JP2005517096A - 熱可塑性不織ウェブおよび積層体を製造する形成システム - Google Patents

熱可塑性不織ウェブおよび積層体を製造する形成システム Download PDF

Info

Publication number
JP2005517096A
JP2005517096A JP2003566280A JP2003566280A JP2005517096A JP 2005517096 A JP2005517096 A JP 2005517096A JP 2003566280 A JP2003566280 A JP 2003566280A JP 2003566280 A JP2003566280 A JP 2003566280A JP 2005517096 A JP2005517096 A JP 2005517096A
Authority
JP
Japan
Prior art keywords
air
flow
filament
collector
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003566280A
Other languages
English (en)
Other versions
JP4291698B2 (ja
JP2005517096A5 (ja
Inventor
エー. アレン,マーティン,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nordson Corp
Original Assignee
Nordson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nordson Corp filed Critical Nordson Corp
Publication of JP2005517096A publication Critical patent/JP2005517096A/ja
Publication of JP2005517096A5 publication Critical patent/JP2005517096A5/ja
Application granted granted Critical
Publication of JP4291698B2 publication Critical patent/JP4291698B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • D01D5/0985Melt spinning methods with simultaneous stretching by means of a flowing gas (e.g. melt-blowing)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

溶融紡糸装置(24)から排出される空気を集めて管理するシステム(12)および方法。空気管理システム(12)は、第1の内部空間(137、139、141、145)を画定する外部ハウジング(136)と、排出された空気を受け取って第1の内部空間(137、139、141、145)に入れる取込口(57)と、空気を排出する排気口(64)とを含む。第1の内部空間(137、139、141、145)内には、排気口(64)と流体を通すようにつながった第2の内部空間(138a)を画定する内部ハウジング(138)と、第1および第2の内部空間を流体的につなげる開口(146)とが配置されている。空気管理システム(12)は、第1の内部空間(137、139、141、145)の内側にある、第1の内部空間(137、139、141、145)から第2の内部空間(138a)への空気流を制御する流れ制御デバイス(41、42、43、44)と、第1の内部空間(137、139、141、145)の外側で取込口(57)の近くにある、幅方向に延び、取込口(57)を流れ方向において2つの部分に分割する風向部材(37、38)とを含む。

Description

[発明の分野]
本発明は、1つまたは複数の熱可塑性ポリマーのフィラメントから不織ウェブおよび積層体を製造する装置および方法に関する。
[関連出願に対する相互参照]
本件出願は、2000年12月28日付で出願された米国出願第09/750,820号に関連する。その米国出願は、その内容全体がこの参照により本明細書中に明示的に含まれる。
[発明の背景]
溶融紡糸技術は、不織ウェブおよび多層の積層体または複合体を作製するために日常的に使用されており、これらの積層体または複合体は、様々な消費者製品および工業製品(例えば単用または短期寿命の吸収製品のカバーストック材料、使い捨て防護服、流体濾過媒体、ならびに寝具および敷物類を含む耐用品)に加工されている。スパンボンド工程およびメルトブロー工程を含む溶融紡糸技術は、1種または複数種の熱可塑性ポリマーからなる交絡したフィラメントまたは繊維の1つまたは複数の層から不織ウェブおよび複合体を形成する。スパンボンド工程によって形成される繊維は通常、メルトブロー繊維よりも粗くて硬く、その結果、スパンボンドウェブは通常、メルトブローウェブよりも強度は高いが柔軟性は低い。
メルトブロー工程は通常、1種または複数種の熱可塑性ポリマーでなる一列の細径の半固体状のフィラメントを溶融紡糸装置のメルトブローダイから押し出し、空気によって運ばれている押し出されたフィラメントを高速かつ高温の処理空気により、溶融紡糸装置から排出された直後に細化することを伴う。処理空気は、排出されるフィラメントの両側の連続的な収束シートまたはカーテンとして、またはフィラメント排出出口に関連する個別の流れまたはジェットとして排出されてよい。細化されたフィラメントは次に、比較的低温の処理空気流により冷却され、フィラメント/空気混合物となって流され、形成領域(フォーミングゾーン)に堆積し、装置の流れ方向に移動している基材、ベルト、または別の好適な運搬機等の捕集体(コレクタ)上にメルトブロー不織ウェブを形成する。
スパンボンド工程は通常、1種または複数種の熱可塑性ポリマーでなる複数列の細径の半固体状のフィラメントを溶融紡糸装置の押出ダイ(紡糸口金またはスピンパック等)から押し出すことを伴う。大量の比較的低温の処理空気流が、押し出されたフィラメントの流れに送られて、溶融された熱可塑性ポリマーを冷却することができる。次に高速の比較的低温の処理空気流を用いて、フィラメントを所定の直径まで細化すなわち延伸させて、分子スケールで配向させる。処理空気は、さらされた(immersed)フィラメントから伝わる熱エネルギーによってかなり加熱される。細化したフィラメントは、フィラメント/空気混合物としてフォーミングゾーンへ推進されて、移動しているコレクタ上に不織ウェブまたは積層体の層を形成する。
スパンボンド工程は通常、フィラメントを細化するための高速の処理空気流を供給するフィラメント延伸装置(デバイス)を組み込む。高速空気流による流体抵抗は、各フィラメントを押出ダイからの押出速度よりも遥かに速い線形速度または紡糸速度に加速させ、ダイからフィラメント延伸デバイスの入口へ移動しているフィラメントを細化する張力を加える。フィラメント延伸デバイスを出る高速空気にフィラメントが取り込まれて搬送される際に、いくらかのさらなる細化がフィラメント延伸デバイスの出口とコレクタの間で生じる。従来のフィラメント延伸デバイスは、フィラメントを8000メートル/分(m/min)未満の平均線形速度に加速する。
従来のフィラメント延伸デバイスの1つの欠点は、フィラメントを細化するために大量の高速処理空気が必要であることである。さらに処理空気は、空気によって運ばれるフィラメント/空気混合物を取り囲む周囲環境からの過量の二次空気を取り込むすなわち同伴する。同伴される二次空気の量は、フィラメント延伸デバイスを出る処理空気の量および速度に比例する。このような大量の高速処理空気および二次空気は、管理しないでおくと、コレクタ上に堆積するフィラメントを乱す傾向があり、これによりスパンボンドウェブの物理的特性が低下する。
上記のように、大量の処理空気は、メルトブローおよびスパンボンドの両工程中に生じる。さらに、処理空気の多くは加熱され、かつ高速で移動しており、時として音速に達する。処理空気および同伴される二次空気を適切に集めて廃棄しなければ、大量の高速空気が製造装置とその近くの他の機器の周りにいる作業員を妨害する恐れがある。さらに、大量の加熱された処理空気は、不織ウェブや積層体が作製されている周囲の領域を加熱する可能性が高い。結果として、溶融紡糸技術により不織ウェブおよび積層体を製造する際には、この処理空気および同伴される二次空気を集めて廃棄することに注意を払わなければならない。
処理空気および二次空気の管理は、移動しているコレクタ上に堆積されるフィラメントの特性の個別調整(tailoring)に関しても重要である。不織ウェブの幅にわたって、すなわち装置の幅方向に堆積されるフィラメントの分布の均質性は、コレクタベルト上に堆積するフィラメントの周囲の幅方向の空気流の均一性に大きく依存する。幅方向における空気の流速の分布が均一でない場合、フィラメントはコレクタ上に均一に堆積されず、幅方向に均質でない不織ウェブをもたらす。したがって、幅方向における密度、秤量、湿潤性、および流体透過性等の物理的性質が均質な不織ウェブを作製するには、幅方向における空気の流速の変化を最小にすべきである。さらに、管理されない大量の空気は、フォーミングゾーンの上流および下流の繊維の構成にも、それぞれ繊維作製ビーム(fiber-making beam)の上流および下流において影響を及ぼす可能性がある。したがって、不織ウェブの物理的性質が不規則になることを防ぐには、大量の空気の効果的かつ効率的な廃棄が必要である。
コレクタ上に堆積されるフィラメントは、流れ方向(MD)の平均繊維配向と、直交する幅方向(CD)の平均繊維配向とを有する。MD/CD載置(laydown)比と呼ばれるフィラメント配向の比は、不織ウェブの等方性を示し、不織ウェブの引張強さや柔軟性の方向性を含む不織ウェブの様々な性質に強く影響する。幅方向における空気の流速の分布が均一である場合、流れ方向における空気の流速の分布がMD/CD載置比を制御することから、大量の処理空気および二次空気の管理に重要な検討事項となる。
溶融紡糸装置が生成する処理空気流および二次空気流を集めて廃棄するために様々な従来の空気管理システムが用いられてきた。ほとんどの従来の空気管理システムは、送風機や真空ポンプ等の空気移動デバイスと、コレクタの下でフォーミングゾーンの近くに配置されて空気を集める取込口、および空気移動デバイスと流体を通すようにつながっており、集めた空気を廃棄する排気口を有する集気ダクトとを含む。これらの従来のシステムのいくつかでは、取込口にかかる負圧が、取込口の入口(threshold)に配置される1つまたは複数の可動ダンパによって制御される。他の従来の空気管理システムでは、集気ダクトがより小さい空気通路の配列に細分され、個々の空気通路が取込口、排気口、およびこの排気口と流体を通すようにつながっており、集めた空気を個々の取込口に引き込む空気移動デバイスを含む。取込口にかかる負の空気圧の制御は、空気通路の1つの排気口にそれぞれ関連付けられた複数の可動ダンパによって行われる。
しかしながら、フォーミングゾーンの近くにおける空気の流速分布を幅方向および流れ方向の両方において同時に制御することは、従来の空気管理システムでは困難であることが分かっている。上述したような従来の空気管理システムは、流れ方向における空気の流速の方向性や対称性を系統的に制御し、その一方で幅方向における空気の流速の比較的均一な分布を維持することが不可能である。特に、そのような従来のシステムにおける可動ダンパは、流れ方向における空気の流速の分布を変えることが不可能であるか、または幅方向における空気の流速の均一性を大幅に低下させることなく流れ方向における空気の流速の分布を変えることができない。結果として、従来の空気管理システムには、MD/CD載置比を効果的に制御するために流れ方向における空気の流速の分布を選択する能力がない。したがって、そのような従来の空気管理システムを用いる溶融紡糸工程は、流れ方向において不織ウェブの性質を制御したり、あるいは他の方法で個別調整することができない。
したがって、処理空気の廃棄を操作して、不織ウェブのフォーミングゾーンの近くにおける空気の流速の分布を装置の流れ方向において制御するとともに、装置の幅方向において均一な空気流を維持するようにすることができる溶融紡糸システム用の空気管理システムが必要とされている。また、廃棄される処理空気および同伴する二次空気の生成量を少なくすることができる溶融紡糸システムが必要とされている。
[発明の概要]
本発明は、溶融紡糸システム、特に、従来の溶融紡糸および空気管理システムの欠点および不利点を克服する溶融紡糸および空気管理システムを提供する。本発明の空気管理システムは、溶融紡糸装置から排出された空気を集める少なくとも1つのエアハンドラを含む。このエアハンドラは通常、第1の内部空間を画定する複数の第1の壁を有する外部ハウジングと、第1の内部空間に配置され、第2の内部空間を画定する複数の第2の壁を有する内部ハウジングとを含む。外部ハウジングの複数の第1の壁の1つは、コレクタ(捕集体)の下に配置され、溶融紡糸組立体から排出された空気を第1の内部空間に入れる取込口を有し、外部ハウジングの複数の第1の壁の別の1つは、排出された空気を排気する排気口を有する。第2の内部空間は排気口と流体を通すようにつながっており、この内部ハウジングの複数の第2の壁の1つは、長寸法が幅方向にある、第1の内部空間を第2の内部空間と流体を通すようにつなげる細長いスロットを有する。
本発明の特定の実施形態では、調節可能な流れ制御デバイスが、空気管理システムの第1の内部空間に配置される。流れ制御デバイスは、排出された空気の流れを第1の内部空間と第2の内部空間の間で制御するように動作可能である。
本発明の他の実施形態では、風向部材(空気方向付け部材)が、空気管理システムの第1の内部空間の外側で取込口の近くに配置される。風向部材は、幅方向に延び、取込口を流れ方向において第1および第2の部分に分割する。
本発明の原理によれば、溶融紡糸装置と、3つのエアハンドラを有する空気管理システムとを含む装置が提供される。溶融紡糸装置は、材料のフィラメントを押し出すように動作可能であり、コレクタの上に垂直方向に配置される。空気管理システムの第1のエアハンドラは、溶融紡糸装置の真下のフォーミングゾーンに配置される。第2のエアハンドラは、第2のエアハンドラおよびフォーミングゾーンの上流に配置される。第3のエアハンドラは、第2のエアハンドラおよびフォーミングゾーンの下流に配置される。第2および第3のエアハンドラはそれぞれ、上述のような風向部材と、同じく上述のような調節可能な流れ制御デバイスとを含む。
本発明の原理によれば、移動しているコレクタ上に材料のフィラメントを排出するように構成された装置が提供される。この装置は、フィラメントを押し出すように動作可能な溶融紡糸装置と、溶融紡糸装置とコレクタの間に配置されるフィラメント延伸デバイスと、コレクタの近くに配置される取込口を有するエアハンドラとを備える。フィラメント延伸デバイスは、溶融紡糸装置からフィラメントを受け取る入口およびフィラメントをコレクタに向かって排出する出口を有する。フィラメント延伸デバイスは、材料のフィラメントを細化するのに十分な処理空気流を供給するように動作可能である。処理空気流は、出口とコレクタの間の周囲環境からの二次空気を取り込む。エアハンドラの取込口は、フィラメント延伸デバイスから排出された処理空気とこの処理空気に取り込まれた二次空気を集める。本装置はさらに、エアハンドラの取込口およびフィラメント延伸デバイスの出口、取込口の下流にある入口開口、ならびに取込口の上流にある出口開口を少なくとも部分的に取り囲む側壁を有するフォーミングチャンバを含む。側壁は、フィラメント延伸デバイスの出口からコレクタへ向かう材料のフィラメントが通過する処理空間を画定するとともに、取り囲む周囲環境から処理空間を分離する。入口開口および出口開口は、少なくともコレクタが処理空間を横切ることができるような寸法である。フォーミングチャンバの側壁は、周囲環境から処理空間に入る空気の流れを規制するように構成された有孔計量シートを含む。
本発明はさらに、流れ方向に移動しているコレクタ上にフィラメントの不織ウェブを堆積させる方法を提供する。本方法において、材料のフィラメントは、溶融紡糸組立体から材料のフィラメントを排出する溶融紡糸組立体から排出され、処理空気流と混合される。材料のフィラメントはコレクタ上に堆積し、処理空気は、排出された空気を幅方向において略均一に集め、幅方向における空気の流速に対する流れ方向における空気の流速の比を選択的に変化させることができる空気管理システムの取込口により集められる。
本発明の様々なさらなる利点および特徴は、当業者が以下の詳細な説明を添付図面とともに検討すればより容易に明らかとなるだろう。
[好適な実施形態の詳細な説明]
図1を参照して、2ステーション型(two-station)溶融紡糸生産ライン10を概略的に示す。この生産ライン10は、スパンボンドステーション14に空気管理システム12を組み込み、図1上の矢印15で示す流れ方向においてステーション14の下流のメルトブローステーション16に別個の空気管理システム12を組み込んでいる。
空気管理システム12を2ステーション型生産ライン10に関して示すが、空気管理システム12は通常、1つのステーションまたは複数のステーションを有する他の生産ラインにも適用することができる。1ステーション型生産ラインでは、いくつかの工程(メルトブロー工程やスパンボンド工程等)のいずれか1つを用いて不織ウェブを製造することができる。マルチステーション型(multiple-station)生産ラインでは、複数の不織ウェブを製造して多層の積層体や複合体を形成することができる。メルトブロー工程およびスパンボンド工程の任意の組み合わせを用いて積層体を製造することができる。例えば積層体は、不織メルトブローウェブのみまたは不織スパンボンドウェブのみを含んでもよい。しかしながら積層体は、メルトブローウェブとスパンボンドウェブの任意の組み合わせ、例えばスパンボンド/メルトブロー/スパンボンド(SMS)積層体を含んでもよい。
引き続き図1を参照して、概して流れ方向15に水平に移動しているエンドレスの移動型有孔ベルトまたはコンベヤ等のコレクタ32上にスパンボンドステーション14によって形成されるスパンボンドウェブまたは層20と、このウェブ20の上にメルトブローステーション16によって形成されるメルトブローウェブまたは層22とを有する2層の積層体18を作製している2ステーション型生産ライン10を示す。メルトブローステーション16の下流のさらなるステーションによってさらなるメルトブローまたはスパンボンドウェブを追加してもよい。積層体18はメルトブローステーション16の下流で、カレンダ掛け等の従来の技法によって結合(consolidate:強化)される。スパンボンドウェブ20は、スパンボンドステーション14の上流でコレクタ32上に供給され、コレクタ32に乗って下流のステーション14、16へ移動しているスパンボンドウェブ、接着されたまたは未接着のカーディングウェブ、メルトブローウェブ、またはこれらのタイプのウェブの組み合わせからなる積層体等の既存のウェブ(図示せず)上に堆積させてもよいことが理解される。
スパンボンドステーション14は、押出ダイ25を有する溶融紡糸組立体24を含む。スパンボンドウェブ20を形成するために、押出ダイ25は、流れ方向15に対して略垂直の幅方向17においてコレクタ32の幅に概ねわたる、スパンボンドウェブ20の幅の範囲を定める複数のオリフィス(図示せず)から下へ伸びる熱可塑性繊維すなわちフィラメント26のカーテンを押し出す。押出ダイ25から押し出される、空気によって運ばれるフィラメント26のカーテンは、押出プロセスから残留モノマーガスを取り除くモノマー排気システム27を通過する。空気によって運ばれるフィラメント26のカーテンは次に、低温の処理空気の2つの個々の流れをフィラメント26のカーテン上へ送ってフィラメント26を冷却し凝固プロセスを開始する二重ゾーン冷却システム28を横切る。冷却システム28からの処理空気は通常、約500SCFM/m〜約20,000SCFM/mの流量で供給され、約2℃〜約20℃の範囲の温度である。
空気によって運ばれるフィラメント26のカーテンは冷却システム28を出て、吸引により周囲環境からの大量の二次空気とともにフィラメント延伸デバイス30の入口29へ送られる。フィラメント延伸デバイス30は、フィラメント26の長さに対して略平行に送られる高速処理空気流でフィラメント26を囲み、フィラメント26の長さに対して略平行な方向にバイアス力または張力をかける。フィラメント26は伸張性であるため、フィラメント延伸デバイス30内の高速処理空気流は、フィラメント26を細化および分子配向させる。細化したフィラメント26は、フィラメント延伸デバイス30の出口34から放出される際に高速の処理空気および二次空気に取り込まれて搬送される。以下、細化したフィラメント26と高速空気の混合物をフィラメント/空気またはフィラメント/空気混合物33と呼ぶ。このフィラメント/空気混合物33は、コレクタ32の上に設けられたフォーミングチャンバ31に入り、フィラメント/空気混合物33中の細化したフィラメント26はコレクタ32に向かって推進される。フィラメント延伸デバイス30は、概して図1の矢印で示すように、様々な垂直方向の間隔の中でも出口34とコレクタ32の間の垂直方向の間隔の調節のために、垂直方向に移動可能な固定具(図示せず)に取り付けられてもよい。
フィラメント/空気混合物33の細化したフィラメント26は、通常はスパンボンドステーション14が生成する高速の処理空気および二次空気を集める空気管理システム12の補助により、コレクタ32上にランダムに堆積される。フィラメント/空気混合物33は、フォーミングチャンバを取り囲む環境からのさらなる二次空気を取り込むが、この二次空気は後述のように、出口34とコレクタ32の間の空気搬送経路において規制される。
本発明によれば、空気管理システム12は、流れ方向15と平行な方向において離間関係にある一対の漏出空気(spill air)制御ローラ38、40を含む。流れ方向15において漏出空気制御ローラ38、40の間には、上流側でプリフォーミングゾーン(前形成領域)36、下流側でポストフォーミングゾーン(後形成領域)37に挟まれたフォーミングゾーン(形成領域)35が画定される。ゾーン35、36、37は幅方向17において、空気管理システム12の幅にわたって縦に延びる。フィラメント/空気混合物33中のフィラメント26の大部分は、フォーミングゾーン35においてコレクタ32上に堆積する。フィラメント/空気混合物33の取り込み搬送する処理空気は、形成され厚みを増していくスパンボンドウェブ20、コレクタ32、およびコレクタ32上の任意の既存の基材を通過し、フォーミングゾーン35、プリフォーミングゾーン36、ポストフォーミングゾーン37によって集められる。コレクタ32には孔が開けられており、フィラメント/空気混合物33からの処理空気がコレクタ32を通り抜けて空気管理システム12に流れ込むようになっている。スパンボンドステーション14における処理空気は次に、空気管理システム12が供給する制御された真空または負圧によって排出される。プリフォーミングゾーン36における真空は一対の漏出空気制御弁41、42によって選択的に制御され、同様に、ポストフォーミングゾーン37における真空圧は一対の漏出空気制御弁43、44によって選択的に制御される。
メルトブローステーション16は、メルトブローダイ46を有する溶融紡糸組立体45を含む。メルトブローウェブ22を形成するために、メルトブローダイ46は、コレクタ32上に複数の熱可塑性フィラメント(単数または複数)47を押し出す。このフィラメント47は、上流のスパンボンドステーション14によって形成されたスパンボンドウェブ20を覆う。矢印48で示される、メルトブローダイ46からの収束する高温処理空気のシートまたはジェットは、押し出されてくるフィラメント47に当たり、フィラメント47を引き伸ばす、すなわち延伸する。次にフィラメント47は、コレクタ32上のスパンボンドウェブ20上にランダムに堆積して、メルトブローウェブ22を形成する。メルトブローステーション16における処理空気は、形成されるメルトブローウェブ22、スパンボンドウェブ20およびコレクタ32を通り抜け、空気管理システム12により排出される。
スパンボンドウェブ20およびメルトブローウェブ22の製造中は、ダイの長さ1インチあたり1分間に数立方フィートの処理空気が各ステーション14、16を流れる。処理空気は、押出ダイ25からコレクタ32への空気搬送フィラメント経路に沿った周囲環境からの二次空気を取り込み搬送する。処理空気および二次空気の流れは、垂直方向にコレクタ32へと向かうスカラー成分、流れ方向15のスカラー成分、および幅方向17のスカラー成分の合成として3次元に分解することができるベクトル量によって表される速度を持つ。
空気管理システム12は、ステーション14、16からの処理空気および取り込み搬送される二次空気を効率的に集めて廃棄する。より重要なことには、空気管理システム12は、処理空気がコレクタ32を通り抜ける際にその流速が少なくとも幅方向17において略均一となるように処理空気および二次空気を集める。理想的には、フィラメント26、47は、コレクタ32上にランダムに堆積されて、少なくとも幅方向17において均質な性質を有するスパンボンドおよびメルトブローウェブ20、22を形成する。コレクタ32を通る空気の流速が幅方向17において均一でない場合、結果として得られるウェブ20、22は、幅方向17において均質でない性質を持つことになる可能性が高い。したがって、幅方向17において均質な性質を有するウェブ20、22を作製するためには、幅方向17における空気の流速の成分の大きさの変化を最小にすべきであることは明らかである。
図2を参照して、図1の2ステーション型生産ライン10の輸送構造50を示す。2ステーション型生産ライン10は2つの空気管理システム12を含むが、以下の説明は、スパンボンドステーション14に関連付けられた空気管理システム12に焦点を絞る。しかしながら、この説明は、メルトブローステーション16に関連付けられた空気管理システム12にも等しく適用可能であることが理解される。空気管理システム12と同様の、本発明の原理により改良される空気管理システムが、2000年12月28日に米国で出願された「Air Management System for the Manufacture of Nonwoven Webs and Laminates」と題する同時係属中の、同一の譲受人に譲渡された米国特許出願第09/750,820号(その全体をこの参照により本明細書中に明示的に含める)に記載されている。
さらに図2および図3を参照すると、空気管理システム12は、コレクタ34の真下に配置される3つの別個のエアハンドラ52、54、56を含む。エアハンドラ52、54、56は、取込口58、60、62と、対向して配置された排気口64、66、68とを含む。個々の排気管70、72、74はそれぞれ、排気口64、66、68に接続している。排気管72、74を代表して示す排気管70は、第1のエルボ76、第2のエルボ78、および細長い部分80を含む一連の個々の構成要素からなる。動作時に、可変速ブロワまたはファン等の任意の好適な空気移動デバイス(図示せず)は適切なダクトによって細長い部分80に接続され、空気管理システム12を通して処理空気を引き込むための吸引、真空または負圧をかける。
引き続き図2および図3を参照すると、エアハンドラ54は、フォーミングゾーン35の真下に位置付けられる。したがってエアハンドラ54は、押出プロセスおよびフィラメント形成プロセス中にスパンボンドウェブ20を形成するために用いられる処理空気の大部分とそれに取り込み搬送される二次空気を集めて廃棄する。上流のエアハンドラ56のプリフォーミングゾーン36および下流のエアハンドラ52のポストフォーミングゾーン37は、エアハンドラ54で集められない漏出空気を集める。
次に図4ないし図6を参照すると、フォーミングゾーンのエアハンドラ54は、取込口60と、対向して配置された排気口66とを含む外部ハウジング94を有する。取込口60は、処理空気と二次空気が一緒に流れる一連のまたは格子状の孔を有する有孔カバー96を含む。製造パラメータに応じて、エアハンドラ54は、有孔カバー96を全く使用せずに動作することもできる。エアハンドラ54はさらに、内部に複数の開口101を含むスペーシング部材100によって外部ハウジング94から懸架された内部ハウジングまたはボックス98を含む。2つのフィルタ部材102、104がエアハンドラ54から選択的に取り外し可能であるので、定期的に清掃することができる。フィルタ部材102、104は固定レール部材106、108に沿って摺動する。これらのフィルタ部材102、104の各々は、一連の孔が開けられており、この孔を通って処理空気と二次空気が一緒に流れる。
内部ボックス98は、端部114、116および中心部118を有する細長いスロット112等の開口を含む底面パネル110を有する。図6に示すように、スロット112は、幅方向17において内部ボックス98にわたって延びる長さすなわち長寸法を有する。スロット112の内周は、端部114、116では比較的狭く中心部118では比較的広い短寸法(minor dimension)すなわち幅を有する。スロット112の形状は、流れ方向15に延びる中心線113を中心に対称である。具体的には、流れ方向15におけるスロット112の幅は通常、端部114、116のいずれかから中心線113へと延びる方向に大きくなる。スロット112の幅は中心線113のところで最も大きくなる。スロット112は、取込口60における幅方向17の空気の流速の変化を少なくするように動作可能な様々な幾何形状(円形、細長形、長方形等)の1つまたは複数の開口が集まって形成することもできる。
細長いスロット112の形状は、取込口60における幅方向17の空気の流速に影響を及ぼす。スロット112の形状が適切な輪郭になっていない場合、取込口60における空気の流速は幅方向17において大きく変化する可能性がある。図6に示す特定の形状は、エアハンドラ54の幾何形状を組み込んだ計算流体力学(CFD)モデルを用いた反復プロセスによって決められた。500〜2500フィート/分の範囲の吸気流速で一連のスロット形状を評価した。CFDモデルにより特定のスロット形状を解析した後、幅方向17における空気の流速の分布を確認した。最終的に、取込口60において幅方向17の略均一な空気の流速を与えるスロット112の形状を選択することを目標とした。最初に、スロット112の長方形の形状を評価し、取込口60における幅方向17の空気の流速の分布を得たが、これは20パーセントも変動した。スロット112に長方形の形状を用いた場合、取込口60の端部付近の空気の流速は取込口60の中心近くの空気の流速よりも速かった。この不均等な空気の流速の分布に対処するために、端部114、116の各々において流れ方向15の幅を中心部分118の流れ方向15の幅と比べて小さくした。約5回の反復の後で、図6に示すスロット112の幾何形状が最適なものとして選択された。そのスロット形状により生じる、取込口60における空気の流速の分布の変動は幅方向17で約±5.0%である。このような幅方向の空気の流速の変動は、スパンボンドウェブ20の幅全体にわたって堆積されるフィラメントの分布に適切な均質性を与えるのに十分均一な空気流を幅方向17において生じる。
特に図5を参照すると、処理空気および二次空気は、有孔カバー96を通って入り、概して矢印120で示すように、多孔質フィルタ部材102、104を通過する。処理空気は、矢印122で示すように内部ボックス98と外部ハウジング94の間の間隙を通過する。空気は次に、矢印124で示すようにスロット112を通って内部ボックス98の内部に入る。最後に空気は、矢印126で示すように排気口66を通って内部ボックス98を出た後、排気管72を通って移動する。スペーシング部材100の開口101は、空気が幅方向17に移動して、他の方法では取込口60に伝わる横方向の圧力勾配を最小にすることを可能にする。
図3に示すように、エアハンドラ52、56の取込口58、62は、流れ方向15においてエアハンドラ54の取込口60よりも大幅に広い。しかしながら、取込口58、62は、漏出空気制御ローラ38、40の存在により流れ方向15において分割される。図8を参照すると、取込口58の負圧領域は2つの別個のゾーン、すなわち、流れ方向15において漏出空気制御ローラ38から上流にある上流ゾーン57と、プリフォーミングゾーン36とに分割される。同様に、取込口62の負圧領域は2つの別個のゾーン、すなわち、流れ方向15において漏出空気制御ローラ40から下流にある下流ゾーン59と、ポストフォーミングゾーン37とに分割される。
エアハンドラ51、56は略同じであるため、エアハンドラ52の以下の説明は、エアハンドラ56にも等しく当てはまる。図7および図8を参照すると、エアハンドラ52は、取込口58および排気口64を含む外部ハウジング136を有する。取込口58は、処理空気および取り込み搬送される二次空気が流れる一連の細孔を有する有孔カバー135を含む。製造パラメータに応じて、有孔カバー135をエアハンドラ52から排除してもよい。
エアハンドラ52は、幅方向17において離間した関係にある複数の格子状の仕切り140によって外部ハウジング136から懸架された内部ハウジングまたはボックス138をさらに含む。フローチャンバ141(図8)が、取込口58(図7)と内部ボックス138の上壁143との間の実質的に開かれた容積(substantially open volume)に作られる。離間した垂直空気プレナム137、139(図8)は、流れ方向15における内部ボックス138と外部ハウジング136の間のそれぞれの離間した空隙によって作られる。空気プレナム137は、フローチャンバ141と流体が通るようにつながった空気入口ポート128を有し、空気プレナム139は、フローチャンバ141と流体連通でつながった空気入口ポート130を有する。格子状の仕切り140の各々は、仕切り140によって分離されたフローチャンバの様々な部分をつなげる複数の開口142を含む。格子状の仕切り140は、取込口58からプレナム137、139への処理空気または二次空気の流れの均等化に関与し、乱流を途絶させるように作用する。空気プレナム137は格子状の仕切り132を含み、空気プレナム139は格子状の仕切り134を含み、仕切り132、134は格子状の仕切り140と同様の機能を有する。
引き続き図7および図8を参照して、内部ボックス138は、外部ハウジング136から垂直方向に離間しており、空気プレナム137、139とそれぞれ流体を通すようにつながった対向する開放端を有する水平空気プレナム145(図8)を画定する底面パネル144を含む。底面パネル144は、孔またはスロット146を含み、スロット146は、スロット112と同様に構成されており、空気プレナム145を内部ボックス138の内部空間138aと流体を通すようにつないでいる。スロット146は、プレナム137、139、145を介してやって来る空気を内部ボックス138の内部空間138aへ送るように動作可能である。スロット146の内周は端部148、149および中心部150を含む。スロット112と同様に、中心部150の幅は端部148、149の幅よりも大きい。空気は、内部ボックス138の内部空間138aから排気口64(図1および図3)を介して排気される。エアハンドラ52はエアハンドラ56を代表して示すため、図8において同様の特徴には同様の参照番号が付されていることが理解される。
図8を参照すると、漏出空気制御ローラ38は幅方向17において、取込口58の長さにわたって延び、両端部がフォーミングチャンバ31によって支持されるシャフト151上で自在に回転するように取り付けられる。漏出空気制御ローラ38は、シャフト151に対してベアリング(図示せず)上に軸支されて、コレクタ32の上に懸架され、コレクタ32と回転係合する。漏出空気制御ローラ38は、コレクタ32の幅およびスパンボンドウェブ20の幅と略等しい取込口58の長さにわたる長さを幅方向17に有する。
平滑面のアンビルまたは支持ローラ152が、コレクタ32の下に位置し、取込口58の長さにわたって幅方向17に延びている。支持ローラ152は、漏出空気制御ローラ38に対して垂直方向に、コレクタ32とその上にある任意の基材に対して入口開口131を設けるのに十分な距離で配置される。ローラ38、152は、コレクタ32がスパンボンドステーション12のフォーミングチャンバ31内に搬送される際に、コレクタ32と摩擦係合し、反対方向に回転する。このコレクタ32、漏出空気制御ローラ38、および支持ローラ152の間の空間関係は、他の方法では繊維をフォーミングチャンバ31内でコレクタ32上に戴置することを妨害する可能性のあるフォーミングチャンバ31を取り囲む環境からの二次空気の吸引を大幅に減らし、その一方でコレクタ32とその上にある任意の基材が処理空間141に入ることを可能にする。
漏出空気制御ローラ38は、孔の開いていない金属板から形成され、平滑な円筒外周面を有する直円柱として幾何学的に成形されている。漏出空気制御ローラ38の対向する横方向の各端部は、フォーミングチャンバ31に取り付けるためのシャフト151が突出する中心孔をそれぞれ有する板金の円形ディスク(図示せず)で閉じられてもよい。
同様に、シャフト153によりフォーミングチャンバ31に対して自在に回転するように取り付けられた漏出空気制御ローラ40と、この漏出空気制御ローラ40とともに動作するアンビルまたは支持ローラ154とは、エアハンドラ58の取込口62を分割することによってポストフォーミングゾーン37を画定する。コレクタ32と、スパンボンドステーション14によって形成されるスパンボンド基材20とは、ローラ40とローラ154の間に設けられる出口開口133を通過することによりフォーミングチャンバ31を出る。漏出空気制御ローラ40は、漏出空気制御ローラ38と同様の属性を有するため、制御ローラ38の上記説明は制御ローラ40にも等しく当てはまる。漏出空気制御ローラ38、40および支持ローラ152、154が、流れ方向15において離間した、フィラメント/空気混合物33(図1)をターゲットゾーン35、36、37へ案内するガイド面を提供することは明らかである。
図8を参照して、漏出エアハンドラ52の説明を、この説明がエアハンドラ56にも等しく当てはまるという了解の下で続けると、漏出空気制御弁41がフローチャンバ141内で垂直空気プレナム137の空気入口ポート128の近くに配置され、漏出空気制御弁42がフローチャンバ141内で垂直空気プレナム139の空気入口ポート130の近くに配置される。漏出空気制御弁41および42は、1つまたは複数のポートまたは通路を部分的に塞ぐ可動部分により空気流を規制することができるいくつかの機械デバイスのいずれかから選択される。
漏出空気制御弁41および42は、図8においてバタフライ弁の構造を有するものとして示されるが、本発明はこれに限定されない。漏出空気制御弁41は、長方形であってよい、幅方向17に延びるシャッタ156と、シャッタ156が直径に沿って取り付けられる回転可能シャフト157とを含む。漏出空気制御弁41は、垂直空気プレナム137の空気入口ポート128に入る処理空気流を規制する。具体的には、シャフト157は、シャフトの長さに沿って幅方向17に延びる回転軸線を中心として回転可能であり、シャッタ156が垂直空気プレナム137に入る処理空気流を規制できるようになっている。シャッタ156の回転方向は少なくとも部分的に、漏出空気制御ローラ38の上流の取込口58を通って垂直空気プレナム137内に排出される処理空気の流動抵抗を決める。
同様に、漏出空気制御弁42は、幅方向17に延びるシャッタ158と、シャッタ158が直径に沿って取り付けられる回転可能シャフト159とを含む。漏出空気制御弁42は、垂直空気プレナム139の空気入口ポート130に入る処理空気流を規制する。具体的には、シャフト159は、シャフトの長さに沿って延びる回転軸線を中心として回転可能であり、シャッタ158が垂直空気プレナム139に入る処理空気流を規制できるようになっている。シャッタ158の回転方向は少なくとも部分的に、プリフォーミングゾーン36の制御ローラ40の下流の取込口58を通って垂直空気プレナム139内に排出される処理空気の流動抵抗(すなわち空気の量および速度)を決める。漏出空気制御弁41、42による流動抵抗の規制は、プリフォーミングゾーン36にかけられる負の空気圧または真空を規制する。漏出空気制御弁41、42はさらに、漏出空気制御ローラ40の上流にかけられる負の空気圧または真空を上流ゾーン57において規制し、コレクタ32上の任意の材料をコレクタと密接した状態で保持する。
引き続き図8を参照すると、エアハンドラ56の漏出空気制御弁43、44は、漏出空気制御弁41、42と同様の構造を有し、ポストフォーミングゾーン37および漏出空気制御ローラ38の上流の負の空気圧を下流ゾーン59において選択的に規制するために同様に機能する。漏出空気制御ローラ38の上流の負の空気圧をポストフォーミングゾーン37にかけることは、堆積されたばかりのフィラメント26がローラ38の外周面に蓄積することを制御するために特に重要である。
漏出空気制御弁41〜44は、プレナム137、139に入る処理空気流を変化させるために、手動で調節されるか、またはアクチュエータ(図示せず)と機械的に結合される。垂直空気プレナム137、139における相対的な真空圧または空気流を監視する真空計や流量計等の検知デバイス(図示せず)をエアハンドラ52内に設けてもよい。検知デバイスからのフィードバックを受け取り、漏出空気制御弁41〜44の向きを変えるようにアクチュエータを制御する制御システム(図示せず)を設けてもよい。
コレクタ32上におけるフィラメント26の捕集効率は、フィラメント/空気混合物33のいくつかの特性(空気およびフィラメント26の温度、空気速度、および空気の量を含む)に応じる。漏出空気制御弁41〜44は、捕集効率を最適にするため、少なくともゾーン35、36、37における真空圧に一致するように調節することができる。真空圧は、コレクタ、その上の任意の基材およびスパンボンドウェブ20を含む、上に乗せられた材料の厚みにわたる異なる圧力低下のために、ゾーン35、36および37のそれぞれにおいて異なる。真空圧は処理空気を排出するために十分な大きさでなければならないが、コレクタ32上に形成されるスパンボンドウェブ20を圧縮するほど大きくなってはならない。漏出空気制御弁41〜44は、それらが垂直空気プレナム137、139に隣接することで幅方向17における空気の流速の分布が大きな影響を受けないような構成および/または寸法になっている。
上記の通り、エアハンドラ52を通る処理空気および同伴される二次空気の流路は、エアハンドラ56内の処理空気および取り込み搬送される二次空気の流路と同様である。図7および図8を参照して、またエアハンドラ52に関して上述したように、処理空気および二次空気は、矢印160で示すように取込口58および有孔カバー137を通ってフローチャンバ141に入り、矢印161で示すように垂直空気プレナム137、139を通過する。垂直空気プレナム137、139に入る個々の空気流を制御する真空圧は、漏出空気制御弁41、42の向きを変えてプレナム137、139に対する流動抵抗をそれぞれ変化させることにより選択される。空気は次に、矢印162で示すようにスロット146を通って内部ボックス138の内部空間138aに入る。最後に空気は、矢印163で示されるように排気口64を通って内部ボックス138を出た後、排気管70を通って移動する。スペーシング部材140の開口142は、空気が幅方向17に移動して横方向の圧力勾配を最小にすることを可能にする。
図8を参照すると、フォーミングチャンバ31は、1つまたは複数の薄い孔の開いていない金属板と1つの有孔計量シート166で形成された支持ハウジング164を有するセミオープン構造を構成する。計量シート166は通常、フィラメント延伸デバイス30の出口34とフォーミングチャンバ31への入口165との間に生成される処理空間171を取り囲む。入口165は、フィラメント延伸デバイス30の出口とコレクタ32の間に位置して、フィラメント/空気混合物33が処理空間に入ることができるようになっている。上部シール167、169はそれぞれ、一端が支持ハウジング164に取り付けられ、第2の端がそれぞれ漏出空気制御ローラ38、40の一方の上に配置されて、それぞれのローラの上部に対して実質的に気密の回転係合を形成する。
概して、計量シート166は、取り囲む周囲環境と、フィラメント延伸デバイス30とコレクタ32の間のフォーミングチャンバ31内の処理空間171との間の流体の流通を規制するように動作可能な任意の構造である。その目的で、計量シート166の厚みを貫通して、複数の穴すなわち気孔168が離間した関係でランダムパターンに、または格子、アレイ、マトリクスあるいは任意の他の規則正しい配列に配置される。通常、流れ方向15および幅方向17においてフォーミングチャンバ31を取り囲む周囲環境から二次空気の対照的な吸引を行うために気孔168は対称的に配置される。気孔168は通常、円形の断面プロファイルを有するが、例えば多角形、楕円形またはスロット形(すり割り)であってもよい。気孔168は、単一の均一な断面積を有するか、あるいは分散する様々な断面積を有して、フィラメント延伸デバイス30とフォーミングチャンバ31の間の空間に入る所望の二次空気流を生じてもよい。円形の断面プロファイルの場合、気孔168の平均直径は約500ミクロン未満であり、通常は約50ミクロン〜約250ミクロンの範囲である。気孔168のパターンは例えば、流体力学の計算によって決まるか、あるいはランダムに配置されて、所望の流れ特性を生じることができる。計量シート166は例えば、スクリーンあるいは篩、穿孔、打ち抜きあるいは他の方法で生成した孔の開けられた金属薄板、またはその厚みにわたって延びる相互接続された気体通路を有する通気性網目であってよい。
計量シート166は気孔率、すなわち気孔168の全断面積の割合と板166の残りの孔の開いていない部分の割合を特徴とする。計量シート166の気孔168は、板166を通じた吸引により生じてフィラメント/空気混合物33に取り込まれる、取り囲む周囲環境からの二次空気流の大幅な規制を行う。計量シート166の気孔率は、パラメータのなかでも、気孔168の数、気孔168のパターン、各気孔168の幾何学形状、および平均気孔直径によって特徴付けられる。通常、気孔168の全断面積の割合と板166の残りの孔の開いていない部分の割合は約10%〜約80%の範囲である。
一実施形態において、また図8に示すように、計量シート166は、柔軟度の限られた薄い網目スクリーンまたは孔の開いたシヤーフォイルである。例えば、計量シート166は、化学的にエッチングして気孔168を設けた、厚さが約10ミクロン〜約250ミクロンの範囲の薄いフォイルであってよい。計量シート166の柔軟性は、フィラメント延伸デバイス30のコレクタ32に対する垂直方向の動きに対応し、その目的で、計量シート166は弓形に曲げられる。
フィラメント/空気混合物33とその中に取り込まれる二次空気は一緒に、コレクタ32に向かって移動し、空気は空気管理システム12によって排気される。計量シート166は、周囲環境からフィラメント延伸デバイス30とフォーミングチャンバ31の間の空間に入る二次空気の空気流を制限することによって、コレクタ32に向かうフィラメント/空気混合物33の流れによる二次空気の取り込み搬送を大幅に減らし、それにより、空気管理システム12がゾーン35、36、37から排気しなければならない空気の総量が減る。
図1および図8を参照して、また上述のように、スパンボンドステーション14のフィラメント延伸デバイス30は、冷却システム28を出たフィラメント26を吸引で入口29に引き込み、フィラメント26の動く方向と平行に送られる高速処理空気流によりフィラメント26を細化および分子配向し、細化したフィラメント26を出口34からフィラメント/空気混合物33の成分として排出する。フィラメント/空気混合物33は、高速処理空気中に取り込まれてコレクタ32へ運ばれる細化したフィラメント26からなり、コレクタ32において、フィラメント26は捕集されてスパンボンドウェブ20を形成し、処理空気は空気管理システム12によって排出される。フィラメント/空気混合物33は、出口34からコレクタ32へ飛行または通過する間に、取り囲む環境から二次空気を取り込む。
図9および図10を参照すると、フィラメント延伸デバイス30の一実施形態は、第1の処理空気マニホルド170と、ブラケット174によって処理空気マニホルド170に移動可能に取り付けられた第2の処理空気マニホルド172とを含む。処理空気マニホルド170および172の各々は、一端のフランジ付き入口取り付け部178と対向端のフランジ付き排気取り付け部180の間に幅方向17に延びる円筒形のフローチャンバ176を含む。温度制御された処理空気流は、入口および排気取り付け部178、180間の各フローチャンバ176内で生じる。その目的で、加圧処理空気供給源182が空気供給管183により入口取り付け部178と流体を通すようにつながっている。処理空気の一部は、後述のように、フィラメント26を細化するためにフィラメント延伸デバイス30内に送られる。残りの処理空気は、出口取り付け部180に接続された排気管185を介して各フローチャンバ176から排ガスシンク184へ排気される。通常、処理空気供給源182は、処理空気を約5ポンド/平方インチ(psi)〜約100psi、通常は約30psi〜約60psiの範囲の圧力および約60°F〜約85°Fの温度で供給する。
処理空気マニホルド170、172は、図10に最もよく示される、入口29から出口34へ軸方向すなわち垂直方向に延びる、フィラメント26が入口29から出口34へ通過する際に通る流れ通路またはスロット186によって分離される。フィラメント延伸デバイス30への入口29は、デバイス30内で生じる吸引を制限しない流れ方向15の幅を持つ。流れ通路186の入口29に近い部分は、均一幅のチャネル190に向かって細くなる断面積を持つ円錐またはフレアスロート188を有する。このフレアスロート188は、垂直軸192に対して第1のテーパ角度αで内側に傾斜した第1の部分191と、垂直軸192に対して第2のテーパ角度βで内側に傾斜した第2の部分193とを含み、第1のテーパ角度αは第2のテーパ角度βよりも大きい。フレアスロート188およびチャネル190は、妨害または閉塞されることなく、フィラメント26の通路と流体的にひと続きになっている。
流れ通路186の幅方向17の長さは、幅方向17におけるスパンボンドウェブ20(図1)の所望の横断寸法すなわち幅に略等しい。流れ通路186の通常の長さは約1.2メートル〜約5.2メートルの範囲であり、幅方向17の寸法が同様のスパンボンドウェブ20を形成する。通常、スパンボンドウェブ20の端の0.1メートルの部分は堆積後に切断されて捨てられる。流れ方向15における処理空気マニホルド170、172間の分離は、流れ通路186のチャネル190の幅を決める。
引き続き図9および図10を参照すると、処理空気マニホルド170は、流れ通路186のチャネル190の幅を変化させるために、処理空気マニホルド172に対して流れ方向15に移動可能である。その目的で、処理空気マニホルド170は、ブラケット174に移動可能に取り付けられ、処理空気マニホルド170を処理空気マニホルド172に対して移動させるための動力を供給するように動作可能な一対の電空シリンダ194、195が設けられる。この電空シリンダ194、195は、繊維26およびフィラメント/空気混合物33の性質を変えるチャネル190の幅を変化させることができる。運転に備えて、チャネル190の幅は約0.1mmから約6mmまで変化させることができ、ほとんどの用途で、処理空気マニホルド170、172間の分離が約0.2mm〜約2mmとなるように調節される。処理空気マニホルド170は、処理空気マニホルド172からさらに例えば約10cm〜約15cm離して、使用中に蓄積する残留樹脂や他の廃棄物の除去等の保守作業のために流れ通路186へのアクセスを良くしてもよい。
処理空気マニホルド170、172の各々は、向かい合う側壁197、198によって画定される接続プレナム196を含む。この接続プレナム196は、流れ通路186を各フローチャンバ176と流体連通でつなぎ、処理空気がフローチャンバ176の各々から流れ通路186のチャネル190に流れ込むようにする。具体的には、各接続プレナム196は、複数の離間した供給穴200によってフローチャンバ176の1つと流体連通でつながれる。供給穴200は、一列にまたは他のパターンで配置され、実質的には各処理空気マニホルド170、172の全長にわたって幅方向17に延びる。例えば、直径約4mmの供給穴200は、隣接する供給穴200の対の中心間間隔が約4.75mmとなるように離間していてもよい。
各接続プレナム196内の空気流は、幅方向17に延びる一対のダムまたはボス202、204によって妨げられる。ボス202、204は、接続プレナム196の側壁197、198からそれぞれ内側に突き出ている。ボス202、204は、軸192に対して反対方向に整列しており、各接続プレナム196内を流れる処理空気の後方乱気流を大幅に減らす蛇行経路を呈する。後方乱気流が減ることにより、フィラメント26に抗力を均一にばらつきなく加え、結果としてフィラメント26の均一かつ予測可能な細化を生じるための処理空気の均一な流れが促進される。
引き続き図9および図10を参照すると、接続プレナム196の側壁197、198は、湾曲して狭まり、各接続プレナム196と流れ通路186の間で流体を通す細長い排出スリット206において収束する。排出スリット206は、実質的には処理空気マニホルド170、172の各々の全長にわたって幅方向17に延びる。処理空気は、排出スリット206から放出されて、空気シートとして流れ通路186のチャネル190に入る。各排出スリット206は、空気シートが下方のコレクタ32に向けて、チャネル190を通って移動するフィラメント26に対して下方に送られるような向きになっている。具体的には、排出スリット206を出る処理空気シートは、軸192に対して約5°〜約25°、通常は約15°の取付角で傾斜している。
使用時に、また図9および図10を参照して、各フローチャンバ176内を流れる処理気体は、供給穴200を通ってそれぞれの接続プレナム196に入り、接続プレナム196内で高速に加速されてから、実質的に軸方向に出口34へ送られる実質的に均一な速度の均質な空気シートとして排出スリット206を通ってチャネル190に入る。フィラメント26が流れ通路186を通過する際、処理空気マニホルド170、172の各々の排出スリット206から放出された収束空気シートが、フィラメント26に抗力を与え、フィラメント26を細化するか、引き伸ばすか、または他の方法で下へ延伸させて直径を小さくする。流れ通路186のチャネル190に入る空気シートは、入口29において吸引を生じ、繊維26を細化するように作用する張力を与えるとともに、周囲環境から入口29に二次空気を吸引する。フィラメントの延伸力は、各空気シートの空気速度が増すにつれて大きくなる。フィラメントの直径を小さくすることは、フィラメント延伸デバイス30から押出ダイ25までの距離にもよる。
処理空気マニホルド170、172は、フィラメント延伸デバイス30の運転条件で寸法的かつ熱的に安定した任意の材料で形成されており、運転中に寸法公差が変化しないことが好ましい。処理空気マニホルド170、172の形成に適したステンレス鋼としては、Carpenter Custom450型ステンレス鋼合金および630型析出硬化型17Cr−4Niステンレス鋼合金が挙げられ、それぞれCarpenter Technology Corp. (Reading, PA)から市販されている。
本発明のフィラメント延伸デバイス30は、従来のフィラメント延伸デバイスよりも低い圧力で動作する一方で、同等のまたは改良された繊維の細化を行う。処理空気の圧力は低くなったものの、フィラメント延伸デバイス30は非常に効率的であり、フィラメント/空気混合物33中のフィラメント26の速度は、スパンボンドウェブ20を形成するための質の高い繊維載置を保証するのに十分である。特に、フィラメント延伸デバイス30は、8,000m/min〜最高約12,000m/minの範囲の紡糸速度(フィラメント26の線形速度で表した場合)を提供する。出口34を出る高速処理空気の圧力を低くすると、フィラメント延伸デバイス30の出口34とコレクタ32の間の取り囲む周囲環境から取り込まれ搬送される二次空気の量も少なくなる。本発明の原理によれば、フィラメント延伸デバイス30は、紡糸速度を高める一方で、それと同時に空気管理システム12が管理しなければならない二次空気または処理空気の量を減らし、それによって、コレクタ32上に形成されるスパンボンドウェブ20の特性を高める。
図11を参照すると、同様の数字は図9および図10における同様の特徴を参照するものであり、フィラメント延伸デバイス210の代替的な実施形態は、フィラメント延伸デバイス30の処理空気マニホルド170、172と同様の単一の処理空気マニホルド212と、処理空気マニホルド170の代わりとなる分流器214とを含む。分流器214は、処理空気の流れ通路を持たない中実の内部を含む。特定の実施形態において、分流器214は、一方の処理空気マニホルド170(図9および図10)の入口178および出口180を塞ぐかまたは他の方法によって使用できなくし、フローチャンバ176が動作できないようにすることによって形成することができる。
空気管理システム12は、スパンボンドステーション14により形成されるスパンボンドウェブ20の性質を大幅に制御することを可能にする。概して、スパンボンドウェブ20の性質は、フィラメント26の温度、冷却システム28内の処理空気の温度、フィラメント延伸デバイス30内の処理空気の温度、およびコレクタ32における処理空気の速度および量を含むパラメータの複雑な関数である。通常、スパンボンドウェブ20のフィラメントサイズは約1デニールよりも大きく、ウェブの重量は約4g/m〜約500g/mの範囲である。
空気管理システム12の漏出空気制御弁41〜44の相対位置を、漏出空気制御ローラ38、40により供給される高速の処理空気および二次空気の案内路とともに調節することにより、流れ方向15の空気の流速を選択的に制御または規制することができる。流れ方向15の空気の流速を規制できることにより、幅方向17の平均繊維配向に対する流れ方向15の平均繊維配向の比(以下、MD/CD載置比と呼ぶ)を個別調整することができる。具体的には、漏出空気制御弁41〜44の位置を調節することにより、垂直空気プレナム137、139内の流動抵抗が変わり、それによって、MD/CD載置比を、スパンボンドウェブ20の等方性または対称の繊維載置を意味する1:1の値から、スパンボンドウェブ20を形成する非常に非対称または異方性の繊維載置を意味する5:1もの大きな値まで調節することができる。
スパンボンドステーション14によって形成されるスパンボンドウェブ20を作製するために用いられる樹脂は、市販のスパンボンド品質の広範な熱可塑性熱可塑性ポリマー材料のいずれであってもよく、ポリオレフィン、ポリアミド、ポリエステル、ポリアミド、ポリ酢酸ビニル、ポリ塩化ビニル、ポリビニルアルコール、酢酸セルロース等が含まれるが、これらに限定されない。ポリプロピレンは、その可用性と比較的安価な費用から、スパンボンドウェブ20の形成に用いられる一般的な熱可塑性樹脂である。スパンボンドウェブ20の作製に用いられるフィラメント26は、任意の好適な形態を有してよく、当該技術分野において既知であるような、中空または中実で、直線状であるかまたは捲縮した、単成分、二成分または多成分の繊維またはフィラメント、およびそのような繊維および/またはフィラメントの配合物または混合物を含んでよい。二成分および多成分フィラメントおよび/または繊維を生産するには、例えば、溶融紡糸組立体24および押出ダイ25を、複数種の熱可塑性樹脂を押し出すように適合させる。多成分フィラメントを押し出して多成分スパンボンドウェブ20を形成することができるスピンパックを有する例示的な溶融紡糸組立体24および押出ダイ25が、2000年10月31日付で出願された「Apparatus for Extruding Multi-Component Liquid Filaments」と題する、本発明の譲受人に譲渡された同時係属中の米国特許出願第09/702,385号に記載されている。
本発明の特定の実施形態において、スパンボンドステーション14のフィラメント延伸デバイス30は、従来の構造を有してもよく、従来のフィラメント延伸デバイスを組み込んだスパンボンドステーション14によって作製されるスパンボンドウェブ20の性質は、空気管理システム12が存在することにより利益を享受することが理解される。具体的には、MD/CD積載比は上述のように、フィラメント延伸デバイス30の構造とは独立して制御することができる。図9〜図11に示す本発明のフィラメント延伸デバイス30は、フィラメントの線形速度を高め、フィラメント26が、従来のフィラメント延伸デバイスで達成可能であるよりも大幅に細化されるようにする。特に、本発明の空気管理システム12とフィラメント延伸デバイス30を併せて用いることにより、スパンボンドウェブ20の性質に対する制御の度合が最適になる。
本発明を、様々な好ましい実施形態の説明により例示するとともに、これらの実施形態を、本発明の最適な実施の形態を説明するために仔細に説明してきたが、本件出願人は、添付の特許請求項の範囲をそのような詳細に制限したり何らかの形で限定することは意図していない。当業者は、本発明の精神および範囲内のさらなる利点および変更に容易に気付くであろう。本発明そのものは、添付の特許請求の範囲によってのみ規定されるものとする。
本発明の空気管理システムを組み込んだ2ステーション型生産ラインの概略平面図である。 分かりやすくするためにコレクタベルトを取り除いた図1の2ステーション型生産ラインの斜視図である。 図1の空気管理システムの斜視図である。 図3のフォーミングゾーンのエアハンドラの一部分解斜視図である。 図4のフォーミングゾーンのエアハンドラを概して線5−5に沿って切り取った断面図である。 図4のフォーミングゾーンのエアハンドラの底面を概して線6−6に沿って切り取った平面図である。 図3の漏出エアハンドラの1つの一部分解斜視図である。 図1のスパンボンドステーションの図である。 図1のフィラメント延伸デバイスの斜視図である。 図9を概して線10−10に沿って切り取った断面図である。 図9のフィラメント延伸デバイスの代替実施形態の断面図である。

Claims (38)

  1. 流れ方向に移動しているコレクタ上に材料のフィラメントを排出するように構成された溶融紡糸装置の下に配置し、該溶融紡糸装置から排出された空気を集めるエアハンドラであって、
    第1の内部空間を画定する複数の第1の壁を有する外部ハウジングであって、該複数の第1の壁の1つは、前記排出された空気を前記第1の内部空間に入れるために前記コレクタの下に配置された取込口を有し、前記複数の第1の壁の別の1つは、前記排出された空気を排気する排気口を有する外部ハウジングと、
    前記第1の内部空間に配置され、前記外部ハウジングの前記排気口と流体を通すようにつながった第2の内部空間を画定する複数の第2の壁を有する内部ハウジングであって、該内部ハウジングの該複数の第2の壁の1つは、長寸法が幅方向に延びる、前記第1の内部空間を前記第2の内部空間と流体を通すようにつなげる細長いスロットを有する、内部ハウジングと、
    前記第1の内部空間に配置される第1の調節可能な流れ制御デバイスであって、前記排出された空気の流れを前記第1の内部空間と前記第2の内部空間の間で制御するように動作可能な第1の流れ制御デバイスとを備えるエアハンドラ。
  2. 前記第1の内部空間はフローチャンバと、該フローチャンバと流体を通すようにつながった空気入口ポートと前記孔の間に延びる第1のプレナムとを含み、前記フローチャンバは、前記取込口と前記内部ハウジングの間に配置され、前記第1の調節可能な流れ制御デバイスは、前記第1のプレナムの前記空気入口ポートの近くに配置されて、前記フローチャンバから前記空気入口ポートを通って前記第1のプレナムに入る前記排出された空気の流れを制御する請求項1に記載のエアハンドラ。
  3. 前記第1の内部空間は、前記フローチャンバと前記孔の間に延びる第2のプレナムを含み、該第2のプレナムは、前記第1のプレナムから流体的に隔絶されている請求項2に記載のエアハンドラ。
  4. 前記第1の内部空間に配置される第2の調節可能な流れ制御デバイスであって、前記排出された空気の流れを前記第1の内部空間と前記第2の内部空間の間で制御するように動作可能な第2の流れ制御デバイスをさらに備える請求項3に記載のエアハンドラ。
  5. 前記第2の調節可能な流れ制御デバイスは、前記第2のプレナムの前記空気入口ポートの近くに配置されて、前記フローチャンバから前記空気入口ポートを通って前記第2のプレナムに入る前記排出された空気の流れを制御する請求項3に記載のエアハンドラ。
  6. 前記第1の内部空間の外側で前記取込口の近くに配置される風向部材であって、幅方向に延び、前記取込口を前記流れ方向において第1および第2の部分に分割する風向部材をさらに備える請求項1に記載のエアハンドラ。
  7. 前記風向部材は、前記コレクタと回転接触する第1のローラである請求項6に記載のエアハンドラ。
  8. 前記第1の内部空間の略内側で前記取込口の近くに配置される第2のローラであって、少なくとも前記コレクタが前記第1のローラと前記第2のローラの間で回転係合されるように前記第1のローラに対して配置された第2のローラをさらに備える請求項7に記載のエアハンドラ。
  9. 流れ方向に移動しているコレクタ上に材料のフィラメントを排出するように構成された溶融紡糸装置の下に配置し、該溶融紡糸装置から排出された空気を集めるエアハンドラであって、
    第1の内部空間を画定する複数の第1の壁を有する外部ハウジングであって、該複数の第1の壁の1つは、前記コレクタの下に配置され、前記排出された空気を前記第1の内部空間に入れる取込口を有し、前記複数の第1の壁の別の1つは、前記排出された空気を排気する排気口を有する外部ハウジングと、
    前記第1の内部空間に配置され、前記外部ハウジングの前記排気口と流体を通すようにつながった第2の内部空間を画定する複数の第2の壁を有する内部ハウジングであって、該内部ハウジングの該複数の第2の壁の1つは、長寸法が幅方向に延びる、前記第1の内部空間を前記第2の内部空間と流体を通すようにつなげる細長いスロットを有する内部ハウジングと、
    前記第1の内部空間の外側で前記取込口の近くに配置される風向部材であって、幅方向に延び、前記取込口を前記流れ方向において第1および第2の部分に分割する風向部材とを備えるエアハンドラ。
  10. 前記風向部材は、前記コレクタと回転接触する第1のローラである請求項9に記載のエアハンドラ。
  11. 前記第1の内部空間の略内側で前記取込口の近くに配置される第2のローラであって、前記コレクタが前記第1のローラと前記第2のローラの間で回転係合されるように前記第1のローラに対して配置された第2のローラをさらに備える請求項10に記載のエアハンドラ。
  12. 前記取込口および前記ローラを少なくとも部分的に取り囲むフォーミングチャンバであって、前記コレクタへ向かう材料のフィラメントが通過する処理空間を前記溶融紡糸組立体と前記コレクタの間に設けるフォーミングチャンバをさらに備え、前記取込口の前記第1の部分は前記フォーミングチャンバの内側に配置され、前記取込口の前記第2の部分は前記フォーミングチャンバの外側に配置される請求項10に記載のエアハンドラ。
  13. 前記フォーミングチャンバは、該フォーミングチャンバを取り囲む環境から前記処理空間に入る前記排出された空気の流れを規制する有孔計量シートをさらに備える請求項11に記載のエアハンドラ。
  14. 前記第1の内部空間に配置される流れ制御デバイスであって、空気の流れを前記第1の内部空間と前記第2の内部空間の間で制御するように動作可能な流れ制御デバイスをさらに備える請求項9に記載のエアハンドラ。
  15. 流れ方向に移動しているコレクタ上にスパンボンド層を堆積させるシステムであって、
    材料のフィラメントを押し出すように動作可能な溶融紡糸装置であって、前記コレクタの垂直方向上方に配置される溶融紡糸装置と、
    該溶融紡糸装置から排出された空気を集めるように動作可能な空気管理部とを備え、該エアハンドラは、
    前記溶融紡糸装置の真下のフォーミングゾーンに配置される第1のエアハンドラ、第2のエアハンドラおよび前記フォーミングゾーンの上流に配置される第2のエアハンドラ、ならびに該第2のエアハンドラおよび前記フォーミングゾーンの下流に配置される第3のエアハンドラを備え、該エアハンドラの各々は、
    第1の内部空間を画定する複数の第1の壁を有する外部ハウジングであって、該複数の第1の壁の1つは、前記コレクタの下に配置され、前記排出された空気を前記第1の内部空間に入れる取込口を有し、前記複数の第1の壁の別の1つは、前記排出された空気を排気する排気口を有する外部ハウジングと、
    前記第1の内部空間に配置され、前記外部ハウジングの前記排気口と流体を通すようにつながった第2の内部空間を画定する複数の第2の壁を有する内部ハウジングであって、該内部ハウジングの前記複数の第2の壁の1つは、長寸法が幅方向に延びる、前記第1の内部空間を前記第2の内部空間と流体を通すようにつなげる細長いスロットを有する内部ハウジングとを備え、
    前記第2および第3のエアハンドラはそれぞれ、
    前記第1の内部空間の外側で前記取込口の対応する1つの近くに配置される風向部材であって、幅方向に延び、前記取込口の前記対応する1つを前記流れ方向において第1および第2の部分に分割する風向部材と、
    前記第1の内部空間に配置される調節可能な流れ制御デバイスであって、前記排出された空気の流れを前記第1の内部空間と前記第2の内部空間の間で制御するように動作可能な第1の流れ制御デバイスとを含むシステム。
  16. 前記溶融紡糸装置と前記コレクタの間に垂直方向に配置されるフィラメント延伸デバイスであって、前記材料のフィラメントを細化するのに十分な空気流を供給するように動作可能なフィラメント延伸デバイスをさらに備える請求項15に記載のシステム。
  17. 前記溶融紡糸装置と前記フィラメント延伸デバイスの間に配置される冷却システムであって、冷却空気流を供給して、前記溶融紡糸装置から押し出された前記材料のフィラメントを冷やすように動作可能な冷却システムをさらに備える請求項16に記載のシステム。
  18. 前記取込口および前記風向部材を少なくとも部分的に取り囲むフォーミングチャンバをさらに備え、前記溶融紡糸組立体と前記コレクタの間に配置されて、前記コレクタへ向かう材料のフィラメントが通過する処理空間を前記囲いが画定する請求項15に記載のシステム。
  19. 前記フォーミングチャンバは、該フォーミングチャンバを取り囲む周囲環境から前記処理空間に入る空気の流れを規制する有孔計量シートをさらに備える請求項18に記載のシステム。
  20. 流れ方向に移動しているコレクタ上に材料のフィラメントを排出するように構成された装置であって、
    材料のフィラメントを押し出すように動作可能な溶融紡糸装置と、
    前記溶融紡糸装置と前記コレクタの間に配置されたフィラメント延伸デバイスであって、前記溶融紡糸装置から前記材料のフィラメントを受け取る入口および該材料のフィラメントを前記コレクタに向かって排出する出口を有し、前記材料のフィラメントを細化するのに十分な処理空気流を供給するように動作可能であり、該処理空気流は、前記出口と前記コレクタの間の周囲環境からの二次空気を取り込み搬送するフィラメント延伸デバイスと、
    前記コレクタの近くに配置される取込口を有するエアハンドラであって、前記フィラメント延伸デバイスから排出される処理空気および取り込まれ搬送される二次空気を前記取込口を介して集めるエアハンドラと、
    前記エアハンドラの前記取込口および前記フィラメント延伸デバイスの前記出口、前記取込口の下流にある入口開口、ならびに前記取込口の上流にある出口開口を少なくとも部分的に取り囲む側壁を有するフォーミングチャンバであって、前記側壁は、前記フィラメント延伸デバイスの前記出口から前記コレクタへ向かう前記材料のフィラメントが通過する処理空間を画定するとともに、取り囲む周囲環境から前記処理空間を分離し、前記入口開口および前記出口開口は、少なくとも前記コレクタが前記処理空間を横切ることができるような寸法であり、前記側壁は、前記周囲環境から前記処理空間に入る空気の流れを規制するように構成された有孔計量シートを含むフォーミングチャンバとを備える装置。
  21. 前記溶融紡糸装置と前記フィラメント延伸デバイスの間に配置された冷却システムであって、冷却空気流を供給して、前記溶融紡糸装置から押し出された前記材料のフィラメントを冷やすように動作可能な冷却システムをさらに備える請求項20に記載のシステム。
  22. 前記取込口の下流に配置された第1の風向部材であって、幅方向に延び、前記入口開口を設けるよう前記取込口と離間している第1の風向部材をさらに備える請求項20に記載のエアハンドラ。
  23. 前記取込口の上流に配置された第2の風向部材であって、幅方向に延び、前記出口開口を設けるよう前記取込口と離間している第2の風向部材をさらに備える請求項22に記載のエアハンドラ。
  24. 流れ方向に移動しているコレクタ上に材料のフィラメントでできた不織ウェブを堆積させる方法であって、
    溶融紡糸組立体から材料のフィラメントを押し出すこと、
    前記材料のフィラメントを処理空気流と混合すること、
    前記コレクタ上に前記材料のフィラメントを堆積させること、および
    前記処理空気を幅方向において略均一に集め、かつ前記流れ方向における空気の流速に対する前記流れ方向における空気の流速の比を選択的に変化させることができる空気管理システムの取込口により前記処理空気を集めることを含む方法。
  25. 直交する前記幅方向における空気の流速に対する前記流れ方向における空気の流速の比は、前記幅方向におけるフィラメント配向に対する前記流れ方向におけるフィラメント配向の比を与え、前記集めるステップは、
    前記流れ方向における空気の流速を調節することをさらに含み、それによって、前記幅方向におけるフィラメント配向に対する前記流れ方向におけるフィラメント配向の前記比を与える請求項24に記載の方法。
  26. 前記流れ方向における前記空気の流速を変えることをさらに含み、それによって、約5:1である第1の比から約1:1である第2の比までの範囲である、前記幅方向におけるフィラメント配向に対する前記流れ方向におけるフィラメント配向を与える請求項24に記載の方法。
  27. 前記空気管理システムの前記取込口は、フォーミングゾーン、前記流れ方向において前記フォーミングゾーンから上流にある上流ゾーン、および前記流れ方向において前記フォーミングゾーンから下流にある下流ゾーンを含み、前記集めるステップは、
    前記フォーミングゾーンに対して第1の負圧を加えること、
    前記上流ゾーンに対して第2の負圧を加えること、および
    前記下流ゾーンに対して第3の負圧を加えることをさらに含む請求項24に記載の方法。
  28. 前記第2の負圧および前記第3の負圧の少なくとも一方を変えることをさらに含み、それによって、前記流れ方向における集気を変更する請求項27に記載の方法。
  29. 前記第2および第3の負圧の値を検知すること、および
    該検知した値に応じて前記第2および第3の負圧を制御することをさらに含む請求項27に記載の方法。
  30. 前記制御するステップは、調節可能な流れ制御デバイスの相対的な位置を変化させることをさらに含む請求項29に記載の方法。
  31. 前記取込口をフォーミングチャンバで実質的に囲むことをさらに含む請求項24に記載の方法。
  32. 前記フォーミングチャンバを取り囲む周囲環境から該フォーミングチャンバに入る二次空気の流れを規制することをさらに含む請求項31に記載の方法。
  33. 前記集めるステップは、前記幅方向における空気の流速を制御することを含み、それによって、約5.0%未満の均一性を与える請求項24に記載の方法。
  34. 前記混合するステップは、前記材料のフィラメントの動く方向に処理空気流を送ることをさらに含み、それにより前記材料のフィラメントを細化する請求項24に記載の方法。
  35. 前記送るステップは、前記処理空気流により前記材料のフィラメントを8000メートル/分より速い線形速度まで加速することをさらに含む請求項34に記載の方法。
  36. 前記処理空気流は、前記コレクタに対して少なくとも第1および第2の垂直方向の間隔を有する出口孔を有するフィラメント延伸デバイスによって供給され、
    前記出口孔と前記コレクタの間の前記垂直方向の間隔を第1の垂直方向の間隔から第2の垂直方向の間隔に調節することをさらに含む請求項34に記載の方法。
  37. 前記混合するステップは、前記押し出される材料のフィラメントを冷却するために前記溶融紡糸組立体と前記フィラメント延伸デバイスの間に処理空気流を供給することをさらに含む請求項35に記載の方法。
  38. 前記混合するステップは、前記送るステップの前に前記押し出される材料のフィラメントを冷却するために前記溶融紡糸組立体と前記フィラメント延伸デバイスの間に処理空気流を供給することをさらに含む請求項24に記載の方法。
JP2003566280A 2002-02-07 2003-02-05 熱可塑性不織ウェブおよび積層体を製造する形成システム Expired - Fee Related JP4291698B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/072,550 US6799957B2 (en) 2002-02-07 2002-02-07 Forming system for the manufacture of thermoplastic nonwoven webs and laminates
PCT/US2003/003475 WO2003066941A2 (en) 2002-02-07 2003-02-05 Forming system for the manufacture of thermoplastic nonwoven webs and laminates

Publications (3)

Publication Number Publication Date
JP2005517096A true JP2005517096A (ja) 2005-06-09
JP2005517096A5 JP2005517096A5 (ja) 2006-03-23
JP4291698B2 JP4291698B2 (ja) 2009-07-08

Family

ID=27659510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003566280A Expired - Fee Related JP4291698B2 (ja) 2002-02-07 2003-02-05 熱可塑性不織ウェブおよび積層体を製造する形成システム

Country Status (8)

Country Link
US (2) US6799957B2 (ja)
EP (2) EP1425442B1 (ja)
JP (1) JP4291698B2 (ja)
CN (1) CN1630740B (ja)
AU (1) AU2003210867A1 (ja)
DE (1) DE60309653T2 (ja)
TW (1) TW200400292A (ja)
WO (1) WO2003066941A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504218A (ja) * 2016-01-27 2019-02-14 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク 無端フィラメントからスパンボンデッド不織布を製造するための装置および方法
JP7407789B2 (ja) 2018-07-17 2024-01-04 レンチング アクチエンゲゼルシャフト スパンボンド布の製造において溶剤をプロセス空気から分離する方法およびデバイス

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6499982B2 (en) * 2000-12-28 2002-12-31 Nordson Corporation Air management system for the manufacture of nonwoven webs and laminates
CA2464202C (en) * 2001-10-29 2010-12-21 Albany International Corp. High-speed spun-bond production of non-woven fabrics
US6799957B2 (en) * 2002-02-07 2004-10-05 Nordson Corporation Forming system for the manufacture of thermoplastic nonwoven webs and laminates
US20050087900A1 (en) * 2003-10-23 2005-04-28 Nordson Corporation Spundbonding spin pack characterized by uniform polymer distribution and method of use
US7172398B2 (en) * 2003-11-17 2007-02-06 Aktiengesellschaft Adolph Saurer Stabilized filament drawing device for a meltspinning apparatus and meltspinning apparatus including such stabilized filament drawing devices
US7320581B2 (en) * 2003-11-17 2008-01-22 Aktiengesellschaft Adolph Saurer Stabilized filament drawing device for a meltspinning apparatus
US20050130540A1 (en) * 2003-12-15 2005-06-16 Nordson Corporation Multicomponent spunbond filaments having a melt-processable superabsorbent polymer core
US20050197027A1 (en) * 2004-03-04 2005-09-08 Nordson Corporation Bloused spunbond laminate
US20060040008A1 (en) * 2004-08-20 2006-02-23 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Device for the continuous production of a nonwoven web
US7628941B2 (en) * 2005-04-19 2009-12-08 Polymer Group, Inc. Process and apparatus for forming uniform nanofiber substrates
US7687012B2 (en) * 2005-08-30 2010-03-30 Kimberly-Clark Worldwide, Inc. Method and apparatus to shape a composite structure without contact
US7682554B2 (en) * 2005-08-30 2010-03-23 Kimberly-Clark Worldwide, Inc. Method and apparatus to mechanically shape a composite structure
DE602006012527D1 (de) * 2006-12-15 2010-04-08 Fare Spa Vorrichtung und Prozess zur Herstellung einer Spinnvliesmatte
US8246898B2 (en) * 2007-03-19 2012-08-21 Conrad John H Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
US7790264B2 (en) 2007-04-17 2010-09-07 Aplix, Inc. Loop material for loop and hook type fastener used in a disposable article or garment
CN102501388A (zh) * 2011-10-21 2012-06-20 成都彩虹环保科技有限公司 复合材料制造装置
KR101326506B1 (ko) * 2012-04-30 2013-11-08 현대자동차주식회사 랜덤하고 벌키한 멜트블로운 섬유웹의 제조방법 및 그 제조장치
US20140272223A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Packages for articles of commerce
US20140259483A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Wipes with improved properties
US20140272359A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Nonwoven substrates
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
EP2778270A1 (en) 2013-03-15 2014-09-17 Fibertex Personal Care A/S Nonwoven substrates having fibrils
US9144955B2 (en) * 2013-09-04 2015-09-29 Johns Manville Blended thermoplastic and thermoset materials and methods
US10240257B2 (en) * 2014-09-15 2019-03-26 Clarcor Inc. Systems and methods for controlled laydown of materials in a fiber production system
PL3199671T3 (pl) * 2016-01-27 2020-08-10 Reifenhäuser GmbH & Co. KG Maschinenfabrik Urządzenie do wytwarzania włóknin spunbond
JP7035325B2 (ja) * 2017-03-22 2022-03-15 セイコーエプソン株式会社 シート製造装置、シート、及び、シート製造方法
DK3382081T3 (da) * 2017-03-31 2019-11-11 Reifenhaeuser Masch Indretning til fremstilling af filterduge af endeløse filamenter
CN109629092B (zh) * 2019-02-25 2024-04-19 兴鹿(海安)新材料有限公司 一种用于帘子布喷气织布机边处理装置
JP7256066B2 (ja) * 2019-04-23 2023-04-11 Tmtマシナリー株式会社 溶融紡糸設備
CN110373726B (zh) * 2019-06-27 2021-07-02 东华大学 一种应用于静电纺丝箱体的均匀分散气流缓冲机构
CN212316388U (zh) * 2020-02-13 2021-01-08 上海捷英途新材料科技有限公司 一种熔喷滤布的生产装置
CN112609332B (zh) * 2020-11-20 2023-09-12 滁州天鼎丰非织造布有限公司 一种成网下吸风接口装置及无纺布生产系统
CN112285003B (zh) * 2020-12-28 2021-04-13 浙江可康医疗科技有限公司 一种口罩熔喷布加工质检一体化系统

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2933152A (en) * 1958-07-18 1960-04-19 Arvell A Carpenter Central vacuum cleaning unit
US3338992A (en) * 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3158668A (en) 1960-12-19 1964-11-24 Earl A N Johnson Method and apparatus for mat forming
US3502763A (en) * 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
GB1088931A (en) * 1964-01-10 1967-10-25 Ici Ltd Continuous filament nonwoven materials
DE1435461C3 (de) * 1964-02-22 1978-04-06 Fa. Carl Freudenberg, 6940 Weinheim Spinndüse zum Schmelzspinnen von Fadenscharen
DE1435466A1 (de) * 1964-10-24 1969-03-20 Freudenberg Carl Fa Verfahren zur Herstellung textiler Faserprodukte
BE664693A (ja) * 1965-06-01 1965-11-30
DE1560800A1 (de) * 1966-02-10 1971-01-07 Lutravil Spinnvlies Verfahren und Vorrichtung zur Herstellung von Mischvliesen durch Schmelzspinnen
US3341394A (en) * 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) * 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
DE1760713B2 (de) * 1968-06-22 1973-07-05 Vorrichtung zum herstellen eines wirrfaden-vlieses aus synthetischen faeden
DE1785158C3 (de) * 1968-08-17 1979-05-17 Metallgesellschaft Ag, 6000 Frankfurt Runddiise zum Abziehen und Ablegen von Fäden zu einem Fadenvlies
DE2048006B2 (de) * 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
DE1950669C3 (de) * 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur Vliesherstellung
CA944913A (en) 1970-04-01 1974-04-09 Toray Industries, Inc. Apparatus and method for manufacturing continuous filaments from synthetic polymers
US3748693A (en) * 1971-03-26 1973-07-31 Georgia Pacific Corp Apparatus for making nonwoven fibrous webs
JPS526381B2 (ja) 1972-07-25 1977-02-22
US4043739A (en) * 1975-04-21 1977-08-23 Kimberly-Clark Corporation Distributor for thermoplastic extrusion die
US4064605A (en) * 1975-08-28 1977-12-27 Toyobo Co., Ltd. Method for producing non-woven webs
US4340560A (en) * 1980-01-04 1982-07-20 Timex Corporation Method for making a rotor assembly
US4352649A (en) 1980-03-20 1982-10-05 Scan-Web I/S Apparatus for producing a non-woven web from particles and/or fibers
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4405297A (en) * 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4353686A (en) 1981-01-19 1982-10-12 Formica Corporation Apparatus for air-layer fibrous webs
DE3151294C2 (de) * 1981-12-24 1986-01-23 Fa. Carl Freudenberg, 6940 Weinheim Polypropylen-Spinnvliesstoff mit niedrigem Fallkoeffizienten
US4432714A (en) * 1982-08-16 1984-02-21 Armstrong World Industries, Inc. Apparatus for forming building materials comprising non-woven webs
US4526733A (en) * 1982-11-17 1985-07-02 Kimberly-Clark Corporation Meltblown die and method
US4663220A (en) 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
US5034182A (en) * 1986-04-30 1991-07-23 E. I. Du Pont De Nemours And Company Melt spinning process for polymeric filaments
DE3701531A1 (de) * 1987-01-21 1988-08-04 Reifenhaeuser Masch Verfahren und anlage zur herstellung von einem spinnvlies
DE3738326A1 (de) * 1987-04-25 1988-11-10 Reifenhaeuser Masch Spinnvliesanlage zur herstellung eines spinnvlieses aus synthetischem endlosfilament
DE3713862A1 (de) * 1987-04-25 1988-11-10 Reifenhaeuser Masch Verfahren und spinnvliesanlage zur herstellung eines spinnvlieses aus synthetischem endlosfilament
GB2203764B (en) * 1987-04-25 1991-02-13 Reifenhaeuser Masch Production of spun fleece from continuous synthetic filaments
DE3728002A1 (de) * 1987-08-22 1989-03-02 Freudenberg Carl Fa Verfahren und vorrichtung zur herstellung von spinnvliesen
US5685757A (en) * 1989-06-20 1997-11-11 Corovin Gmbh Fibrous spun-bonded non-woven composite
EP0418493A1 (en) 1989-07-28 1991-03-27 Fiberweb North America, Inc. A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
US5366793A (en) 1992-04-07 1994-11-22 Kimberly Clark Co Anisotropic nonwoven fibrous web
DE4236514C2 (de) * 1992-10-26 1997-03-27 Fischer Karl Ind Gmbh Verfahren und Vorrichtung zur Förderung und Ablage von Scharen endloser Fäden mittels Luftkräften
DE4312309C2 (de) 1993-04-15 1995-06-08 Reifenhaeuser Masch Verfahren und Vorrichtungen zur Herstellung eines Spinnvlies-Flächenproduktes
DE4312419C2 (de) * 1993-04-16 1996-02-22 Reifenhaeuser Masch Anlage für die Herstellung einer Spinnvliesbahn aus aerodynamischen verstreckten Filamenten aus Kunststoff
DE4332345C2 (de) 1993-09-23 1995-09-14 Reifenhaeuser Masch Verfahren und Vliesblasanlage zur Herstellung von einem Spinnvlies mit hoher Filamentgeschwindigkeit
US5498463A (en) 1994-03-21 1996-03-12 Kimberly-Clark Corporation Polyethylene meltblown fabric with barrier properties
DE4414277C1 (de) * 1994-04-23 1995-08-31 Reifenhaeuser Masch Nach dem Ruhedruckprinzip arbeitende Spinnvliesanlage für die Herstellung einer Nonwoven-Spinnvliesbahn
US5609806A (en) * 1994-06-28 1997-03-11 Reichhold Chemicals, Inc. Method of making prepreg
US5688468A (en) * 1994-12-15 1997-11-18 Ason Engineering, Inc. Process for producing non-woven webs
US5545371A (en) * 1994-12-15 1996-08-13 Ason Engineering, Inc. Process for producing non-woven webs
DE19501123C2 (de) * 1995-01-17 1998-07-30 Reifenhaeuser Masch Verfahren zur Herstellung einer Vliesbahn aus thermoplastischen Polymerfilamenten
DE19521466C2 (de) * 1995-06-13 1999-01-14 Reifenhaeuser Masch Anlage für die Herstellung einer Spinnvliesbahn aus thermoplastischen Endlosfäden
DE19612142C1 (de) * 1996-03-27 1997-10-09 Reifenhaeuser Masch Anlage zur Herstellung einer Spinnvliesbahn aus Kunststoffilamenten
DE19620379C2 (de) * 1996-05-21 1998-08-13 Reifenhaeuser Masch Anlage zur kontinuierlichen Herstellung einer Spinnvliesbahn
US5935612A (en) 1996-06-27 1999-08-10 Kimberly-Clark Worldwide, Inc. Pneumatic chamber having grooved walls for producing uniform nonwoven fabrics
US5935512A (en) * 1996-12-30 1999-08-10 Kimberly-Clark Worldwide, Inc. Nonwoven process and apparatus
US6368533B1 (en) 1997-12-22 2002-04-09 Kimberly-Clark Worldwide, Inc. Process for forming films, fibers and base webs from thermoset polymers
US5984990A (en) * 1998-02-27 1999-11-16 Mcdonald; Kevin Dustfree workbench for golf club shafts including underlying air filtration system
US6182732B1 (en) * 1998-03-03 2001-02-06 Nordson Corporation Apparatus for the manufacture of nonwoven webs and laminates including means to move the spinning assembly
WO2000046434A1 (en) 1999-02-02 2000-08-10 Hills, Inc. Spunbond web formation
US6331268B1 (en) 1999-08-13 2001-12-18 First Quality Nonwovens, Inc. Nonwoven fabric with high CD elongation and method of making same
DE19940333B4 (de) 1999-08-25 2004-03-25 Reifenhäuser GmbH & Co Maschinenfabrik Anlage für die Herstellung einer Spinnvliesbahn aus Kunststoffilamenten
US6502615B1 (en) 1999-12-22 2003-01-07 Nordson Corporation Apparatus for making an absorbent composite product
JP3604002B2 (ja) * 2000-06-02 2004-12-22 シャープ株式会社 半導体装置
US6592713B2 (en) 2000-12-18 2003-07-15 Sca Hygiene Products Ab Method of producing a nonwoven material
JP3687090B2 (ja) 2000-12-19 2005-08-24 ヤマハ株式会社 音源付き記憶装置
US6499982B2 (en) * 2000-12-28 2002-12-31 Nordson Corporation Air management system for the manufacture of nonwoven webs and laminates
US6799957B2 (en) 2002-02-07 2004-10-05 Nordson Corporation Forming system for the manufacture of thermoplastic nonwoven webs and laminates
EP1340842B2 (de) 2002-02-28 2010-12-08 Reifenhäuser GmbH & Co. KG Maschinenfabrik Anlage zur kontinuierlichen Herstellung einer Spinnvliesbahn
ES2290209T3 (es) 2002-02-28 2008-02-16 REIFENHAUSER GMBH & CO. KG MASCHINENFABRIK Instalacion de fundicion por soplado.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019504218A (ja) * 2016-01-27 2019-02-14 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク 無端フィラメントからスパンボンデッド不織布を製造するための装置および方法
JP7407789B2 (ja) 2018-07-17 2024-01-04 レンチング アクチエンゲゼルシャフト スパンボンド布の製造において溶剤をプロセス空気から分離する方法およびデバイス

Also Published As

Publication number Publication date
WO2003066941A3 (en) 2003-10-02
EP1788135A3 (en) 2009-09-16
US20030147982A1 (en) 2003-08-07
EP1425442B1 (en) 2006-11-15
EP1788135A2 (en) 2007-05-23
CN1630740B (zh) 2010-05-05
AU2003210867A8 (en) 2003-09-02
WO2003066941A2 (en) 2003-08-14
CN1630740A (zh) 2005-06-22
US6799957B2 (en) 2004-10-05
DE60309653D1 (de) 2006-12-28
JP4291698B2 (ja) 2009-07-08
EP1425442A2 (en) 2004-06-09
US7476350B2 (en) 2009-01-13
TW200400292A (en) 2004-01-01
US20050023711A1 (en) 2005-02-03
DE60309653T2 (de) 2007-10-18
AU2003210867A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4291698B2 (ja) 熱可塑性不織ウェブおよび積層体を製造する形成システム
US6499982B2 (en) Air management system for the manufacture of nonwoven webs and laminates
KR102481045B1 (ko) 필라멘트로 방사 접합 직물을 제조하기 위한 방사 방법 및 장치, 그리고 그로부터 제조되는 방사 접합 직물
JP3704522B2 (ja) 不織繊維ウェブの連続製造用装置
US6932590B2 (en) Apparatus for the continuous production of spun-bond web
US8591213B2 (en) Apparatus and process for the production of a non-woven fabric
EP2126178B1 (en) Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
US10465319B2 (en) Method and apparatus for making a spunbond nonwoven from endless filaments
JP2005517096A5 (ja)
US7037097B2 (en) Methods and apparatus for controlling airflow in a fiber extrusion system
US20020070471A1 (en) Method and apparatus for controlling flow in a drum
AU2019202944B2 (en) Apparatus for making spunbonded nonwovens from continuous filaments
US20070205530A1 (en) Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090311

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090403

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees