JP2005534192A - 光学的測定のためのモデルとパラメータの選択 - Google Patents

光学的測定のためのモデルとパラメータの選択 Download PDF

Info

Publication number
JP2005534192A
JP2005534192A JP2004526155A JP2004526155A JP2005534192A JP 2005534192 A JP2005534192 A JP 2005534192A JP 2004526155 A JP2004526155 A JP 2004526155A JP 2004526155 A JP2004526155 A JP 2004526155A JP 2005534192 A JP2005534192 A JP 2005534192A
Authority
JP
Japan
Prior art keywords
parameter
optimization
profile
model
profile model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004526155A
Other languages
English (en)
Other versions
JP2005534192A5 (ja
Inventor
ボウン,ビ
ドレジ,エマニュエル
バオ,ジュンウェイ
ドディ,スリニバス
ニウ,シンフイ
ジャカトダル,ニックヒル
Original Assignee
ティンバー テクノロジーズ,インコーポレイティド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティンバー テクノロジーズ,インコーポレイティド filed Critical ティンバー テクノロジーズ,インコーポレイティド
Publication of JP2005534192A publication Critical patent/JP2005534192A/ja
Publication of JP2005534192A5 publication Critical patent/JP2005534192A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

ウエハ(47)内の構造物(59)を光学的に計測するため、この構造物(59)のサイズに関する幾何学的パラメータ群を有するプロファイル・モデルを選択する。1つ以上の入力回折信号と1つ以上の選択基準を用いてプロファイル・モデルのための最適化パラメータを選択する。選択したプロファイル・モデルと最適化パラメータ群を1つ以上の選択基準と照らし合わせる。1つ以上の選択基準が満たされるまで、プロファイル・モデルを選択し、最適化パラメータ群を選択し、選択したプロファイル・モデルと最適化パラメータ群をテストするというプロセスを実施する。

Description

本出願は、集積回路(IC)の計測に関するものであり、より詳細には、光学的計測のための構造物モデルとパラメータの選択に関する。
ICデバイスのサイズはますます小さくなる方向に進んでいるため、ICデバイスの形状を測定することは、サイズが小さくなるほど難しくなる。形状を測定する1つの方法は、ウエハ上のデバイスまたは回路の近傍または内部にテスト領域を設け、そのテスト領域に形成した回折格子または周期的構造を利用するというものである。構造物の大きさが許容範囲内にあるかどうか、そして、例えば特定の製造法によってその構造物の側壁ができ、それをテーパー状にするか、鉛直にするか、頂部をT字形にするか、下部を切り落とすかを決めるため、あるいは側壁が基底部を有するかどうかを明らかにするためには、回折格子または周期的構造の大きさがわかっていることが重要である。
周期的構造の特徴は、走査型電子顕微鏡(SEM)または同様の装置を用いて測定することができる。そのとき、サンプルを切断して調べる。断面SEM法は、一般に時間とコストがかかり、破壊的であるため、構造物の頂部から見た測定を1回しか行なえないのが一般的である。
別の測定法では、散乱測定を利用する。散乱測定では、分光反射測定と偏光測定を行なう多重入射角(MAI)装置と複合設計システムを一般に使用し、構造物に光を照射して反射光を測定する。従来の散乱測定では、基本的に、数値が既知の構造物の幅を測定するという方法を実施し、回折信号と構造物の幅をペアにして用いてライブラリを作る。構造物の大きさとそれに付随する回折信号に関するライブラリが小さい場合でも、従来の散乱測定法だとライブラリを作るのに時間とコストがかかる。構造物の感度限界が大きくなるにつれ、ライブラリのサイズが大きくなり、ライブラリを作るための時間とライブラリを利用する時間が顕著に増大する。
別の測定法では、回折信号とプロファイル・データからなるライブラリを用いる代わりに、測定した回折信号から回帰法を利用してプロファイル・データを決定する。回帰法を利用する際には、1つ以上の最適化法を利用し、測定した回折信号からプロファイルのデータを求めてもよい。
ライブラリを作るのに要する時間、あるいは回帰計算の結果を収束させるのに要する時間は、使用するプロファイル・モデルと、回折信号の計算でプロファイル・モデルを表現するのに使用するパラメータの数によって異なる。一般に、プロファイル・モデルが複雑になるほど、そして使用するパラメータが増えるほど、測定値から望む情報を得るのに必要な時間および計算資源のいずれか一方、又は両方が多くなる。
一実施態様では、ウエハ内の構造物の光学的計測に用いるため、その構造物の大きさに関係した幾何学的パラメータ群を有するプロファイル・モデルを選択する。そのプロファイル・モデルについて、1つ以上の入力回折信号と1つ以上のパラメータ選択基準を利用して最適化パラメータ群を選択する。選択したプロファイル・モデルと最適化パラメータ群を1つ以上の終了基準とを対照してテストする。プロファイル・モデルを選択し、最適化パラメータ群を選択し、選択したプロファイル・モデルと最適化パラメータ群をテストするプロセスを、1つ以上の終了基準に合致するまで実行する。
本出願は、ジャカダー(Jakatdar)らによって2000年11月28日に出願されて同時係属中の「回折格子プロファイルライブラリの実時間生成方法及びシステム」という名称のアメリカ合衆国特許出願番号第09/727,530号;ニウ(Niu)らによって2001年7月16日に出願されて同時係属中の「回折格子による周期的回折信号のライブラリ生成」という名称のアメリカ合衆国特許出願番号第09/907,488号;ドッディ(Doddi)らによって2000年12月14日に出願されて同時係属中の「回折格子のプロファイルを分類するためのシステムと方法」という名称のアメリカ合衆国特許出願番号第09/737,705号;ニウらによって2000年1月26日に出願されて同時係属中の「急速厳密結合波解析における内部層計算のキャッシング」という名称のアメリカ合衆国特許出願番号第09/770,997号;ドッディらによって2002年6月3日に出願されて同時係属中の「集積回路を光学的に計測するための波長の選択」という名称のアメリカ合衆国特許出願番号第10/162,516号に関係がある。これら出願はすべて本出願の譲受人が所有しており、その内容が参照としてこの明細書に組み込まれる。
本発明に関する説明を簡単にするため、偏光または反射率を光学的に計測するシステムを利用して考え方と原理をいくつか示す。ある実施態様を説明するにはウエハ内の構造物からの回折信号を偏光測定装置を用いて測定したグラフ(例えばcos(Δ)やtan(ψ))を利用し、別の実施態様を説明するには反射率測定による反射率のグラフを利用する。同じ考え方と原理が、偏光測定システム、反射率測定システム、他の光学的計測システムにも同様に当てはまることが理解されよう。
図1は、ウエハにパターニングされた構造物からの回折信号を測定するための光学的計測法の構成を示した図である。光学的計測システム40は、ビーム43をウエハ47内の標的構造物59に照射する計測用ビーム源41を備えている。計測用ビーム43は、入射角θiで標的構造59に向かって照射され、回折角θdで回折される。回折ビーム49は、計測用ビーム受光器51によって測定される。回折ビームのデータ57は、プロファイル・アプリケーション・サーバ53に送られる。プロファイル・アプリケーション・サーバ53は、測定された回折ビームのデータ57を、標的構造物の臨界サイズとその臨界サイズの解像度のさまざまな組み合わせを表す回折ビーム計算データのライブラリ54と比較する。一実施態様では、ライブラリ54内で、回折ビームの測定データ57と最もよく一致するライブラリインスタンスを選択する。選択したライブラリインスタンスのプロファイルと、それに関連する臨界サイズから、回折格子構造の二次元表現または三次元表現を得ることができる。光学的計測システム40では、回折ビームまたは信号を測定するのに反射率測定器、偏光測定器、他の光学的計測装置のいずれかを使用することができる。1つの光学的計測システムが、ジャカダー(Jakatdar)らによって2000年11月28日に出願されて同時係属中の「格子プロファイルライブラリの実時間生成システム及び方法」という名称のアメリカ合衆国特許出願番号第09/727,530号に記載されており、その内容が参考としてこの明細書に組み込まれているものとする。
図2は、ウエハの構造物を光学的に計測するためのモデルとパラメータを選択する全プロセスに関するフローチャートの一例である。ステップ310では、構造物のプロファイル・モデルを選択するための1つ以上の終了基準を決定する。終了基準は、選択プロセスの結果を判定するための尺度である。終了基準は、コスト関数の値、適合度(GOF)の値、および他の曲線フィッティング指標の少なくとも何れかのほか、測定したパラメータの信頼区間を含むことができる。
例えばプロファイル・モデルのパラメータを用いて得た構造物からのシミュレーション信号と測定した信号を比較するコスト関数を、終了基準として利用することができる。比較を行なうためのコスト関数の一例を以下の式に示す。V1とV2がサイズがnのベクトルであるとすると、V1のV2に関するコスト関数は次のようになる。
Figure 2005534192
ただし、iはベクトルのi番目の成分であり、pは計量に関する任意の数である。第1のベクトルは、使用する測定装置の測定点における一連の信号の値であり、第2のベクトルは、同じ点における対応する一連のシミュレーション信号の値である。コスト関数終了基準は、特定の数値、例えば0.25に設定することができる。別の終了基準は、測定値とシミュレーション信号の値のグラフ間の適合度(GOF)にすることができる。GOFは、2つの数値集合の近さを示す指標である。例えば偏光の測定値を用いる場合、GOFは、tanψとcosΔの値に基づいたものになる。ただしtanψとcosΔは、n次元の単一のベクトルによって次のように表わされる。
S = [tanψ1 tanψ2 ...tanψn/2 cosΔ1 cosΔ2 ...cosΔn] (1.10)
測定した信号Smとシミュレーション信号Ssの間のGOFに関して一般に用いられている1つの式は以下のものである:
Figure 2005534192
ここで
Figure 2005534192
ただしiは光学的測定装置のi番目の測定点を表わし、nはその光学的測定装置の全測定数である。
別の終了基準は、最適化パラメータの信頼区間カットオフ値である。最適化パラメータと信頼区間について以下にさらに詳しく説明する。プロファイル・モデルには幾何学的パラメータ群が関係する。最適化パラメータは、プロファイル・モデルの幾何学的パラメータから導かれる。幾何学的パラメータから最適化パラメータを得る方法については図4を参照して詳しく説明する。信頼区間は、最適化パラメータが取る値の範囲であり、実際の値は、特定の確率でその範囲内に入る。一例として、最適化パラメータx1の3σ信頼区間が20nmであるとは、x1の実際の値が±20nmの範囲に入る確率が99.7%であることを意味する。信頼区間の幅は、回折信号の変化が事前設定値よりも大きくなるときの、その最適化パラメータの公称値からの変化量に設定することができる。事前設定値は、システムの雑音レベルまたは人工雑音のレベルの値にすることができる(一般にナノメートル単位で表現する)。信頼区間のカットオフは、例えば構造物の中央部CD(臨界サイズ)パラメータに関して2.0nm、底部CDパラメータに関して2.5nmに決めることができる。中央部CDと底部CDの両方に関して信頼区間のカットオフが満たされるまで、プロファイル・モデルの選択を継続することになる。
ステップ320では、プロファイル・モデルのパラメータを選択するための1つ以上の基準を決定する。プロファイルの選択基準には、プロファイル・パラメータの感度または特定の相関係数を含めることができる。例えば相関のカットオフを0.99にしてパラメータを選択することができる。あるいはプロファイル・パラメータの各増分(ΔP)に対して信号の特定の変化(ΔS)が必要とされることもあり、ここでΔS/ΔPは、パラメータの感度の指標である。パラメータの選択基準については、図5を参照してさらに詳しく説明する。
さらに図2を参照すると、ステップ330では、ウエハ内の構造物の特徴が得られる。構造物のプロファイルを特徴付けるための基礎として、(断面SEM画像またはX-SEM画像といった)計測装置から得られる構造物の画像を用いることができる。例えば構造物に関し、頂部の丸み、下部の切り落とし、T字形頂部、拡張部、ノッチ、凹部、凸部、あるいは他の同様の特徴についての指標が得られる。ウエハ製造プロセスの設計データを利用してもよい。公称上のCDと高さに関する情報のほか、構造物についての画像データを利用し、構造物のプロファイルを特徴付けてもよい。ウエハの構造物の特徴を得るための一例のプロセスに含まれるステップの説明に関しては、図3の説明を参照されたい。
ステップ340では、構造物の特徴をプロファイル・モデルに変換する。プロファイル・モデルは高さと幅を指定する2つのパラメータを備えた単純な矩形であってもよい。図9Aには、2つのパラメータa0とa1を用いた矩形920が示してある。a0とa1は、それぞれ幅と高さを表わす。プロファイルに関する別のモデルは、例えば底部CD、頂部CD、高さを表わす3つのパラメータを備えた台形であってもよい。図9Bは2つの台形925からなるモデルであり、一方の台形が他方の台形の上に載っている。2つの台形からなるこのプロファイル・モデル925は、5つのパラメータを用いて記述することができよう。すなわち、a0は上方の台形の頂部CDを表わし、a1は上方の台形と下方の台形に共通するCDを表わし、a2は下方の台形の底部CDを表わし、a3は上方の台形と下方の台形を合計した厚さを表わし、a4は上方の台形の厚さを表わす。より複雑なプロファイル・モデルを図9Cに示してある。このプロファイル・モデルは、異なる2枚の膜を表わす2つの矩形ブロック942および944と、パターニングされた構造物の底部にあって基底部を有する台形940と、異なる材料でできた2つの矩形ブロック938および936と、構造物のノッチを表わす薄い矩形ブロック934と、構造物の頂部がある程度丸くなっていることを表わす頂部の台形932を備えている。
図9Cからわかるように、プロファイル・モデルは、構造物の実際のプロファイルをよく近似できるようにするため、異なる多数の幾何学図形を含むことができる。一般に、モデルが複雑になるほど、そのモデルを表現するのに必要なパラメータの数も増える。パラメータが多くなると、複雑さが増し、構造物の光学的計測のシミュレーションを行なう時間も増大する。仮想的構造物からの回折信号の説明に関しては、ニウ(Niu)らによって2000年1月26日に出願されて同時係属中の「急速厳密結合波解析における内部層計算のキャッシング」という名称のアメリカ合衆国特許出願番号第09/770,997号を参照のこと。なおこの出願の全体が参照としてこの明細書に組み込まれる。図5に関してあとで説明することだが、与えられたプロファイル・モデルについて、終了基準を満たしている最少数のパラメータを選択するために、パラメータの数を最適化してもよい。
図2のステップ350では、1つ以上の選択基準に基づいてプロファイル・モデルの最適化パラメータを選択する。図5を参照してあとでさらに詳しく説明するが、最適化パラメータの選択は、他のパラメータとの相関、最適化パラメータの変化に対するシミュレーション信号の感度、パラメータの変化が検出可能な信頼区間、他の考慮要因に基づいて行なう。言い換えるならば、すなわち除外規則の一例を挙げると、最適化パラメータAが別のパラメータBと強く相関していて、シミュレーション信号がパラメータAの変化の影響を受けない場合には、パラメータAを除外することができる。
ステップ360では、シミュレーションの計算速度と計算された信号の精度をバランスさせることによってシミュレーションの計算を最適化する。例えば利用する回折の波長の数または範囲、考慮する回折の次数といった変数を最適化することで、シミュレーションの変数が最少になるとともに、計算された信号の精度が最大になるようにする。
ステップ370では、終了基準が満たされたかどうかを調べるためのテストを試行する。例えばコスト関数の値が2.50以下というのが終了基準の1つである場合には、選択したモデルの選択したパラメータを用いたシミュレーション信号のコスト関数の値を、対応する測定した信号と比較する。コスト関数の値が2.20である場合には、この終了基準に合致している。さらに、GOFが0.9990以上であることを第2の終了基準にすることができる。ここで図11Bを参照する。X軸に取った波長の関数として反射率をY軸に示したグラフ982において、反射率の測定値を示す曲線984を、反射率のシミュレーション曲線986と比較する。このシミュレーションでは、図11Aに示したように、2つの台形からなるプロファイルを利用する。GOFの式を用いると、GOFの計算値は、図11Cに示したように0.9994になる。しかし図11Cの同じ表において、最適化パラメータの3σ信頼区間の最大値はx1に関して17.92nmである。すでに説明したように、信頼区間は、最適化パラメータが取る値の範囲であり、実際の値は、ある確率でその範囲内に入る。一例として、最適化パラメータx1の3σ信頼区間が20nmであるとは、x1の実際の値が±20nmの範囲に入る確率が99.7%であることを意味する。
ここで図10Bを参照する。X軸に取った波長の関数として反射率をY軸に示したグラフ960において、反射率の測定値を示す曲線962を、反射率のシミュレーション曲線964と比較する。このシミュレーションでは、図10Aに示したように、1つの台形からなるプロファイルを利用する。GOFの式を用いると、GOFの計算値は、図10Cに示したように0.9990になる。図10Cの表965では、最適化パラメータの3σ信頼区間の最大値がx0に関して1.99nmであることに注意されたい。以下にさらに詳しく説明するように、図10Aに示した一台形モデルの3σ信頼区間が図11Aの2台形モデルと比較して狭くなっているということは、図10Aの一台形モデルではGOFの基準が0.9990という条件も満たされているためにこの一台形モデルが選択されるであろうことを意味する。
ここで図2を参照すると、終了基準が満たされない場合には、ステップ375に進んでパラメータ選択基準およびプロファイル・モデルの何れか一方又は両方を調節し、ステップ350、360、370を繰り返す。パラメータ選択基準を変更する具体例としては、パラメータを選択または除外するための相関カットオフの調節が挙げられる。別の方法として、例えば誤差2乗和の値として表現される感度カットオフを調節することもできる。プロファイル・モデルを調節する具体例としては、台形を2つではなく3つ利用して構造物のプロファイルを表現するというもの、あるいは台形を2つではなく1つ利用して構造物のパターニングされた領域をモデル化するというものがある。一実施態様では、光学的顕微鏡による構造物の画像により近くなるようにするため、プロファイル・モデルを変更してより多くの幾何学図形あるいはさまざまな幾何学図形が含まれるようにすることができる。別の実施態様では、台形をいくつか用いるのではなく1つだけ用いるといったように、プロファイル・モデルをより単純化することができる。
ステップ380では、終了基準が満たされたとき、プロファイル・モデル、選択したプロファイル・パラメータ、パラメータ選択基準及び終了基準、をデータ記憶装置に記憶させ、さらに、製造法、ウエハの位置、計測装置に関する識別データをデータ記憶装置に記憶させる。
モデルとパラメータの選択結果は、いくつかの方法で利用することができる。ステップ390では、選択したモデルの選択したパラメータの範囲と解像度を利用し、シミュレーション回折信号とそれに関連するプロファイル・データのライブラリを作る。パラメータの範囲と解像度を利用してライブラリを作る方法についての説明は、ジャカダー(Jakatdar)らによって2000年11月28日に出願されて同時係属中の「回折格子プロファイルライブラリの実時間生成方法及びシステム」という名称のアメリカ合衆国特許出願番号第09/727,530号に記載されており、その内容が参照としてこの明細書に組み込まれる。別の方法として、ステップ395において、モデルとパラメータの選択結果を表示する。一実施態様では、1つ以上の終了基準が満たされるとすぐに、臨界サイズ、プロファイルの形状、膜厚の値を利用できる。別の実施態様では、ステップ390で記憶させたデータの一部または全部を表示する。さらに別の実施態様では、ステップ398において、プロファイル・モデルとパラメータの選択結果を、製造クラスターのフィードフォワード制御ループまたはフィードバック制御ループで利用する。この点に関する詳細は、図6Cにおいて説明する。
すでに説明したように、図3の説明には、ウエハ内の構造物の特徴を取得し、特徴付けを行うフローチャートの全ステップに関する詳細が提示されている。以下のステップで説明する方法は、ウエハ内の構造物の特徴を取得する1つの方法にすぎないことを理解されたい。他の方法としては、集積回路製造プロセスや集積回路デバイスのシミュレーション・ソフトウエアから構造物の特徴を取得する方法もある。
図3を参照すると、ステップ410では、データ収集基準を1つ以上設定する。モデルとパラメータの選択を行なうのに構造物に関する十分なデータが利用できるかどうかを調べるために、1つのデータ収集基準を用いる。データ収集基準の具体例としては、モデルとパラメータの選択に利用される終了基準と同様、コスト関数の値またはGOFがある。しかしコスト関数の値、あるいはGOFは、終了基準に関して決められているものとは異なって(一般には低くなって)いてもよい。他のデータ収集基準としては、回折信号の測定値に関して許容される変動範囲(例えばウエハ内の同じ位置に関して測定した回折信号の3σ幅)がある。例えばウエハ内の同じ部位に関して測定した回折信号の標準偏差が大きい場合には、そのウエハ内の構造物について回折信号を追加測定する必要があろう。データ収集基準は、シミュレーションで得られる構造物のプロファイルとX-SEM画像の比較にすることもできる。
やはり図3を参照すると、ステップ420では、積層体、パターニングされていない層の厚さ、屈折率nの大きさ、吸光係数k、層の他の性質についての特徴が得られる。各層で使用する材料のタイプも得られる特徴に含まれる。ステップ430では、パターニングした構造のピッチ、線とスペースの比率、パターニングした構造の光学特性、パターニングした構造のプロファイルに関する他の特徴が得られる。パターニングした構造のプロファイルに関する他の特徴としては、頂部の丸みに関するデータ、下部の切り落とし、基底部、ノッチのほか、プロファイルにおいて想定される他の異常が挙げられる。
ステップ440では、光学的に計測した回折信号の測定値を、入力された回折信号の測定値の中から選択する。データの種類と量は、偏光測定装置、反射測定装置、他の散乱測定装置のどれを使用するかと、装置をどこが製造しているかによって異なる。回折信号の測定値を選択するには、クラスタリングや相関などの選択法を利用して少数の代表的な回折信号を調べるように設計したいくつかのステップを含む。回折信号の測定値は、上記の選択法のうちの1つ以上を利用してグループ化する。光学的測定におけるクラスタリングの説明に関しては、ドッディ(Doddi)らによって2000年12月14日に出願されて同時係属中の「回折格子のプロファイルを分類するためのシステムと方法」という名称のアメリカ合衆国特許出願番号第09/737,705号を参照のこと。なおこの出願の全体が参照としてこの明細書に組み込まれる。非常に相関の強い回折信号の測定値からなる各クラスターまたは各グループの代表値を同定して選択し、モデルとパラメータの選択プロセスで利用する。
ステップ450では、プロファイルの特徴から明らかになった積層体と構造物のプロファイルを利用し、構造物からの信号をシミュレーションする。仮想的構造物からの回折信号のシミュレーションの説明に関しては、ニウ(Niu)らによって2000年1月26日に出願されて同時係属中の「急速厳密結合波解析における内部層計算のキャッシング」という名称のアメリカ合衆国特許出願番号第09/770,997号を参照のこと。なおこの出願の全体が参照としてこの明細書に組み込まれる。
図3のステップ460では、1つ以上のデータ収集基準が満たされているかどうかを調べるためのテストが試行される。例えばシミュレーション信号と回折の測定値の間のGOFが0.950であり、GOFが0.950以下というのがデータ収集基準である場合には、データ収集基準が満たされている。別の例では、データ収集基準は、積層体を構成する各層の厚さのシミュレーション値が、ユーザーが提供した特徴のデータに対して所定の割合になっているか、その割合以内に収まっていることである。積層体を構成する各層の厚さが100nmであり、その層のシミュレーション値が102nmであると仮定し、さらに、1つのデータ収集基準が層の厚さに関して2%以下の変動であると仮定すると、データ収集基準が満たされる。
やはり図3を参照すると、ステップ480では、データ収集基準、ウエハと構造物の特徴、計測装置を特定するデータを記憶する。データ収集基準が満たされていない場合には、ステップ470において、特徴に関する追加データを得るか、データ収集基準を調節する。例えばシミュレーション信号と測定した信号のコスト関数の値が3.50であるかそれよりも優れていて、計算したコスト関数の値が7.00である場合には、データ収集基準が満たされない。特徴に関する基本的なデータが間違っている可能性もある。例えば構造物のピッチが正確に指定されていなかったり、プロファイルの特徴が大まかで不正確である場合には、コスト関数の値が非常に大きくなる可能性がある。特徴に関するデータと、システムに入力する特徴に関するデータの正確さを見直すことを、問題の原因を突き止めることに使用できる。別の方法として、データ収集基準が正確に設定されていない場合にはデータ収集基準を調節することもできる。
すでに指摘したように、以下に行なう図4の説明では、ウエハの構造物の特徴をモデルとそれに関係するパラメータへと変換するフローチャートの全ステップに関する詳細を提示する。ステップ510では、積層体のそれぞれの材料の幾何学図形のタイプを求める。例えば積層体中に1つの材料しかない場合には、1つの幾何学形状を選択してプロファイル・モデル全体を表わしてもよい。図8には、構造物900が1つの材料で形成されていると仮定し、サイズの異なるさまざまな矩形(例えば矩形902、904、906、908、910)を用いて構造物900のプロファイル・モデルを表現する。図9Aでは、パターニングされていない膜を表わすのに矩形を用いるのに対し、図9Bでは、2つの台形を用いる。図9Cのプロファイルでは、矩形と台形が用いられている。
図4を参照すると、ステップ520では、構造物の積層体に関する幾何学図形と幾何学的パラメータを生成する。例えばパターニングされていない積層体内の第1の層を図9Aの矩形920で表わす場合には、幾何学的パラメータは第1の層の厚さa1である。というのも、パターニングされていない層の幅は、回折のシミュレーションの目的に対して無限であると仮定できるからである。
ある層の幾何学図形が台形である場合には、3つの幾何学的パラメータを用いることができる。すなわち、頂部の幅、底部の幅、台形の高さである。図9Bのように2つの台形925を用いる場合には、5つの幾何学的パラメータを用いることができる。すなわち、上方の台形の頂部の幅a0、上方の台形の底部の幅a1(下方の台形の頂部の幅でもある)、下方の台形の底部の幅a2、この構造物モデルの全厚さa3、上方の台形の厚さa4である。
図9Cのプロファイル・モデル930は複合プロファイル・モデルであり、このモデルは、矩形936、938、942、944と、この構造物内のノッチを表わす矩形934と、この構造物の頂部の丸みを表わす台形932と、この構造物の底部の基底部を表わす台形940をそれぞれ含んでいる。幾何学的パラメータは、個々の幾何学図形の個々の幾何学的パラメータの和である。図9Cの複合プロファイル・モデル930では、幾何学的パラメータの数が多い。一般に、幾何学図形の数が多くなるほど、幾何学的パラメータの数も増える。さらに、プロファイル・モデルの幾何学的パラメータの数が多くなると、シミュレーション回折信号を得るためのシミュレーション・プロセスが長くなる。すでに説明したように、回折のシミュレーション・プロセスが長くなると、ライブラリを作る時間または回帰計算の時間が著しく長くなる可能性がある。
図4のステップ530では、幾何学的パラメータの公称値と範囲が得られる。これらの値と範囲は、一般に、製造プロセスまたは製造法についての履歴データまたはテスト・データから得られる。例えば頂部の幅または頂部CDは、公称値が200nmで、範囲が120から280nmという値が可能である。
ステップ540では、幾何学的パラメータの依存性を求める。幾何学的パラメータの依存性は、やはり上記の特定の製造法についての履歴またはテスト結果に基づいている。例えば窒化ケイ素キャップとシリコン・トレンチを有する浅溝型素子分離(STI)構造では、一般に窒化物キャップが、シリコン・トレンチの頂部の幅のCDを決めている。この場合、独立な幾何学的パラメータは、窒化物キャップの底部CDである。窒化物キャップの頂部CDとシリコン・トレンチの頂部の幅は、窒化物キャップの底部CDと関係づけることができる。
一例として図9Bに示した2つの台形モデル925を考えると、上方の台形の頂部の幅a0は、上方の台形の底部の幅a1の関数となる可能性がある。a0はa1と線形関係を有する可能性があり、例えばa0 = a1 +定数、またはa0 = a1×定数となる可能性がある。ある幾何学的パラメータと別の幾何学的パラメータの関係は、単純な線形関数、二次関数、多項式関数などで特徴づけられる可能性がある。プロファイル・モデルの幾何学的パラメータの依存性は、ある幾何学的パラメータが独立なパラメータであるか、他のパラメータに対して固定オフセット値を持つか、他のパラメータに対して変動オフセット値を持つか、固定値を持つかのいずれかに基づいて決まる。説明のため、図9Bに示した、5つの幾何学的パラメータを持つ2つの台形を考える。製造法を用いた設計または以前の実験から、a0は独立なパラメータとして値を知ることができる。やはり以前の製造データから、a1は、a0に対して10nmという一定のオフセット値を持ち、a2は、a0に対して変動オフセット値を持ち、a3は一定であり、a4はa0の2倍であることがわかる。
やはり図4を参照すると、ステップ550では、幾何学的パラメータを最適化パラメータxに変換する。幾何学的パラメータを最適化パラメータに変換する理由としては、最適化されたシミュレーション回折信号を決定するために回帰計算を行なうときの検索スペースを小さくすることが挙げられる(図5に関してあとで説明する)。幾何学的パラメータを最適化パラメータに変換する別の理由は、1つのパラメータと別のパラメータの相関を小さくするというものである。
変換の結果は、最適化パラメータxiに関する式になる。例えば図9Bに示した2つの台形の各幾何学的パラメータaiに関する式は、上記の依存性を有する場合に以下のようになる。
a0 = x0、
a1 = x0 + 10、
a2 = x0 + x1、
a3 = 50
a4 = 2・x0、
ただしa0、a1、a2、a3、a4は、上に定義したプロファイル・モデルの幾何学的パラメータであり、単位はナノメートルである。x0とx1はプロファイル・モデルの最適化パラメータである。5つの幾何学的パラメータを2つの最適化パラメータに変換していることに注意されたい。より複雑なプロファイル・モデルだと、一般に、より多くの幾何学的パラメータを必要とし、それに対応してより多くの最適化パラメータを一般に必要とする可能性がある。当業者であれば、最適化パラメータが幾何学的パラメータにどのように依存するかを表現する他の同等な方法も利用可能であることが理解できよう。
すでに指摘したように、以下に行なう図5の説明では、モデルのパラメータを1つ以上の選択基準に基づいて選択するフローチャートの全ステップに関する詳細を提示する。図5を参照すると、ステップ810では、プロファイル・モデルを選択するために行なう光学的測定の波長または波長の範囲を選択する。波長を選択する方法の説明に関しては、ドッディ(Doddi)らによって2002年6月3日に出願されて同時係属中の「集積回路を光学的に計測するための波長の選択」という名称のアメリカ合衆国特許出願番号第10/162,516号を参照のこと。なおこの出願の全体が参照としてこの明細書に組み込まれる。いくつかのタスクが同時に、あるいは並列的に実行され、ある最適化パラメータを選択すべきか除外すべきかに関する情報が提供される。
ステップ820では、最適化パラメータ相互の相関が求められる。一般に、2つの最適化パラメータ相互の相関係数rは、以下の式:
Figure 2005534192
Figure 2005534192
図12Aを参照すると、相関係数の表996に5つの最適化パラメータが示してある。すなわち、x0はレジストの頂部CDを表わし、x1はレジストの底部CDを表わし、x2はレジストの厚さを表わし、x3は反射防止コーティングの厚さを表わし、x4は二酸化ケイ素の厚さを表わしている。相関係数の表996は、Y軸とX軸にパラメータの番号を表示する構成になっている。交点またはセルは、あるパラメータを別のパラメータと組み合わせたときの相関係数を表わしている。例えばパラメータx0とx4の交点にあるセル997では、相関係数が0.47である。相関係数は、上記の式(2.60)において、入力される測定値としてx0をxiに入れ、x4をyiに入れることによって計算される。相関係数の値が小さいということは、パラメータx0とx4が強くは相関していないことを意味する。逆に、パラメータx3とx4の交点にあるセル998では、相関係数が1.00である。これは、x3とx4の間に完全に正の相関があることを意味する。図12Bからわかるように、パラメータx3の波長と反射率の差の関係をプロットしたグラフ992は、パラメータx4の波長と反射率の差の関係をプロットしたグラフ994と完全に正の相関がある。最適化パラメータを選択する際には、パラメータx3とx4のうちの一方だけを含める必要がある。というのも、x3またはx4によって引き起こされる回折信号の変動は、他方の変動から明らかにすることができるからである。
図5のステップ830では、各最適化パラメータの信頼区間を決定する。すでに説明したように、信頼区間は、回折信号の変化が雑音レベルよりも大きくなる場合の、最適化パラメータの公称値からの変化量に設定することができる。回折信号に含まれる雑音は、システム雑音(例えば測定装置の雑音)に起因する可能性がある。あるいは雑音は、シミュレーションすることもできる。信頼区間は、一般に最適化パラメータの標準偏差σの倍数として表わされる。最適化パラメータの標準偏差は、その最適化パラメータの測定値から以下の式:
Figure 2005534192
を用いて計算される。ただしNは測定の回数であり、xiは最適化パラメータxのi番目の値であり、xavは最適化パラメータxの平均値である。
信頼区間は、一般に、ウエハ内の構造物からの実際の測定値を表わす所定のサンプル入力データ群から計算される。信頼区間は、最適化パラメータについての測定データに導入したシミュレーションのランダム雑音を用いて計算することもできる。
図10Aを参照すると、構造物のプロファイル・モデル950は、基礎をなす膜の単一層を備えた構造を表わす矩形形状953の上に単一の台形951を用いて表わし、このモデルは4つの最適化パラメータを持つことがわかる。すなわち、x0はこの構造物の頂部CDを表わし、x1はこの構造物の底部CDを表わし、x2はこの構造物の厚さを表わし、x3は下にある膜の厚さを表わす。図10Cを参照すると、4つの最適化パラメータに関する3σ信頼区間が記載された表965が示してある。例えば最適化パラメータx0は信頼区間が1.99nmであり、これはx0の測定値が1.99nmの範囲内で観察若しくは検知可能な確率が99.7%であることを意味する。別の見方をすると、x0の変化が1.99nmよりも小さい場合には、信号に変化が現われないであろう確率が99.7%である。同様に、x1は3σ信頼区間が1.95nmである、といった具合になっている。パラメータx3は3σ信頼区間が0.30であるため、パラメータx3は0.30nmよりも大きな変化に対して検知可能なことを意味していることに注意されたい。
図10Aで説明したのと同じ構造を、2つの台形972が矩形974の上に載った図11Aのようなプロファイル・モデル970を仮定する。2つの台形からなるプロファイル・モデル970は、6つの最適化パラメータを持つ。すなわち、x0は上方の台形976の頂部CDを表わし、x1は下方の台形978の中央部CDを表わし、x2は下方の台形978の底部CDを表わし、x3は2つの台形972の厚さを表わし、x4は屈曲点において2つの台形972の厚さに対して占める割合で、上方の台形976の厚さh1に等しく、x5は基礎をなす膜の厚さを表わす。図11Cを参照すると、表988には6つの最適化パラメータに関する3σ信頼区間が記載してあることがわかる。例えば最適化パラメータx0は、信頼区間が6.81nmであり、これはx0の測定値が6.81nmの範囲内で観察若しくは検知可能な確率が99.7%であることを意味する。別の見方をすると、x0の変化が6.81nmよりも小さい場合には、信号に変化が現われないであろう確率が99.7%である。あとでステップ870に関して説明することだが、各最適化パラメータについて計算したデータの全集合は、ある最適化パラメータを含めるか除外するかを判断するステップに組み込むことができる。
図5のステップ840では、1つ以上の最適化パラメータの変化に対するシミュレーション信号の感度を求める。一般に、この調査は、1つの最適化パラメータをわずかに変化させ、他の最適化パラメータを一定に保つことによって実行する。例えば1つの台形を用いた図10Aのプロファイル・モデルでは、パラメータx0の感度は、公称値に1ナノメートル加える一方でx1、x2、x3は公称値に維持して信号をシミュレーションすることによって調べることができる。信号マトリックスまたは(公称値のx0 + 1nm)のグラフに目に見える変化がない場合には、x0は感度が低い。他の最適化パラメータも、残りの最適化パラメータを一定に維持した状態で同様に変化させ、それぞれの最適化パラメータの感度を調べることができる。
最適化パラメータの感度は、公称値を用いた信号と比較された変化した信号の誤差2乗和(SSE)を計算することによって定量的に表現することができる。SSEの式は以下の通りである。
Figure 2005534192
ただしiは信号シミュレーション点であり、一般的にはプリセット波長である。またnは信号シミュレーション点の数であり、S0は最適化パラメータの公称値を用いたシミュレーション信号の値であり、S1は最適化パラメータの一つについて公称値に変化分を加えた値を用いたシミュレーション信号の値である。
図5のステップ870では、1つ以上の選択基準に基づいて最適化パラメータの最終的な選択を行なう。例えばパラメータ選択基準は、相関係数のカットオフ点にすることができる。他のすべてのパラメータに対する相関係数が0.50よりも小さいパラメータを選択することができる。相関係数が0.98である一対のパラメータを感度に関してさらに調べ、どのパラメータを選択するか、あるいはどのパラメータを除外するかを決定することもできる。SSEの閾値を用いて最適化パラメータを選択することができる。例えばSSEの閾値として0.01を、パラメータの変化に対する感度が比較的低い最適化パラメータをフィルタするために用いてもよい。3σ信頼区間に関して所定のカットオフを利用し、基準に合わない最適化パラメータを除外すること、あるいはICの設計にとって極めて重要なキーとなるパラメータが適切な感度にならないプロファイル・モデルに印をつけることもできる。上記の基準は組み合わせて利用してもよい。当業者に知られている他の同等な基準も利用可能であることが理解できよう。最適化パラメータが選択されない場合には、最適化パラメータを固定値に設定する。その固定値は、製造法を利用した製造データまたは以前の実験から決定する。
ステップ890では、選択したプロファイル・モデルに関する選択した最適化パラメータを利用し、測定した信号に対して最適化したシミュレーション回折信号を決定する。一実施態様では、回帰法を利用して最適化したシミュレーション信号を得る。1つまたは2つ以上のタイプの回帰エンジンを用いることができる。
図7を参照すると、プロファイル・モデル・テスター1400は、選択したプロファイル・モデル、選択した最適化パラメータ、測定した回折信号1402を受け取る。プロファイル・モデル・テスター1400は、これらの入力データを処理して1つ以上の回帰エンジン(例えば分岐限定法1420、シミュレーテッドアニーリング1430、遺伝的アルゴリズム1440、他の大域的最適化法1450、大域的最適化法と局所的最適化法のハイブリッド1460)をアクティブにする。最適化エンジンにより、シミュレーション信号と測定した信号の差が大域的な最小値に到達する。大域的最小値に対応するシミュレーション信号は、言い換えると選択したプロファイル・モデルに関する選択した最適化パラメータ群の値に対応し、プロファイル・モデル・テスター1400は、この値を出力1404として生成する。
図6Aは、モデルとパラメータを選択するシステムの一実施態様に関する構成図である。本実施態様では、ターミナル1800を用いてウエハ製造プロセスの設計データを入力する。その設計データには、積層体、nとkの値、プロファイル・パラメータの公称値と範囲、幅の公称値と範囲、ウエハ内のいくつかの地点で測定した回折信号、構造物のプロファイルを特徴づける構造物画像データが含まれている。選択した終了基準と最適化パラメータ選択基準をターミナル1800に入力し、入力データ1801としてプロファイル・コンパイラ1810に送信してもよい。プロファイル・コンパイラ1810は、入力データ1801を編集し、光学的計測シミュレータ1860を作動させ、プロファイル・モデルの幾何学的パラメータが特定の公称値を有する信号2000のシミュレーションを行なわせる。光学的計測シミュレータ1860は、シミュレーション回折信号2001をプロファイル・コンパイラ1810に送る。すでに指摘したように、仮想構造物からの回折信号のシミュレーションの説明に関しては、ニウ(Niu)らによって2000年1月26日に出願されて同時係属中の「急速厳密結合波解析における内部層計算のキャッシング」という名称のアメリカ合衆国特許出願番号第09/770,997号を参照のこと。なおこの出願の全体が参照としてこの明細書に組み込まれる。プロファイル・コンパイラ1810は、シミュレーション回折信号2001を入力データ1801における測定された信号と比較し、入力データ1801の品質と妥当性に関するデータをターミナル1800に送る。プロファイル・コンパイラ1810は、プロファイル・モデル・テスター1840からの調節されたプロファイル・モデル・データ2012を処理することもできる。
図6Aを参照すると、プロファイル・コンパイラ1810は、編集された特徴データと測定された回折信号1811をモデル生成装置1820に送る。モデル生成装置1820は、構造物について、幾何学形状を含むプロファイル・モデルを生成する。幾何学形状は幾何学的パラメータによって表現され、最適化パラメータ1821に変換されてパラメータ選択装置1830に送られる。パラメータ選択装置1830は、最適化パラメータ選択基準を利用し、どの最適化パラメータが、相関係数のカットオフ、感度の閾値、および顧客が要求する信頼区間の何れか一つ以上、又は全てを満たしているかを選別する。パラメータ選択装置1830は、プロファイル・パラメータ・データ2004を用いて回折信号のシミュレーションを実施するように光学的計測シミュレータ1860を作動させる。すると光学的計測シミュレータ1860は回折信号のシミュレーションを実施し、シミュレーション回折信号2005をパラメータ選択装置1830に送る。
パラメータ選択装置1830の機能の一部は、測定されたそれぞれの信号について最適化したシミュレーション信号を求める手続きを実行し、図7で説明した1つ以上の最適化エンジンを作動させる。最適化プロセスの後、プロファイル、CD、膜厚を含む最適化されたプロファイル・データが、出力2006として臨界サイズ・サーバー1870に送られる。パラメータ選択装置1830は、選択した最適化パラメータをプロファイル・モデル・テスター1840に送り、ここで、コスト関数の値、GOF、及び他の終了基準といった終了基準の何れか一つ以上がテストされる。終了基準が満たされていない場合には、プロファイル・モデル・テスター1840は、プロファイル・モデルをよりよく近似するため、例えば2台形モデルから1台形モデルに切り換えることによって、あるいは単純な幾何学的モデルからより多くの幾何学図形を用いたモデルに切り換えることによって、プロファイル・モデルを調節する。調節されたプロファイル・モデル2012は、プロファイル・コンパイラ1810に送られる。逆に終了基準が満たされている場合には、プロファイル・モデル・テスター1840は、プロファイル・モデル終了基準、最適化パラメータ終了基準、製造プロセス、ウエハの位置、光学的計測装置を識別するデータ、選択した最適化パラメータ2010をデータ記憶装置1850に記憶させる。プロファイル・モデル・テスター1840は、最適化パラメータ1841をライブラリ生成装置1880に送り、ライブラリ生成装置1880は、選択した最適化パラメータの範囲と解像度を利用し、回折信号とそれに関係するプロファイル・データ1881を含むライブラリ1890を生成する。
図6Bは、計測モデル最適化装置の一実施態様に関する構成図である。計測モデル最適化装置1900は、プロファイラー・ワークステーション1910から、測定された回折信号の臨界サイズ、プロファイル、及び膜厚に関する要求1902を受け取る。計測モデル最適化装置1900は、この要求1902と、ウエハの対象とする構造物を特徴づける他の入力データ(図示せず)とに基づき、図6Aで説明したのと同様のプロセスでモデルとパラメータを選択する。計測モデル最適化装置1900は、測定された回折信号に関連する要求された臨界サイズ、プロファイル、膜厚を生成し、その結果1901をプロファイラー・ワークステーション1910に戻す。プロファイラー・ワークステーション1910は、離れた場所にいるユーザーのところに配置することができる。計測モデル最適化装置1900へのアクセスは、私的ネットワークまたはインターネットのような公的ネットワークを通じて行なうことができる。
図6Cは、計測モデル最適化装置の一実施態様に関する構成図である。システムの構成は図6Bと同様であるが、臨界サイズのデータ1924に関してプロファイラー・ワークステーション1925だけから送られる要求を処理する代わりに、同じデータに関するインライン要求1931が光学的計測システム1930から送り出される点が異なる。光学的計測システム1930は、製造クラスター1940に接続されており、その製造クラスター1940は、クリーン・トラック・ユニットと、リソグラフィ装置、エッチング装置又はリソグラフィとエッチングの複合ユニットのいずれかとを有するものであってもよい。ウエハ(図示せず)の製造・処理ステップが終了すると、ウエハの構造物が光学的計測システム1930によって測定され、計測モデル最適化装置1920に送られる測定された回折信号1931を生成する。臨界サイズのデータ1924は、プロファイラー・ワークステーション1925に送られるだけでなく、製造クラスター1940にも送られて高度なプロセス制御に用いられる。製造クラスター1940は、臨界サイズのデータ1924を利用して製造プロセスのプロセス変数を調節することができる。プロファイラー・ワークステーション1925は、測定された回折信号の臨界サイズ、プロファイル、膜厚に関する要求1926と、ウエハの構造物を特徴づける他の入力データ(図示せず)、または計測モデル最適化装置1920に記憶されている同様のデータの所在を送り出す。光学的計測システム1930は、1つ以上の製造プロセスの終了に関して製造クラスター1940から送られてきたデータ1941を受け取る。ウエハの構造物の測定が終了した後、光学的計測システムは、信号1941を製造クラスター1940に送り、光学的計測が終了したことを伝える。
図13A、図13B、図13C、及び図13Dは、異なるプロファイル・モデルを用いた構造物プロファイルの具体例である。図13Aは、構造物を1つの台形T1を用いてモデル化したものであるのに対し、図13Bは、同じ構造物を2つの台形T1、T2を用いてモデル化したものである。同様に、図13Cは、同じ構造物を3つの台形T1、T2、T3を用いてモデル化したものであるのに対し、図13Dは、同じ構造物を4つの台形T1、T2、T3、T4を用いてモデル化したものである。
図13Aと図13Bからわかるように、モデルと構造物の一致は図13Aではよくないが、2つの台形を用いた図13Bではモデルと構造物の形状との一致状態が劇的に向上している。用いる台形の数を3から4個に増やすと、モデルと構造物の一致がわずかだがさらに改善される。
図13Eは、シミュレーション回折信号のコスト関数およびGOFと測定した信号の間の関係を、プロファイル・モデルで使用する幾何学図形の数の関数として示したグラフの一例である。グラフ1000は、プロファイル・モデルで使用する台形の数を増やすにつれてコスト関数とGOFがどのように変化するかを示している。コスト関数のグラフ1004からわかるように、1つの台形を用いた図13Aのモデル構造物のコスト関数の値は比較的大きい3.0である。Y軸の左側を利用したコスト関数のグラフ1004では、コスト関数の値が台形を2つにすると約1.5へと劇的に低下するが、台形の数を2個から3個に増やした場合や3個から4個に増やした場合にはそれほど劇的には低下しない。Y軸の右側を利用したGOFのグラフ1002では、GOFの値は台形の数が1個から2個に増えたときに約0.920から0.97へと劇的に増大するが、台形の数を2個から3個に増やした場合や3個から4個に増やした場合にはそれほど劇的には増大しない。すでに説明したように、プロファイル・モデルを選択することにより、プロファイル・モデルにおいて終了基準に合致する、あるいは終了基準を上回る幾何学図形の最も簡単な組み合わせが求められる。なお終了基準は、コスト関数の値およびGOFの値の何れか又は両方にすることができる。やはりすでに説明したことだが、プロファイル・モデルは、さまざまなタイプの幾何学図形の組み合わせにすることができる。その場合に台形は、使用可能な1つの図形にしかすぎない。
図14は、シミュレーション回折信号のコスト関数およびGOFと測定した信号の間の関係を、プロファイル・モデルで使用するパラメータの数の関数として示したグラフの一例である。グラフ1100は、プロファイル・モデルで使用するパラメータの数を増やすにつれてコスト関数とGOFがどのように変化するかを示している。コスト関数のグラフ1104に見られるように、3つのパラメータを用いた仮想的構造物のモデルのコストは比較的大きい2.9である。Y軸の左側を利用したコスト関数のグラフ1104は、パラメータが5個のときに約1.6へと急激に低下するが、パラメータの数を5個から6個に増やした場合や6個から7個に増やした場合にはそれほど劇的には低下しない。Y軸の右側を利用したGOFのグラフ1102では、GOFの値はパラメータ数が3個から5個に増えたときに約0.915から0.965へと劇的に増大するが、台形の数を5個から6個に増やした場合や6個から7個に増やした場合にはそれほど劇的には増大しない。
すでに説明したように、最適化パラメータの選択により、互いに相関しておらず、用途によって必要なパラメータのサイズ変化を検出可能な、感度の高いパラメータが選択される。プロファイル・モデルに関する選択した最適化パラメータを用い、さまざまなサイズのプロファイルの回折信号をシミュレーションし、シミュレーション回折信号を対応する測定された信号と比較し、コスト関数とGOFを計算する。プロファイル・モデルが選択され、選択したプロファイル・モデルに関する選択した最適化パラメータが、終了基準に合致する、あるいは終了基準を上回るシミュレーション回折信号を提供すると、選択プロセスが終了する。すでに説明したように、図6Aのパラメータ選択装置1830から送られてくるCD、膜厚、プロファイルといった回帰計算結果をシステムのユーザーが利用し、製造法または製造プロセスを微調整することができる。回帰計算結果を利用して製造プロセスの変数調節および物理的制御の何れか又は両方を行なうこともできる。やはりすでに説明したことだが、選択したプロファイル・モデルと最適化パラメータを利用し、シミュレーション信号とそれに関連するプロファイル・データのライブラリを作ることができる。
図15は、データを記憶させるためのレイアウトに関する記憶レイアウトの一実施態様である。選択したモデルとパラメータに関するデータ記憶形式1200には、製造プロセス、ウエハの位置、構造物、光学的計測装置を識別するデータ1210が含まれる。データ記憶形式1200は、1つ以上のデータ区画を含むことができる。それぞれのデータ区画は、終了基準1220、選択したモデルの識別情報1230、最適化パラメータ選択基準1240、選択した最適化パラメータ1250(パラメータ1、2、...n)を含んでいる。例えばモデルの識別情報は、浅溝型素子分離一台形モデルにすることができ、終了基準は、コスト関数が1.5、GOFが0.995という条件にすることができ、最適化パラメータ選択基準は、相関係数が0.50、感度が0.01のSSEという条件にすることができ、選択した最適化パラメータは、レジストの頂部CD、レジストの底部CD、レジストの厚さ、反射防止コーティングの厚さ、二酸化ケイ素の厚さにすることができる。
この明細書に記載した具体的な実施態様の機能は、ハードウエア、ソフトウエア、ファームウエア、および利用可能な他の機能要素または構築ブロックでも同様に実現することができる。上記の説明をもとにした変形や別の実施態様が可能である。したがって本発明の範囲は、この詳細な説明に限定されることはなく、添付の請求項によって規定される。
光学的計測法を利用してウエハの周期的構造からの回折信号を測定するための構成を示した図である。 集積回路の構造を光学的計測法においてモデルとパラメータを選択する全プロセスに関するフローチャートの一例である。 ウエハの構造物の特徴付けプロセスのためのフローチャートの一例である。 ウエハの構造物の特徴をモデルと関連パラメータに変換するためのフローチャートの一例である。 1つ以上の選択基準に基づいてモデルのパラメータを選択するためのフローチャートの一例である。 モデルとパラメータを選択するシステムに関する一実施態様の構成図である。 計測モデル最適化装置に関する一実施態様の構成図である。 ウエハ製造クラスターに組み込まれた計測モデル最適化装置の構成図である。 最適化エンジンの利用法に関する一実施態様の構成図である。 ウエハの構造物のプロファイルに関する幾何学的モデルの一例である。 ウエハの構造物のプロファイルに関するモデルを構築するための幾何学図形の一例である。 ウエハの構造物のプロファイルに関するモデルを構築するのに複数の幾何学図形を組み合わせて用いた一例である。 ウエハの構造物のプロファイルに関するモデルとして複数の幾何学図形を組み合わせた複合構造の一例である。 1つの矩形と1つの台形を用いてウエハの構造物のモデルを構成した一例である。 1つの矩形と1つの台形を用いてウエハの構造物モデルに関する互いに密に相関した2つのパラメータの反射率を示すグラフの一例である。 1つの矩形と1つの台形を用いたモデルの各パラメータの適合度(GOF)と信頼区間を示す表である。 1つの矩形と2つの台形を用いてウエハの構造物のモデルを構成した一例である。 1つの矩形と2つの台形を用いてウエハの構造物モデルに関する互いに密に相関した2つのパラメータの反射率を示すグラフの一例である。 1つの矩形と2つの台形を用いたモデルの各パラメータの適合度(GOF)と信頼区間を示す表である。 ウエハの構造物のプロファイル・モデルに関するパラメータの相関係数を示す表の一例である。 プロファイル・モデルにおいて完全な相関を示す2つのパラメータの反射率の違いを示すグラフの一例である。 ウエハの構造物のモデルを作るために1つの台形を用いたプロファイル・モデルの一例である。 ウエハの構造物のモデルを作るために2つの台形を用いたプロファイル・モデルの一例である。 ウエハの構造物のモデルを作るために3つの台形を用いたプロファイル・モデルの一例である。 ウエハの構造物のモデルを作るために4つの台形を用いたプロファイル・モデルの一例である。 測定した信号に対するシミュレーション信号のコスト関数およびGOFを、プロファイル・モデルで使用する台形の数の関数として示したグラフの一例である。 測定した信号に対するシミュレーション信号のコスト関数およびGOFを、プロファイル・モデルで使用するパラメータの数の関数として示したグラフの一例である。 モデルとパラメータの選択に関するデータを記憶させるレイアウトの一実施態様である。

Claims (52)

  1. ウエハの構造物を光学的に計測する際に使用するプロファイル・モデルの選択と、そのプロファイル・モデルのパラメータの選択を行なう方法であって、
    a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルについての前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップとを含む方法。
  2. 前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップが、
    最適化したシミュレーション回折信号と測定した回折信号を比較することによって計算されるシミュレーション回折信号コスト関数の値が、コスト関数に関してあらかじめ設定した値以下であるかどうかをテストすることを含む、請求項1に記載の方法。
  3. 前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップが、
    最適化したシミュレーション回折信号を測定した回折信号と比較することによって計算されるシミュレーション回折信号の適合度の値が、適合度に関してあらかじめ設定した値以上であるかどうかをテストすることを含む、請求項1に記載の方法。
  4. 前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップが、
    信頼区間に関して計算した1つ以上の値が、対応する信頼区間に関してあらかじめ設定した値以下であるかどうかをテストすることを含み、該信頼区間は、最適化パラメータの値が取る範囲であって、実際の値が該範囲に特定の確率で入ることが予想される、請求項1に記載の方法。
  5. 前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップが、
    最適化したシミュレーション回折信号を測定した回折信号と比較することによって計算されるシミュレーション回折信号コスト関数の値が、コスト関数に関してあらかじめ設定した値以下であるかどうかをテストし、
    最も一致するシミュレーション回折信号を前記測定した回折信号と比較することによって計算されるシミュレーション回折信号の適合度の値が、適合度に関してあらかじめ設定した値以上であるかどうかをテストすることを含む、請求項1に記載の方法。
  6. 前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップがさらに、
    信頼区間に関して計算した1つ以上の値が、対応する信頼区間に関してあらかじめ設定した値以下であるかどうかをテストすることを含み、該信頼区間は、最適化パラメータの値が取る範囲であって、実際の値が該範囲に特定の確率で入ることが予想される、請求項5に記載の方法。
  7. 前記1つ以上のパラメータ選択基準が、
    相関カットオフを含み、該相関カットオフは、プロファイル・モデルの一つの最適化パラメータと別の最適化パラメータの間の相関係数である、請求項1に記載の方法。
  8. 前記1つ以上のパラメータ選択基準が、
    最適化パラメータの感度閾値を含み、該感度閾値は、全最適化パラメータの公称値を用いて計算した第1のシミュレーション回折信号を、最適化パラメータに関して調節された値及び他の全ての最適化パラメータの公称値を用いて計算した第2のシミュレーション回折信号と比較したときの誤差2乗和であり、前記最適化パラメータに関して調節された値は、公称値に増分を加算又は減算したものである、請求項1に記載の方法。
  9. 前記1つ以上のパラメータ選択基準が、
    最適化パラメータの信頼区間の閾値を含み、該信頼区間の閾値は、残りの最適化パラメータをそれぞれの公称値に維持し、1つの最適化パラメータを公称値から変化させた量であり、該変化量は前記1つの最適化パラメータに関する測定された雑音のレベルまたはシミュレーション雑音のレベルよりも大きいシミュレーション回折信号の変化をもたらす、請求項1に記載の方法。
  10. 前記1つ以上のパラメータ選択基準が、
    プロファイル・モデルの一つの最適化パラメータと別の最適化パラメータの間の相関係数である相関カットオフと、
    全最適化パラメータの公称値を用いて計算した第1のシミュレーション回折信号を、最適化パラメータに関して調節された値及び他の全ての最適化パラメータの公称値を用いて計算した第2のシミュレーション回折信号と比較したときの誤差2乗和であって、前記最適化パラメータ関して調節された値は、公称値に増分を加算又は減算したものである、最適化パラメータの感度閾値と、
    1つの最適化パラメータについて、残りの最適化パラメータをそれぞれの公称値に維持し、公称値からの変化量が、該1つの最適化パラメータに関する測定された雑音のレベルまたはシミュレーション雑音のレベルよりも大きいシミュレーション回折信号の変化をもたらす、前記最適化パラメータの変化量である、最適化パラメータの信頼区間の閾値を有する、請求項1に記載の方法。
  11. 前記のウエハの構造物の光学的計測に用いるプロファイル・モデルを選択するステップがさらに、
    構造物の特徴を取得するステップと、
    プロファイル・モデルとパラメータ処理のため、測定した回折信号を選択するステップと、
    前記構造物の特徴を利用して前記構造物のプロファイル・モデルを生成するステップを含み、
    前記構造物が1つ以上の層を有する積層体を備え、前記構造物の特徴が、該構造物に関する積層体情報を含み、それぞれの積層情報には、層の材料、繰り返し構造のピッチ、繰り返し構造の線とスペースの比、光学的顕微鏡のデータを含む、請求項1に記載の方法。
  12. 前記のプロファイル・モデルとパラメータ処理のため、測定した回折信号を選択するステップが、
    入力される測定した回折信号をグループに分類するステップと、
    入力される測定した回折信号を分類した各グループから、代表的な測定した回折信号を選択するステップを含む、請求項11に記載の方法。
  13. 前記の入力される測定した回折信号をグループに分類するステップは、クラスタリングおよび相関の何れか又は両方の手法を含む、請求項12に記載の方法。
  14. 前記構造物の特徴を利用して該構造物のプロファイル・モデルを作る前記ステップがさらに、
    積層体内の各材料についての1つ以上のタイプの幾何学図形を決定するステップと、
    前記積層体のすべての層について、幾何学図形のタイプと、それぞれの幾何学図形に関する幾何学的パラメータを生成するステップと、
    前記幾何学的パラメータの公称値と、前記幾何学的パラメータに関して十分に予期される上下の値である前記幾何学的パラメータの範囲を得るステップと、
    前記幾何学的パラメータの依存性を規定するステップと、
    前記幾何学的パラメータを最適化パラメータに変換するステップを含む、請求項11に記載の方法。
  15. 前記幾何学図形は、矩形または台形を含む、請求項14に記載の方法。
  16. 前記の幾何学的パラメータの依存性を規定するステップは、
    1つの幾何学的パラメータを表現するのに、別の幾何学的パラメータの関数としてか、変数の関数としてか、定数としてか、又は別の幾何学的パラメータおよび変数にオフセットを加減算した関数又は変数にオフセットを加減算した関数として表現するステップを含み、
    前記オフセットを定数または別の変数にすることができる、請求項14に記載の方法。
  17. 前記の幾何学的パラメータを最適化パラメータに変換するステップは、
    幾何学的パラメータの依存性を数式に変換するステップと、
    前記数式において、前記パラメータ選択プロセスで使用する前記最適化パラメータである独立変数の数を減らす数学的演算を実行するステップを含む、請求項14に記載の方法。
  18. 前記の1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルのための前記パラメータ群を選択するステップがさらに、
    光学的計測のための波長を選択するステップと、
    前記1つ以上のパラメータ選択基準の値を計算するステップと、
    前記1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するステップと、
    前記プロファイル・モデルに関する前記選択した最適化パラメータを用い、測定した回折信号に対応する最適化シミュレーション回折信号を決定する手続きを実行するステップを含む、請求項1に記載の方法。
  19. 前記の光学的計測のための波長を選択するステップは、
    ウエハの同じ位置からの回折信号の標準偏差である雑音レベルの基準に合致する波長を選択するステップと、
    他の波長の回折信号と比較し、回折信号の相関が小さい波長を選択するステップを含む、請求項18に記載の方法。
  20. 前記の1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するステップは、
    相関のカットオフに合致する最適化パラメータ群を選択するステップを含み、該相関のカットオフは、プロファイル・モデルの1つの最適化パラメータと別の最適化パラメータの間のシミュレーション回折信号の相関係数に関してあらかじめ設定した値である、請求項18に記載の方法。
  21. 前記の1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するステップは、
    最適化パラメータの感度閾値に合致する最適化パラメータ群を選択するステップを含み、該感度閾値とは、全最適化パラメータの公称値を用いて計算した第1のシミュレーション回折信号を、最適化パラメータに関して調節された値及び他の全ての最適化パラメータの公称値を用いて計算した第2のシミュレーション回折信号と比較したときの誤差2乗和であり、前記の最適化パラメータに関して調節された値は、公称値に増分を加算又は減算したものである、請求項18に記載の方法。
  22. 前記の1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するステップは、
    信頼区間の閾値に合致する最適化パラメータ群を選択するステップを含み、該信頼区間の閾値は、残りの最適化パラメータをそれぞれの公称値に維持し、1つの最適化パラメータを公称値から変化させた量であり、該変化量は前記1つの最適化パラメータに関する測定された雑音のレベルまたはシミュレーション雑音のレベルよりも大きいシミュレーション回折信号の変化をもたらす、請求項18に記載の方法。
  23. 前記プロファイル・モデルに関する前記選択した最適化パラメータを用い、前記測定した回折信号に対応する前記最適化シミュレーション回折信号を決定する手続きを実行するステップは、さらに、
    前記測定した回折信号と比較して誤差が最少になるシミュレーション回折信号を見つけ出す最適化手続きを利用するステップを含む、請求項18に記載の方法。
  24. 前記最適化手続きは、分岐限定法、シミュレーテッドアニーリング、遺伝的アルゴリズム、他の大域的最適化法、又は大域的最適化法と局所的最適化法のハイブリッドを含む1つ以上の最適化法を利用する、請求項23に記載の方法。
  25. 構造物、ウエハ及び選択したモデルに関連する識別データ、終了基準、1つ以上のパラメータ選択基準及び選択した最適化パラメータに関するデータをデータ記憶装置に記憶させるステップをさらに含む、請求項1に記載の方法。
  26. 臨界サイズ、プロファイルの形状、膜厚を有するウエハの構造物を光学的方法を利用して求める方法であって、
    a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、臨界サイズ、プロファイルの形状及び膜厚を有し、且つ前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルについての、前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップと、
    g)前記選択したプロファイル・モデルに関連する臨界サイズ、プロファイルの形状、及び膜厚と、前記選択したプロファイル・モデルに関する選択した最適化パラメータとを評価するステップを含む方法。
  27. 前記1つ以上の回折信号に関連する臨界サイズ、プロファイルの形状、及び膜厚を表示するステップを含む、請求項26に記載の方法。
  28. ウエハの構造物に関する光学的計測信号及び関連するプロファイルのライブラリを生成する方法であって、
    a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、臨界サイズ、プロファイルの形状、及び膜厚を有し、且つ前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルについての、前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップと、
    g)前記選択したプロファイル・モデルに関連する臨界サイズ、プロファイルの形状、及び膜厚と、前記選択したプロファイル・モデルに関する選択した最適化パラメータとを評価し、
    h)前記選択したプロファイル・モデルに関する前記選択した最適化パラメータを用い、回折信号及び関連するプロファイルのデータのライブラリを生成するステップを含む方法。
  29. ウエハの構造物に関する光学的計測データを処理するシステムであって、
    ウエハの構造物の特徴を利用して該構造物のプロファイル・モデルを生成するとともに、1つ以上の終了基準と1つ以上のパラメータ選択基準を処理するモデル生成装置と、
    前記プロファイル・モデルと選択した最適化パラメータの値を用いてシミュレーション回折信号を計算する光学的計測シミュレータと、
    前記モデル生成装置と前記光学的計測シミュレータに接続され、1つ以上のパラメータ選択基準の値を計算し、該計算したその1つ以上のパラメータ選択基準の値を前記1つ以上のパラメータ選択基準と比較し、前記1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するパラメータ選択装置と、
    前記パラメータ選択装置に接続され、終了値を計算し、該計算した終了値を前記1つ以上の終了基準と比較し、前記1つ以上の終了基準に合致していない場合には前記プロファイル・モデルを調節するプロファイル・モデル・テスターを備えるシステム。
  30. 前記光学的計測シミュレータと、前記モデル生成装置と、前記プロファイル・モデル・テスターとに接続され、前記ウエハの構造物の特徴、ウエハ製造プロセス、ウエハの積層体、ウエハの構造物の公称サイズの設計、及び前記ウエハの構造物のサイズの予想範囲を含む入力データを処理するプロファイル・コンパイラをさらに備える、請求項29に記載のシステム。
  31. 前記プロファイル・モデル・テスターに接続され、前記構造物、前記ウエハ、及び前記選択したモデルに関連する識別データと、前記終了基準、前記1つ以上のパラメータ選択基準、及び前記選択した最適化パラメータに関するデータを記憶するデータ記憶装置をさらに備える、請求項29に記載のシステム。
  32. 前記プロファイル・モデル・テスターと前記光学的計測シミュレータに接続され、前記プロファイル・モデル・テスターからの構造物プロファイル・データを利用し、且つ光学的計測シミュレータにシミュレーション回折信号を計算させるライブラリ生成装置をさらに備える、請求項29に記載のシステム。
  33. 前記ライブラリ生成装置に接続され、回折信号及び関連する構造物プロファイル・データを有するライブラリをさらに備える、請求項29に記載のシステム。
  34. 前記プロファイル・モデル・テスターがさらに、
    分岐限定法、シミュレーテッドアニーリング、遺伝的アルゴリズム、他の大域的最適化法、又は大域的最適化法と局所的最適化法のハイブリッドを含む大域的最適化アルゴリズムを1つ以上利用する1つ以上の最適化エンジンを備える、請求項29に記載のシステム。
  35. 前記プロファイル・コンパイラと前記モデル生成装置に接続されたターミナルをさらに備え、該ターミナルは、
    前記ウエハの構造物の特徴、ウエハ製造プロセス、ウエハの積層体、ウエハの構造物の公称サイズの設計、前記ウエハの構造物のサイズの予想範囲を含む入力データを受け取り、
    且つプロファイル・モデルにおける幾何学図形の仕様と、前記幾何学図形のパラメータの依存性とを受け取る、請求項29に記載のシステム。
  36. 前記パラメータ選択装置に接続され、測定した回折信号に対応する臨界サイズ、構造物プロファイル、及び膜厚を含む構造物データを表示する臨界サイズ・サーバーをさらに備える、請求項35に記載のシステム。
  37. 前記臨界サイズ・サーバーは、1つ以上のリモートコンピュータ装置を有する、請求項36に記載のシステム。
  38. 前記ターミナルと前記臨界サイズ・サーバーが、単一のリモートコンピュータ・システム内に存在する、請求項36に記載のシステム。
  39. ウエハの構造物の臨界サイズ・サーバー・システムであって、
    a)1つ以上の終了基準を設定し、
    b)1つ以上のパラメータ選択基準を設定し、
    c)ウエハの構造物の光学的計測に使用するため、前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択し、
    d)1つ以上の入力回折信号と、前記1つ以上の上記パラメータ選択基準とを利用し、上記プロファイル・モデルのために、前記幾何学的パラメータ群から変換した最適化パラメータ群を選択し、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストし、
    f)前記1つ以上の終了基準が満たされるまで前記c)、d)、e)を実行するように構成された計測モデル最適化装置と、
    前記計測モデル最適化装置に接続され、
    a)ウエハの構造物のプロファイル、前記計測モデルの仕様、前記1つ以上の終了基準、及び前記1つ以上のパラメータ選択基準に関する入力を受け取り、
    b)ウエハの構造物の臨界サイズ、プロファイルの形状、及び膜厚を含む出力情報を表示するプロファイラ・ワークステーションとを備えるシステム。
  40. 前記プロファイラ・ワークステーションは遠隔位置に1つ以上のコンピュータ・システムを有する、請求項39に記載のシステム。
  41. 前記計測モデル最適化装置は、さらに、
    g)前記選択したプロファイル・モデルに関する前記選択した最適化パラメータを利用し、回折信号及び関連するプロファイルデータのライブラリを生成するように構成されている、請求項39に記載のシステム。
  42. ウエハの構造物のプロファイルデータのリアルタイム測定システムであって、
    ウエハの構造物からの回折信号を測定する光学的計測システムと、
    前記光学的計測システムに接続され、
    ウエハの構造物のプロファイルの特徴、計測モデルの仕様、1つ以上の終了基準、及び1つ以上のパラメータ選択基準を処理し、
    関連するパラメータを有する、前記ウエハの構造物の1つ以上のプロファイル・モデルを生成し、
    1つ以上の選択基準に合致する前記プロファイル・モデルのパラメータを選択し、
    前記1つ以上の終了基準が満たされるまで、1つ以上のプロファイル・モデルを生成し、且つ前記1つ以上のパラメータ選択基準に合致するモデルのパラメータを選択する操作を行なう計測モデル最適化装置と、
    前記計測モデル最適化装置に接続され、
    前記ウエハの構造物のプロファイル、前記計測モデルの仕様、前記1つ以上の終了基準、及び前記1つ以上のパラメータ選択基準に関する入力を受け取り、
    前記ウエハの構造物の臨界サイズ、プロファイルの形状、及び膜厚を含む出力情報を表示するプロファイラ・ワークステーションと、
    プロファイル・モデル・テスターに接続され、
    前記構造物、前記ウエハ、及び前記選択したモデルに関連する識別データと、前記終了基準、前記1つ以上のパラメータ選択基準、及び前記選択した最適化パラメータに関するデータを記憶するデータ記憶装置とを備えるシステム。
  43. 前記光学的計測システムと前記計測モデル最適化装置に接続され、
    ウエハ及びウエハ内の構造物を製造するための1つ以上のプロセスを実行する製造クラスターをさらに備える、請求項42に記載のシステム。
  44. a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、該構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、1つ以上の前記パラメータ選択基準とを利用し、前記プロファイル・モデルについての前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップを、動作するようコンピュータに指示することによって集積回路の光学的測定で使用するプロファイル・モデルを選択するためのコンピュータが実行可能なコードを含む、コンピュータ読取可能な記憶媒体。
  45. 前記のウエハの構造物の光学的計測に使用する前記プロファイル・モデルを選択するステップがさらに、
    構造物の特徴を取得するステップと、
    前記構造物の特徴を利用して前記構造物のプロファイル・モデルを生成するステップを含み、
    前記構造物の特徴は、積層体のそれぞれの層は1つの材質でできている、前記構造物に関する積層情報、繰り返し構造のピッチ、繰り返し構造の線とスペースの比、光学的顕微鏡のデータを含む、請求項44に記載のコンピュータの記憶媒体。
  46. 前記構造物の特徴を利用して前記構造物のプロファイル・モデルを生成するステップは、
    前記積層体内の各材質について1つ以上のタイプの幾何学図形を決定するステップと、
    前記積層体のすべての層について、幾何学図形のタイプと、それぞれの幾何学図形に関連する幾何学的パラメータを生成するステップと、
    前記幾何学的パラメータの公称値と、前記幾何学的パラメータに関して十分に予期される上下の値である前記幾何学的パラメータの範囲を得るステップと、
    前記幾何学的パラメータの依存性を規定するステップと、
    前記幾何学的パラメータを最適化パラメータに変換するステップを含む、請求項45に記載のコンピュータの記憶媒体。
  47. 1つ以上の入力回折信号及び前記の一つ以上のパラメータ選択基準を利用して前記プロファイル・モデルについての前記パラメータ群を選択するステップは、
    光学的計測のための波長を選択するステップと、
    前記1つ以上のパラメータ選択基準の値を計算するステップと、
    前記1つ以上のパラメータ選択基準に合致する最適化パラメータを選択するステップと、
    前記プロファイル・モデルに関する前記選択した最適化パラメータを用い、測定した回折信号に対応する最適化シミュレーション回折信号を決定する手続きを実行するステップを含む、請求項44に記載のコンピュータの記憶媒体。
  48. 前記プロファイル・モデルに関する前記選択した最適化パラメータを用い、測定した回折信号に対応する最適化シミュレーション回折信号を決定する手続きを実行するステップが、
    前記測定した回折信号と比較して誤差が最少になるシミュレーション回折信号を見つけ出す最適化手続きを利用するステップをさらに含む、請求項47に記載のコンピュータの記憶媒体。
  49. 前記構造物、前記ウエハ、及び前記の選択したモデルに関連する識別データ、前記終了基準、前記1つ以上のパラメータ選択基準、及び前記選択した最適化パラメータに関するデータをデータ記憶装置に記憶するステップをさらに含む、請求項44に記載のコンピュータの記憶媒体。
  50. a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、臨界サイズ、プロファイルの形状、膜厚を有し、且つ前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルについて前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップと、
    g)前記選択したプロファイル・モデルに関連する臨界サイズ、プロファイルの形状、膜厚と、前記選択したプロファイル・モデルに関する選択した最適化パラメータとを評価するステップを、動作するようコンピュータに指示することによって集積回路の光学的測定で使用するプロファイル・モデルを選択するためのコンピュータが実行可能なコードを含むコンピュータ読取可能な記憶媒体。
  51. a)1つ以上の終了基準を設定するステップと、
    b)1つ以上のパラメータ選択基準を設定するステップと、
    c)ウエハの構造物の光学的計測に使用するため、臨界サイズ、プロファイルの形状、膜厚を有し、且つ前記構造物の大きさに関連する幾何学的パラメータ群を有するプロファイル・モデルを選択するステップと、
    d)1つ以上の入力回折信号と、前記1つ以上のパラメータ選択基準とを利用し、前記プロファイル・モデルについて前記幾何学的パラメータ群から変換した最適化パラメータ群を選択するステップと、
    e)前記選択したプロファイル・モデルと前記最適化パラメータ群を前記1つ以上の終了基準に照らしてテストするステップと、
    f)前記1つ以上の終了基準が満たされるまで前記ステップc)、d)、e)を実行するステップと、
    g)前記選択したプロファイル・モデルに関する臨界サイズ、プロファイルの形状、膜厚と、前記選択したプロファイル・モデルに関する選択した最適化パラメータとを評価するステップと、
    h)前記選択したプロファイル・モデルに関する前記選択した最適化パラメータを用い、回折信号及び関連するプロファイルのデータのライブラリを生成するステップを、動作するようコンピュータに指示することによって集積回路の光学的測定で使用するプロファイル・モデルを選択するためのコンピュータが実行可能なコードを含むコンピュータ読取可能な記憶媒体。
  52. 構造物、ウエハ、及びプロファイル・モデルに関連する識別データと、
    終了基準データと、
    1つ以上のパラメータ選択基準と、
    ウエハの構造物の光学的計測に用いるプロファイル・モデルと、該プロファイル・モデルのパラメータとを選択するため、システムに関する選択した最適化パラメータとを含むデータが記憶されているコンピュータ読取可能な記憶媒体。
JP2004526155A 2002-07-25 2003-07-25 光学的測定のためのモデルとパラメータの選択 Withdrawn JP2005534192A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/206,491 US7330279B2 (en) 2002-07-25 2002-07-25 Model and parameter selection for optical metrology
PCT/US2003/023281 WO2004013723A2 (en) 2002-07-25 2003-07-25 Model and parameter selection for optical metrology

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011184641A Division JP5307862B2 (ja) 2002-07-25 2011-08-26 光学的測定のためのモデルとパラメータの選択

Publications (2)

Publication Number Publication Date
JP2005534192A true JP2005534192A (ja) 2005-11-10
JP2005534192A5 JP2005534192A5 (ja) 2006-09-14

Family

ID=30770300

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004526155A Withdrawn JP2005534192A (ja) 2002-07-25 2003-07-25 光学的測定のためのモデルとパラメータの選択
JP2011184641A Expired - Lifetime JP5307862B2 (ja) 2002-07-25 2011-08-26 光学的測定のためのモデルとパラメータの選択

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011184641A Expired - Lifetime JP5307862B2 (ja) 2002-07-25 2011-08-26 光学的測定のためのモデルとパラメータの選択

Country Status (8)

Country Link
US (2) US7330279B2 (ja)
JP (2) JP2005534192A (ja)
KR (1) KR101281212B1 (ja)
CN (1) CN1310011C (ja)
AU (1) AU2003254170A1 (ja)
DE (1) DE10392975T5 (ja)
TW (1) TWI238884B (ja)
WO (1) WO2004013723A2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257690A (ja) * 2004-03-12 2005-09-22 Commiss Energ Atom 構造のジオメトリの特定方法及びこの方法を実施する装置
JP2008020451A (ja) * 2006-07-10 2008-01-31 Tokyo Electron Ltd 光学計測システムに係る選択された変数の最適化
JP2008249686A (ja) * 2007-01-16 2008-10-16 Asml Netherlands Bv インスペクション方法及び装置、リソグラフィ装置、リソグラフィプロセッシングセル並びにデバイス製造方法
JP2009053194A (ja) * 2007-08-28 2009-03-12 Tokyo Electron Ltd 光回折における近似精緻回折モデルを用いた構造に係るプロファイルパラメータの決定
JP2009145323A (ja) * 2007-10-09 2009-07-02 Asml Netherlands Bv モデルを最適化する方法、特性を測定する方法、デバイス製造方法、分光計及びリソグラフィ装置
JP2009532869A (ja) * 2006-03-30 2009-09-10 東京エレクトロン株式会社 光計測を用いたウエハ上に形成された損傷構造の測定
JP2013120091A (ja) * 2011-12-06 2013-06-17 Canon Inc 位置姿勢計測装置、その処理方法及びプログラム
JP2013534044A (ja) * 2010-06-04 2013-08-29 エーエスエムエル ネザーランズ ビー.ブイ. 基板上の構造の測定
JP2013539532A (ja) * 2010-07-22 2013-10-24 ケーエルエー−テンカー コーポレイション 最適にパラメータ化されたスキャッタロメトリモデルを自動決定するための方法
KR101342847B1 (ko) 2006-03-24 2013-12-17 팀버 테크놀로지스, 인코포레이티드 2 차원 구조물들에 대한 회절 차수의 선택 방법, 광학 계측 시스템의 최적화 방법 및 광학 계측 시스템
JP2014022662A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp ウエハ外観検査装置及びウエハ外観検査装置における感度しきい値設定方法
JP2015501547A (ja) * 2011-10-31 2015-01-15 東京エレクトロン株式会社 計量学のためのプロセス変動ベースのモデル最適化の方法
US10331818B2 (en) 2014-07-11 2019-06-25 Hitachi, Ltd. Simulation system and simulation method
JP2019532518A (ja) * 2016-08-31 2019-11-07 ケーエルエー コーポレイション 異方性誘電率を用いた半導体構造のモデル依拠光学計測
JP2021509772A (ja) * 2018-01-05 2021-04-01 ケーエルエー コーポレイション 電子顕微鏡を使用した半導体計測および欠陥分類
JP2021143959A (ja) * 2020-03-12 2021-09-24 キオクシア株式会社 形状算出プログラム、形状算出方法、及び形状算出装置

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7330279B2 (en) * 2002-07-25 2008-02-12 Timbre Technologies, Inc. Model and parameter selection for optical metrology
US20040087042A1 (en) * 2002-08-12 2004-05-06 Bruno Ghyselen Method and apparatus for adjusting the thickness of a layer of semiconductor material
US6842261B2 (en) * 2002-08-26 2005-01-11 Timbre Technologies, Inc. Integrated circuit profile value determination
US20040090629A1 (en) * 2002-11-08 2004-05-13 Emmanuel Drege Diffraction order selection for optical metrology simulation
AU2003302049A1 (en) * 2002-11-20 2004-06-15 Mehrdad Nikoohahad System and method for characterizing three-dimensional structures
US20040181768A1 (en) * 2003-03-12 2004-09-16 Krukar Richard H. Model pattern simulation of semiconductor wafer processing steps
US7394554B2 (en) * 2003-09-15 2008-07-01 Timbre Technologies, Inc. Selecting a hypothetical profile to use in optical metrology
US20050231731A1 (en) * 2004-02-18 2005-10-20 The Usa As Represented By The Administrator Of The National Aeronautics And Space Administration Systems and methods for fabricating thin films
US7523076B2 (en) * 2004-03-01 2009-04-21 Tokyo Electron Limited Selecting a profile model for use in optical metrology using a machine learning system
US7388677B2 (en) * 2004-03-22 2008-06-17 Timbre Technologies, Inc. Optical metrology optimization for repetitive structures
US7065423B2 (en) * 2004-07-08 2006-06-20 Timbre Technologies, Inc. Optical metrology model optimization for process control
US20080144036A1 (en) * 2006-12-19 2008-06-19 Asml Netherlands B.V. Method of measurement, an inspection apparatus and a lithographic apparatus
US7791727B2 (en) 2004-08-16 2010-09-07 Asml Netherlands B.V. Method and apparatus for angular-resolved spectroscopic lithography characterization
US7566181B2 (en) * 2004-09-01 2009-07-28 Tokyo Electron Limited Controlling critical dimensions of structures formed on a wafer in semiconductor processing
US7171284B2 (en) * 2004-09-21 2007-01-30 Timbre Technologies, Inc. Optical metrology model optimization based on goals
US7280229B2 (en) * 2004-12-03 2007-10-09 Timbre Technologies, Inc. Examining a structure formed on a semiconductor wafer using machine learning systems
US7483133B2 (en) * 2004-12-09 2009-01-27 Kla-Tencor Technologies Corporation. Multiple angle of incidence spectroscopic scatterometer system
US20070091325A1 (en) * 2005-01-07 2007-04-26 Mehrdad Nikoonahad Multi-channel optical metrology
US20060187466A1 (en) * 2005-02-18 2006-08-24 Timbre Technologies, Inc. Selecting unit cell configuration for repeating structures in optical metrology
US7421414B2 (en) * 2005-03-31 2008-09-02 Timbre Technologies, Inc. Split machine learning systems
US7496865B2 (en) * 2005-05-20 2009-02-24 Chung Yuan Christian University OTA-based high-order filters
US7649614B2 (en) * 2005-06-10 2010-01-19 Asml Netherlands B.V. Method of characterization, method of characterizing a process operation, and device manufacturing method
US7355728B2 (en) * 2005-06-16 2008-04-08 Timbre Technologies, Inc. Optical metrology model optimization for repetitive structures
US20070012337A1 (en) * 2005-07-15 2007-01-18 Tokyo Electron Limited In-line metrology for supercritical fluid processing
US7523021B2 (en) * 2006-03-08 2009-04-21 Tokyo Electron Limited Weighting function to enhance measured diffraction signals in optical metrology
US7623978B2 (en) * 2006-03-30 2009-11-24 Tokyo Electron Limited Damage assessment of a wafer using optical metrology
US7576851B2 (en) * 2006-03-30 2009-08-18 Tokyo Electron Limited Creating a library for measuring a damaged structure formed on a wafer using optical metrology
US7619731B2 (en) * 2006-03-30 2009-11-17 Tokyo Electron Limited Measuring a damaged structure formed on a wafer using optical metrology
US7444196B2 (en) * 2006-04-21 2008-10-28 Timbre Technologies, Inc. Optimized characterization of wafers structures for optical metrology
US7818151B2 (en) * 2006-05-02 2010-10-19 Asml Masktools B.V. Method, program product and apparatus for obtaining short-range flare model parameters for lithography simulation tool
US7495781B2 (en) * 2006-07-10 2009-02-24 Tokyo Electron Limited Optimizing selected variables of an optical metrology model
US7526354B2 (en) * 2006-07-10 2009-04-28 Tokyo Electron Limited Managing and using metrology data for process and equipment control
US7515283B2 (en) * 2006-07-11 2009-04-07 Tokyo Electron, Ltd. Parallel profile determination in optical metrology
US7469192B2 (en) * 2006-07-11 2008-12-23 Tokyo Electron Ltd. Parallel profile determination for an optical metrology system
US7742888B2 (en) * 2006-07-25 2010-06-22 Tokyo Electron Limited Allocating processing units to generate simulated diffraction signals used in optical metrology
US7765076B2 (en) * 2006-09-22 2010-07-27 Tokyo Electron Limited Allocating processing units to processing clusters to generate simulated diffraction signals
US7555395B2 (en) * 2006-09-26 2009-06-30 Tokyo Electron Limited Methods and apparatus for using an optically tunable soft mask to create a profile library
US20080076046A1 (en) * 2006-09-26 2008-03-27 Tokyo Electron Limited accuracy of optical metrology measurements
US20080074678A1 (en) * 2006-09-26 2008-03-27 Tokyo Electron Limited Accuracy of optical metrology measurements
US20080074677A1 (en) * 2006-09-26 2008-03-27 Tokyo Electron Limited accuracy of optical metrology measurements
US7300730B1 (en) 2006-09-26 2007-11-27 Tokyo Electron Limited Creating an optically tunable anti-reflective coating
US7763404B2 (en) * 2006-09-26 2010-07-27 Tokyo Electron Limited Methods and apparatus for changing the optical properties of resists
US7749398B2 (en) * 2006-09-29 2010-07-06 Tokyo Electron Limited Selective-redeposition sources for calibrating a plasma process
US7776748B2 (en) * 2006-09-29 2010-08-17 Tokyo Electron Limited Selective-redeposition structures for calibrating a plasma process
US8045786B2 (en) 2006-10-24 2011-10-25 Kla-Tencor Technologies Corp. Waferless recipe optimization
US7417750B2 (en) * 2006-11-07 2008-08-26 Tokyo Electron Limited Consecutive measurement of structures formed on a semiconductor wafer using an angle-resolved spectroscopic scatterometer
US7522295B2 (en) * 2006-11-07 2009-04-21 Tokyo Electron Limited Consecutive measurement of structures formed on a semiconductor wafer using a polarized reflectometer
US8798966B1 (en) * 2007-01-03 2014-08-05 Kla-Tencor Corporation Measuring critical dimensions of a semiconductor structure
US7571074B2 (en) * 2007-01-30 2009-08-04 Tokyo Electron Limited Method of using a wafer-thickness-dependant profile library
US7451054B2 (en) * 2007-01-30 2008-11-11 Tokyo Electron Limited Method of using a wafer-temperature-dependent profile library
US7639351B2 (en) * 2007-03-20 2009-12-29 Tokyo Electron Limited Automated process control using optical metrology with a photonic nanojet
US7949618B2 (en) * 2007-03-28 2011-05-24 Tokyo Electron Limited Training a machine learning system to determine photoresist parameters
US7567353B2 (en) * 2007-03-28 2009-07-28 Tokyo Electron Limited Automated process control using optical metrology and photoresist parameters
US7483809B2 (en) * 2007-04-12 2009-01-27 Tokyo Electron Limited Optical metrology using support vector machine with profile parameter inputs
US7372583B1 (en) * 2007-04-12 2008-05-13 Tokyo Electron Limited Controlling a fabrication tool using support vector machine
US7511835B2 (en) * 2007-04-12 2009-03-31 Tokyo Electron Limited Optical metrology using a support vector machine with simulated diffraction signal inputs
KR101437583B1 (ko) * 2007-07-03 2014-09-12 삼성전자주식회사 리소그라피 장치 및 리소그라피 방법
KR101461667B1 (ko) * 2007-07-26 2014-11-13 도쿄엘렉트론가부시키가이샤 패턴화 구조 검사 장치 및 계측 데이터 관리 방법
KR101357326B1 (ko) * 2007-07-26 2014-02-03 도쿄엘렉트론가부시키가이샤 패턴화 구조 검사 시스템
CN101359612B (zh) * 2007-07-30 2012-07-04 东京毅力科创株式会社 晶片图案结构的检查装置及其计量数据管理方法
US7949490B2 (en) * 2007-08-30 2011-05-24 Tokyo Electron Limited Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology
US7627392B2 (en) * 2007-08-30 2009-12-01 Tokyo Electron Limited Automated process control using parameters determined with approximation and fine diffraction models
US8069020B2 (en) * 2007-09-19 2011-11-29 Tokyo Electron Limited Generating simulated diffraction signal using a dispersion function relating process parameter to dispersion
US7912679B2 (en) * 2007-09-20 2011-03-22 Tokyo Electron Limited Determining profile parameters of a structure formed on a semiconductor wafer using a dispersion function relating process parameter to dispersion
JP2009129390A (ja) * 2007-11-28 2009-06-11 Oki Electric Ind Co Ltd 媒体鑑別装置
US8760649B1 (en) * 2008-01-28 2014-06-24 Kla-Tencor Corporation Model-based metrology using tesselation-based discretization
WO2009131975A1 (en) * 2008-04-22 2009-10-29 Schering Corporation Phenyl-substituted 2-imino-3-methyl pyrrolo pyrimidinone compounds as bace-1 inhibitors, compositions, and their use
US8090558B1 (en) 2008-06-09 2012-01-03 Kla-Tencor Corporation Optical parametric model optimization
NL2003919A (en) * 2008-12-24 2010-06-28 Asml Netherlands Bv An optimization method and a lithographic cell.
US8024676B2 (en) * 2009-02-13 2011-09-20 Tokyo Electron Limited Multi-pitch scatterometry targets
US8183062B2 (en) * 2009-02-24 2012-05-22 Tokyo Electron Limited Creating metal gate structures using Lithography-Etch-Lithography-Etch (LELE) processing sequences
NL2005523A (en) * 2009-10-28 2011-05-02 Asml Netherlands Bv Selection of optimum patterns in a design layout based on diffraction signature analysis.
US9523800B2 (en) * 2010-05-21 2016-12-20 Kla-Tencor Corporation Computation efficiency by iterative spatial harmonics order truncation
US20140079312A9 (en) * 2010-06-17 2014-03-20 Nova Measuring Instruments Ltd. Method and system for optimizing optical inspection of patterned structures
NL2007577A (en) 2010-11-10 2012-05-14 Asml Netherlands Bv Optimization of source, mask and projection optics.
JP5660026B2 (ja) * 2011-12-28 2015-01-28 信越半導体株式会社 膜厚分布測定方法
US10354929B2 (en) * 2012-05-08 2019-07-16 Kla-Tencor Corporation Measurement recipe optimization based on spectral sensitivity and process variation
CN103811379B (zh) * 2012-11-01 2016-12-28 台湾积体电路制造股份有限公司 工具优化调节系统和相关方法
US10769320B2 (en) * 2012-12-18 2020-09-08 Kla-Tencor Corporation Integrated use of model-based metrology and a process model
US9519285B2 (en) 2013-01-23 2016-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Systems and associated methods for tuning processing tools
US10656634B2 (en) 2013-05-07 2020-05-19 Halliburton Energy Services, Inc. Optical sensor optimization and system implementation with simplified layer structure
US9518932B2 (en) * 2013-11-06 2016-12-13 Kla-Tencor Corp. Metrology optimized inspection
CN105830069B (zh) * 2013-12-11 2021-04-20 科磊股份有限公司 依据要求的目标及工艺灵敏度分析
US10671923B2 (en) 2013-12-20 2020-06-02 Gemtrex Inc. Genetic method for the tracking of time varying signals
CN105571483B (zh) * 2014-10-14 2018-06-26 睿励科学仪器(上海)有限公司 一种用于优化光学系统参数的方法和装置
CN105571484B (zh) * 2014-10-14 2018-07-06 睿励科学仪器(上海)有限公司 确定测量模式和光学系统参数容差的方法和装置
JP6770958B2 (ja) 2014-11-25 2020-10-21 ケーエルエー コーポレイション ランドスケープの解析および利用
US9948920B2 (en) * 2015-02-27 2018-04-17 Qualcomm Incorporated Systems and methods for error correction in structured light
CN107532290B (zh) * 2015-03-31 2022-04-01 布勒阿尔策瑙股份有限公司 用于生产涂覆的基板的方法
NL2017505A (en) 2015-10-09 2017-04-11 Asml Netherlands Bv Method and apparatus for inspection and metrology
DE102015221772A1 (de) * 2015-11-05 2017-05-11 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zur Charakterisierung eines durch wenigstens einen Lithographieschritt strukturierten Wafers
EP3944022B1 (de) 2015-11-05 2023-10-11 Carl Zeiss SMT GmbH Verfahren und vorrichtung zur charakterisierung eines durch wenigstens einen lithographieschritt strukturierten wafers
CN107345788A (zh) * 2016-05-04 2017-11-14 中国科学院福建物质结构研究所 一种平行光微光斑光学关键尺寸分析装置及检测方法
US10146036B2 (en) 2016-06-07 2018-12-04 Globalfoundries Inc. Semiconductor wafer inspection using care area group-specific threshold settings for detecting defects
KR101885619B1 (ko) * 2016-12-29 2018-08-06 한국과학기술원 출구 재귀 모델을 이용한 웨이퍼 제조 공정 레벨의 포토리소그래피 클러스터 장치 시뮬레이션을 제공하는 시뮬레이션 장치 및 이를 이용한 시뮬레이션 방법
US11562289B2 (en) * 2018-12-06 2023-01-24 Kla Corporation Loosely-coupled inspection and metrology system for high-volume production process monitoring
US11480868B2 (en) 2019-03-22 2022-10-25 International Business Machines Corporation Determination of optical roughness in EUV structures
JP2023012227A (ja) * 2021-07-13 2023-01-25 キオクシア株式会社 形状計測方法、形状計測装置、及びプログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023231A2 (en) * 2000-09-15 2002-03-21 Timbre Technologies, Inc. Generation of a library of periodic grating diffraction signals

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326659A (en) * 1992-03-05 1994-07-05 Regents Of The University Of California Method for making masks
GB9226552D0 (en) * 1992-12-21 1993-02-17 Philips Electronics Uk Ltd A method of determining a given characteristic of a material sample
US5719796A (en) * 1995-12-04 1998-02-17 Advanced Micro Devices, Inc. System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
US5805290A (en) * 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
US5963329A (en) * 1997-10-31 1999-10-05 International Business Machines Corporation Method and apparatus for measuring the profile of small repeating lines
JP3535390B2 (ja) * 1998-09-03 2004-06-07 株式会社東芝 露光マスクの検査方法および測長箇所を探索するプログラムを記録した記録媒体
US6532428B1 (en) * 1999-10-07 2003-03-11 Advanced Micro Devices, Inc. Method and apparatus for automatic calibration of critical dimension metrology tool
US6470230B1 (en) * 2000-01-04 2002-10-22 Advanced Micro Devices, Inc. Supervisory method for determining optimal process targets based on product performance in microelectronic fabrication
WO2001055669A1 (en) * 2000-01-26 2001-08-02 Timbre Technologies, Incorporated Caching of intra-layer calculations for rapid rigorous coupled-wave analyses
US6748104B1 (en) * 2000-03-24 2004-06-08 Cognex Corporation Methods and apparatus for machine vision inspection using single and multiple templates or patterns
US6622059B1 (en) * 2000-04-13 2003-09-16 Advanced Micro Devices, Inc. Automated process monitoring and analysis system for semiconductor processing
US6768983B1 (en) * 2000-11-28 2004-07-27 Timbre Technologies, Inc. System and method for real-time library generation of grating profiles
US6636843B2 (en) * 2000-12-14 2003-10-21 Timbre Technologies, Inc. System and method for grating profile classification
US6900892B2 (en) * 2000-12-19 2005-05-31 Kla-Tencor Technologies Corporation Parametric profiling using optical spectroscopic systems
US6704661B1 (en) * 2001-07-16 2004-03-09 Therma-Wave, Inc. Real time analysis of periodic structures on semiconductors
US6785638B2 (en) * 2001-08-06 2004-08-31 Timbre Technologies, Inc. Method and system of dynamic learning through a regression-based library generation process
US6867866B1 (en) * 2001-08-10 2005-03-15 Therma-Wave, Inc. CD metrology analysis using green's function
US6609086B1 (en) * 2002-02-12 2003-08-19 Timbre Technologies, Inc. Profile refinement for integrated circuit metrology
US6954911B2 (en) * 2002-05-01 2005-10-11 Synopsys, Inc. Method and system for simulating resist and etch edges
US7216045B2 (en) * 2002-06-03 2007-05-08 Timbre Technologies, Inc. Selection of wavelengths for integrated circuit optical metrology
US7330279B2 (en) 2002-07-25 2008-02-12 Timbre Technologies, Inc. Model and parameter selection for optical metrology
US7092110B2 (en) * 2002-07-25 2006-08-15 Timbre Technologies, Inc. Optimized model and parameter selection for optical metrology
US7427521B2 (en) * 2002-10-17 2008-09-23 Timbre Technologies, Inc. Generating simulated diffraction signals for two-dimensional structures
US20040267397A1 (en) * 2003-06-27 2004-12-30 Srinivas Doddi Optical metrology of structures formed on semiconductor wafer using machine learning systems
US7394554B2 (en) * 2003-09-15 2008-07-01 Timbre Technologies, Inc. Selecting a hypothetical profile to use in optical metrology
US7388677B2 (en) * 2004-03-22 2008-06-17 Timbre Technologies, Inc. Optical metrology optimization for repetitive structures
US7355728B2 (en) * 2005-06-16 2008-04-08 Timbre Technologies, Inc. Optical metrology model optimization for repetitive structures

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023231A2 (en) * 2000-09-15 2002-03-21 Timbre Technologies, Inc. Generation of a library of periodic grating diffraction signals
JP2004509341A (ja) * 2000-09-15 2004-03-25 ティンバー テクノロジーズ,インコーポレイティド 周期格子の回折信号のライブラリの生成

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257690A (ja) * 2004-03-12 2005-09-22 Commiss Energ Atom 構造のジオメトリの特定方法及びこの方法を実施する装置
KR101342847B1 (ko) 2006-03-24 2013-12-17 팀버 테크놀로지스, 인코포레이티드 2 차원 구조물들에 대한 회절 차수의 선택 방법, 광학 계측 시스템의 최적화 방법 및 광학 계측 시스템
JP2009532869A (ja) * 2006-03-30 2009-09-10 東京エレクトロン株式会社 光計測を用いたウエハ上に形成された損傷構造の測定
JP2008020451A (ja) * 2006-07-10 2008-01-31 Tokyo Electron Ltd 光学計測システムに係る選択された変数の最適化
JP2008249686A (ja) * 2007-01-16 2008-10-16 Asml Netherlands Bv インスペクション方法及び装置、リソグラフィ装置、リソグラフィプロセッシングセル並びにデバイス製造方法
JP2011040772A (ja) * 2007-01-16 2011-02-24 Asml Netherlands Bv インスペクション方法
US7916927B2 (en) 2007-01-16 2011-03-29 Asml Netherlands B.V. Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
JP2009053194A (ja) * 2007-08-28 2009-03-12 Tokyo Electron Ltd 光回折における近似精緻回折モデルを用いた構造に係るプロファイルパラメータの決定
JP2009145323A (ja) * 2007-10-09 2009-07-02 Asml Netherlands Bv モデルを最適化する方法、特性を測定する方法、デバイス製造方法、分光計及びリソグラフィ装置
US9977340B2 (en) 2010-06-04 2018-05-22 Asml Netherlands B.V. Method and apparatus for measuring a structure on a substrate, computer program products for implementing such methods and apparatus
JP2013534044A (ja) * 2010-06-04 2013-08-29 エーエスエムエル ネザーランズ ビー.ブイ. 基板上の構造の測定
KR101488802B1 (ko) 2010-06-04 2015-02-04 에이에스엠엘 네델란즈 비.브이. 기판 상의 구조물의 측정
JP2013539532A (ja) * 2010-07-22 2013-10-24 ケーエルエー−テンカー コーポレイション 最適にパラメータ化されたスキャッタロメトリモデルを自動決定するための方法
JP2015501547A (ja) * 2011-10-31 2015-01-15 東京エレクトロン株式会社 計量学のためのプロセス変動ベースのモデル最適化の方法
JP2013120091A (ja) * 2011-12-06 2013-06-17 Canon Inc 位置姿勢計測装置、その処理方法及びプログラム
JP2014022662A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp ウエハ外観検査装置及びウエハ外観検査装置における感度しきい値設定方法
US10331818B2 (en) 2014-07-11 2019-06-25 Hitachi, Ltd. Simulation system and simulation method
JP2019532518A (ja) * 2016-08-31 2019-11-07 ケーエルエー コーポレイション 異方性誘電率を用いた半導体構造のモデル依拠光学計測
JP2021509772A (ja) * 2018-01-05 2021-04-01 ケーエルエー コーポレイション 電子顕微鏡を使用した半導体計測および欠陥分類
JP7097447B2 (ja) 2018-01-05 2022-07-07 ケーエルエー コーポレイション 電子顕微鏡を使用した半導体計測および欠陥分類
JP2021143959A (ja) * 2020-03-12 2021-09-24 キオクシア株式会社 形状算出プログラム、形状算出方法、及び形状算出装置
JP7475905B2 (ja) 2020-03-12 2024-04-30 キオクシア株式会社 形状算出プログラム、形状算出方法、及び形状算出装置

Also Published As

Publication number Publication date
KR101281212B1 (ko) 2013-07-02
KR20050021549A (ko) 2005-03-07
AU2003254170A1 (en) 2004-02-23
TW200407527A (en) 2004-05-16
WO2004013723A3 (en) 2004-04-29
CN1310011C (zh) 2007-04-11
US7505153B2 (en) 2009-03-17
WO2004013723A2 (en) 2004-02-12
AU2003254170A8 (en) 2004-02-23
CN1672012A (zh) 2005-09-21
DE10392975T5 (de) 2006-01-19
TWI238884B (en) 2005-09-01
US20040017574A1 (en) 2004-01-29
US20080151269A1 (en) 2008-06-26
JP5307862B2 (ja) 2013-10-02
US7330279B2 (en) 2008-02-12
JP2012027032A (ja) 2012-02-09

Similar Documents

Publication Publication Date Title
JP5307862B2 (ja) 光学的測定のためのモデルとパラメータの選択
US7092110B2 (en) Optimized model and parameter selection for optical metrology
US7126700B2 (en) Parametric optimization of optical metrology model
TWI582380B (zh) 利用光學臨界尺寸(ocd)計量之結構分析用於光學參數模型之最佳化方法、非暫時性之機器可存取儲存媒體及用以產生所模擬繞射信號以利用光學計量判定用以在晶圓上製造結構之晶圓塗覆的程序參數之系統
JP5959648B2 (ja) プロセス認識メトロロジー
JP5739988B2 (ja) 基板上の構造の測定
US10502692B2 (en) Automated metrology system selection
US7136796B2 (en) Generation and use of integrated circuit profile-based simulation information
KR101144402B1 (ko) 광학적 계측에 이용되는 가상 프로파일 선택 방법 및 선택 시스템과, 컴퓨터 판독 가능 기억 매체
US20020113966A1 (en) Parametric profiling using optical spectroscopic systems
JP2005534192A5 (ja)
US7783669B2 (en) Data flow management in generating profile models used in optical metrology
JP2004158478A (ja) 半導体デバイスの製造方法及びその製造システム
KR20150096776A (ko) 모델-기반 계측 및 프로세스 모델의 통합 사용
WO2003083452A1 (en) Metrology hardware specification using a hardware simulator
JP2009530866A (ja) 2次元構造についての回折次数選択の最適化
CN106471353B (zh) 用于光学计量的高度相关参数的相关性的动态移除
JP2008020453A (ja) 光計測を用いて検査される構造の特徴を表すプロファイルモデルの評価
US20090063076A1 (en) Determining profile parameters of a structure using approximation and fine diffraction models in optical metrology
TW201706723A (zh) 度量衡方法及設備、電腦程式及微影系統
CN112789558A (zh) 提供经过训练的神经网络以及确定实体系统的特性
KR20130061688A (ko) 구조의 광계측을 위한 재료의 광학 특성을 결정하는 방법
KR101461667B1 (ko) 패턴화 구조 검사 장치 및 계측 데이터 관리 방법
US20080089574A1 (en) Data flow management in generating different signal formats used in optical metrology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100319

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111107