成されている。レーザー光源20Bは、半導体レーザと半導体レーザから射出されたレーザ光を例えば473nmのB(青色)のレーザ光に変換する第2高調波発生器(SHG)とで構成されている。
各レーザー光源20R、20G、20Bの出力側には、レーザ光変調部の一例であるAOM(音響光学素子)21R、21G、21Bと、遮光用の筐体内の適所に形成されたスリット22R、22G、22Bがそれぞれ対応して配設されるとともに、走査光学系を構成するミラー23R、23G、23B、反射ミラー24、レンズ25、及び図中のA方向に回転して入射レーザ光を所定範囲でB方向に走査(主走査)させるポリゴンミラー26とが順に配置されている。
AOMドライバ27R、27G、27Bは、画像データに基づきAOM21R、21G、21Bを駆動制御し、レーザ光を光変調するものである。AOM21R、21G、21Bはレーザ光の出力をほぼ100%〜0%の範囲内で調整可能なものである。
ミラー23Rは全反射ミラー、ミラー23G、23Bはハーフミラーであって、上記配置はAOM21Rから射出されるレーザ光をミラー23Rで全反射させ、AOM21Gから射出されるレーザ光とミラー23Gで合波した後、さらにAOM21Bから射出されるレーザ光とミラー23Bで合波することにより、3色のレーザ光を合波する。
ポリゴンミラー26の射出側には、fθレンズ30が配置されている。ポリゴンミラー26は矢印A方向に回転しており、この回転により主走査方向(B方向)に走査されたレーザ光はfθレンズ30を経て、副走査方向(紙面に垂直な方向)に搬送中のペーパーPに照射され、このペーパーPを露光するようになっている。さらに、fθレンズ30の射出側であって、画像露光領域の直ぐ上流側にはミラー28が配設され、かつミラー28からの反射光を受光する受光素子からなる同期センサ29が配設されている。同期センサ29はR、G、Bの各レーザ光を受光する3個の受光素子を配設して構成されている。受光素子は対応する色のレーザ光を検出すると検出信号を制御部に出力する。
画像転送部5は、各色毎のバッファメモリ部5R,5G,5Bを有し、各バッファメモリ部5R,5G,5Bから読み出された画像データは、各色毎のD/A変換部31R,31G,31BによりA/D変換された後、AOMドライバ27R,27G,27Bに送信される。
画像データ保存部3には、既に説明したようにフィルムスキャナー1等から取得された画像データが保存されると共に、ユニフォミティ補正を行うためのテストデータ3aも保存されている。テストデータ3aは、全面グレー1色の写真プリントを作成するための画像データとして用意されている。補正テーブル保存部13は、ユニフォミティ補正の結果得られた補正データをテーブルという形で保存する。実際に写真プリントを作成するときには、画像処理部4においては、補正テーブルを用いた画像補正も行われた形でレーザー露光装置8へと画像データが転送される。ただし、ユニフォミティ補正は、補正テーブルを求めるために行うので、テストデータ3aを転送するときは、補正テーブルは用いない。
<光量分布測定装置>
次に、レーザー露光装置8において主走査方向におけるレーザー光の光量分布を測定するための光量分布測定装置40の構成を図3により説明する。光量分布の測定は、ペーパーが存在しない状態で行う。この光量分布測定装置40は、ペーパーが搬送される搬送面に対して出退可能に構成されており、ペーパーに対する画像露光を行う場合には、搬送面から退避する。
次に、レーザー露光装置8において主走査方向におけるレーザー光の光量分布を測定するための光量分布測定装置40の構成を図3により説明する。光量分布の測定は、ペーパーが存在しない状態で行う。この光量分布測定装置40は、ペーパーが搬送される搬送面に対して出退可能に構成されており、ペーパーに対する画像露光を行う場合には、搬送面から退避する。
光量測定センサー部41は、主走査されるレーザー光の光量を測定する光センサー41aを備えている。この光センサー41aは、R、G、Bの各レーザー光を受光する3個の受光素子を有している。レーザー光の主走査方向に沿って延びる雄ねじ駆動軸42を備え、駆動モータ43により駆動される。光量測定センサー部41には雌ねじが形成されており、駆動モータ43により駆動軸42を回転駆動することで、光量測定センサー部41を主走査方向Bに沿って、往復動させることができる。光センサー41aの位置は、ペーパーの乳剤面の位置(画像形成位置に相当)となるように設定される。ただし、厳密に乳剤面の位置でなくてもよく、近傍に配置してもよい。
光センサー41aにより受光された信号は、信号処理部44において、信号増幅、サンプリング、A/D変換等の処理がなされる。また、信号処理部44は、感度設定部45を備えており、設定された感度に従った信号処理を行う。感度設定部45における設定感度を切り換えるために感度切替手段46が設けられている。
具体的には、画素信号成分の第1光量分布を取得するための第1レベルの感度と、ノイズ成分の第2光量分布を取得するための第2レベルの感度に設定することができる。すでに、図10で説明したように、画素信号成分とノイズ成分との信号レベル比は、全く異なっているので、夫々に適した感度設定とすることで、夫々の光量分布を精度よく取得することができる。
光量分布取得部47は、以上のように、画素信号成分の第1光量分布を取得する第1データ取得手段の機能と、ノイズ成分の第2光量分布を取得する第2データ取得手段の機能とを有する。補正テーブル演算部48は、光量分布取得部47により得られた光量分布データに基づき、ユニフォミティ補正を行うための補正テーブルを演算する。求められた補正テーブルは、画像データ保存部3に保存されることになる。
<光量分布データ測定手順>
次に、図3の光量分布測定装置により光量分布データを測定するときの手順を図4のフローチャートにより説明する。光量分布のデータは、各色ごと独立して測定することができる。ペーパーのない状態で、光量分布測定装置40を図3に示すような初期位置に設定する(#1)。次にセンサー感度を第1レベルに設定する(#2)。次に、駆動モータ43により、光量測定センサー部41を主走査方向に移動開始する(#3)。また、レーザー光の主走査を開始する(#4)。光量測定センサー部41の移動方向は、図3における矢印B方向であるが、レーザー光の主走査の速度に比べると、十分に遅い速度で移動させる。
次に、図3の光量分布測定装置により光量分布データを測定するときの手順を図4のフローチャートにより説明する。光量分布のデータは、各色ごと独立して測定することができる。ペーパーのない状態で、光量分布測定装置40を図3に示すような初期位置に設定する(#1)。次にセンサー感度を第1レベルに設定する(#2)。次に、駆動モータ43により、光量測定センサー部41を主走査方向に移動開始する(#3)。また、レーザー光の主走査を開始する(#4)。光量測定センサー部41の移動方向は、図3における矢印B方向であるが、レーザー光の主走査の速度に比べると、十分に遅い速度で移動させる。
主走査方向の画素数が仮に3600画素であるとすると、図5に示すような3600画素分の主走査が行われることで、主走査1ライン分の画像形成が行われる。図5においてG1、G2、G3・・・G3600は、画素位置を表わしており、縦軸は信号レベルである。まず、画素信号成分の第1光量分布S1、S2,S3・・・S3600を取得する(#5)。
次に、センサ感度を第2レベルに設定変更する(#6)。そして、光量測定センサー部41を初期位置に復帰させる(#7)。再び、光量測定センサー部41を主走査方向に移動させ、ノイズ成分の第2光量分布N1,N2,N3・・・N3600を取得する(#8,#9,#10)。その結果、第1光量分布と第2光量分布の両方の測定データを取得することができる。
既に説明したように、主走査1により画素位置G1の画素が形成されるが、他の主走査2,3・・・3600も画素位置G1の発色濃度に影響を与える。そこで、画素位置G1における光量データを測定する場合には、主走査1,2・・・3600の光量を時系列に測定し、これを積分することで、画素位置G1における光量測定データとすることができる。画素位置G2,G3・・・G3600についても同様である。レーザー光の主走査の速度に比べて、光量測定センサー部41の移動速度を十分に遅い速度で移動させることで、上記のような積分した光量データを測定することができる。
測定結果を図6に示す。このグラフは、既に説明した図8と同じであるが、ノイズ成分の影響も測定できている点で異なっている。従って、実際に写真プリントを作成して得られる発色濃度のグラフ(図9)と相関が取れた光量分布データを取得することができ、これに基づいてユニフォミティ補正を行うことができる。ユニフォミティ補正は、各画素位置における発色濃度が均一となるように、データを電子的に補正するものである。図6に示すような光量分布データが得られると、補正テーブルを演算することができ、得られた補正テーブルは、画像データ保存部3に保存される(#11)。
第1光量分布・第2光量分布の両方を用いて、ユニフォミティ補正を行うので、ノイズ成分の影響を考慮したユニフォミティ補正を行うことができる。また、写真プリントを作成し、この画像濃度を読み取ることにより光量分布データを取得することがなくても、補正を行うことができる。
<光量分布測定装置の第2実施形態>
次に、光量分布測定装置40の第2実施形態を図7により説明する。この実施形態では、光量測定センサー部41は、第1光量分布を取得するための第1光センサー41bと、第2光量分布を取得するための第2光センサー41cとを備えている。ノイズ成分を測定するための第2光センサー41cは、高感度のセンサーを使用することができる。このように信号レベルの特性に合わせた光センサーを使用することができる。信号処理部44には、夫々の光センサーに対応して、第1処理部44aと第2処理部44bとが設けられる。他の構成は、第1実施形態と同じである。
次に、光量分布測定装置40の第2実施形態を図7により説明する。この実施形態では、光量測定センサー部41は、第1光量分布を取得するための第1光センサー41bと、第2光量分布を取得するための第2光センサー41cとを備えている。ノイズ成分を測定するための第2光センサー41cは、高感度のセンサーを使用することができる。このように信号レベルの特性に合わせた光センサーを使用することができる。信号処理部44には、夫々の光センサーに対応して、第1処理部44aと第2処理部44bとが設けられる。他の構成は、第1実施形態と同じである。
<別実施形態>
本実施形態では、光量測定センサー部を低速で主走査方向に移動させる構成を説明した。これに代えて、主走査方向に沿って多数のセンサーを列状に並べることで光量分布データを取得するようにしてもよい。この場合は、センサーを主走査方向に沿って移動させる機構は不要となる。
本実施形態では、光量測定センサー部を低速で主走査方向に移動させる構成を説明した。これに代えて、主走査方向に沿って多数のセンサーを列状に並べることで光量分布データを取得するようにしてもよい。この場合は、センサーを主走査方向に沿って移動させる機構は不要となる。
光量測定用のデータとしては、全面グレーの写真プリントを作成するために用いられるデータを説明したが、これに限定されるものではない。例えば、全面が特定のカラー色となるようなデータを用いてもよい。
8 レーザー露光装置
9 レーザーエンジン
13 補正テーブル保存部
20 レーザー光源
21 AOM
26 ポリゴンミラー
27 AOMドライバ
40 光量分布測定装置
41 光量測定センサー部
41a 光センサー
41b 第1光センサー
41c 第2光センサー
42 雄ねじ駆動軸
43 駆動モータ
44 信号処理部
45 感度設定部
46 感度切替手段
47 光量分布取得部
48 補正テーブル演算部
9 レーザーエンジン
13 補正テーブル保存部
20 レーザー光源
21 AOM
26 ポリゴンミラー
27 AOMドライバ
40 光量分布測定装置
41 光量測定センサー部
41a 光センサー
41b 第1光センサー
41c 第2光センサー
42 雄ねじ駆動軸
43 駆動モータ
44 信号処理部
45 感度設定部
46 感度切替手段
47 光量分布取得部
48 補正テーブル演算部
Claims (3)
- 光変調されたレーザー光を主走査方向に走査することで写真感光材料の表面に画像を露光形成するレーザー露光装置のために用いられ、画像形成位置におけるレーザー光の光量を測定することで、主走査方向における光量ばらつきを補正するための光量分布測定装置であって、
光量測定用のデータに基づいて光変調され、主走査方向に走査されるレーザー光の光量を測定するための光量測定センサー部と、
この光量測定センサー部により主走査方向におけるレーザー光の光量分布信号を取得する光量分布取得部とを備え、
この光量分布取得部は、
前記光量測定用のデータに基づき光変調された画素信号成分の第1光量分布を取得する第1データ取得手段と、
ノイズ成分による第2光量分布を取得する第2データ取得手段とを備え、
レーザー光の主走査方向における走査開始位置から、次の走査開始位置までの間の光量を時系列に測定して各画素位置ごとに積分することで、各画素位置における光量測定データとすることを特徴とする光量分布測定装置。 - 光量測定センサー部の感度を切り替えるための感度切替手段を備えており、
感度を第1レベルに設定することで、前記第1光量分布を取得し、第2レベルに設定することで、前記第2光量分布を取得するように構成したことを特徴とする請求項1に記載の光量分布測定装置。 - 前記光量測定センサー部は、第1光量分布を取得するための第1光センサーと、
第2光量分布を取得するための第2光センサーとを備えていることを特徴とする請求項1に記載の光量分布測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004225747A JP2006047003A (ja) | 2004-08-02 | 2004-08-02 | レーザー露光装置のために用いられる光量分布測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004225747A JP2006047003A (ja) | 2004-08-02 | 2004-08-02 | レーザー露光装置のために用いられる光量分布測定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006047003A true JP2006047003A (ja) | 2006-02-16 |
Family
ID=36025731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004225747A Pending JP2006047003A (ja) | 2004-08-02 | 2004-08-02 | レーザー露光装置のために用いられる光量分布測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006047003A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013225054A (ja) * | 2012-04-23 | 2013-10-31 | Canon Inc | 光走査装置および画像形成装置並びにシェーディング補正制御方法およびプログラム |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04244906A (ja) * | 1991-01-31 | 1992-09-01 | Nissan Motor Co Ltd | 形状測定装置の感度調整方法 |
JP2002225342A (ja) * | 2001-02-02 | 2002-08-14 | Fuji Photo Film Co Ltd | シェーディング補正方法および補正回路 |
JP2003005119A (ja) * | 2001-06-26 | 2003-01-08 | Noritsu Koki Co Ltd | レーザー露光装置 |
-
2004
- 2004-08-02 JP JP2004225747A patent/JP2006047003A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04244906A (ja) * | 1991-01-31 | 1992-09-01 | Nissan Motor Co Ltd | 形状測定装置の感度調整方法 |
JP2002225342A (ja) * | 2001-02-02 | 2002-08-14 | Fuji Photo Film Co Ltd | シェーディング補正方法および補正回路 |
JP2003005119A (ja) * | 2001-06-26 | 2003-01-08 | Noritsu Koki Co Ltd | レーザー露光装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013225054A (ja) * | 2012-04-23 | 2013-10-31 | Canon Inc | 光走査装置および画像形成装置並びにシェーディング補正制御方法およびプログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3618521B2 (ja) | 画像露光装置 | |
US20050141046A1 (en) | Image reading apparatus, image recording medium and image forming apparatus | |
JP3059016B2 (ja) | 画像読取方法 | |
JP2001272617A (ja) | レーザビーム走査ユニット及び写真処理装置 | |
US6366366B1 (en) | Image reading method and apparatus | |
JP2006053240A (ja) | レーザー光変調装置 | |
JP2006047003A (ja) | レーザー露光装置のために用いられる光量分布測定装置 | |
JP4492253B2 (ja) | レーザー露光装置 | |
JP2002240350A (ja) | 露光装置およびこれを備えた写真処理装置 | |
JP3086352B2 (ja) | グレーバランス補正方法 | |
JP2007118329A (ja) | 露光方法および装置ならびにそれを用いる写真処理装置 | |
JP3669294B2 (ja) | 写真処理装置 | |
JP2008209687A (ja) | レーザ出力調整方法 | |
US20060017801A1 (en) | Image recording apparatus | |
JP3319623B2 (ja) | グレーバランス補正方法 | |
JP2515877B2 (ja) | 走査型写真焼付機 | |
JP4635349B2 (ja) | 露光装置、これを備えた写真処理装置、および露光制御方法 | |
JP3783586B2 (ja) | 露光装置 | |
JP3724434B2 (ja) | 露光量調整方法 | |
JP3788342B2 (ja) | 露光量調整方法 | |
JP3795505B2 (ja) | 現像薬剤の補充方法及びデジタル式写真プリンタ | |
JP3556858B2 (ja) | フィルム画像読取装置 | |
JP2008246823A (ja) | 露光装置 | |
JP4003515B2 (ja) | レーザ露光装置 | |
JP2006053332A (ja) | カラー画像形成装置および該装置の異常診断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100129 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100727 |