JP2005530298A - メモリデバイスのプログラミングに使用される行デコーダ回路 - Google Patents

メモリデバイスのプログラミングに使用される行デコーダ回路 Download PDF

Info

Publication number
JP2005530298A
JP2005530298A JP2004514083A JP2004514083A JP2005530298A JP 2005530298 A JP2005530298 A JP 2005530298A JP 2004514083 A JP2004514083 A JP 2004514083A JP 2004514083 A JP2004514083 A JP 2004514083A JP 2005530298 A JP2005530298 A JP 2005530298A
Authority
JP
Japan
Prior art keywords
word line
programming
voltage
row decoder
decoder circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004514083A
Other languages
English (en)
Inventor
マネア,ダヌート・アイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atmel Corp
Original Assignee
Atmel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atmel Corp filed Critical Atmel Corp
Publication of JP2005530298A publication Critical patent/JP2005530298A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/12Programming voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders

Abstract

メモリデバイスをプログラミングするのに使用される行デコーダ回路(14)。本行デコーダ回路は、プログラミングされるべきメモリセルのワード線を選択するための手段(13)と、プログラミングされるべきメモリセルのワード線と、ワード線駆動回路(100)とを含む。上記ワード線駆動回路(100)は、プログラミング電圧(Vプログラミング)を供給する第1の電源線(18)と、読出/ベリファイ電圧(Vベリファイ)を供給する第2の電源線(16)との間で切換を行ない(15,19)、ワード線(17)にある選択されたメモリセルのゲートにプログラミング電圧または読出/ベリファイ電圧のいずれかを供給する。このようにプログラミング電圧と読出/ベリファイ電圧とで切換を行なう結果、選択されたメモリセルをプログラミングするために用いられるプログラミングパルスが得られる。この発明によれば、より短いプログラミングパルスが使用可能となり、メモリセルのプログラミング全体が高速化される。

Description

技術分野
この発明は半導体メモリデバイスに関し、より特定的には、メモリデバイスのプログラミングに使用される行デコーダ回路に関するものである。
背景技術
従来におけるセル当たり単一ビット型(single bit per cell)のメモリデバイスにおいては、メモリセルは2つの情報記憶状態、すなわちオン状態かオフ状態かのうち一方を取る。このオンかオフかの組合せが情報の1ビットを規定する。2レベル型メモリにおいては、セルはその読出動作の際に閾値電圧Vtについての異なる2つの値を取り得るのみであるため、必要となるのは、アドレス指定されたトランジスタが導通しているかどうかを検知することだけである。これを行なうには、一般的に、所定のドレイン−ソース間およびゲート−ソース間電圧でバイアスをかけられたメモリトランジスタを流れる電流と、同じバイアス条件下にある基準トランジスタのそれとを比較する。これは電流モードの検知を通じて直接に、または電圧モードの検知を通じて電流−電圧変換の後に行なわれる。
典型的なフラッシュメモリセルをプログラミングする際、セルの制御ゲートに高い電位(たとえばおよそ3〜12ボルトなど)が印加され、ソース端子が接地され、ドレイン端子が約5ボルトの電圧と接続される。アレイの中でこの動作を実行する場合、制御ゲート同士を接続するワード線に選択的にパルスを印加し、それからドレイン同士を接続するビット線にバイアスをかけるというやり方がある。これは当業界において、フラッシュメモリセルをプログラミングする方法であるホットエレクトロン注入法として一般的に知られている。ホットエレクトロン注入法は、電荷を浮遊ゲートの中に動かして浮遊ゲートトランジスタの閾値電圧を変化させるために用いられる。上記高い電圧を制御ゲートに印加すると、これによって電子が生成されてチャネル内に流れ、ホットエレクトロンの一部が浮遊ゲートに注入されて浮遊ゲートの電位をより負となるよう変化させる。したがって注入は飽和する傾向にあり、浮遊ゲートトランジスタの閾値電圧は同じ傾向に従う。メモリセルトランジスタの状態を読出すまたは検知するには、その制御ゲートに動作電圧(たとえばおよそ4〜6ボルト)を印加し、ドレインにはおよそ0.5〜1.0ボルトを印加して、ソースおよびドレイン間に流れる電流のレベルを検出することにより当該セルがどのメモリ状態にあるかを判断する。
しかし、多レベル型メモリデバイスについてのプログラミングおよび検知方式はこれより複雑で、典型的には2n−1個の電圧基準が必要であり、ここでnはセル内に格納されるビットの数である。図5を参照して、先行技術の多レベル型メモリデバイスの一例として、4つのメモリレベルに対応するセル当たり2ビットの例が示され、これは3つの電圧基準を有する。二進数11で表わされる第1のメモリレベル321はメモリセルに電荷がない状態である。メモリセルが完全に充電されたメモリレベル324は二進数00で表わされる。(「電荷なし」および「完全に充電」という用語は、ここにおいておよびこの議論全体を通じ説明を目的として使用されるものであり、限定を意図したものではない。たとえば、(11)状態でもわずかな量の電荷が存在する場合があり、(00)状態でも絶対最大量未満の電荷しかないこともあるだろう。)非充電状態(11)321と完全充電状態(00)324との間には、メモリセルが少量の電荷を有する第1の中間レベル322(二進数10で表わされる)と、メモリセルが10状態よりも多くの電荷を有しているが完全には充電されていない第2の中間レベル323(二進数01で表わされる)とが存在する。メモリセルにおける各々のメモリ状態の間に示してある閾値電圧(Vt)は、メ
モリセル状態間での遷移に必要な閾値電圧を表わす。4つのメモリレベルを有する2ビットセルについて述べたように、電圧基準としては311,312,313の3つがある。たとえば2.5ボルトの閾値電圧では、メモリ状態は基準レベル311にあり、ここでセルの状態は11状態から10状態へ遷移することになる。電圧閾値Vt=3.5ボルトでは、メモリセルは基準レベル312にあり、ここでセルの状態は10状態から01状態へ遷移することになる。そして電圧閾値Vt=4.5ボルトでは、メモリセルは基準レベル313にあり、ここでセルの状態は01状態から00状態へ遷移する。図5に示す閾値電圧の値は単に例示のためのものであり、実際のVtの値はメモリセルの構成に依存する。
多レベル型不揮発性メモリセルを実現する際における主な問題点の1つとして、セルを正確にプログラミングできるかどうか、すなわちセルトランジスタの浮遊ゲートに対し、閾値電圧の目標値を得るために必要とされる電荷量だけを与えることができるかどうか、というものがある。先行技術において、正確に電荷を与えることの問題と取組むために用いられる一般的なやり方は、セルごとにプログラミングしてベリファイするという手法を用いることである。このプログラミング・ベリファイ手法においては、プログラミング動作は或る数の部分的なステップに分割され、各々のステップの後にセルが検知されて目標閾値電圧が達成されたかどうかが判断され、そうでなければプログラミングが続行される。プログラミングの際には各々のセルが独立して制御されるため、この技術によれば、1バイト全体あるいは数バイトにわたり同時プログラミングが可能である。この手順により、有限プログラミングステップを用いることに内在する量子化により可能な正確さで確実に目標値Vtに達することができる。しかしこのプロセスは非常に長時間にわたることがあり、さらにオンチップ論理回路による制御が必要である。
図6に典型的なプログラミング・ベリファイ技術を例示する。図6に示すように、メモリセルのプログラミングは、一連の交替する電圧パルスのプログラミングおよびベリファイにより実現される。各々のプログラミングパルスの電圧330は、所望の目標電圧に達するまで時間332に対して増分的に増加する。ベリファイパルスの電圧レベルはプログラミングプロセス全体にわたって一定に留まる。たとえば、図示のように、第1のベリファイパルス351の後、第1のプログラミングパルス341が実行され、これに第2のベリファイパルス352が続く。それから、増分的に増加した電位である次のプログラミングパルス342が印加され、これにベリファイパルス353が続き、それから、先のプログラミングパルス352より電圧増加した第3のプログラミングパルス343が続き、これに第3のベリファイパルス354が続く。そして、最後のプログラミングパルス347が印加されてセルが所望のメモリ状態の閾値電圧に達し得るまで上記の手順を行なう。図6に見て取ることができるように、グラフの形状は階段に類似しており、このプログラミング方法は一般的に当業界において階段状ゲート電圧ランプ(ramp)プログラミングとして知られている。この階段式の方法は多くの特許に記載されており、これにはたとえば米国特許第5,043,940号、第5,268,870号、第5,293,560号、および第5,434,825号などが含まれる。
メモリセルの各々は、行(ワード線)および列(ビット線)でメモリアレイとして配置される。典型的に、フラッシュタイプのメモリアレイにおいては、1行におけるセルのゲート端子はすべて同じワード線に接続され、1列におけるセルのドレインはすべて同じビット線に接続される。セクタにあるセルすべてのソースは共通のソース線に接続される。この配置は典型的に8回または16回繰返され、バイトまたはワード出力が得られる。他のビット長の出力もまた可能である。メモリアレイ内のメモリセルにあるデータをアドレス指定するためには、行デコーダ(xデコーダとも称される)回路および列デコーダ(yデコーダ)回路を用いて所望のメモリセルを選択する。
上述のように、セル当たり単一ビット型および多レベル型の両方のメモリセルをプログラミングする際のプログラミングおよびベリファイ(読出)ステップは、セルの制御ゲートに対してプログラミングパルスまたはベリファイ(読出)パルスを印加することによって実行される。セルの制御ゲートはメモリアレイのワード線に接続されるため、ワード線は、プログラミングまたはベリファイ電圧を供給するための電源線に接続される。図4を参照して、ワード線217は、メモリアレイの特定の行にあるメモリセルの各々についての制御ゲート(図示せず)に接続される。行デコーダ214内のワード線選択回路213に選択信号212が供給され、この特定のワード線217に接続されるメモリセルが選択される。電圧電源線225がワード線選択回路213に接続され、これによりメモリセルをプログラミングするためのプログラミングパルスまたはベリファイパルスが供給される。上述のように、プログラミング電圧(およそ3〜12ボルト)は一般にベリファイ(読出)電圧(およそ5〜6ボルト)と異なる。したがって、電源線225の電圧は、プログラミング電圧とベリファイ電圧との間で往復して変更される必要がある。しかし、電源線の電圧が切換えられることによって、持続時間の短いプログラミングパルスおよびベリファイパルスをもたらす能力が制限され、したがってプログラミング全体の速度が制約を受ける。これに加え、多レベルの手法においては、電源線の電圧が切換えられることにより、プログラミングアルゴリズムを正確に制御する能力が制限される。
この発明の目的は、メモリセルのプログラミング中に電源線の電圧を変化させる必要がなくなったメモリセル用の行デコーダ回路を提供することである。
発明の概要
上記の目的は、行デコーダ回路であって、プログラミングされるべきメモリセルのワード線を選択する手段を有し、さらに、ワード線に接続された別個の電源線の対から電圧を受けるワード線駆動回路を有し、プログラミング電圧を供給する第1の電源線と、読出/ベリファイ電圧を供給する第2の電源線とを含む、行デコーダ回路により達成される。行デコーダのワード線駆動回路は、上記2本の電源線間で切換を行なって上記電圧のうちの1つを上記ワード線に与えるための手段を含む。この回路においては、単一の電源線の電圧を変更することが必要とされるのではなく、2本の電源線間で切換が行なわれるため、これによってより短いプログラミングパルスおよび読出/ベリファイパルスが使用可能となり、全体的により速いプログラミングのスループットが可能である。この行デコーダ回路によればさらに、多レベル型メモリセルのプログラミングにおいてより良好な制御が可能となり、さらに、先行技術の行デコーダ回路に一般的に見られる寄生電圧がなくされるので、電力の節約も可能となる。
発明を実施するための最良の形態
図1を参照して、行デコーダ14の出力部は、メモリアレイの特定の行にあるメモリセルの各々についての制御ゲート(図示せず)に接続されたワード線17である。行デコーダ14のワード線選択回路13に選択信号12が供給され、プログラミングされるべきメモリセルに接続されたワード線17が選択される。行デコーダ14の中に設けられたワード線駆動回路100は1対の電源線16,18から電圧を受ける。第1の電源線18はプログラミング電圧を供給し、第2の電源線16は読出/ベリファイ電圧を供給する。ワード線駆動回路100は、プログラミング電圧電源線18または読出/ベリファイ電圧電源線16のいずれかにワード線17を接続するための切換手段15を含む。切換手段15は切換制御線19で切換制御信号を受ける。上述のように、読出/ベリファイ電圧電源線16はおよそ5〜6ボルトの読出/ベリファイ電圧を供給し、プログラミング電源線18はおよそ3〜12ボルトのプログラミング電圧を供給する。先行技術においては電源線が1
本しかなく、プログラミング電圧および読出/ベリファイ電圧をワード線に与えるためには上記電源線の電圧を切換える必要があったが、これとは対照的にこの発明においては、プログラミング電源線および読出/ベリファイ電源線は適当な電圧レベルに固定され、ワード線は上記2本の電源線の間で切換えられる。
この発明に従う行デコーダ回路14の第1の実施例を図2に示す。行デコーダ回路14はいくつかの異なる態様で実現可能であり、図2に示す回路は例示のものである。内部動作の間、メモリアレイにおける1行以上からなる群が選択される。一実施例においては、選択される群は8行のメモリセルを含む。或る群が選択されるためには、信号BANK SELECT*21が「真」である必要がある(図2の回路では「真」はロウまたは論理0条件である)。BANK SELECT*信号は、p型MOSトランジスタ51とn型MOSトランジスタ52とからなる論理インバータの入力部21で供給される。図2に示すように構成されたトランジスタ53,54,55,56,57,58,59,60はダブルハイ電圧レベルシフタ回路72を形成する。この回路は、BSEL線34およびBSEL*線36において論理選択信号を正および負の高電圧信号に変換するために用いられる。VMP信号端子22は行デコーダの正の電圧供給VMPを受け、VMN信号端子23は負の電圧供給VMNを受ける。一般にこれら電圧VMP,VMNは内部電荷ポンピングによって得られる。入力部21におけるBANK SELECT*信号が真(ロウ)のとき、BSEL線34はダブルハイ電圧レベルシフタ回路72を介してVMP線22に接続され、BSEL*線36はトランジスタ60,54を介してVMN線23に接続される。BANK SELECT*信号が1つの群を選択するとき、ワード線駆動回路100に接続された行のすべては、プログラミング電源線18および読出/ベリファイ電源線16の電圧レベルに基づく選択の対象となる。BANK SELECT信号が偽(ハイ)のとき、BSEL線34はダブルハイ電圧レベルシフタ回路72を介してVMN線23に接続され、BSEL*線36はVMP22線に接続される。こうして、ワード線駆動回路により駆動される行の群は非選択状態にされる。下でさらに説明するように、非選択の行はいずれもVBIAS電圧に接続される。
ワード線駆動回路100にはいくつかの制御信号および電圧線が接続される。一般に、プログラミング電源線18は3〜12ボルトの電圧を有し、メモリセルをプログラミングするのに用いられるプログラミングパルスを供給するために使用される電圧である。読出/ベリファイ電圧線16は約5〜6ボルトの電圧を有し、メモリセルのプログラミングに用いられる読出/ベリファイパルスを生成するために用いられる。XBIASen*信号線26は、当該群がバンク選択信号により選択されていないときに非選択の行にバイアス電圧を通すために用いられる。VBIAS線28はバイアス電圧を非選択の群に供給、または選択された群の中の非選択の行に供給する。プログラミング制御(Xpg)信号32および読出/ベリファイ制御(Xrv)信号33は、ワード線17の接続を、プログラミング電源線18か読出/ベリファイ電源線16かに切換えるための制御信号である。これらの線についてのより詳細な議論は後に図3を参照して記載される。Xdis31の線は選択行の放電のために使用される。VM1線27は、NT素子のnウェル分離打込のために使用される。トランジスタ54,60は三重ウェルデバイスであり、VM1により供給される別個のバイアス電圧を必要とする。最後に、ワード線17はワード線駆動回路100の出力部であり、選択行にあるメモリセルの制御ゲートに接続される。
図3を参照して、ワード線駆動回路100が示される。第1のn型トランジスタ102は、消去以外の動作中、たとえばプログラミングおよび読出/ベリファイの動作中に、非選択行にバイアス電圧28を通すために用いられる。p型トランジスタ103は、消去動作中に選択群にある非選択行のワード線にバイアス電圧28を通すために用いられる。p型トランジスタ101は、消去動作中に非選択群にある行のワード線にバイアスをかけるために用いられる。トランジスタ106,108は、選択行のための接地への放電経路を
もたらすために用いられる。プログラミング制御(Xpg*)信号32はp型トランジスタ109およびn型トランジスタ110からなる高電圧インバータを駆動する。読出/ベリファイ制御(Xrv*)信号33は、p型トランジスタ112およびn型トランジスタ113からなる高電圧インバータを駆動する。プログラミング制御信号32と読出/ベリファイ制御信号33とは常に反対の論理状態にある。両方のインバータはBSEL線34とVMN線23との間に接続される。1対のn型トランジスタ116,118のゲート端子はインバータ109,110および112,113の出力部にそれぞれ接続され、それぞれプログラミングおよび読出/ベリファイ電圧を通すかまたはブロックする。トランジスタ111,114は、当該の群が選択されていない場合にインバータをオフにするために用いられる。プログラミング制御信号32が真(ロウ)であれば、これによって当該インバータの出力部にハイの信号が与えられ、これがn型トランジスタ116のゲートに供給される。これによってトランジスタ116がオンになってプログラミング電圧をプログラミング電圧線18からワード線17へ通す。この場合、プログラミング制御信号がロウであれば、読出/ベリファイ制御信号33はハイであり、これによりn型トランジスタ118のゲートにおけるインバータ112,113の出力部にロウの出力がもたらされる。これによってトランジスタ118はオフになり、読出/ベリファイ電圧16はワード線に至らない。
読出/ベリファイパルスを生成するには、制御信号32,33の値が切換えられる。この場合、読出/ベリファイ制御信号33はロウになり、トランジスタ118のゲートにハイの出力をもたらす。これによってトランジスタ118はオンになり、ワード線17に読出/ベリファイ電圧16が供給される。読出/ベリファイ動作中にはプログラミング制御信号32はオフ(またはハイ)であり、これによりトランジスタ116をオフにしてプログラミング電圧18がワード線17に至ることを防ぐ。
このように、行デコーダ内のワード線駆動回路100は、プログラミング電圧線18と読出/ベリファイ電圧線16との間で切換えてワード線17への接続を行なうための手段を提供し、メモリセルをプログラミングするのに必要な読出/ベリファイパルスおよびプログラミングパルスが得られる。また、切換がより高速に実行可能であるため、これによってより短いプログラミングおよびベリファイパルスが使用可能であり、こうしてプログラミング動作全体の速さが増加し、電力が節約され、多レベル型メモリセルのプログラミングにおける制御性が向上される。
この発明の行デコーダ回路の概略図である。 この発明の行デコーダ回路の一実施例を示す電気的概略図である。 図2の行デコーダのワード線駆動回路を示す電気的概略図である。 先行技術で公知の行デコーダ回路の概略図である。 先行技術で公知である、4つのメモリ状態を有する2ビットメモリセルを代表的に示す図である。 先行技術で公知である、階段式プログラミング方法のプログラミングおよびベリファイパルスステップについての電圧対時間の関係を示すグラフである。

Claims (11)

  1. 複数のメモリセルを有するメモリアレイにおける行デコーダ回路であって、前記メモリセルの各々は複数のメモリ状態を有し、かつ、選択されたメモリセルのゲートに電気的に結合されたワード線に少なくとも1つのプログラミングパルスが印加されることにより前記メモリ状態のうちの1つにプログラミングされ、前記メモリセルの前記メモリ状態は少なくとも1つの読出/ベリファイパルスが前記ワード線に印加されることによりベリファイされ、前記行デコーダ回路は、
    前記選択されたメモリセルに電気的に結合されたワード線を選択する手段と、
    第1の電源線からプログラミング電圧を、そして第2の電源線から読出/ベリファイ電圧を受けるワード線駆動回路とを備え、前記ワード線駆動回路はさらに、前記ワード線に前記少なくとも1つのプログラミングパルスおよび前記少なくとも1つの読出/ベリファイパルスを供給するように前記プログラミング電圧と前記読出/ベリファイ電圧との間で切換える手段を含み、これにより前記選択されたメモリセルがプログラミングされる、行デコーダ回路。
  2. 前記切換える手段は制御信号の対を含み、前記制御信号の各々は互いに反対の論理状態にあり、前記制御信号の対のうちの第1の制御信号は、第1のパストランジスタのゲートに出力部が接続された第1のインバータの入力部で受取られ、前記第1のパストランジスタは、前記第1の電源線に接続されたドレインと、前記ワード線に接続されたソースを有し、前記制御信号の対のうちの第2の制御信号は、第2のパストランジスタのゲートに出力部が接続された第2のインバータの入力部で受取られ、前記第2のパストランジスタは、前記第2の電源線に接続されたドレインと、前記ワード線に接続されたソースとを有する、請求項1に記載の行デコーダ回路。
  3. さらに、前記ワード線が選択されていないときに前記ワード線にバイアス電圧をかける手段を備える、請求項1に記載の行デコーダ回路。
  4. 前記ワード線が選択されていないときに前記ワード線にバイアス電圧をかける前記手段は、プログラミングまたは読出/ベリファイ動作中に、ゲート端子にある相補的な選択信号のうちの第1の選択信号を受けかつ選択されていない行のワード線に前記バイアス電圧を通すための第1のバイアストランジスタと、消去動作中に、ゲート端子にある相補的な選択信号のうちの第2の選択信号を受けかつ選択された群にある選択されていない行のワード線に前記バイアス電圧を通す第2のバイアストランジスタと、消去動作中に、ゲート端子にあるバイアス可能化信号を受けかつ選択されていない群にある行のワード線にバイアス電圧を通す第3のバイアストランジスタとを含む、請求項3に記載の行デコーダ回路。
  5. 前記ワード線を選択する前記手段は、行選択信号を入力部で受け反転した行選択信号を出力部で生成する選択インバータと、前記行選択信号および前記反転した行選択信号を受け相補的な選択信号の対を生成するシフタ回路とを含む、請求項1に記載の行デコーダ回路。
  6. 前記相補的な選択信号の対が前記ワード線駆動回路に供給される、請求項5に記載の行デコーダ回路。
  7. 前記ワード線駆動回路は制御信号の対を受け、前記制御信号の各々は互いに反対の論理状態にあり、前記ワード線駆動回路は、前記制御信号の対のうちの第1の制御信号を受ける入力部と、第1のパストランジスタのゲートに接続された出力部とを有する第1のインバータを含み、前記第1のパストランジスタは、前記第1の電源線に接続されたドレイン
    と、前記ワード線に接続されたソースとを有し、前記ワード線駆動回路はさらに、前記制御信号の対のうちの第2の制御信号を受ける入力部と、第2のパストランジスタのゲートに接続された出力部とを有する第2のインバータを含み、前記第2のパストランジスタは、前記第2の電源線に接続されたドレインと、前記ワード線に接続されたソースとを有する、請求項6に記載の行デコーダ回路。
  8. 前記プログラミング電圧は実質的に3ボルトから12ボルトの範囲にある、請求項1に記載の行デコーダ回路。
  9. 前記読出/ベリファイ電圧は実質的に5ボルトから6ボルトの範囲にある、請求項1に記載の行デコーダ回路。
  10. 前記ワード線を選択する前記手段は、前記ワード線駆動回路に駆動されるべき8行からなる群を選択する、請求項1に記載の行デコーダ回路。
  11. 前記複数のメモリセルは多レベル型メモリセルであり、前記多レベル型メモリセルのそれぞれのメモリ状態は、選択されたメモリセルのゲートに電気的に結合されたワード線に一連の交替するプログラミングおよび読出/ベリファイパルスが印加されることによってプログラミングおよびベリファイされる、請求項1に記載の行デコーダ回路。
JP2004514083A 2002-06-18 2003-04-14 メモリデバイスのプログラミングに使用される行デコーダ回路 Withdrawn JP2005530298A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/174,632 US6621745B1 (en) 2002-06-18 2002-06-18 Row decoder circuit for use in programming a memory device
PCT/US2003/011463 WO2003107353A1 (en) 2002-06-18 2003-04-14 Row decoder circuit for use in programming a memory device

Publications (1)

Publication Number Publication Date
JP2005530298A true JP2005530298A (ja) 2005-10-06

Family

ID=27804700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004514083A Withdrawn JP2005530298A (ja) 2002-06-18 2003-04-14 メモリデバイスのプログラミングに使用される行デコーダ回路

Country Status (9)

Country Link
US (1) US6621745B1 (ja)
EP (1) EP1532634A4 (ja)
JP (1) JP2005530298A (ja)
CN (1) CN100424785C (ja)
AU (1) AU2003224967A1 (ja)
CA (1) CA2489766A1 (ja)
NO (1) NO20050280L (ja)
TW (1) TWI238417B (ja)
WO (1) WO2003107353A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503809B2 (ja) * 2000-10-31 2010-07-14 株式会社東芝 半導体記憶装置
JP3965287B2 (ja) * 2001-10-09 2007-08-29 シャープ株式会社 不揮発性半導体記憶装置およびその書き込み時間決定方法
US7319616B2 (en) * 2003-11-13 2008-01-15 Intel Corporation Negatively biasing deselected memory cells
JP2006059490A (ja) * 2004-08-23 2006-03-02 Toshiba Corp 半導体記憶装置
US7345946B1 (en) * 2004-09-24 2008-03-18 Cypress Semiconductor Corporation Dual-voltage wordline drive circuit with two stage discharge
US7289351B1 (en) * 2005-06-24 2007-10-30 Spansion Llc Method of programming a resistive memory device
US8279704B2 (en) * 2006-07-31 2012-10-02 Sandisk 3D Llc Decoder circuitry providing forward and reverse modes of memory array operation and method for biasing same
US7525869B2 (en) * 2006-12-31 2009-04-28 Sandisk 3D Llc Method for using a reversible polarity decoder circuit
US7542370B2 (en) * 2006-12-31 2009-06-02 Sandisk 3D Llc Reversible polarity decoder circuit
WO2008082995A1 (en) * 2006-12-31 2008-07-10 Sandisk 3D Llc Reversible polarity decoder circuit and related methods
US8301912B2 (en) 2007-12-31 2012-10-30 Sandisk Technologies Inc. System, method and memory device providing data scrambling compatible with on-chip copy operation
US7916544B2 (en) 2008-01-25 2011-03-29 Micron Technology, Inc. Random telegraph signal noise reduction scheme for semiconductor memories
US7796436B2 (en) * 2008-07-03 2010-09-14 Macronix International Co., Ltd. Reading method for MLC memory and reading circuit using the same
US8139426B2 (en) * 2008-08-15 2012-03-20 Qualcomm Incorporated Dual power scheme in memory circuit
TWI399758B (zh) * 2009-01-23 2013-06-21 Elite Semiconductor Esmt 字線解碼器電路
US8837226B2 (en) * 2011-11-01 2014-09-16 Apple Inc. Memory including a reduced leakage wordline driver
CN103730157A (zh) * 2012-10-12 2014-04-16 上海华虹集成电路有限责任公司 用于Flash EEPROM的字线驱动电路
US8737137B1 (en) 2013-01-22 2014-05-27 Freescale Semiconductor, Inc. Flash memory with bias voltage for word line/row driver
US9224486B1 (en) 2014-06-20 2015-12-29 Freescale Semiconductor, Inc. Control gate driver for use with split gate memory cells
US9431111B2 (en) * 2014-07-08 2016-08-30 Ememory Technology Inc. One time programming memory cell, array structure and operating method thereof
US9449703B1 (en) 2015-06-09 2016-09-20 Freescale Semiconductor, Inc. Systems and methods for driving a control gate with a select gate signal in a split-gate nonvolatile memory cell
US9847133B2 (en) * 2016-01-19 2017-12-19 Ememory Technology Inc. Memory array capable of performing byte erase operation
CN107481748B (zh) * 2016-06-07 2020-06-05 中芯国际集成电路制造(上海)有限公司 一种字线电压生成电路、半导体器件及电子装置
CN106158022B (zh) * 2016-07-22 2019-12-24 上海华力微电子有限公司 一种用于共源架构嵌入式闪存的字线驱动电路及其方法
US11114148B1 (en) * 2020-04-16 2021-09-07 Wuxi Petabyte Technologies Co., Ltd. Efficient ferroelectric random-access memory wordline driver, decoder, and related circuits
JP2022000833A (ja) * 2020-06-19 2022-01-04 凸版印刷株式会社 シフトレジスタ、及び表示装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3737525B2 (ja) * 1994-03-11 2006-01-18 株式会社東芝 半導体記憶装置
US5694356A (en) * 1994-11-02 1997-12-02 Invoice Technology, Inc. High resolution analog storage EPROM and flash EPROM
JPH09161476A (ja) * 1995-10-04 1997-06-20 Toshiba Corp 半導体メモリ及びそのテスト回路、並びにデ−タ転送システム
KR0172401B1 (ko) * 1995-12-07 1999-03-30 김광호 다수상태 불휘발성 반도체 메모리 장치
DE19612456C2 (de) * 1996-03-28 2000-09-28 Siemens Ag Halbleiterspeichervorrichtung
US5901086A (en) * 1996-12-26 1999-05-04 Motorola, Inc. Pipelined fast-access floating gate memory architecture and method of operation
JPH1153891A (ja) * 1997-08-05 1999-02-26 Oki Micro Design Miyazaki:Kk 半導体記憶装置
US5978277A (en) 1998-04-06 1999-11-02 Aplus Flash Technology, Inc. Bias condition and X-decoder circuit of flash memory array
JPH11317085A (ja) 1998-05-08 1999-11-16 Sony Corp プログラム・ベリファイ回路及びプログラム・ベリファイ方法
EP0961288B1 (en) * 1998-05-29 2004-05-19 STMicroelectronics S.r.l. Monolithically integrated selector for electrically programmable memory cells devices
EP1061525B1 (en) 1999-06-17 2006-03-08 STMicroelectronics S.r.l. Row decoder for a nonvolatile memory with possibility of selectively biasing word lines to positive or negative voltages
JP3776307B2 (ja) * 2000-04-26 2006-05-17 沖電気工業株式会社 不揮発性メモリアナログ電圧書き込み回路

Also Published As

Publication number Publication date
CN100424785C (zh) 2008-10-08
AU2003224967A1 (en) 2003-12-31
US6621745B1 (en) 2003-09-16
EP1532634A4 (en) 2006-05-10
EP1532634A1 (en) 2005-05-25
TWI238417B (en) 2005-08-21
CN1675718A (zh) 2005-09-28
TW200400517A (en) 2004-01-01
WO2003107353A1 (en) 2003-12-24
CA2489766A1 (en) 2003-12-24
NO20050280L (no) 2005-01-18

Similar Documents

Publication Publication Date Title
US6621745B1 (en) Row decoder circuit for use in programming a memory device
US6519184B2 (en) Non-volatile memory device with plurality of threshold voltage distributions
KR0157342B1 (ko) 불휘발성 반도체 메모리의 전압 센싱 방법
US7477550B2 (en) NAND flash memory device and method of improving characteristic of a cell in the same
US6714448B2 (en) Method of programming a multi-level memory device
US7200043B2 (en) Nonvolatile memory using a two-step cell verification process
KR20010082518A (ko) 불휘발성 반도체 기억 장치
KR20040070226A (ko) 반도체 메모리 장치
US5982662A (en) Semiconductor memory device with improved read characteristics for data having multi values
KR100501962B1 (ko) 전기적으로프로그램가능한메모리및프로그래밍방법
US6724662B2 (en) Method of recovering overerased bits in a memory device
US6762956B2 (en) High-speed data programmable nonvolatile semiconductor memory device
JP2005535062A (ja) 多重レベルメモリセル状態を検知するための参照レベルを設定する方法
US20110267894A1 (en) Semiconductor memory apparatus
JP2000268593A (ja) 不揮発性半導体メモリ
KR100892053B1 (ko) 멀티 레벨 셀을 갖는 플래시 메모리 장치와 그것의프로그램 방법
JP3836898B2 (ja) リセット回路
JPH11339489A (ja) 多状態eepromの読み書き回路および技術
US5477500A (en) Decode circuit for a semiconductor memory device
KR20050021014A (ko) 메모리 디바이스 프로그래밍에 이용되는 로우 디코더 회로
JP2005044439A (ja) 不揮発性半導体記憶装置
KR20090028012A (ko) 고전압 생성 회로
KR20050018943A (ko) 멀티 레벨 메모리 장치를 프로그래밍하는 방법
JPH1069791A (ja) 多値不揮発性メモリ用レファレンス回路
JPH11250678A (ja) 半導体不揮発性記憶装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704