JP2006026845A - Adjustment method for tool position of chamfering machine - Google Patents

Adjustment method for tool position of chamfering machine Download PDF

Info

Publication number
JP2006026845A
JP2006026845A JP2004211892A JP2004211892A JP2006026845A JP 2006026845 A JP2006026845 A JP 2006026845A JP 2004211892 A JP2004211892 A JP 2004211892A JP 2004211892 A JP2004211892 A JP 2004211892A JP 2006026845 A JP2006026845 A JP 2006026845A
Authority
JP
Japan
Prior art keywords
chamfering
width
tool
tool position
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004211892A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sakashita
浩之 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2004211892A priority Critical patent/JP2006026845A/en
Publication of JP2006026845A publication Critical patent/JP2006026845A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize adjustment for a tool position by working of less dummy work in a short time in an adjustment method for a tool position in a chamfering machine for a side of a transparent substrate such as a glass substrate for a liquid crystal display panel. <P>SOLUTION: When working of upper chamfering width a and lower chamfering width b is required, the tool position is moved to a position where the lower chamfering width B becomes wider than the upper chamfering width A, the chamfering working of the dummy work 1d is performed and a lower chamfering line 3b and an upper chamfering line 3a of the dummy work 1d are detected. Thereby, the tool position required for performing working of the upper and lower chamfering width a, b required for the actual work is operated. If the tool position is set by an NC device or the like based on the operation result, it becomes possible to set the position of the tool at accuracy of ±20 micron. Repeating working of the dummy work is not required, an operation time is outstandingly shortened and accuracy of the tool position can be enhanced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、液晶表示パネル用ガラス基板などの透明基板の辺の面取機における工具位置の調整方法に関するもので、辺の上下の稜線(エッジ)の面取幅が所定の面取幅となるように工具の位置を設定する方法に関するものである。   The present invention relates to a method for adjusting a tool position in a chamfering machine for a side of a transparent substrate such as a glass substrate for a liquid crystal display panel, and the chamfering width of upper and lower ridge lines (edges) is a predetermined chamfering width. It is related with the method of setting the position of a tool.

液晶表示パネルなどのガラス基板は、その脆性を利用した割断(割って切断)などにより所定寸法に分割するが、分割された辺の上下には、鋭いエッジが形成される。ガラスの鋭いエッジは、作業者の手を傷つけたり、欠けやクラックを生じさせたりするので、エッジの頂稜を斜めに削り落とす面取加工が行われる。この面取加工用の工具としては、回転砥石が用いられるのが普通である。   A glass substrate such as a liquid crystal display panel is divided into predetermined dimensions by cleaving (breaking and cutting) using its brittleness, but sharp edges are formed above and below the divided sides. The sharp edge of the glass damages the operator's hand or causes chipping or cracking, so that chamfering is performed to obliquely scrape off the top edge of the edge. As this chamfering tool, a rotating grindstone is usually used.

図1は、矩形のガラス基板1の対向両辺10の上下の稜線11a、11b(図2参照)を同時加工する面取機の模式的な斜視図で、2は工具ユニットである。ガラス基板1は、真空吸着等により図示しないテーブルの上面に固定され、当該テーブルの工具ユニット2に対する加工辺10と平行な方向の相対移動により、当該辺の全長に亘って面取加工を行う。   FIG. 1 is a schematic perspective view of a chamfering machine that simultaneously processes upper and lower ridgelines 11a and 11b (see FIG. 2) of opposite sides 10 of a rectangular glass substrate 1, and 2 is a tool unit. The glass substrate 1 is fixed to the upper surface of a table (not shown) by vacuum suction or the like, and is chamfered over the entire length of the side by relative movement in a direction parallel to the processing side 10 with respect to the tool unit 2 of the table.

図に示した工具ユニット2は、加工辺10と平行な上下の砥石軸12a、12bを備え、それぞれの砥石軸に1枚又は複数枚の円板砥石5a、5bを固定した構造である。上下の砥石5a、5bは、図2に示すように、その外周面13a又は端面外周部13bがガラス基板1の上下の稜線11a、11bに接触しており、砥石5a、5bを図2の矢印R方向に回転駆動することにより、上下の稜線11a、11bが図3に示すように同時に面取りされる。面取幅(面取寸法)a、bは予め定められており、要求される精度は±50ミクロン程度である。   The tool unit 2 shown in the drawing has upper and lower grindstone shafts 12a, 12b parallel to the machining edge 10, and one or a plurality of disc grindstones 5a, 5b are fixed to each grindstone shaft. As shown in FIG. 2, the upper and lower grindstones 5a and 5b have their outer peripheral surfaces 13a or end surface outer peripheral portions 13b in contact with the upper and lower ridge lines 11a and 11b of the glass substrate 1, and the grindstones 5a and 5b are shown by arrows in FIG. By rotating in the R direction, the upper and lower ridgelines 11a and 11b are chamfered simultaneously as shown in FIG. The chamfer widths (chamfer dimensions) a and b are predetermined, and the required accuracy is about ± 50 microns.

工具ユニット2の位置は、加工されるガラス基板1の厚さ、ワーク幅及び面取幅に応じて調整できるようになっており、図の工具ユニットでは、上下の砥石軸12a、12bの相対位置関係は固定で、ユニット全体の位置を上下方向(Z方向)及びワーク幅方向(X方向)に位置調整できるようになっている。図2から理解されるように、工具ユニット2を上方へ移動させると、下面取幅bが広くなり、上面取幅aが狭くなる。また、ガラス基板1から離隔するX方向に移動すると、上下の面取幅a、bは共に狭くなる。従って工具ユニット2の上下方向とワーク幅方向の位置の組合せによって指定された上面取幅aと下面取幅bを設定することができる。なお、加工辺10の長手方向における面取幅の変化(誤差)は、ガラス基板1を固定しているテーブルの鉛直軸回りの角度によって修正する。   The position of the tool unit 2 can be adjusted according to the thickness of the glass substrate 1 to be processed, the workpiece width, and the chamfer width. In the illustrated tool unit, the relative positions of the upper and lower grindstone shafts 12a and 12b. The relationship is fixed, and the position of the entire unit can be adjusted in the vertical direction (Z direction) and the work width direction (X direction). As understood from FIG. 2, when the tool unit 2 is moved upward, the bottom surface removal width b is widened and the top surface removal width a is narrowed. Moreover, if it moves to the X direction which leaves | separates from the glass substrate 1, both upper and lower chamfering widths a and b will become narrow. Accordingly, it is possible to set the upper surface chamfering a and the lower surface chamfering width b specified by the combination of the positions of the tool unit 2 in the vertical direction and the workpiece width direction. The change (error) in the chamfering width in the longitudinal direction of the processing edge 10 is corrected by the angle around the vertical axis of the table to which the glass substrate 1 is fixed.

加工されたガラス基板の実際の面取幅a、bには、砥石5a、5bの磨耗や機械の熱変形により誤差が生ずる。そこで加工したガラス基板の辺の上方に設置したカメラ4で上下の面取線(面取りした斜めの面と基板表裏面との交線)3a、3bを検出して面取幅a、bを計測し、この計測値と指定された面取幅との差を修正するように、工具ユニット2の位置を調整するという作業が行われている。この調整作業は、ワークが変わったときや、同一ワークをある定められた数量以上連続加工するときに、その定められた数量の加工毎に行っている。
特開2003‐251551号公報
In actual chamfered widths a and b of the processed glass substrate, errors occur due to wear of the grindstones 5a and 5b and thermal deformation of the machine. Therefore, the camera 4 installed above the side of the processed glass substrate detects the upper and lower chamfer lines (intersection lines between the chamfered oblique surface and the front and back surfaces of the substrate) 3a and 3b, and measures the chamfer widths a and b. And the operation | work of adjusting the position of the tool unit 2 is performed so that the difference of this measured value and the designated chamfering width may be corrected. This adjustment operation is performed every time when the workpiece is changed, or when the same workpiece is continuously machined more than a predetermined quantity, for each predetermined quantity.
Japanese Patent Laid-Open No. 2003-251551

面取加工するワークが透明基板であるときは、図4に示すように、基板1の上方に配置したカメラ4でワークの表裏面の面取線3a、3bを検出することができる。そして、検出した上下の面取線の位置から面取り幅a、bの計測を行っているのであるが、図5に示したように、上下の面取り幅a、bが略等しいときや、下面取幅bが上面取幅aより狭いときに、計測値に誤差が生じ、面取幅の計測と工具位置の調整とダミーワークの加工とを数回(3〜5回)繰り返さなければ、工具を正確な位置に設定できないということが起こっていた。   When the workpiece to be chamfered is a transparent substrate, as shown in FIG. 4, the chamfering lines 3 a and 3 b on the front and back surfaces of the workpiece can be detected by the camera 4 disposed above the substrate 1. Then, the chamfer widths a and b are measured from the detected positions of the upper and lower chamfer lines. As shown in FIG. 5, when the upper and lower chamfer widths a and b are substantially equal, When the width b is narrower than the top chamfer width a, an error occurs in the measured value. If the chamfer width measurement, the tool position adjustment, and the dummy workpiece machining are not repeated several times (3 to 5 times), the tool is It was happening that the position could not be set correctly.

そこでこの発明は、少ないダミーワークの加工で、従って短時間で、面取機の工具位置の調整を行うことができる技術手段を得ることを課題としている。   Accordingly, an object of the present invention is to obtain technical means capable of adjusting the tool position of the chamfering machine with a small number of dummy workpieces and therefore in a short time.

上記課題を解決したこの発明の面取機の工具位置の調整方法は、液晶用ガラス基板その他の透明基板1の辺10の上下の稜線(エッジ)を面取加工する面取り機の工具の位置を調整する方法において、下稜線の所要の面取幅bが上稜線の所要の面取幅aより予め定めた差分量dだけ広くなるように工具位置を設定してダミーワーク1dの面取加工を行い、基板上方に配置した光学計測器4で加工済ダミーワーク1dの上下の面取幅A、Bを計測し、その計測値A、Bと要求されている上記面取幅a、bとの差に基づいて実際のワークを加工するときの工具位置を設定することを特徴とするものである。   The method for adjusting the tool position of the chamfering machine according to the present invention that has solved the above-mentioned problem is the following: In the adjustment method, the tool position is set so that the required chamfer width b of the lower ridge line is wider than the required chamfer width a of the upper ridge line by a predetermined difference amount d, and the dummy workpiece 1d is chamfered. The upper and lower chamfering widths A and B of the processed dummy workpiece 1d are measured by the optical measuring instrument 4 arranged above the substrate, and the measured values A and B and the required chamfering widths a and b are measured. A tool position when machining an actual workpiece is set based on the difference.

従来方法で計測を行った場合、下面取幅bと上面取幅aとが略同一の場合や、図4に示すように下面取幅bが上面取幅aより狭いときに、ワーク上方のカメラ4で検出した下面取線3bの位置と実際の位置との間には、±50ミクロン程度の誤差が発生していた。これに対して図5に示すように下面取幅bが上面取幅aより広いときは、カメラ4で検出された下面取線3bの位置と実際の位置との間の誤差は、±20ミクロン程度であった。   When measurement is performed by a conventional method, when the bottom surface width b and the top surface width a are substantially the same or when the bottom surface width b is narrower than the top surface width a as shown in FIG. An error of about ± 50 microns was generated between the position of the bottom line 3b detected at 4 and the actual position. On the other hand, as shown in FIG. 5, when the bottom surface width b is wider than the top surface width a, the error between the position of the bottom surface line 3b detected by the camera 4 and the actual position is ± 20 microns. It was about.

この発明の方法では、要求されているワークの面取幅a、bから離れて、下面取幅Bが上面取幅Aより広くなるような位置に工具位置を移動してダミーワーク1dの面取加工を行い、このダミーワーク1dの下面取線3bと上面取線3aとを検出することにより、実際のワークに要求される上下の面取幅a、bの加工を行うのに必要な工具位置を演算して、工具位置を決定している。ダミーワーク1dを加工するために移動した工具位置から指定された面取幅a、bで実際のワークを加工するのに必要な工具位置への工具の移動量は、ダミーワーク1dの上下の面取幅A、Bの計測値を用いて演算することができる。従って、この演算結果に基づきNC装置などで工具位置を設定してやれば、±20ミクロンの精度で工具の位置を設定することが可能となり、ダミーワークの繰り返し加工が不要になるので、経済的であると共に、工具位置の調整に要する作業時間が大幅に短縮され、工具位置の精度を従来より高くできるという効果がある。   In the method of the present invention, the tool position is moved to a position where the lower surface chamfering width B is wider than the upper surface chamfering width A, away from the required chamfering widths a and b of the workpiece, and the chamfering of the dummy workpiece 1d is performed. The tool position required for machining the upper and lower chamfering widths a and b required for the actual workpiece by machining and detecting the lower surface machining line 3b and the upper surface machining line 3a of the dummy workpiece 1d. Is calculated to determine the tool position. The amount of movement of the tool to the tool position necessary for machining the actual workpiece with the specified chamfering widths a and b from the tool position moved for machining the dummy workpiece 1d is the upper and lower surfaces of the dummy workpiece 1d. It can be calculated using the measured values of the clearances A and B. Therefore, if the tool position is set with an NC device or the like based on this calculation result, it is possible to set the tool position with an accuracy of ± 20 microns, which eliminates the need for repeated machining of the dummy workpiece, which is economical. At the same time, the working time required for adjusting the tool position is greatly shortened, and the accuracy of the tool position can be increased compared to the prior art.

以下、図面を参照して、この発明の方法を具体的に説明する。図2に示すように、透明基板1の辺の上下の稜線を面取幅a及びbでそれぞれの角度がθとなるように面取りすることが要求されているとする。このとき、下面取幅bが上面取幅aに予め定めた予想誤差量dを加えた寸法より狭いときは、ダミーワークの下面取幅Bが上面取幅Aより少なくともdだけ広くなるように、工具ユニット2をδHだけ上昇させた位置に設定して、ダミーワークの面取加工を行う。   The method of the present invention will be specifically described below with reference to the drawings. As shown in FIG. 2, it is assumed that the upper and lower ridge lines of the side of the transparent substrate 1 are required to be chamfered with chamfering widths a and b so that the respective angles are θ. At this time, when the lower surface chamfer width b is narrower than the dimension obtained by adding a predetermined expected error amount d to the upper surface chamfer width a, the lower surface chamfer width B of the dummy workpiece is at least d wider than the upper surface chamfer A. The tool unit 2 is set at a position raised by δH, and the dummy workpiece is chamfered.

加工されたダミーワークは、図6に示すように下面取幅Bが上面取幅Aより広く加工されているので、このダミーワークの上下の面取線3a、3bをワークの上方に設置したカメラ4で検出すると、下面取線3bは、ワーク表面(斜めに面取りされていない面)を通ってカメラ4で検出されるから、上下の面取幅A、Bをそれぞれ±20ミクロンの精度で計測することができる。   As shown in FIG. 6, the processed dummy workpiece has a lower chamfering width B that is wider than the upper chamfering width A. Therefore, a camera in which the upper and lower chamfering lines 3a and 3b of this dummy workpiece are installed above the workpiece. When detected at 4, the bottom chamfer 3b is detected by the camera 4 through the workpiece surface (surface not diagonally chamfered), so the upper and lower chamfering widths A and B are measured with an accuracy of ± 20 microns, respectively. can do.

この計測値A、Bの加工すべき面取幅a、bからのずれ量をδa、δbとすれば、
A=a+δa
B=b+δb
と表すことができる。円板砥石5a、5bの径が面取幅a、bに比べて十分に大きければ工具ユニット2をδH移動させたときの面取角θの変化は無視できるので、このときのワークユニットの位置から、
(δa+δb)/2だけ工具ユニット2をワーク1から離れるX方向に移動し、
(δa−δb)/2tanθ(図の例では負の値になる)だけ工具ユニット2を上方に移動すれば、工具ユニット2は、ワーク1の辺の上下の稜線を指定された面取幅a、bで加工する位置に設定される。
If the deviations of the measured values A and B from the chamfer widths a and b to be processed are δa and δb,
A = a + δa
B = b + δb
It can be expressed as. If the diameter of the disc grindstones 5a and 5b is sufficiently larger than the chamfer widths a and b, the change in the chamfer angle θ when the tool unit 2 is moved by δH can be ignored. From
Move the tool unit 2 in the X direction away from the workpiece 1 by (δa + δb) / 2,
If the tool unit 2 is moved upward by (δa−δb) / 2 tan θ (which is a negative value in the example shown in the figure), the tool unit 2 has a chamfer width a in which the upper and lower ridge lines of the side of the workpiece 1 are designated. , B are set at positions to be processed.

面取加工する工具は、図の構造のものに限定されることはなく、例えば椀状砥石の円形の端面で面取加工する構造のものや、円板砥石の平面部分で加工する構造のものでも、同様な方法で工具位置の設定を行うことができる。なお、上下の稜線を加工する上下の砥石の位置を個別に調整できる構造のものでは、上下の砥石のいずれか一方のみを位置変更してダミーワークを加工して上下の面取幅を計測することにより、上下の砥石の位置を調整することができる。   The tool to be chamfered is not limited to the one shown in the figure, for example, one having a structure for chamfering with a circular end face of a bowl-shaped grindstone, or one having a structure for machining with a flat portion of a disc grindstone. However, the tool position can be set in the same way. In the case of a structure that can individually adjust the position of the upper and lower whetstones that machine the upper and lower ridgelines, only one of the upper and lower whetstones is repositioned to process the dummy workpiece and measure the upper and lower chamfer width Thus, the positions of the upper and lower grindstones can be adjusted.

矩形ガラス基板の面取加工の概要を示す斜視図Perspective view showing an outline of chamfering of a rectangular glass substrate 図1の要部の拡大正面図1 is an enlarged front view of the main part of FIG. 面取されたガラス基板の辺を示す拡大正面図Enlarged front view showing edges of chamfered glass substrate ガラス基板の上方に設置したカメラで上下の面取線を検出する図Figure for detecting upper and lower chamfering lines with a camera installed above the glass substrate 下面取幅が狭いときの図4と同様な図Figure similar to Figure 4 when the bottom chamfer width is narrow ダミーワークの面取と面取幅の設定の説明図Illustration of chamfering and setting of chamfer width of dummy workpiece

符号の説明Explanation of symbols

1 透明基板
10 辺
a 上稜線の面取幅
b 下稜線の面取幅
A ダミーワークの上稜線の面取幅
B ダミーワークの下稜線の面取幅
1 Transparent substrate
10 Sides a Chamfering width of the upper ridge line b Chamfering width of the lower ridge line A Chamfering width of the upper ridge line of the dummy workpiece B B Chamfering width of the lower ridge line of the dummy workpiece

Claims (1)

透明基板(1)の辺(10)の上下の稜線を面取加工する面取り機の工具位置を調整する方法において、下稜線の面取幅(b)が上稜線の面取幅(a)より所定の差分量(d)だけ広くなるように工具位置を設定してダミーワーク(1d)の面取加工を行い、基板上方に配置した光学計測器(4)で加工済ダミーワーク(1d)の上下の面取幅(A,B)を計測し、その計測値(A,B)と要求されている面取幅(a,b)との差に基づいて実際のワークを加工するときの工具位置を設定することを特徴とする、面取機の工具位置の調整方法。    In the method of adjusting the tool position of the chamfering machine that chamfers the upper and lower ridge lines of the side (10) of the transparent substrate (1), the chamfer width (b) of the lower ridge line is more than the chamfer width (a) of the upper ridge line. Chamfering the dummy workpiece (1d) by setting the tool position so that it is widened by a predetermined difference amount (d), and using the optical measuring instrument (4) placed above the substrate, the processed dummy workpiece (1d) Tool for measuring the vertical chamfer width (A, B) and machining the actual workpiece based on the difference between the measured value (A, B) and the required chamfer width (a, b) A method for adjusting a tool position of a chamfering machine, wherein the position is set.
JP2004211892A 2004-07-20 2004-07-20 Adjustment method for tool position of chamfering machine Pending JP2006026845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004211892A JP2006026845A (en) 2004-07-20 2004-07-20 Adjustment method for tool position of chamfering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004211892A JP2006026845A (en) 2004-07-20 2004-07-20 Adjustment method for tool position of chamfering machine

Publications (1)

Publication Number Publication Date
JP2006026845A true JP2006026845A (en) 2006-02-02

Family

ID=35893778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004211892A Pending JP2006026845A (en) 2004-07-20 2004-07-20 Adjustment method for tool position of chamfering machine

Country Status (1)

Country Link
JP (1) JP2006026845A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223005A (en) * 2006-02-24 2007-09-06 Nakamura Tome Precision Ind Co Ltd Method of measuring and correcting machining dimensions in plate material chamfering device
KR20110004295A (en) 2009-07-06 2011-01-13 나카무라 토메 세이미쓰고교 가부시키가이샤 Method and apparatus for chamfering hard brittle plate
WO2011162163A1 (en) * 2010-06-21 2011-12-29 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
CN102985386A (en) * 2010-07-08 2013-03-20 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
WO2014035946A1 (en) * 2012-08-30 2014-03-06 Corning Incorporated Glass sheets and methods of shaping glass sheets
JP2014231141A (en) * 2013-05-28 2014-12-11 コーニング精密素材株式会社Corning Precision Materials Co.,Ltd. Measuring method for beveling bench flatness
JP2016107376A (en) * 2014-12-05 2016-06-20 AvanStrate株式会社 Manufacturing method of glass plate, and manufacturing apparatus of glass plate
TWI560027B (en) * 2013-05-28 2016-12-01 Corning Prec Materials Co Ltd Method and apparatus of symmetrically chamfering substrate
TWI729194B (en) * 2016-08-30 2021-06-01 南韓商三星顯示器有限公司 Cover window, display device including cover window, and method of manufacturing cover window
CN113211235A (en) * 2021-05-10 2021-08-06 山西光兴光电科技有限公司 Polishing apparatus and polishing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311256A (en) * 1989-05-22 1990-12-26 Mitsubishi Materials Corp Copy face angle adjustment of copy molding machine for semiconductor
JP2000074631A (en) * 1998-08-31 2000-03-14 Toshiba Ceramics Co Ltd Chamfered width measuring instrument
JP2000107999A (en) * 1998-10-07 2000-04-18 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2000202749A (en) * 1999-01-12 2000-07-25 Sharp Corp Substrate chamfering device
JP2001004341A (en) * 1999-06-16 2001-01-12 Toshiba Ceramics Co Ltd Wafer shape measuring device
JP2001085710A (en) * 1999-09-17 2001-03-30 Kanegafuchi Chem Ind Co Ltd Thin-film solar battery module and manufacturing method thereof
JP2003098122A (en) * 2001-09-21 2003-04-03 Toshiba Ceramics Co Ltd Visual examination device for glass board
JP2004099424A (en) * 2002-07-16 2004-04-02 Shiraitekku:Kk Device for working glass

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02311256A (en) * 1989-05-22 1990-12-26 Mitsubishi Materials Corp Copy face angle adjustment of copy molding machine for semiconductor
JP2000074631A (en) * 1998-08-31 2000-03-14 Toshiba Ceramics Co Ltd Chamfered width measuring instrument
JP2000107999A (en) * 1998-10-07 2000-04-18 Tokyo Seimitsu Co Ltd Wafer chamfering method
JP2000202749A (en) * 1999-01-12 2000-07-25 Sharp Corp Substrate chamfering device
JP2001004341A (en) * 1999-06-16 2001-01-12 Toshiba Ceramics Co Ltd Wafer shape measuring device
JP2001085710A (en) * 1999-09-17 2001-03-30 Kanegafuchi Chem Ind Co Ltd Thin-film solar battery module and manufacturing method thereof
JP2003098122A (en) * 2001-09-21 2003-04-03 Toshiba Ceramics Co Ltd Visual examination device for glass board
JP2004099424A (en) * 2002-07-16 2004-04-02 Shiraitekku:Kk Device for working glass

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223005A (en) * 2006-02-24 2007-09-06 Nakamura Tome Precision Ind Co Ltd Method of measuring and correcting machining dimensions in plate material chamfering device
JP4621605B2 (en) * 2006-02-24 2011-01-26 中村留精密工業株式会社 Method for measuring and correcting machining dimension in chamfering device for plate material
KR20110004295A (en) 2009-07-06 2011-01-13 나카무라 토메 세이미쓰고교 가부시키가이샤 Method and apparatus for chamfering hard brittle plate
WO2011162163A1 (en) * 2010-06-21 2011-12-29 旭硝子株式会社 Glass substrate and method for manufacturing glass substrate
EP2592057A4 (en) * 2010-07-08 2013-10-30 Asahi Glass Co Ltd Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
EP2592057A1 (en) * 2010-07-08 2013-05-15 Asahi Glass Company, Limited Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
CN102985386A (en) * 2010-07-08 2013-03-20 旭硝子株式会社 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
CN102985386B (en) * 2010-07-08 2015-09-02 旭硝子株式会社 The evaluation method of glass substrate end face and the working method of glass substrate end face and glass substrate
KR101811903B1 (en) * 2010-07-08 2017-12-22 아사히 가라스 가부시키가이샤 Glass substrate end surface evaluation method, glass substrate end surface processing method, and glass substrate
US9630290B2 (en) 2012-08-30 2017-04-25 Corning Incorporated Glass sheets and methods of shaping glass sheets
WO2014035946A1 (en) * 2012-08-30 2014-03-06 Corning Incorporated Glass sheets and methods of shaping glass sheets
US9028296B2 (en) 2012-08-30 2015-05-12 Corning Incorporated Glass sheets and methods of shaping glass sheets
TWI593515B (en) * 2012-08-30 2017-08-01 康寧公司 Glass sheets and methods of shaping glass sheets
JP2014231141A (en) * 2013-05-28 2014-12-11 コーニング精密素材株式会社Corning Precision Materials Co.,Ltd. Measuring method for beveling bench flatness
TWI560027B (en) * 2013-05-28 2016-12-01 Corning Prec Materials Co Ltd Method and apparatus of symmetrically chamfering substrate
JP2016107376A (en) * 2014-12-05 2016-06-20 AvanStrate株式会社 Manufacturing method of glass plate, and manufacturing apparatus of glass plate
TWI729194B (en) * 2016-08-30 2021-06-01 南韓商三星顯示器有限公司 Cover window, display device including cover window, and method of manufacturing cover window
CN113211235A (en) * 2021-05-10 2021-08-06 山西光兴光电科技有限公司 Polishing apparatus and polishing method

Similar Documents

Publication Publication Date Title
JP5185412B2 (en) Method of scribing and dividing brittle material substrate using cutter wheel
JP4621605B2 (en) Method for measuring and correcting machining dimension in chamfering device for plate material
TWI586489B (en) Method for manufacturing glass substrates
KR101143290B1 (en) Method and device for polishing plate-like body
KR20150140561A (en) Apparatus for machining circumference of plate and method for machining circumference of curved plate
EP2033739A1 (en) Method for producing wafer
KR100967283B1 (en) Method of chamfering plate-like substance and apparatus thereof
KR20110009090A (en) Method and apparatus for machining glass substrate
JP2006026845A (en) Adjustment method for tool position of chamfering machine
JP2003086646A (en) Method for evaluating shape of wafer, wafer and method for selecting wafer
JP6099960B2 (en) Wafer chamfering method and wafer chamfering apparatus
KR101458663B1 (en) Glass substrate
JP6190654B2 (en) Method for uniformizing machining allowance and peripheral grinding apparatus for plate material
KR20180011702A (en) Scribing method and scribing apparatus
JP2009297882A (en) Machining device
TWI449095B (en) Cutting device, cutting device unit and cutting method
JP2021094693A (en) Manufacturing method of chamfered baseboard and chamfering device used in the same
JP5301919B2 (en) Hard brittle plate chamfering device
CN111093897B (en) Method for producing plate-shaped glass
JP2004050347A (en) Grinding method and surface grinder using this method or grinding center
JP2010142913A (en) Device for polishing end surface of glass substrate and method for the same
JP2018051945A (en) Diamond tool and its scribing method
JP6404002B2 (en) Curved plate peripheral edge processing method
KR20180003425A (en) Multipoint diamond tool and method of manufactureing the same
JP2914638B2 (en) Method for forming chamfered part of ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127