JP2005332672A - 膜電極接合体、高分子電解質型燃料電池 - Google Patents

膜電極接合体、高分子電解質型燃料電池 Download PDF

Info

Publication number
JP2005332672A
JP2005332672A JP2004149450A JP2004149450A JP2005332672A JP 2005332672 A JP2005332672 A JP 2005332672A JP 2004149450 A JP2004149450 A JP 2004149450A JP 2004149450 A JP2004149450 A JP 2004149450A JP 2005332672 A JP2005332672 A JP 2005332672A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
fuel
membrane
gas diffusion
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004149450A
Other languages
English (en)
Inventor
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2004149450A priority Critical patent/JP2005332672A/ja
Priority to US11/119,922 priority patent/US20050260476A1/en
Priority to EP05009795A priority patent/EP1598890A3/en
Publication of JP2005332672A publication Critical patent/JP2005332672A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

【課題】電解質膜の耐久性の向上および反応ガスの透過の抑制に有利な膜電極接合体および燃料電池を提供する。
【解決手段】膜電極接合体は、導電性繊維を基材とする燃料用ガス拡散層3と、燃料用触媒層5と、電解質膜2と、導電性繊維を基材とする酸化剤用ガス拡散層4と、酸化剤用触媒層6とを順に積層して形成されている。導電性繊維の電解質膜への突き刺しを抑制する補強層11が、燃料用ガス拡散層3および酸化剤用ガス拡散層4のうちの少なくとも一方と電解質膜2との間、または、電解質膜2の内部に設けられている。
【選択図】 図2

Description

本発明は高分子材料で形成した電解質膜を有する膜電極接合体および高分子電解質型燃料電池に関する。
高分子電解質型燃料電池の膜電極接合体(以下、MEAともいう)の内部抵抗を小さくすることが要請されている。MEAは、一般的には、導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成されている。MEAの内部抵抗を小さくするために、従来、電解質膜のガラス転移(軟化)現象を利用して、ガラス転移点付近まで加熱して、圧力(例えば数MPaの圧力)を加えて、電解質膜の両側から電解質膜を挟むようにしてプレスにより接合することにより、膜電極接合体(MEA)は形成されている。上記した膜電極接合体(MEA)によれば、反応ガスが反対側の電極に透過することを抑制するガスバリア性を高めることが要請されている。
特許文献1は、電解質膜を補強するために、電解質膜内部に延伸多孔ポリテトラフルオロエチレンを設けているが、カーボン繊維の突き刺しに対して必ずしも充分ではなく、ガス透過の抑制に関しても、必ずしも充分ではない。
特開2003−142122号公報
本発明は上記した実情に鑑みてなされたものであり、反応ガスの透過の更なる抑制に有利な膜電極接合体および高分子電解質型燃料電池を提供することを課題とする。
本発明者は膜電極接合体および高分子電解質型燃料電池について長年にわたり開発を進めている。そして、本発明者は、導電性繊維の電解質膜への突き刺しを抑制する補強層を、燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と電解質膜との間、または、電解質膜の内部に設けることにすれば、導電性繊維の電解質膜への突き刺しを抑制でき、電解質膜を介しての反応ガスの透過を抑制するのに有利であることを知見し、試験で確認し、本発明を完成させた。上記した効果が得られる理由としては、製造過程におけるホットプレス等のプレス時に、ガス拡散層の基材を構成するカーボン繊維等の導電性繊維が電解質膜に突き刺さることを抑制することができ、突き刺さり跡を介してのガス透過が抑制され、ひいては反応ガスが反対側の電極に透過することを抑制できるためと推察される。
また、本発明者は、ガス透過抵抗性をもつ複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層を、燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と電解質膜との間、または、電解質膜の内部に設けることにすれば、電解質膜を通しての反応ガスの透過の抑制に有利であることを知見し、試験で確認し、本発明を完成させた。上記した効果が得られる理由としては、反応ガスの透過を抑制する複数の微小体を有する補強層が存在するため、反応ガスが電解質を透過することが抑制され、ひいては反応ガスが反対側の電極に透過することを抑制できるためと推察される。
即ち、第1発明の膜電極接合体は、導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成された膜電極接合体において、導電性繊維の電解質膜への突き刺しを抑制する補強層が、燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と電解質膜との間、または、電解質膜の内部に設けられていることを特徴とするものである。
第2発明の高分子電解質型燃料電池は、導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成された膜電極接合体を有する高分子電解質型燃料電池において、導電性繊維の電解質膜への突き刺しを抑制する補強層が、燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と電解質膜との間、または、電解質膜の内部に設けられていることを特徴とするものである。
第1発明、第2発明によれば、ガス拡散層の基材を構成するカーボン繊維等の導電性繊維が電解質膜に突き刺さることを抑制することができ、突き刺さり跡を介してのガス透過が抑制される。
第3発明の膜電極接合体は、燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体において、ガス透過抵抗性を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、燃料極及び酸化剤極のうち少なくとも一方と電解質膜との間、または、電解質膜の内部に設けられていることを特徴とするものである。
第4発明の高分子電解質型燃料電池は、燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体を有する高分子電解質型燃料電池において、ガス透過抵抗性を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、燃料極及び酸化剤極のうちの少なくとも一方と電解質膜との間、または、電解質膜の内部に設けられていることを特徴とするものである。
第3発明、第4発明によれば、ガス透過抵抗性を有する複数の微小体を有する補強層が存在するため、反応ガスが電解質を透過することが抑制される。イオン伝導性は補強層の電解質成分により確保される。
第1、第2発明によれば、電解質膜への突き刺しを抑制できるため、電解質膜の耐久性の更なる向上を図り得る。更に電解質膜への突き刺しを抑制できるため反応ガスが電解質膜を透過することを抑制でき、反応ガスの更なる利用率向上に有利である。また第3、第4発明によれば、反応ガスが電解質膜を透過することを抑制でき、反応ガスの更なる利用率向上に有利である。
第1発明、第2発明によれば、好ましくは、膜電極接合体は、導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成されている。この場合、加熱及び加圧を併用するホットプレスで一体化することが好ましいが、常温におけるプレスで一体化させることにしても良い。導電性物質としての導電性繊維は導電パスを形成するものであり、導電性及び耐食性が良好なカーボン繊維が一般的であるが、これに限定されるものではない。カーボン繊維などの導電性繊維は硬いため、突き刺し性を有する。燃料用触媒層および酸化剤用触媒層は、反応ガスの発電反応性を高めるものであり、一般的には、触媒と導電物質と電解質成分とを有する。この補強層は、燃料用ガス拡散層および/または酸化剤用ガス拡散層の導電性繊維が電解質膜に突き刺さることを抑制することができ、ひいては、突き刺さり跡を介して反応ガスが電解質膜を透過することを抑制することができる。第1発明、第2発明に係る補強層は、好ましくは、突き刺し抵抗性及びガス透過抵抗性を有する複数の微小体と、イオン伝導性をもつ電解質成分とを含有する形態を採用することができる。
第3発明、第4発明によれば、補強層は、ガス透過抵抗性を有する複数の微小体と、イオン伝導性をもつ電解質成分とを含有する。この微小体は、ガス透過抵抗性の他に突き刺し抵抗性を有することが好ましい。
上記した第1発明〜第4発明に係る補強層は、電解質膜の表面または電解質膜の内部に設けられていることが好ましい。この場合、補強層は、燃料用触媒層と電解質膜との間、酸化剤用触媒層と電解質膜との間、電解質膜の内部のうちの少なくとも一方に設けられている形態を採用することができる。
補強層において微小体の配合割合が多すぎると、電解質成分の配合割合が相対的に低下し、イオン伝導性(プロトン伝導性)が低下する傾向がある。また、補強層において微小体の配合割合が少なすぎると、電解質成分の配合割合が相対的に多くなり、イオン伝導性(プロトン伝導性)は確保されるものの、突き刺し防止性及びガス透過抵抗性が低下する傾向がある。後述する試験によれば、補強層を100体積%としたとき、電解質成分が15〜100体積%未満のときには平均セル電圧は高かったが、電解質成分が15体積%未満のときには平均セル電圧が急激に低下する傾向が見られた。この事情を考慮するとともに、突き刺し防止性及び/またはガス透過抵抗性を確保するためには、補強層を100体積%としたとき、電解質成分としては15〜80体積%、殊に20〜80体積%とすることが好ましく、微小体としては85〜20体積%、殊に80〜20体積%とすることが好ましい。なお,微小体としては20〜70体積%、30〜60体積%とすることができる。
上記した微小体の材質としては、耐食性を有し、電解質膜よりも硬い無機系が好ましい。殊に、セラミックス、カーボン、金属(金属間化合物を含む)等のうちの少なくとも1種とすることができる。セラミックスとしては、酸化物、窒化物、炭化物、硼化物等を採用することができ、従って、シリカ、アルミナ、窒化珪素、炭化珪素、ジルコニア、炭化チタン、窒化チタン等を例示することができる。酸化物としてはシリカが好ましい。シリカは親水性を有するため、微小体における保水性を期待することができる。カーボンとしてはカーボンブラック(アセチレンブラック、ケッチェンブラックを含む)等のカーボン微粒子を採用することができる。
微小体の表面は平滑であっても良いし、微細凹凸等の凹凸があっても良い。凹凸は微小体の保水性の確保に貢献できる。表面積が増加するため、水との接触係合性が高まるためである。微小体の粒径としては、電解質膜の厚み、要請される突き刺し防止性、要請されるガス透過抵抗性、プレス時の加圧力などによっても相違するが、一般的には、平均で0.05〜20μmとすることができる。微小体の粒径としては、平均で0.1〜10μm、0.1〜5μmとすることができ、更に0.1〜1μm、0.2〜0.8μmとすることができる。
微小体の形状としては微小粒状、微小繊維状とすることができる。微小体の長径/短径=0.5〜1.5を例示することができる。従って微小体としては、球状とすることができる。微小体(凝集していない1次粒子または多少凝集した2次粒子)の形状が球状であるときには、補強層における微小体の充填性を高めるのに有利であり、更に、高密度充填においても、隣設する微小体間に隙間を形成するのに有利である。この隙間に電解質成分を存在させて、イオン伝導性を確保するのに有利となる。球状は真球状、疑似真球状を含む。疑似真球状は長径/短径=0.8〜1.2をいう。
補強層の平均厚みとしては、微小体の粒径、要請される突き刺し防止性、要請されるガス透過抵抗性、電解質膜の厚み、ガス拡散層の厚み等によっても相違するが、一般的には、0.1〜100μm、殊に1〜20μmとすることができるが、これに限定されるものではない。補強層は、電解質膜のうちガス拡散層を投影する表面全体にわたり設けることができるが、場合によっては、ガス拡散層を投影する表面において局所的に設けても良い。
以下、本発明の実施例を比較例と共に説明する。まず説明の便宜上、比較例から説明する。
(比較例)
以下、比較例について具体的に説明する。重量で1000gの水と300gのカーボンブラック(キャボット社製,バルカンXC72R)とを混合した混合物を攪拌機を用いて十分間攪拌した。次に、テトラフルオロエチレン(以下PTFEという)の含有濃度が60wt%のディスパージョン原液(ダイキン工業株式会社製 商品名:POLYFLON, D1グレード)250gを上記した混合物に添加し、更に十分間攪拌して、カーボンインクを形成した。このカーボンインクにカーボンペーパー(東レ株式会社製,トレカTGP−060、厚さ180μm)を投入して、カーボンインクに含まれているカーボンブラックとフッ素樹脂であるPTFEとをカーボンペーパーに充分に含浸させた。
次に、80℃の温度に保った乾燥炉で、上記カーボンペーパーに含まれている余分な水分を蒸発させた後、焼結温度390℃で60分保持して、PTFEを焼結し、撥水カーボンペーパーを作製した。これを燃料用ガス拡散層および酸化剤用ガス拡散層とした。このように燃料用ガス拡散層および酸化剤用ガス拡散層はカーボンペーパーを基材として形成されているため、カーボンペーパーを形成しているカーボン繊維(導電性繊維)が膜電極接合体の製造過程において電解質膜に突き刺さるおそれがある。
次に,白金濃度が55wt%の白金担持カーボン触媒(田中貴金属工業株式会社製、TEC lOE60E)12gと、5wt%濃度のイオン交換樹脂溶液(旭化成工業株式会社製、SS-1080)106gと、水23gと、成形助剤としてのイソプロピルアルコール23gとを充分に混合し触媒ペーストを形成した。この触媒ペーストをドクターブレード法により上記ガス拡散層の表面に塗布し、酸化剤用触媒層を酸化剤用ガス拡散層に形成した。この場合、白金担持量が0.8ミリグラム/cm2になるようにした。その後、乾燥させて、酸化剤用ガス拡散電極を形成した。
また同様に、上記した触媒ペーストをドクターブレード法により燃料用ガス拡散層の表面に塗布し、燃料用触媒層を形成した。この場合、白金担持量が0.2ミリグラム/cm2になるようにした。その後、乾燥させて、燃料用ガス拡散電極を形成した。
厚みが50μmのイオン交換膜(デュポン社製、Nafion l12)を電解質膜として用いた。そして、この電解質膜の片方の面に上記の酸化剤用ガス拡散電極を配置し、他方の面に燃料用ガス拡散電極を配置した。この後、140℃、8MPa、3分間の条件でホットプレスして、比較例に係るMEAを作製した。
このMEAに燃料用ガス配流板および酸化剤用ガス配流板を組み込み、電池を構成した。そしてセル温度75℃,酸化剤用ガス拡散電極に空気(利用率40%),燃料用ガス拡散電極に水素ガス〈利用率90%〉をそれぞれ常圧で供給し、0.2アンペア/cm2の条件で3分間、開放回路状態で1分間の運転パターンを繰り返し、合計200時間の間欠発電運転を行った。
また、MEAのクロスリーク量を測定すべく、MEAの片側に20KPaの窒素ガスを封入し、反対側を大気開放にした。この状態で5分間保持して、窒素ガス封入側の圧力減少量をセルクロスリーク量とした。
表1は、初期セル電圧、200時間の間欠運転終了時におけるセル電圧出力を示すと共に、初期セルクロスリーク量、200時間の間欠運転終了時におけるセルクロスリーク量を示す。
(実施例1)
本発明の実施例1を図1および図2を参照して説明する。本実施例では、粒径が0.4〜0.6μmのセラミックスであるシリカの微粒子(株式会社アドマテックス製、SO-E2)5gと、5wt%濃度のイオン交換樹脂溶液(旭化成工業株式会社製、SS-910)100gと、水20gと、成形助剤としてのイソプロピルアルコール20gとを充分に混合し、シリカペーストを形成した。このシリカペーストをドクタブレード法によりテトラフルオロエチレンシート10に塗布して補強層11を形成した。補強層11は、カーボン繊維の突き刺しに対して突き刺し抵抗性及びガス透過抵抗性を有するセラミックスとしてのシリカの微小体と、プロトン伝導性をもつイオン交換樹脂からなる電解質成分との混合物で形成されている。上記したシリカの微粒子(微小体)は実質的に真球状である。この場合、補強層11の単位面積あたり、シリカ担持量が0.2ミリグラム/m2になるようにした。更に補強層11を乾操させて、シリカシート12とした。なお、補強層11の平均厚みは5〜10μmとすることができる。
図1(B)に示すように、前記した比較例と同様な厚み50μmの電解質膜2を用意した。そして補強層11と電解質膜2とが接触するように上記のシリカシート12と電解質膜2とを重ねた。その状態で、150℃、10MPa、1分間の条件でホットプレスして電解質膜2に補強層11を転写した後、図1(C)に示すように、シリカシート12のテトラフルオロエチレンシート10を剥がした。
前記した比較例と同様な酸化剤用ガス拡散電極7(酸化剤極)、燃料用ガス拡散電極8(燃料極)を用意した。即ち、比較例でも述べたように、1000gの水と300gのカーボンブラック(キャボット社製、バルカンXC72R)とを混合した混合物を攪拌機を用いて十分間攪拌した。次に、フッ素樹脂であるテトラフルオロエチレン(以下PTFEという)の含有濃度が60wt%のディスパージョン原液(ダイキン工業株式会社製 商品名:POLYFLON, D1グレード)250gを上記した混合物に添加し、更に十分間攪拌して、カーボンインクを形成した。このカーボンインクにカーボンペーパー(東レ株式会社製,トレカTGP−060、厚さ180μm)を投入して、カーボンインクに含まれているカーボンブラックとPTFEとをカーボンペーパーに充分に含浸させた。
次に、80℃の温度に保った乾燥炉で、上記カーボンペーパーに含まれている余分な水分を蒸発させた後、焼結温度390℃で60分保持して、PTFEを焼結し、撥水カーボンペーパーを作製した。これを燃料用ガス拡散層3および酸化剤用ガス拡散層4とした。このような燃料用ガス拡散層3および酸化剤用ガス拡散層4は、導電性繊維としてのカーボン繊維の集合体で形成されている。カーボン繊維を用いているのは、導電パスの形成のし易さ、耐食性、コストなどを考慮したものである。
次に,白金濃度が55wt%の白金担持カーボン触媒(田中貴金属工業株式会社製、TEC lOE60E)12gと、5wt%濃度のイオン交換樹脂溶液(旭化成工業株式会社製、SS-1080)106gと、水23gと、成形助剤としてのイソプロピルアルコール23gとを充分に混合して触媒ペーストを形成した。この触媒ペーストをドクターブレード法により酸化剤用ガス拡散層4の表面に塗布して酸化剤用触媒層6を形成した。この場合、白金担持量が0.8ミリグラム/cm2になるようにした。その後、乾燥させて、酸化剤用ガス拡散電極7(酸化剤極)を形成した。従って酸化剤用ガス拡散電極7は、酸化剤用ガス拡散層4と酸化剤用触媒層6とで形成されている。
また上記した触媒ペーストをドクターブレード法により燃料用ガス拡散層3の表面に塗布し、燃料用触媒層5を形成した。この場合、白金担持量が0.2ミリグラム/cm2になるようにした。その後、乾燥させて、燃料用ガス拡散電極8を形成した。従って燃料用ガス拡散電極8は、燃料用ガス拡散層3と燃料用触媒層5とで形成されている。
本実施例によれば、図2(A)(B)に示すように、酸化剤用ガス拡散電極7に塗布された酸化剤用触媒層6と上記電解質膜2の補強層11とが接触すると共に、燃料用ガス拡散電極8(燃料極)に塗布された燃料用触媒層5と電解質膜2の反対側の面とが接触するように、酸化剤用ガス拡散電極7(酸化剤極)および燃料用ガス拡散電極8(燃料極)で電解質膜2を挟んだ。その後、140℃、8MPa、3分間の条件でホットプレスし、MEA9を作製した。
図2(B)に示すように、膜電極接合体であるMEA9は、燃料用ガス拡散層3と、燃料用触媒層5と、電解質膜2と、補強層11,酸化剤用触媒層6と、酸化剤用ガス拡散層4とを厚み方向に順に積層して形成されている。
更に、図2(C)に示すように、このMEA9に比較例と同様に、燃料ガス通路101aをもつ燃料用ガス配流板101および酸化剤ガス通路102aをもつ酸化剤用ガス配流板102を組み込み、電池を構成した。
本実施例によれば、図2(A)(B)に示すように、電解質膜2の表面に補強層11が設けられているため、製造過程におけるホットプレス等のプレス時に、ガス拡散層3、4の基材を構成するカーボン繊維(導電性繊維)が電解質膜2に突き刺さることを抑制することができる。従って電解質膜2の耐久性の向上、長寿命化に有利である。
補強層11がガス透過抵抗性を有する微粒子を含んでいるため、この微粒子がガス透過のバリアとして作用し、反応ガスが電解質膜2を通って反対側の電極に透過することを抑制できる。従って電解質膜2の耐久性の向上、長寿命化に有利である。
また、上記した補強層11はシリカを基材としているため、シリカが配合されていない場合に比較して熱伝導率が低下する。また、酸化剤用ガス拡散電極7の発電反応は発熱を伴なう。電解質膜2の熱劣化を抑制するためには、発電運転中において、この熱が電解質膜2にあまり伝達されないことが好ましい。この点について本実施例によれば、前述したように酸化剤用ガス拡散電極7に対向するように、補強層11が電解質膜2の表面に形成されているため、シリカを基材とする補強層11は、発電反応で生じた熱が電解質膜2に伝達されることを抑制することができる効果を期待でき、この意味においても電解質膜2の耐久性の向上を期待できる。
上記した電池について、初期セル電圧、200時間の間欠運転終了時におけるセル電圧出力を測定すると共に、初期セルクロスリーク量、200時間の間欠運転終了時におけるセルクロスリーク量を測定する試験を行った。その結果を表1に示す。
(実施例2)
実施例2は実施例1と基本的には同様の構成である。以下、実施例1と異なる部分を中心として説明する。本実施例では、補強層11は燃料用ガス拡散電極8側に設けられている点が実施例1と大きく異なる。そして実施例1と同様な酸化剤用ガス拡散電極7、燃料用ガス拡散電極8を用いた。更に、図3(A)に示すように、一方の面に補強層11を転写された電解質膜2を用意した。そして、図3(B)に示すように、燃料用ガス拡散電極8の燃料用触媒層5と電解質膜2の補強層11とが接触すると共に、酸化剤用ガス拡散電極7の酸化剤用触媒層6と電解質膜2の反対側の面とが接触するように、酸化剤用ガス拡散電極7と燃料用ガス拡散電極8とで電解質膜2を挟んだ。その状態で、140℃、8MPa、3分間の条件でプレスして、MEA9を作製した。このMEA9に比較例と同様に燃料用ガス配流板101および酸化剤用ガス配流板102を組み込み電池を構成し、比較例と同様に評価した。その結果を表1に示す。
(実施例3)
実施例3は実施例1と基本的には同様の構成である。以下、実施例1と異なる部分を中心として説明する。実施例3では、図4(A)に示すように、補強層11が電解質膜2の両面に接触するように、上記のシリカシート12と電解質膜2とを重ねた。その状態で、150℃、10MPa、1分間の条件でホットプレスして電解質膜2の両面に補強層11を転写した後、シリカシート12のシート10を剥がした。従って図4(B)に示すように、電解質膜2の両面に補強層11が積層されている。そして実施例1と同様にMEA9を作製した(図4(C)参照)。このMEA9を比較例と同様に評価した。その結果を表1に示す。
(実施例4)
実施例4は実施例1と基本的には同様の構成である。以下、実施例1と異なる部分を中心として説明する。本実施例では、図5(A)に示すように、厚みが25μmの電解質膜2a,2b(デュポン社製、Nafion 111)2枚を用意し、実施例1と同様に、一枚の電解質膜2aの片面に補強層11を転写した。その後、その補強層11の上に他方の電解質膜2bを重ねた。この状態で、150℃、10MPa、1分間の条件でホットプレスし、2枚の電解質膜2a,2bを接合し、電解質膜2Xを形成した(図5(B)参照)。
更に、比較例と同様な酸化剤用ガス拡散電極7および燃料用ガス拡散電極8を用意し、図5(C)に示すように、上記の接合電解質膜2Xを構成する一方の電解質膜2bが燃料用触媒層5と接触すると共に、電解質膜2Xを構成する他方の電解質膜2aが酸化剤用触媒層6と接触するように、上記の酸化剤用ガス拡散電極7および燃料用ガス拡散電極8で電解質膜2Xを厚み方向に挟んだ。この状態で、140℃、8MPa、3分間の条件でホットプレスして、MEA9を作製した。
本実施例によれば、電解質膜2Xの内部に補強層11が埋設されているため、製造過程におけるホットプレス等のプレス時に、ガス拡散層3,4を構成するカーボン繊維(導電性繊維)が電解質膜2に突き刺さること、及び、反応ガスが電解質膜2Xを透過することを抑制することができる。このMEA9を比較例と同様に評価した。その結果を表1に示す。
(実施例5)
実施例5は実施例1と基本的には同様の構成であるため、図1,図2を準用する。以下、実施例1と異なる部分を中心として説明する。本実施例では、シリカの代替物としてのカーボンブラックを用いた。即ち本実施例では、シリカの代替物としてのカーボンブラック(ケッチェンブラック)5gと、5wt%濃度のイオン交換樹脂溶液(旭化成工業株式会社製、SS−910)100gと、水20gと、成形助剤としてのイソプロピルアルコール20gとを充分に混合し、カーボンブラックペーストを形成した。このペーストをドクタブレード法により、カーボンブラック担持量が0.2ミリグラム/cm2になるようにカーボンブラックで形成された補強層15をシート10に形成し、その後、乾燥させてカーボンブラックシート16とした。補強層15は、カーボン繊維の突き刺しに対して突き刺し抵抗性を有する微小体であるカーボンブラックと、プロトン伝導性をもつイオン交換樹脂からなる電解質成分とを含有する。なお、補強層15の平均厚みは5〜10μmとすることができる。
そして、比較例と同様な厚み50μmの電解質膜2を用い、補強層15と電解質膜2の一方の面とが接触するように、上記のカーボンブラックシートと電解質膜2とを重ねた。この状態で、150℃、10MPa、1分間の条件でホットプレスし、電解質膜2に補強層層15を転写した。その後、シート10を剥がした。
そして比較例と同様な酸化剤用ガス拡散電極7および燃料用ガス拡散電極8を用意し、酸化剤用ガス拡散電極7の酸化剤用触媒層6が上記電解質膜2の補強層15に接触すると共に、燃料用ガス拡散電極8の燃料用触媒層5が電解質膜2の反対側の面に接触するように、酸化剤用ガス拡散電極7(酸化剤極)および燃料用ガス拡散電極8(燃料極)で電解質膜2を厚み方向において挟んだ。この状態で、140℃、8MPa、3分間の条件でホットプレスして、MEA9を作製した。このMEA9を比較例と同様に評価した。その結果を表1に示す。
Figure 2005332672
(評価)
表1に示す結果から理解できるように,実施例1〜実施例5の固体高分子電解質型燃料電池は、比較例の固体高分子電解質型燃料電池に比べて,試験後のセル電圧が高く、更に、試験後のガスリーク量もかなり少なかった。殊に実施例4では、ガスリーク量は最も少なかった。このように本実施例はセル出力特性および耐ガスリーク性に優れていることが分かった。
更に、実施例1に係る電池を用い、補強層11における電解質成分と微小体との配合割合を変化させ、セル電圧を測定する試験を行った。発電条件は前述同様である。試験結果を図6に示す、図6に示すように、補強層を100体積%としたとき、電解質成分が20〜100体積%未満のときには平均セル電圧は高かったが、電解質成分が10体積%のときには平均セル電圧が急激に低下する傾向が認められた。従ってセル電圧を高くすると共に、カーボン繊維の突き刺し防止性を確保するためには、補強層を100体積%としたとき、電解質成分としては15体積%以上、20体積%以上とすることが好ましい。微小体の配合割合が過剰であれば、電解質成分の配合割合が低下するため、プロトン伝導性が低下するおそれがあるが、プロトン伝導性の確保を考慮すると、微小体の配合割合としては85体積%以下、80体積%以下とすることが好ましい。
従って補強層を100体積%としたとき、電解質成分の配合割合としては15〜85体積%、20〜80体積%とすることが好ましく、シリカ等の微小体の配合割合としては85〜15体積%、80〜20体積%とすることが好ましい。
その他、本発明は上記し且つ図面に示した実施例のみに限定されるものではなく、たとえば、シリカの微粒子(微小体)は実質的に真球状であるが、これに限定されず、楕円形状、角形状、異形形状といった非真球状でも良い等、要旨を逸脱しない範囲内で適宜変更して実施できるものである。上記した記載から次の技術的思想を把握できる。
[付記項1]燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体において、ガス透過抵抗性および突き刺し抵抗性のうちの少なくともいずれか一方を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、前記燃料極及び前記酸化剤極のうち少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする膜電極接合体。
[付記項2]燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体を有する高分子電解質型燃料電池において、ガス透過抵抗性および突き刺し抵抗性のうちの少なくともいずれか一方を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、前記燃料極及び前記酸化剤極のうち少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする高分子電解質型燃料電池。
本発明は車両用、定置用、携帯用等の発電シテスムに使用される固体高分子電解質型燃料電池に利用することができる。
実施例1に係り、(A)はシリカシートの断面図であり、(B)は電解質膜にシリカシートを重ねた状態理断面図であり、(C)は電解質膜に補強層を積層させた状態の断面図である。 実施例1に係り、(A)は電解質膜と燃料用ガス拡散電極と酸化剤用ガス拡散電極とを重ねる前の状態を示す断面図であり、(B)はMEAの断面図であり、(C)はMEAに燃料用配流板および酸化剤用配流板を組み付けた電池を示す断面図である。 実施例2に係り、(A)は電解質膜に補強層を積層させた状態の断面図であり、(B)はMEAの断面図である。 実施例3に係り、(A)は電解質膜の両面にシリカシートを積層させた状態の断面図であり、(B)は電解質膜の両面に補強層が重ねられている状態を示す断面図であり、(C)はMEAの断面図である。 実施例4に係り、(A)は片面に補強層を積層させた電解質膜に他方の電解質膜を重ねる前の状態を示す断面図であり、(B)は補強層を電解質膜で挟持した状態を示す断面図であり、(C)はMEAの断面図である。 補強層における電解質成分の体積%を変化させ、セル電圧を測定した試験結果を示すグラフである。
符号の説明
11は補強層、12はシリカシート、2は電解質膜、3は燃料用ガス拡散層、4は酸化剤用ガス拡散層、5は燃料用触媒層、6は酸化剤用触媒層、7は酸化剤用ガス拡散電極、8は燃料用ガス拡散電極、9はMEA、101は燃料用ガス配流板、102は酸化剤用ガス配流板を示す。

Claims (8)

  1. 導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成された膜電極接合体において、
    前記導電性繊維の前記電解質膜への突き刺しを抑制する補強層が、前記燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする膜電極接合体。
  2. 請求項1において、前記補強層は、突き刺し抵抗性を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有することを特徴とする膜電極接合体。
  3. 燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体において、
    ガス透過抵抗性を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、前記燃料極及び前記酸化剤極のうちの少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする膜電極接合体。
  4. 請求項2または請求項3において、前記微小体は無機系であることを特徴とする膜電極接合体。
  5. 請求項4において、前記微小体はセラミックス、カーボン微粒子、金属のうちの少なくとも1種であり、球状をなしていることを特徴とする膜電極接合体。
  6. 請求項2〜請求項5のうちのいずれか一項において、前記微小体の粒径は平均で0.05〜20μmであることを特徴とする膜電極接合体。
  7. 導電性繊維を基材とする燃料用ガス拡散層と、燃料用触媒層と、電解質膜と、酸化剤用触媒層と、導電性繊維を基材とする酸化剤用ガス拡散層とを順に積層して形成された膜電極接合体を有する高分子電解質型燃料電池において、
    前記導電性繊維の前記電解質膜への突き刺しを抑制する補強層が、前記燃料用ガス拡散層および酸化剤用ガス拡散層のうちの少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする高分子電解質型燃料電池。
  8. 燃料極と、電解質膜と、酸化剤極とを順に積層して形成された膜電極接合体を有する高分子電解質型燃料電池において、
    ガス透過抵抗性を有する複数の微小体とイオン伝導性をもつ電解質成分とを含有する補強層が、前記燃料極及び前記酸化剤極のうちの少なくとも一方と前記電解質膜との間、または、前記電解質膜の内部に設けられていることを特徴とする高分子電解質型燃料電池。
JP2004149450A 2004-05-19 2004-05-19 膜電極接合体、高分子電解質型燃料電池 Pending JP2005332672A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004149450A JP2005332672A (ja) 2004-05-19 2004-05-19 膜電極接合体、高分子電解質型燃料電池
US11/119,922 US20050260476A1 (en) 2004-05-19 2005-05-03 Membrane electrode assembly
EP05009795A EP1598890A3 (en) 2004-05-19 2005-05-04 Membrane electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149450A JP2005332672A (ja) 2004-05-19 2004-05-19 膜電極接合体、高分子電解質型燃料電池

Publications (1)

Publication Number Publication Date
JP2005332672A true JP2005332672A (ja) 2005-12-02

Family

ID=34936149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149450A Pending JP2005332672A (ja) 2004-05-19 2004-05-19 膜電極接合体、高分子電解質型燃料電池

Country Status (3)

Country Link
US (1) US20050260476A1 (ja)
EP (1) EP1598890A3 (ja)
JP (1) JP2005332672A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218182A (ja) * 2008-03-13 2009-09-24 Hitachi Ltd 燃料電池用膜/電極接合体
JP5397375B2 (ja) * 2008-06-09 2014-01-22 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体
WO2017090860A1 (ko) * 2015-11-26 2017-06-01 주식회사 엘지화학 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
KR20170061577A (ko) * 2015-11-26 2017-06-05 주식회사 엘지화학 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
US10074869B2 (en) 2012-12-03 2018-09-11 Honda Motor Co., Ltd. Fuel cell
US10290877B2 (en) 2012-11-22 2019-05-14 Honda Motor Co., Ltd. Membrane electrode assembly
US10297850B2 (en) 2013-03-26 2019-05-21 Honda Motor Co., Ltd. Membrane electrode assembly

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943268B2 (en) * 2005-10-04 2011-05-17 GM Global Technology Operations LLC Reinforced membrane electrode assembly
EP2008333B1 (en) * 2006-04-07 2011-04-06 UTC Power Corporation Composite water management electrolyte membrane for a fuel cell
JP5136647B2 (ja) 2008-09-05 2013-02-06 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法
CN103907231B (zh) * 2011-11-04 2016-08-24 丰田自动车株式会社 燃料电池用膜-电极接合体
US20120141910A1 (en) * 2012-02-10 2012-06-07 Clearedge Power, Inc. Multiple Membrane Layers in a Fuel Cell Membrane-Electrode Assembly
JP6131973B2 (ja) 2014-03-14 2017-05-24 トヨタ自動車株式会社 補強型電解質膜の製造方法、膜電極接合体の製造方法、及び、膜電極接合体
US10347930B2 (en) 2015-03-24 2019-07-09 Bloom Energy Corporation Perimeter electrolyte reinforcement layer composition for solid oxide fuel cell electrolytes
KR102467811B1 (ko) * 2020-11-25 2022-11-16 비나텍주식회사 강화층을 형성한 연료전지용 막-전극접합체 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265992A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造
JP2002008678A (ja) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2003151577A (ja) * 2001-11-12 2003-05-23 Sanyo Electric Co Ltd 燃料電池セルユニット
JP2003282093A (ja) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜−電極接合体およびその製造方法
JP2004220843A (ja) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc 膜電極接合体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3977901A (en) * 1974-10-23 1976-08-31 Westinghouse Electric Corporation Metal/air cells and improved air electrodes for use therein
US5547551A (en) * 1995-03-15 1996-08-20 W. L. Gore & Associates, Inc. Ultra-thin integral composite membrane
US5981097A (en) * 1996-12-23 1999-11-09 E.I. Du Pont De Nemours And Company Multiple layer membranes for fuel cells employing direct feed fuels
AU4500500A (en) * 1999-04-30 2000-11-17 University Of Connecticut, The Membranes, membrane electrode assemblies and fuel cells employing same, and process for preparing
US6517962B1 (en) * 1999-08-23 2003-02-11 Ballard Power Systems Inc. Fuel cell anode structures for voltage reversal tolerance
JP4721500B2 (ja) * 2000-09-28 2011-07-13 京セラ株式会社 固体電解質型燃料電池セルおよびその製法
JP2003059511A (ja) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜−電極接合体、その製造方法、および高分子電解質型燃料電池
US6613203B1 (en) * 2001-09-10 2003-09-02 Gore Enterprise Holdings Ion conducting membrane having high hardness and dimensional stability
US6861173B2 (en) * 2002-10-08 2005-03-01 Sompalli Bhaskar Catalyst layer edge protection for enhanced MEA durability in PEM fuel cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265992A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp 燃料電池の電極構造
JP2002008678A (ja) * 2000-06-16 2002-01-11 Asahi Glass Co Ltd 固体高分子型燃料電池
JP2003151577A (ja) * 2001-11-12 2003-05-23 Sanyo Electric Co Ltd 燃料電池セルユニット
JP2003282093A (ja) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd 燃料電池用電解質膜−電極接合体およびその製造方法
JP2004220843A (ja) * 2003-01-10 2004-08-05 Toyota Central Res & Dev Lab Inc 膜電極接合体

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218182A (ja) * 2008-03-13 2009-09-24 Hitachi Ltd 燃料電池用膜/電極接合体
US8691466B2 (en) 2008-03-13 2014-04-08 Hitachi, Ltd. Membrane electrode assembly for fuel cell
JP5397375B2 (ja) * 2008-06-09 2014-01-22 旭硝子株式会社 固体高分子形燃料電池用膜電極接合体
US10290877B2 (en) 2012-11-22 2019-05-14 Honda Motor Co., Ltd. Membrane electrode assembly
US10074869B2 (en) 2012-12-03 2018-09-11 Honda Motor Co., Ltd. Fuel cell
US10297850B2 (en) 2013-03-26 2019-05-21 Honda Motor Co., Ltd. Membrane electrode assembly
WO2017090860A1 (ko) * 2015-11-26 2017-06-01 주식회사 엘지화학 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
KR20170061577A (ko) * 2015-11-26 2017-06-05 주식회사 엘지화학 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지
US10367219B2 (en) 2015-11-26 2019-07-30 Lg Chem, Ltd. Polymer electrolyte membrane, membrane electrode assembly comprising same, and fuel cell comprising membrane electrode assembly
KR102093536B1 (ko) 2015-11-26 2020-03-25 주식회사 엘지화학 고분자 전해질막, 이를 포함하는 막 전극 접합체 및 상기 막 전극 접합체를 포함하는 연료 전지

Also Published As

Publication number Publication date
EP1598890A3 (en) 2006-01-04
EP1598890A2 (en) 2005-11-23
US20050260476A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1598890A2 (en) Membrane electrode assembly
CA2839645C (en) Microporous layer sheet for fuel cell and method for producing the same
CA2839646C (en) Gas diffusion layer for fuel cell and method for manufacturing the same
EP1519433A1 (en) Diffusion electrode for fuel cell
WO2007026546A1 (ja) 電解質膜-電極接合体及びその製造方法
US20090068525A1 (en) Fuel Cell Electrode, Method for Producing Fuel Cell Electrode, Membrane-Electrode Assembly, Method for Producing Membrane-Electrode Assembly, and Solid Polymer Fuel Cell
JP2007141588A (ja) 燃料電池用膜電極接合体およびこれを用いた固体高分子形燃料電池
KR101392230B1 (ko) 폴리머 바인더를 포함하는 막전극 어셈블리 및 이를 포함하는 알칼리 멤브레인 연료전지
JP5153130B2 (ja) 膜電極接合体
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2008300137A (ja) 燃料電池用の触媒層保有拡散層、燃料電池用の膜電極接合体、燃料電池用の触媒層保有拡散層の製造方法、燃料電池用の膜電極接合体の製造方法
EP2028711A1 (en) Method of producing electrolyte membrane-electrode assembly and method of producing electrolyte membrane
US20120183879A1 (en) Membrane electrode assembly and fuel cell using the same
US8430985B2 (en) Microporous layer assembly and method of making the same
JP2008123728A (ja) 膜触媒層接合体、膜電極接合体及び高分子電解質形燃料電池
JP4180556B2 (ja) 固体高分子型燃料電池
JP5109502B2 (ja) 触媒層付電解質膜
JP2006147522A (ja) 膜電極接合体の製造方法、燃料電池および導電性粒子層の製造方法
JP5885007B2 (ja) 燃料電池用電極シートの製造方法
JP4872250B2 (ja) 燃料電池の製造方法
CN113646934A (zh) 膜电极接合体及燃料电池
JP4062133B2 (ja) 膜−電極接合体のガス拡散層の製造方法、膜−電極接合体、及び燃料電池
JP2008218299A (ja) プロトン伝導性を有する固体高分子電解質膜とその製造方法
JP2004288391A (ja) 膜−電極接合体の製造方法、膜−電極接合体、及び燃料電池
JP2014082160A (ja) 金属化合物−樹脂複合膜および燃料電池とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706