JP2005306095A - 車両用空調制御装置 - Google Patents

車両用空調制御装置 Download PDF

Info

Publication number
JP2005306095A
JP2005306095A JP2004122798A JP2004122798A JP2005306095A JP 2005306095 A JP2005306095 A JP 2005306095A JP 2004122798 A JP2004122798 A JP 2004122798A JP 2004122798 A JP2004122798 A JP 2004122798A JP 2005306095 A JP2005306095 A JP 2005306095A
Authority
JP
Japan
Prior art keywords
air
temperature
air conditioning
conditioning
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004122798A
Other languages
English (en)
Inventor
Yoshinori Isshi
好則 一志
Tatsumi Kumada
辰己 熊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004122798A priority Critical patent/JP2005306095A/ja
Publication of JP2005306095A publication Critical patent/JP2005306095A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】 空調の定常時および過渡時ともに、乗員着衣温度と乗員の温感との差に適応して快適感を向上するよう空調制御を行う。
【解決手段】 車室内を設定温度に維持するために必要な目標吹出温度を、内気温センサによる内気温と非接触温度センサによる乗員の表面温度である着衣温度とに応じて算出するにあたり、空調が内気温の目標吹出温度への寄与度を、空調がウォームアップまたはクールダウン時などの過渡時に比べて定常時では小さくする。空調の定常または過渡は、内気温のバランス点と検出温度との差により決まる定常・過渡指標に基づき判定する。これにより、定常時には日射による着衣温度の小さな変化を空調制御に反映させることができ、過渡時には着衣温度と温感とが合わないときの快適感を確保できる。
【選択図】 図10

Description

本発明は、非接触温度センサおよび内気温度センサの検出値の空調制御特性への寄与度を調整する車両用空調制御装置に関する。
従来の車両用空調制御装置では、室内温センサにより検出される室内温度および焦電型温度センサにより検出される乗員の着衣温度に応じて、車室内への目標吹出温度を算出するものがあった(例えば、特許文献1参照)。
特開昭62−299420号公報
しかし、上記従来技術では、空調の定常時でも、ウォームアップ時あるいはクールダウン時等の空調の過渡時でも、室内温度および乗員着衣温度の目標吹出温度に対する寄与度が同じであるので、これらの空調特性への影響度(制御寄与度)が変わらない。したがって、定常時で、かつ、日射等の要因で乗員着衣温度が少し変化したときにこれを空調制御特性にフィードバックして高い快適感を確保することと、ウォームアップ時あるいはクールダウン時等で乗員着衣温度と温感とが合わない時の快適感を確保することとを両立することが困難であった。
本発明は、上記点に鑑み、空調の定常時および過渡時ともに、乗員着衣温度と乗員の温感との差に適応して快適感を向上するよう空調制御を行うことを目的とする。
を目的とする。
上記目的を達成するため、請求項1に記載の発明では、車室内の内気温度を検出する内気温センサ(84)と、車室内の対象物の表面温度を検出する非接触温度センサ(70a、70b、70c、70d)とを備え、検出された内気温度と表面温度とに応じて、車室内の空調特性を制御する車両用空調制御装置(8)において、車室内の空調状態が定常状態であるか過渡状態であるかを判定する空調状態判定手段(S210)と、空調状態が定常状態であると判定される場合における内気温度の空調特性に与える寄与度を、空調状態が過渡状態であると判定される場合における内気温度の空調特性に与える寄与度よりも小さく設定する空調制御手段(S220)と、を備えることを特徴とする。
この発明によれば、空調状態が定常時には、過渡時よりも、内気温度の空調特性に与える寄与度を小さくしているので、定常時、たとえば日射等の影響で対象物の表面温度としての乗員着衣温度が少し変わる場合にもこの影響を空調制御特性へ反映することができ、空調快適性を向上することができるとともに、過渡時には乗員着衣温度と温感とが合わない場合でも比較的大きな内気温度の制御特性への寄与度により空調快適感の確保を可能にし、定常時および過渡時での快適性の向上を両立できる。
さらに、請求項2に記載の発明では、空調状態が冷房時か暖房時かを判定する手段(S210)を備え、空調制御手段は、冷房時における内気温度の空調特性に与える寄与度を、暖房時における内気温度の空調特性に与える寄与度よりも大きく設定することを特徴とする。
これによれば、冷房時に比べ快適と感じられる内気温度になるまで時間を要する暖房時に、表面温度である着衣温度よりも温度が上昇しにくい内気温度の空調特性への寄与度を大きくして、より強い暖房感を得ることができ、空調快適性を向上させることができる。
請求項3に記載の発明は、車室内の内気温度を検出する内気温センサ(84)と、車室内の対象物の表面温度を検出する非接触温度センサ(70a、70b、70c、70d)とを備え、検出された内気温度と表面温度とに応じて、車室内の空調特性を制御する車両用空調制御装置(8)において、車室内の空調状態が定常状態であるか過渡状態であるかを判定する空調状態判定手段(S210)と、空調状態が定常状態であると判定される場合における表面温度の空調特性に与える寄与度を、空調状態が過渡状態であると判定される場合における表面温度の空調特性に与える寄与度よりも大きく設定する空調制御手段(S224)と、を備えることを特徴とする。
この発明によれば、空調状態が定常時には、過渡時よりも、対象物の表面温度の空調特性に与える寄与度を大きくしているので、定常時、たとえば日射等の影響で対象物の表面温度としての乗員着衣温度が少し変わる場合にもこの影響を空調制御特性へ反映することができ、空調快適性を向上することができるとともに、過渡時には乗員着衣温度と温感とが合わない場合でも比較的大きな内気温度の制御特性への寄与度により空調快適感の確保を可能にし、定常時および過渡時での快適性の向上を両立できる。
なお、空調特性は、請求項4に記載のように、乗員により設定される設定温度と、検出された内気温度と表面温度との少なくともいずれか一方とに基づき算出される目標吹出温度とすることができる。
また、請求項5に記載のように、外気温センサにより検出された外気温度に応じて予め設定されている、定常時における内気温度のバランス点を算出するとともに、算出された内気温度のバランス点と検出された内気温度との差に基づいて空調状態を判定することができる。
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
以下、本発明の第1実施形態について図面を参照して説明する。図1は本実施形態による車両用空調装置の室内空調ユニット部の吹出口配置状態を示す平面概要図、図2は室内空調ユニット部および制御ブロックを含む全体構成図である。
本第1実施形態は、車室内1の前後左右の計4つの空調ゾーン1a、1b、1c、1dをそれぞれ独立して空調制御する。図1、図2は右ハンドル車の場合を示しており、上記空調ゾーン1a〜1dをより具体的に説明すると、空調ゾーン1aは、前席空調ゾーンのうち右サイドウインドウ側、すなわち、運転席側に位置する。空調ゾーン1bは、前席空調ゾーンのうち左サイドウインドウ側、すなわち、助手席側に位置する。
そして、空調ゾーン1cは、後席空調ゾーンのうち右側窓(サイドウインドウ)寄りに位置し、空調ゾーン1dは、後席空調ゾーンのうち左側窓(サイドウインドウ)寄りに位置する。なお、図1中、後部座席の乗員の尻部が当たる座面をシートクッション部30、乗員の背があたる面をシートバック部31として示し、特に後席右側(左側)乗員のシートクッション部30c(30d)、シートバック部31c(31d)として図示している。また、図1中の前後左右の各矢印は、車両搭載時における前後左右の方向を示す。
車両用空調装置の室内空調ユニット部は空調手段としての前席用空調ユニット5と後席用空調ユニット6とから構成されている。前席用空調ユニット5は、前席左右の空調ゾーン1a、1bのそれぞれの空調状態(例えば、空気温度)を独立して調整するためのものであり、後席用空調ユニット6は、後席左右の空調ゾーン1c、1dのそれぞれの空調状態を独立して調整するためのものである。
前席用空調ユニット5は、車室内1の最前部の計器盤7の内側に配置されており、後席用空調ユニット6は、車室内1の最後方に配置されている。前席用空調ユニット5は、車室内1の前席側に空気を送風するためのダクト50を備えている。このダクト50の最上流部には、車室内1から内気を導入するための内気導入口50aおよび車室外から外気を導入するための外気導入口50bが設けられている。
さらに、ダクト50には、外気導入口50bおよび内気導入口50aを選択的に開閉する内外気切替ドア51が設けられており、この内外気切替ドア51には、駆動手段としてのサーボモータ510aが連結されている。
また、ダクト50内のうち外気導入口50bおよび内気導入口50aの空気下流側には、車室内1に向けて吹き出される空気流を発生させる遠心式送風機52が設けられている。遠心式送風機52は、遠心式羽根車およびこの羽根車を回転させるブロワモータ52aにより構成されている。なお、図2において、この羽根車は図の簡略化のため軸流式羽根車を示しているが、実際は遠心式の羽根車が使用されている。
さらに、ダクト50内にて遠心式送風機52の空気下流側には、空気を冷却する空気冷却手段としてのエバポレータ53が設けられており、さらに、このエバポレータ53の空気下流側には、空気加熱手段としてのヒータコア54が設けられている。
そして、ダクト50内のうちエバポレータ53の空気下流側には仕切り板57が設けられており、この仕切り板57により、ダクト50内の空気通路を車両左右両側の2つの通路、すなわち、運転席側通路50cと助手席側通路50dとに仕切っている。
運転席側通路50cのうちヒータコア54の側方には、バイパス通路51aが形成されており、バイパス通路51aは、ヒータコア54に対して、エバポレータ53により冷却された冷風をバイパスさせる。
同様に、助手席側通路50dのうちヒータコア54の側方には、バイパス通路51bが形成されており、バイパス通路51bは、ヒータコア54に対して、エバポレータ53により冷却された冷風をバイパスさせる。
運転席側通路50cおよび助手席側通路50dにおいてヒータコア54の空気上流側に、それぞれ、エアミックスドア55a、55bが独立に操作可能に設けられている。運転席側のエアミックスドア55aは、その開度により、運転席側通路50cを流通する冷風のうちヒータコア54を通る量(温風量)とバイパス通路51aを通る量(冷風量)との比を調整して、前席運転席側の空調ゾーン1aへの吹出空気温度を調整する。
同様に、助手席側のエアミックスドア55bは、その開度により、助手席側通路50dを流通する冷風のうちヒータコア54を通る量(温風量)とバイパス通路51bを通る量(冷風量)との比を調整して、前席助手席側の空調ゾーン1bへの吹出空気温度を調整する。
なお、前席左右のエアミックスドア55a、55bには、駆動手段としてのサーボモータ550a、550bがそれぞれ連結されており、エアミックスドア55a、55bの開度は、サーボモータ550a、550bによって、それぞれ独立に調整される。
エバポレータ53は、図示しないコンプレッサ、凝縮器、受液器、減圧器とともに、周知の冷凍サイクルを構成している低圧側の冷却用熱交換器である。このエバポレータ53は、ダクト50内を流れる空気から低圧側冷媒が蒸発潜熱を吸熱して蒸発することにより、ダクト50内の空気を冷却する。なお、冷凍サイクルのコンプレッサは、車両エンジンに電磁クラッチ(図示しない)を介して連結され、電磁クラッチを断続制御することによって駆動停止制御される。
ヒータコア54は、車両エンジンからの温水(エンジン冷却水)を熱源とする加熱用熱交換器であり、このヒータコア54は蒸発器53通過後の空気を加熱する。
運転席側通路50cおよび助手席側通路50dのうちヒータコア54の空気下流側(最下流部)には、運転席側フェイス吹出口2aおよび助手席側フェイス吹出口2bが設けられている。
運転席側フェイス吹出口2aは、運転席側通路50cから運転席に着座する運転席乗員の上半身に向けて空気を吹き出す。また、助手席側フェイス吹出口2bは、助手席側通路50dから助手席に着座する助手席乗員の上半身に向けて空気を吹き出す。
さらに、運転席側通路50cおよび助手席側通路50dのうち運転席側フェイス吹出口2aおよび助手席側フェイス吹出口2bの各空気上流部には、それぞれ、運転席側フェイス吹出口2aを開閉する吹出口切替ドア56aおよび助手席側フェイス吹出口2bを開閉する吹出口切替ドア56bが設けられている。これら吹出口切替ドア56aおよび56bは、それぞれ駆動手段としての運転席側のサーボモータ560a、および助手席側のサーボモータ560bによって、開閉駆動される。
なお、運転席側フェイス吹出口2aと助手席側フェイス吹出口2bは、具体的には図1に示すようにそれぞれ、計器盤7の左右方向の中央部寄り部位に位置するセンターフェイス吹出口と計器盤7の左右方向の両端部付近に位置するサイドフェイス吹出口とに分けて配置される。
また、図1、図2には図示していないが、運転席側通路50cの最下流部には、上記運転席側フェイス吹出口2aの他に、運転席側フット吹出口および運転席側デフロスタ吹出口が設けられている。運転席側フット吹出口は運転席側通路50cから運転者の下半身に空気を吹き出す。運転席側デフロスタ吹出口は運転席側通路50cからフロントガラスの内表面のうち運転席側領域に空気を吹き出す。
同様に、助手席側通路50dの最下流部には、上記助手席側フェイス吹出口2bの他に、助手席側フット吹出口および助手席側デフロスタ吹出口が設けられている。助手席側フット吹出口は助手席側通路50dから助手席乗員の下半身に空気を吹き出す。助手席側デフロスタ吹出口は助手席側通路50dからフロントガラスの内表面のうち助手席側領域に空気を吹き出す。
そして、運転席側通路50cにおいて運転席側フット吹出口および運転席側デフロスタ吹出口の空気上流部には、それぞれの吹出口を開閉する吹出口切替ドア(図示せず)が設けられている。そして、これら運転席側のフェイス、フットおよびデフロスタの各吹出口切替ドアは、上述した運転席側のサーボモータ560aにより連動して開閉駆動される。
また、助手席側通路50dにおいて助手席側フット吹出口および助手席側デフロスタ吹出口の空気上流部には、それぞれの吹出口を開閉する吹出口切替ドア(図示せず)が設けられている。そして、これら助手席側のフェイス、フットおよびデフロスタの各吹出口切替ドアは、上述した助手席側のサーボモータ560bにより連動して開閉駆動される。
後席用空調ユニット6は、車室内1に送風するためのダクト60を備えている。このダクト60内の最上流部には、車室内1から内気導入口60aを通して内気のみを導入する内気導入ダクト60bが接続されている。
内気導入ダクト60bの空気下流側には、車室内1に向けて吹き出される空気流を発生させる遠心式送風機62が設けられている。遠心式送風機62は、遠心式羽根車およびこの羽根車を回転させるブロワモータ62aにより構成されている。なお、この羽根車も図2において、上記と同様、図の簡略化のため軸流式羽根車を示しているが、実際は遠心式の羽根車が使用されている。
さらに、ダクト60内において遠心式送風機62の空気下流側には、空気を冷却する空気冷却手段としてのエバポレータ63が設けられており、このエバポレータ63の空気下流側には、空気を加熱する空気加熱手段としてのヒータコア64が設けられている。
そして、ダクト60内のうちエバポレータ63の下流部分には仕切り板67が設けられており、この仕切り板67により、ダクト60内の空気通路を車両左右両側の2つの通路、すなわち、後席右側通路(後席運転席側通路)60cと後席左側通路(後席助手席側通路)60dとに仕切っている。
後席右側通路60cのうちヒータコア64の側方には、バイパス通路61aが形成されており、バイパス通路61aは、ヒータコア64に対してエバポレータ63により冷却された冷風をバイパスさせる。
また、後席左側通路60dのうちヒータコア64の側方には、バイパス通路61bが形成されており、バイパス通路61bは、ヒータコア64に対してエバポレータ63により冷却された冷風をバイパスさせる。
後席右側通路60cおよび後席左側通路60dにおいてヒータコア64の空気上流側には、それぞれエアミックスドア65a、65bが独立に操作可能に設けられている。これら後席右側および後席左側のエアミックスドア65a、65bには、駆動手段としてのサーボモータ650a、650bがそれぞれ連結されており、後席右側および後席左側のエアミックスドア65a、65bの開度は、サーボモータ650a、650bによって、それぞれ独立に調整される。
そして、後席右側および後部左側のエアミックスドア65a、65bは、それぞれ、その開度により、後席右側通路60cおよび後席左側通路60dを流通する冷風のうちヒータコア64を通る量(温風量)とバイパス通路61aおよび61bとを通る量(冷風量)との比を調整して、後席右側および後席左側の空調ゾーン1c、1dへの吹出空気温度を調整する。
エバポレータ63は、上述した周知の冷凍サイクルにおいて前席側のエバポレータ53に対して並列的に配管結合される冷却用熱交換器である。また、ヒータコア64は、車両エンジンからの温水(エンジン冷却水)を熱源とする加熱用熱交換器であり、ヒータコア64は、温水回路において前席側のヒータコア54に対し並列的に接続され、エバポレータ63通過後の空気を加熱する。
ダクト60内の後席右側通路60cのうちヒータコア64の空気下流側(最下流部)には、後席右側フェイス吹出口2cが設けられている。後席右側フェイス吹出口2cは、後席右側通路60cから後席の右側(すなわち、後席運転席側)に着座する乗員(以下、後席右側乗員という)の上半身に向けて空気を吹き出す。
また、ダクト60内の後席左側通路60dのうちヒータコア64の空気下流側(最下流部)には、後席左側フェイス吹出口2dが設けられている。後席左側フェイス吹出口2dは、後席左側通路60dから後席の左側(すなわち、後席助手席側)に着座する乗員(以下、後席左側乗員という)の上半身に向けて空気を吹き出す。
ここで、後席左右の各フェイス吹出口2c、2dの空気上流部には、それぞれ吹出口切替ドア66a、66bが設けられ、後席左右の各フェイス吹出口2c、2dを開閉するようになっている。この後席左右の吹出口切替ドア66a、66bは、駆動手段としてのサーボモータ660a、660bによって開閉駆動される。
そして、図1、図2には図示しないが、後席右側通路60cの最下流部には、後席右側フェイス吹出口2cの他に後席右側フット吹出口が設けられている。この後席右側フット吹出口は、後席右側通路60cから空気を後席右側乗員の下半身に向けて吹き出す。
同様に、後席左側通路60dの最下流部には、後席左側フェイス吹出口2dの他に後席左側フット吹出口が設けられている。この後席左側フット吹出口は、後席左側通路60dから空気を後席左側乗員の下半身に向けて吹き出す。
この後席左右の各フット吹出口の空気上流部には、それぞれ吹出口切替ドア(図示せず)が設けられており、この後席左右の各吹出口切替ドアは、上記サーボモータ660c、660dによってそれぞれ開閉駆動される。
制御手段(空調制御装置)としてのエアコンECU8の入力側には、外気温度センサ81、冷却水温度センサ82、日射センサ83、内気温度センサ84および蒸発器温度センサ86、87が接続されている。
外気温度センサ81は、車室外温度を検出しその検出温度に応じた外気温度信号TamをエアコンECU8に出力する。冷却水温度センサ82は、エンジンの冷却水(すなわち温水)の温度を検出しその検出温度に応じた冷却水温度信号TwをエアコンECU8に出力する。
日射センサ83は、フロントウインドウの内側にて車両左右方向の略中央部分に配置された周知の2素子(2D)タイプの日射センサであり、車室内の運転席側空調ゾーン1aに入射される日射量と助手席側空調ゾーン1bに入射される日射量とを検出し、それら検出した各日射量に応じた日射量信号TsDrおよびTsPaをエアコンECU8に出力する。
内気温度センサ84は、車室内の前方に配置され、車室内の空気温度を検出しその検出温度に応じた内気温度信号TrをエアコンECU8に出力する。
蒸発器温度センサ86は、エバポレータ53の吹出空気温度を検出しその検出温度に応じた蒸発器吹出温度信号TeFrをエアコンECU8に出力するもので、蒸発器温度センサ87は、エバポレータ63の吹出空気温度を検出しその検出温度に応じた蒸発器吹出温度信号TeRrをエアコンECU8に出力する。
また、エアコンECU8には、空調ゾーン1a、1b、1c、1dのそれぞれの希望温度TsetFrDr、TsetFrPa、TsetRrDr、TsetRrPaが乗員により設定される温度設定スイッチ9、10、11、12、および、前席右側の空調ゾーン1a、前席左側の空調ゾーン1b、後席右側の空調ゾーン1cおよび後席左側の空調ゾーン1dの各ゾーンの表面温度を検出するための各非接触温度センサ70a、70b、70c、および70dが接続されている。なお、温度設定スイッチ9、10、11、12のそれぞれ近傍には、希望温度等の設定内容を表示する希望温度表示手段としてのディスプレイ9a、10a、11a、12aが備えられている。
非接触温度センサ70a、70b、70c、70dは、入力される赤外線量の変化に対応した起電力変化を温度変化として検出するサーモパイル型検出素子が用いられた、いわゆるマトリクスIRセンサである。前席用の非接触温度センサ70a、70bおよび後席用の非接触温度センサ70c、70dは、それぞれ1つケースに収納され、ともに同一の構成を備えている。以下では前席用の非接触温度センサ70a、70bについて説明する。
非接触温度センサ70a、70bは、図3に示すように、検知部71を有しており、検知部71は、基板71a、この基板71a上に設置されるセンサチップ72、および、このセンサチップ72を覆うように配設される赤外線吸収膜73を備えている。
検知部71は、台座71c上に配置されるとともに、カップ状のケース71bによって覆われている。ケース71bの底部には、四角形の窓71dがあけられ、この窓71dにはレンズ71eが填め込まれている。また、赤外線吸収膜73は、空調ゾーン1a、1bの各検温対象物からレンズ71eを通して入射される赤外線を吸収して熱に変換する役割を果たす。
センサチップ72上には、8個の熱電対部Dr1〜Dr4およびPa1〜Pa4が縦4列、横2列のマトリクス状に配列されている。これらの熱電対部Dr1〜Dr4、Pa〜Pa4は、それぞれ、赤外線吸収膜73から発生する熱を電圧(電気エネルギー)にそれぞれ変換する温度検出素子である。
これらの非接触温度センサ70a〜70dは、図4に示すように車室内の左右中央に配置される。前席用非接触温度センサ70a、70bは車室内天井の前部に配置され、それぞれ空調ゾーン1a、1bを検温範囲とするよう配置されている。後席用非接触温度センサ70c、70dは天井のほぼ中央部で、後席乗員のやや前方に配置され、それぞれ空調ゾーン1c、1dを検温範囲とするよう配置されている。
なお図4では、後席用の非接触温度センサ70cについて、その検温範囲を詳しく示しており、他の非接触温度センサ70a、70b、70cの検温範囲については、簡略化または省略している。
すなわち、後席用の非接触温度センサ70cの温度検出素子である熱電対部Dr1、Dr2、Dr3、Dr4はそれぞれ、図4における検温範囲(1)、(2)、(3)、(4)の対象物の表面温度を検出する。検温範囲(1)は、リアウインドウ90の下に配置されるリアトレイ91および後部座席のシートバック31cの上端部であるヘッドレスト部310cを検温範囲としている。
検温範囲(2)、(3)、および(4)は、それぞれ、空調ゾーン1cにある後席右側座席に着座している乗員の左肩部、左側胸腹部、および左大腿部を検温範囲としている。
したがって、非接触温度センサ70cからは、上記4箇所に位置する対象物の表面温度が出力される。
後席用の非接触温度センサ70dの温度検出素子である4つの熱電対部Pa1〜Pa4も、同様に、リアトレイ91および後席シートバック31dのヘッドレスト部310dと、空調ゾーン1dの後部左側座席に着座している乗員の右肩部、右側胸腹部および右大腿部をそれぞれ検温範囲としている。
なお、前席用の非接触温度センサ70a(70b)は、それぞれ4つの熱電対部のうち、3つの熱電対部Dr2(Pa2)、Dr3(Pa3)、Dr4(Pa4)により、空調ゾーン1aの運転者(空調ゾーン1bの助手席乗員)の左(右)肩部、左側(右側)胸腹部、左(右)大腿部を検温範囲として、これら3箇所に位置する対象物の表面温度を出力している。
エアコンECU8は、アナログ/デジタル変換器、マイクロコンピュータ等を有して構成される周知のものであり、各非接触温度センサ70a、70b、70c、70d、日射センサ83、各温度センサ81、82、84、86、87および温度設定スイッチ9、10、11、12からそれぞれ出力される出力信号は、アナログ/デジタル変換器によりアナログ/デジタル変換されてマイクロコンピュータにそれぞれ入力されるように構成されている。
マイクロコンピュータは、ROM、RAMなどのメモリ、およびCPU(中央演算装置)等から構成される周知のもので、イグニッションスイッチがオンされたときに、図示しないバッテリから電力供給される。
次に、上記の構成において本第1実施形態の作動を図5〜図14に基づいて説明する。
エアコンECU8は、電源が投入されると、メモリに記憶された制御プログラム(コンピュータプログラム)がスタートして、図5に示すフローチャートにしたがって空調制御処理を実行する。ここで、前席空調処理および後席空調処理は、それぞれ交互に実行されるもので、前席空調処理および後席空調処理は、それぞれ、一定期間Ts(具体的には、250ms)毎に実行される。なお、以下に、前席空調処理および後席空調処理を分けて図5を参照して説明する。図5は各空調処理の内容を示している。また、以下では、特にことわらずに、前席側をFr、後席側をRr、車両右側をDr、車両左側をPaと表し、これらを組み合わせることにより、各空調ゾーン1a〜1dの座席を表すこととする。
(前席空調処理)
まず、前席空調処理について説明する。前席右側および左側はそれぞれで演算処理されるので、以下では、主として右側の空調ゾーン1aについて説明するものとし、左側の空調ゾーン1bに関しては( )内に記載して説明を簡略化する。
まず、ステップS121で、温度設定スイッチ9、10から設定温度信号TsetFrDr、TsetFrPaを読み込む。さらに、ステップS122で、外気温度センサ81及び日射センサ83から外気温度信号Tam、日射量信号TsDr、TsPaを、内気温度センサ84から内気温度Trを読み込む。また、非接触温度センサ70aの熱電対部Dr2〜Dr4から検出温度信号Tir2〜Tir4を読み込み、非接触温度センサ70bの熱電対部Pa2〜Pa4から検出温度信号Tir2〜Tir4を読み込む。
なお、前席用の非接触温度センサ70a(70b)からの検出温度信号Tir2〜Tir4は、それぞれ、空調ゾーン1a(1b)の乗員である運転者(助手席乗員)の左(右)肩部、左側(右側)胸腹部、左(右)大腿部の各部位の表面温度に相当する。
そして、次のステップS123で、前席側の空調ゾーン1a(1b)毎に、設定温度信号TsetFrDr(TsetFrPa)、非接触温度センサ70a(70b)からの検出信号の平均値(後述の数式5)としての前席右側(左側)温度TirFrDr(TirFrPa)、外気温信号Tam、日射量信号TsDr(TsPa)を数式1(数式2)に代入して、車室内に吹き出す空気の目標吹出温度TAOFrDr(TAOFrPa)を算出する。この目標吹出温度TAOFrDr(TAOFrPa)は、車両環境条件、すなわち空調熱負荷条件の変動にかかわらず、前席右側(前席左側)空調ゾーン1a(1b)の温度を設定温度TsetFrDr(TAOFrPa)に維持するために必要な目標温度である。
TAOFrDr=KsetFrDr×TsetFrDr
−KirFrDr×TirFrDr−Kam×Tam
−KsDr×TsDr+KatoFrDr+RirekiFrDr
−CFrDr ・・・ (数式1)
TAOFrPa=KsetFrPa×TsetFrPa
−KirFrPa×TirFrPa−Kam×Tam
−KsPa×TsPa+KatoFrPa+RirekiFrPa
−CFrPa ・・・ (数式2)
ただし、KsetFrDr=KsetFrPa(=7.0)、KirFrDr=KirFrPa(=3.0)、Kam(=1.1)、KsDr=KsPa(=1.5)は定数である。また、CFrDr(CFrPa)は、前席右側(左側)用補正値であり、外気温Tamの関数として、図6に示すような予め設定されたマップにより与えられる。これは、乗員の着衣量を外気温Tamにより推定するものである。すなわち、外気温Tamが高くなると乗員は薄着になり、これにより、非接触温度センサ70a(70b)の検出値が体温の影響を受けて高めになるため、空調が涼しめに制御されることになる。そこで、この傾向を緩和するために、この補正値CFrDr(CFrPa)により外気温Tamが高くなるほど目標吹出温度TAOFrDr(TAOFrPa)を低めに補正することにより、乗員の温熱感に、より適応した目標吹出温度TAOFrDr(TAOFrPa)とすることができる。
また、過渡期補正値KatoFrDr(KatoFrPa)は、空調状態が定常時と過渡時とで内気温度Trの目標吹出温度TAOFrDr(TAOFrPa)への寄与度を変えるための補正値であり、また、熱履歴補正値RirekiFrDr(RirekiFrPa)は乗員の車両乗り込み時における乗員の着衣温度の熱履歴を補正するもので、ともに、後述する。
次に、ステップS124で、TAOFrDrとTAOFrPaとの平均値(=(TAOFrDr+TAOFrPa)/2、以下、前席用目標平均値という)に基づいて、図7の制御マップにより、内外気モードを決定する。なお、図7中、SW1は内外気切替ドア51の目標開度であり、この目標開度SW1を変化させて内気モード(内気100%)と外気モード(外気100%)とを連続的に切り替える。この内外気切替ドア51の切り替えにより、内気モード(内気循環モード)では、内気導入口50aより車室内空気(内気)を導入し、外気モード(外気導入モード)では、外気導入口50bより車室外空気(外気)を導入する。
具体的には、図7に示すように、前席用目標平均値(図7中のTAOに相当する)が所定温度以下となる領域(最大冷房域)では、内外気切替ドア51により内気導入口50aを全開し、外気導入口50bを全閉する内気循環モードを選択し、前席用目標平均値が所定温度より高くなると、内外気切替ドア51により外気導入口50bを全開し、内気導入口50aを全閉する外気導入モードを選択する。また、前席用目標平均値(TAO)が両者の中間的な温度領域にあるときは内外気モードを内気と外気の両方が同時に導入される内外気混入モードとする。
次に、ステップS125で、図8により吹出口モードを前席側空調ゾーン1a、1bに対して個別に決定する。図8は、予めROMに記憶されている吹出口モード決定の制御マップであって、本例では、TAOFrDr(図8中のTAOに相当する)が上昇するにつれて、空調ゾーン1aの吹出口モードをフェイス(FACE)モード→バイレベル(B/L)モード→フット(FOOT)モードと順次自動的に切り替える。また、TAOFrPa(図8中のTAOに相当する)が上昇するにつれて、空調ゾーン1bの吹出口モードをフェイス(FACE)モード→バイレベル(B/L)モード→フット(FOOT)モードと順次自動的に切り替えるようになっている。
ここで、フェイスモードとは、フェイス吹出口だけから空調風を吹き出すモードであり、フットモードとは、フット吹出口だけから空調風を吹き出しモードである。また、バイレベルモードとは、フェイス吹出口およびフット吹出口から空調風を吹き出すモードである。
たとえば、フェイスモードでは、吹出口切替ドア56a(56b)にてフェイス吹出口2a(2b)を開口し、フェイス吹出口2a(2b)のみから空調風が車室内の乗員上半身側へ吹き出す。バイレベルモードでは、吹出口切替ドア56a(56b)にてフェイス吹出口2a(2b)およびフット吹出口(図示せず)を開口し、空調風がフェイス吹出口2a(2b)およびフット吹出口から車室内の乗員上半身側および乗員下半身側へ同時に吹き出す。フットモードでは、吹出口切替ドア(図示せず)にてフット吹出口を全開し、フット吹出口から主に空調風が車室内の乗員下半身側へ吹き出す。
このように、空調ゾーン毎に吹出口モードを決定すると、各吹出口切替ドアのそれぞれのサーボモータを空調ゾーン毎に制御して、空調ゾーン毎にこの決定される吹出口モードとなるように各吹出口切替ドアをそれぞれ開閉させる。
次に、ステップS126で、上述の前席用目標平均値(目標吹出温度TAOFrDrとTAOFrPaとの平均値)に基づいて、送風機モータ52aに印加するブロワ電圧を決定する。このブロワ電圧としては、送風機52の風量を制御するためのもので、前席用目標平均値に基づいて、予めROM内に記憶された図9の制御マップにしたがって決定されるものである。
図9の制御マップにおいて、前席用目標平均値(=TAO)が中間領域内にあるときには、ブロワ電圧(すなわち送風機52の風量)が一定値となり、TAOが中間領域より大きい場合にはこのTAOが大きくなるほどブロワ電圧(すなわち送風機52の風量)が大きくなる。また、TAOが中間領域より小さい場合にはTAOが小さくなるほどブロワ電圧(すなわち送風機52の風量)が小さくなる。このようにして、ブロワ電圧が決定される。
次に、ステップS127で、エアミックスドア55a、55bの目標開度θ1、θ2を次の数式3、4によって算出する。
θ1={(TAOFrDr−TeFr)/(Tw−TeFr)}×100(%)
・・・ (数式3)
θ2={(TAOFrPa−TeFr)/(Tw−TeFr)}×100(%)
・・・ (数式4)
なお、数式3、4において、TeFrは蒸発器温度センサ86の蒸発器吹出温度信号、Twは冷却水温度センサ82の冷却水(温水)温度信号である。θ1=0%およびθ2=0%は、最大冷房位置であり、運転席側通路50cおよび助手席側通路50dにおいて、前席側のエバポレータ53通過後の空気(冷風)の全量がバイパス通路51a、51bを流れる。また、θ1=100%およびθ2=100%は、最大暖房位置であり、運転席側通路50cおよび助手席側通路50dにおいて、前席側のエバポレータ53通過後の空気(冷風)の全量がコアヒータ54に流入して加熱される。
以上のように決定した内外気切替モード、目標開度θ1、θ2、吹出口モード、ブロワ電圧のそれぞれを示す各制御信号をサーボモータ510a、550a、550b、560a、560bおよび送風機モータ52a等に出力して内外気切替ドア51、エアミックスドア55a、55b、吹出口切替ドア56a、56b、送風機52の各作動を制御する(ステップS128)。
その後、ステップS129で一定期間経過すると、ステップS121の処理に戻り、上述の空調制御処理(ステップS121〜S129)が繰り返される。このような演算、処理の繰り返しによって前席空調ゾーン1a、1bの空調が自動的に制御されることになる。
次に、上記数式1(数式2)において演算される目標吹出温度TAOFrDr(TAOFrPa)の算出処理について、図10に基づき説明する。図10は、上記メインルーチンのステップS123における処理の詳細を示すフローチャートである。
まず、ステップS200で、空調ゾーン1a(1b)の対象物すなわち乗員の表面温度TirFrDr(TirFrPa)が、非接触温度センサ70a(70b)により検出された上記3つの部位(肩部、胸腹部、大腿部)の表面温度の平均値として、数式5により演算される。
TirFrDr(TirFrPa)=(Tir2+Tir3+Tir4)/3
・・・ (数式5)
次にステップS210で、内気温Trのバランス点TrBおよび定常・過渡指標を次のように算出する。Trバランス点Trは図11に示すマップが予め設定され、このマップに基づき、検出された外気温Tamに応じたバランス点TrBが算出される。この内気温のバランス点TrBは、各外気温Tamにおいて、車室内の空調状態が定常状態となっているときの車室内の空気温度Trの平衡温度として実験的に得られたものである。
また、空調ゾーン1a(1b)における定常・過渡指標を、内気温バランス点TrB、設定温度TsetFrDr(TsetFrPa)、内気温検出値Trを用いて数式6により演算する。
定常・過渡指標=(TrB+(TsetFrDr−25))−Tr
定常・過渡指標=(TrB+(TsetFrPa−25))−Tr
・・・ (数式6)
なお、数式6中、(TsetFrDr−25)は、設定温度TsetFrDrと基準温度25℃との偏差を表し、設定温度TsetFrDrを変更した場合、変更分だけ定常・過渡指標をシフトさせて、定常状態の判定を設定温度にかかわらず一定の基準で行うものである。
このようにして演算された定常・過渡指標は、その値が0および0付近では検出された内気温TrがTrのバランス点(平衡温度)TrBに等しいまたは近い状態であり、空調の定常状態を表している。また、定常・過渡指標が負の値となる状態は、Tr>TrBに相当し、実際の内気温Trが内気の平衡温度TrBよりも高いためクールダウンが必要な状態である過渡状態に相当する。また、定常・過渡指標が正の値となる状態は、Tr<TrBに相当し、実際の内気温Trが内気の平衡温度より低いためウォームアップが必要な状態である過渡状態に相当する。
次に、ステップS220にて、過渡期補正値KatoFrDr(KatoFrPa)が、図12に示す制御マップに基づき、定常・過渡指標の値に応じて連続的に変化する値として算出される。すなわち、図12において、空調が定常状態とみなせる−1.0<定常・過渡指標<+1.0の範囲で、過渡期補正値KatoFrDr(KatoFrPa)が0となっている。また、クールダウン側の定常・過渡指標≦−8.0の過渡状態では過渡期補正値は−25.0とされ、ウォームアップ側の定常・過渡指標≧8.0の過渡状態では+50.0とされている。
このように算出される過渡期補正値KatoFrDr(KatoFrPa)は、上記数式1(数式2)において、空調状態に応じて、目標吹出温度TAOFrDr(TAOFrPa)の値に対する寄与度が変化している。
具体的には、空調状態が定常時には、過渡期補正値KatoFrDr(KatoFrPa)が0となり、その結果、内気温Trの大きさが目標吹出温度TAOFrDr(TAOFrPa)に反映されず、したがって内気温Trが変化しても空調制御に影響を与えない。換言すれば、空調状態が定常時には非接触温度センサ70a(70b)による車室内の対象物の表面温度を目標吹出温度TAOFrDr(TAOFrPa)、すなわち空調制御特性に反映させることができる。
ところで、空調状態が定常時に、内気温Trの目標吹出温度TAOFrDr(TAOFrPa)への寄与度が大きいと、非接触温度センサ70a(70b)による対象物の表面温度TirFrDr(TirFrPa)を目標吹出温度TAOFrDr(TAOFrPa)に反映させても、実際の内気温Trが変化してこれを目標吹出温度に反映させることとなり、結局、非接触温度センサ70a(70b)の検出値による空調制御の効果が打ち消されてしまう。
それに対して、本実施形態では、空調状態が定常時において、内気温Trの目標吹出温度TAOFrDr(TAOFrPa)への寄与度を小さくしているので、非接触温度センサ70a(70b)の検出値による空調制御への影響をキャンセルすることがない。
すなわち本実施形態では、空調状態が定常時に、例えば日射等の影響で乗員の着衣温度が少し変化したときなどでも、この対象物の表面温度としての着衣温度TirFrDr(TirFrPa)を非接触温度センサ70a(70b)により検出して目標吹出温度TAOFrDr(TAOFrPa)へ反映させることができるので、空調状態をこの日射による着衣温度の変化に対応して制御することができる。
一方、空調状態がクールダウン側の過渡時には、過渡期補正値KatoFrDr(KatoFrPa)は負の値(≧−25)となり、その結果、目標吹出温度TAOFrDr(TAOFrPa)は低く補正され、クールダウン時の目標吹出温度として適正な値に補正される。
また、空調状態がウォームアップ側の過渡時には、過渡期補正値KatoFrDr(KatoFrPa)は正の値(≦50)となり、その結果、目標吹出温度TAOFrDr(TAOFrPa)は高く補正され、ウォームアップ時の目標吹出温度として適正な値に補正される。
しかも、通常、暖房時には内気温Trは時間とともに上昇してしまうが、本実施形態では、ウォームアップ側での過渡期補正値KatoFrDr(KatoFrPa)により目標吹出温度TAOFrDr(TAOFrPa)は高く補正されるので、このような暖房時の内気温上昇を緩和することができ、空調快適性を向上させることができる。
さらにまた、過渡期補正値KatoFrDr(KatoFrPa)は、暖房時であるウォームアップ側で大きさが50とされ、冷房時であるクールダウン側での大きさ25よりも、目標吹出温度TAOFrDr(TAOFrPa)への寄与度が大きく設定されている。すなわち、暖房時には冷房時よりも快適と感じられるまでの時間が長く必要となるため、着衣温度よりも温度上昇しにくい空気温度、すなわち内気温Trの寄与度を冷房時よりも暖房時の方を大きくすることにより、強い暖房感を得ることができ、空調快適性が向上する。
以上のように過渡期補正値KatoFrDr(KatoFrPa)が算出されたのち、ステップS230にて、熱履歴補正値RirekiFrDr(RirekiFrPa)を算出する。この演算処理手順を図13のフローチャートに基づき説明する。
ステップS300で、乗員の乗り込み判定と乗り込みが発生した場合の乗り込み時からの経過時間の計測を行う。
乗り込み判定は、概略、次のように行う。まず、非接触温度センサ70a(70b)の各熱電対部により検出された、肩温度FrDr2(FrPa2)、胸腹温度FrDr3(FrPa3)および大腿部温度FrDr4(FrPa4)のうち、2つ以上が同時に、夏期では2.5℃以上上がったとき、あるいは冬期では3℃以上下がったときを、非接触温度センサ70a(70b)の検温範囲の空調ゾーン1a(1b)に乗員が乗り込んだものと判定する。
判定基準温度差の違いは、夏期では冬期と比べて、乗員乗り込み時の温度変化が少ないことを考慮したものである。また、夏期または冬期の判定は、外気温Tamが所定温度(例えば、10℃)以上のときを夏期、外気温Tamが所定温度未満のときを冬期とする。
なお、温度上昇、または下降は、250ms毎に読み込まれる非接触温度センサ70a(70b)の各熱電対部による検出値を、それぞれ、例えば4sec毎に16個のサンプリング値を時間平均するときの前回平均値と今回平均値との差分により判定される。
また、この4sec毎の3つの部位(肩部、胸腹部、大腿部)の各時間平均値の3点による平均値を、各非接触温度センサ70a(70b)による各空調ゾーン1a(1b)における対象物の表面温度(乗員の着衣温度)TirFrDr(TirFrPa)とする。
そして、ステップS302にて、上記のように乗員の乗り込みが発生した時点からの経過時間に応じて補正係数f1を図14に示す特性に基づき算出する。すなわち、乗り込み判定直後にはf1=1、乗り込み後2分までf1は直線的に減少し、乗り込み後2分以降はf1=0と設定される。そして、このように算出された補正係数f1を用いて、熱履歴補正値RirekiFrDr(RirekiFrPa)を、数式7により演算する。
RirekiFrDr=f1×3×(TirFrDr(*)−TirFrDr)
RirekiFrPa=f1×3×(TirFrPa(*)−TirFrPa)
・・・ (数式7)
なお、表面温度の平衡温度TirFrDr(*)、TirFrPa(*)は予め設定されたもので、それぞれ設定温度TsetFrDr、TsetFrPaが基準温度(25℃)に設定されているとき、空調制御が定常状態になったときの各非接触温度センサ70a(70b)の3つの部位の検出値の平均値TirFrDr(TirFrPa)に相当する。
すなわち、熱履歴補正値RirekiFrDr(RirekiFrPa)は、乗員の乗り込み直後から所定時間(2分)の間、非接触温度センサ70a(70b)による乗員着衣温度の目標吹出温度TAOFrDr(TAOFrPa)への寄与度を大きくするものである。
このように算出された過渡期補正値KatoFrDr(KatoFrPa)および熱履歴補正値RirekiFrDr(RirekiFrPa)を、上記数式1(数式2)に代入することにより、空調ゾーン1a(1b)における目標吹出温度TAOFrDr(TAOFrPa)が算出される。
(後席空調処理)
次に、後席空調処理について説明する。後席空調処理は、基本的に上記前席空調処理と同じ処理を行うもので、以下では、異なる点を中心に説明する。後席の空調処理においても、図5に示す制御ルーチンにより空調処理される。
まず、ステップS121で、温度設定スイッチ11、12から設定温度信号TsetRrDr、TsetRrPaを読み込む。次に、ステップS122で、外気温センサ81及び日射センサ83から外気温度信号Tam、日射量信号TsDr、TsPa、内気温度センサ84から内気温度Trを読み込む。なお、本実施形態では、後席側の内気温度は前席側の内気温度と同様、内気温度センサ84の検出値で代表させている。さらに、後席用の非接触温度センサ70cの熱電対部Dr1〜Dr4から検出温度信号Tir1〜Tir4を読み込み、後席用の非接触温度センサ70dの熱電対部Pa1〜Pa4から検出温度信号Tir1〜Tir4を読み込む。
なお、後席用の非接触温度センサ70c(70d)からの検出温度信号Tir1〜Tir4は、それぞれ、空調ゾーン1c(1d)のリアウインドウ90の下のリアトレイ91の表面温度と、乗員である後席右側乗員(後席左側乗員)の左(右)肩部、左側(右側)胸腹部、左(右)大腿部の各部位の表面温度とに相当する。なお熱電対部Dr1(Pa1)は、リアトレイ91以外にも、後席シートバック部31c(31d)の上端部であるヘッドレスト部310c(310d)を検温範囲としてもよい。いずれの場合も、検出温度Tir1により後方からの日射の影響を検出することができる。
そして、次のステップS123で、後席側の空調ゾーン1c(1d)毎に、設定温度信号TsetRrDr(TsetRrPa)、非接触温度センサ70c(70d)からの検出信号の平均値(後述の数式12)としての後席右側(左側)温度TirRrDr(TirRrPa)、外気温信号Tam、日射量信号TsDr(TsPa)を、上記と同様の数式8(数式9)に代入して、車室内に吹き出す空気の目標吹出温度TAORrDr(TAORrPa)を算出する。この目標吹出温度TAORrDr(TAORrPa)は、車両環境条件、すなわち空調熱負荷条件の変動にかかわらず、後席右側(後席左側)空調ゾーン1a(1b)の温度を設定温度TsetRrDr(TAORrPa)に維持するために必要な目標温度である。
TAORrDr=KsetRrDr×TsetRrDr
−KirRrDr×TirRrDr−Kam×Tam
−KsDr×TsDr+KatoRrDr+RirekiRrDr
−CRrDr ・・・ (数式8)
TAORrPa=KsetRrPa×TsetRrPa
−KirRrPa×TirRrPa−Kam×Tam
−KsPa×TsPa+KatoRrPa+RirekiRrPa
−CRrPa ・・・ (数式9)
ただし、上記と同様、KsetRrDr=KsetRrPa(=7.0)、KirRrDr=KirRrPa(=3.0)、Kam(=1.1)、KsDr=KsPa(=1.5)は定数である。また、CRrDr(CRrPa)は、外気温Tamに応じて図6に示すように設定された後席右側(左側)用補正値である。
なお、数式8(数式9)中における、後席側の過渡期補正値KatoRrDr(KatoRrPa)および熱履歴補正値RirekiRrDr(RirekiRrPa)も、後述するように、上記前席空調処理におけるのと同様に算出される。
次に、内外気モードの決定処理(ステップS124)を実行せずに(これは、後席空調では外気モードが設定されていないため)、ステップS125で、吹出口モードの決定処理を実行する。この吹出口モードの決定処理では、TAORrDr、TAORrPaに基づき、図8により吹出口モードを後席側の空調ゾーン1c、1dに対して個別に決定する。
具体的には、空調ゾーン1c(1d)の吹出口モードとしては、図8中のTAOをTAORrDr(TAORrPa)とし、このTAORrDr(TAORrPa)が上昇するにつれて吹出口モードをフェイス(FACE)モード→バイレベル(B/L)モード→フット(FOOT)モードと順次自動的に切り替える。
なお、フェイスモードでは、吹出口切替ドア66a(66b)にてフェイス吹出口2c(2d)を開口し、フェイス吹出口2c(2d)のみから空調風が車室内の乗員上半身側へ吹き出す。バイレベルモードは、吹出口切替ドア66a(66b)にてフェイス吹出口2c(2d)およびフット吹出口(図示せず)を開口し、空調風がフェイス吹出口2c(2d)およびフット吹出口から車室内の乗員上半身側および乗員下半身側へ同時に吹き出す。フットモードは、吹出口切替ドア(図示せず)にてフット吹出口を全開し、フット吹出口から主に空調風が車室内の乗員下半身側へ吹き出す。
次に、ステップS126で、目標吹出温度TAORrDrとTAORrPaとの平均値(=(TAORrDr+TAORrPa)/2、以下、後席用目標平均値という)を求め、この後席用目標平均値に基づき、図9の制御マップにしたがって、送風機モータ52aの場合と同様、送風機モータ62aに印加するブロワ電圧を決定する。
次に、ステップS127にて、エアミックスドア65a、65bの目標開度θ3、θ4を次の数式10、11によって算出する。なお、TeRrは蒸発器温度センサ87の蒸発器温度信号、Twは冷却水温度センサ82の冷却水温度信号である。
θ3={(TAORrDr−TeRr)/(Tw−TeRr)}×100(%)
・・・(数式10)
θ4={(TAORrPa−TeRr)/(Tw−TeRr)}×100(%)
・・・(数式11)
なお、数式10、11において、TeRrは蒸発器温度センサ87の蒸発器温度信号、Twは冷却水温度センサ82の冷却水(温水)温度信号である。θ3=0%およびθ4=0%は、最大冷房位置であり、後席右側通路60cおよび後席左側通路60dにおいて、後席側のエバポレータ63通過後の空気(冷風)の全量がバイパス通路61a、61bを流れる。また、θ3=100%およびθ4=100%は、最大暖房位置であり、後席右側通路60cおよび後席左側通路60dにおいて、後席側のエバポレータ63通過後の空気(冷風)の全量がコアヒータ64に流入して加熱される。
以上のように決定した目標開度θ3、θ4、吹出口モード、ブロワ電圧のそれぞれを示す各制御信号を、サーボモータ650a、650b、660a、660bおよび送風機モータ62a等に出力して、エアミックスドア65a、65b、吹出口切替ドア66a、66b、送風機62の作動を制御する(ステップS128)。
その後、ステップS129において一定期間経過すると、ステップS121の処理に戻り、上述の空調制御処理(ステップS121、S122、S123、S125〜S129)が繰り返される。このような処理の繰り返しによって後席の空調ゾーン1c、1dの空調が自動的に制御されることになる。
次に、上記数式8(数式9)において演算される後席側の目標吹出温度TAORrDr(TAORrPa)の算出処理について、前記前席側と同様、図10に基づき説明する。図10は、上記メインルーチンのステップS123における処理の詳細を示すフローチャートである。
まず、ステップS200で、空調ゾーン1c(1d)の対象物すなわち乗員の表面温度TirRrDr(TirRrPa)が、非接触温度センサ70c(70d)により検出された上記4つの部位(リアトレイ、肩部、胸腹部、大腿部)の表面温度の平均値として、数式12により演算される。
TirRrDr(TirRrPa)=(Tir1+Tir2+Tir3+Tir4)/4 ・・・ (数式12)
次にステップS210で、内気温Trのバランス点TrBおよび空調ゾーン1c(1d)における定常・過渡指標を、上記前席空調処理におけるのと同様、図11のマップおよび数式13に基づき算出する。
定常・過渡指標=(TrB+(TsetRrDr−25))−Tr
定常・過渡指標=(TrB+(TsetRrPa−25))−Tr
・・・ (数式13)
次に、ステップS220にて、過渡期補正値KatoRrDr(KatoRrPa)が、図12に示す制御マップに基づき、定常・過渡指標の値に応じて連続的に変化する値として算出される。
さらに、ステップS230にて、熱履歴補正値RirekiRrDr(RirekiRrPa)が算出される。この演算処理も上記前席空調処理におけるのと同様、図13のフローチャートで示される手順で行われる。
ステップS300で、乗員の乗り込み判定と、乗り込みが発生した場合の乗り込み時からの経過時間の計測を行う。乗り込み判定は、まず、非接触温度センサ70c(70d)の各熱電対部により検出された、肩温度RrDr2(RrPa2)、胸腹温度RrDr3(RrPa3)および大腿部温度RrDr4(RrPa4)のうち、2つ以上が同時に、夏期(Tam≧10℃)では2.5℃以上上がったとき、あるいは冬期(<10℃)では3℃以上下がったときを、非接触温度センサ70c(70d)の検温範囲の空調ゾーン1c(1d)に乗員が乗り込んだものと判定する。
なお、温度上昇、または下降は、250ms毎に読み込まれる非接触温度センサ70c(70d)の各熱電対部による検出値を、それぞれ、例えば4sec毎に16個のサンプリング値を時間平均するときの前回平均値と今回平均値との差分により判定される。
また、この4sec毎の4つの部位(リアトレイ、肩部、胸腹部、大腿部)の各時間平均値の4点による平均値を、各非接触温度センサ70c(70d)による各空調ゾーン1c(1d)における対象物の表面温度(乗員の着衣温度)TirRrDr(TirRrPa)とする。
すなわち、後席側の乗員の表面温度には、リアウインドウ90の下にあるリアトレイ91の表面温度(あるいは、後席のシートバック部31c(31d)の上端のヘッドレスト部310c(310d)の表面温度)が含まれており、これにより、後席の乗員の表面温度に、後方日射またはリアウインドウ90からの輻射の影響を反映させたものとすることができる。
そして、ステップS302にて、上記のように乗員の乗り込みが発生した時点からの経過時間に応じて補正係数f1を図14に示す特性に基づき算出する。そして、このように算出された補正係数f1と予め設定されている表面温度の平衡温度TirRrDr(*)、TirRrPa(*)とを用いて、熱履歴補正値RirekiRrDr(RirekiRrPa)を、数式14により演算する。
RirekiRrDr=f1×3×(TirRrDr(*)−TirRrDr)
RirekiRrPa=f1×3×(TirRrPa(*)−TirRrPa)
・・・ (数式14)
このように算出された過渡期補正値KatoRrDr(KatoRrPa)および熱履歴補正値RirekiRrDr(RirekiRrPa)を、上記数式8(数式9)に代入することにより、空調ゾーン1c(1d)における目標吹出温度TAORrDr(TAORrPa)が算出される。
以上のように、前席側の空調ゾーン1a、1bにおける空調特性をあらわす目標吹出温度TAOFrDr、TAOFrPaが上記数式1、2により、後席側の空調ゾーン1c、1dに対する目標吹出温度TAORrDr、TAORrPaが上記数式8、9により、それぞれ算出される。したがって、目標吹出温度TAOFrDr(TAOFrPa、TAORrDr、TAORrPa)は、過渡期補正値KatoFrDr(KatoFrPa、KatoRrDr、KatoRrPa)により、空調状態が定常時には内気温Trの寄与度を小さくまたは「0」とするとともに、熱履歴補正値RirekiFrDr(RirekiFrPa、RirekiRrDr、RirekiRrPa)により乗員の乗り込み直後には車室内対象物の表面温度の寄与度を大きくするように設定され、空調状態が定常時および過渡時において、ともに乗員の温熱感に適合した空調快適性を得ることができる。
また、過渡期補正値KatoFrDr(KatoFrPa、KatoRrDr、KatoRrPa)および補正値CFrDr(CFrPa、CRrDr、CRrPa)は、外気温Tamの影響を反映したものとなっているので、目標吹出温度TAOFrDr(TAOFrPa、TAORrDr、TAORrPa)は車室内外の熱負荷を総合的に反映したものとすることができ、乗員の温熱感に適合した空調快適性を得ることができる。
(第2実施形態)
次に、本発明の第2実施形態について説明する。本第2実施形態は、上記第1実施態とは、ステップS123における各空調ゾーン1a〜1dの目標吹出温度TAOrDr〜TAORrPaの算出方法がやや異なるのみで、他の構成(図1〜図12)は同じである。以下、第1実施形態と同じ構成については、同一の符号を付して説明を省略し、第1実施形態と異なる点について説明する。
図15は、第2実施形態の、図5のメインルーチンにおけるステップS123の処理手順を示すフローチャートである。
ステップS200およびS210では第1実施形態と同様、上記数式5および数式12により、各空調ゾーン1a〜1dにおける対象物の表面温度(平均値)TirFrDr〜TirRrPaが算出され、図11に基づくTrのバランス点TrBおよび各設定温度TsetFrDr〜TsetRrPa、内気温Trより数式6により定常・過渡指標が算出される。
次に、ステップS222にて、各空調ゾーン1a〜1dにおける表面温度のバランス点TirBFrDr〜TirBRrPaが算出される。具体的には、図16に示すマップに基づき検出された外気温Tamに応じた値として算出される。この表面温度のバランス点TirBFrDr〜TirBRrPaは、各外気温Tamにおいて、車室内の空調状態が定常状態となっているときの各空調ゾーン1a〜1dにおける対象物の表面温度TirFrDr〜TirRrPaの平衡温度として実験的に得られたものである。
そして、次のステップS224にて、寄与度係数fkが、図17のマップに基づき、定常・過渡指標の値に応じて連続的に変化する値として算出される。この寄与度係数fkは、表面温度Tirの目標吹出温度TAOへの寄与度を種々の大きさに設定するためのもので、図17において、空調状態が定常時である定常・過渡指標=0において最大値fk=6とし、ウォームアップ側およびクールダウン側の過渡時には、定常・過渡指標=±8.0において、最小値fk=3として設定されている。また、定常状態から過渡状態への移行段階では、fk=6から3へと減少するように設定されている。
そして、ステップS242にて、読み込まれた設定温度信号TsetFrDr〜TsetRrPa、外気温信号Tam、日射量信号TsDr、TsPa、内気温度信号Trと、上記算出された寄与度係数fkFrDr〜fkRrPa、表面温度のバランス点TirBFrDr〜TirBRrPa、対象物の表面温度(平均値)TirFrDr〜TirRrPaを、数式15〜数式18に代入して、各空調ゾーン1a〜1dにおいて車室内に吹き出す空気の目標吹出温度TAOFrDr〜TAORrPaが算出される。
TAOFrDr=KsetFrDr×TsetFrDr
−Kr×Tr−Kam×Tam−KsDr×TsDr
+fkFrDr×(TirBFrDr−TirFrDr)
−CFrDr ・・・ (数式15)
TAOFrPa=KsetFrPa×TsetFrPa
−Kr×Tr−Kam×Tam−KsPa×TsPa
+fkFrPa×(TirBFrPa−TirFrPa)
−CFrPa ・・・ (数式16)
TAORrDr=KsetRrDr×TsetRrDr
−Kr×Tr−Kam×Tam−KsDr×TsDr
+fkRrDr×(TirBRrDr−TirRrDr)
−CRrDr ・・・ (数式17)
TAORrPa=KsetRrPa×TsetRrPa
−Kr×Tr−Kam×Tam−KsPa×TsPa
+fkRrPa×(TirBRrPa−TirRrPa)
−CRrPa ・・・ (数式18)
ただし、KsetFrDr=KsetFrPa=KsetRrDr=KsetRrPa(=7.0)、Kr(=3.0)、Kam(=1.1)、KsDr=KsPa(=1.5)は定数である。また、CFrDr(CFrPa、CRrDr、CRrPa)は、第1実施形態と同様、外気温Tamの関数として、図6に示すような予め設定されたマップにより与えられる補正値である。
このようにして算出された目標吹出温度TAOFrDr〜TAORrPaに基づき、第1実施形態と同様、図5のステップS124〜S129(前席空調処理)またはステップS125〜S129(後席空調処理)での処理により、各空調ゾーン1a〜1dにおける空調状態が制御される。
以上のように、第2実施形態では、各空調ゾーンにおける空調特性をあらわす目標吹出温度において、非接触温度センサ70a〜70dにより検出される車室内の対象物の表面温度の項の係数を、空調状態が定常時では大きく過渡時では小さく設定されている寄与度係数fkとしている。すなわち、空調状態が定常時には過渡時(ウォームアップ時またはクールダウン時)よりも非接触温度センサによる車室内対象物の表面温度の空調制御への寄与度を大きくしているので、定常時、日射等の要因で乗員の着衣温度が少し変化したときに非接触温度センサにより検出されるこの着衣温度の変化を、空調制御にフィードバックすることができ、したがって乗員の空調快適性を向上させることができる。さらに、過渡時において、乗員の着衣温度と温感が適合しないときでも、着衣温度の変化の空調制御への影響を小さくするので、乗員の空調快適性を確保することができる。
本発明に係る車両用空調装置の一実施形態の概略を示す模式図である。 図1の車両用空調装置の概略構成を示す模式図である。 非接触温度センサの構成を示す図である。 非接触温度センサの配置および検温範囲を示す図である。 エアコンECUによる空調制御処理を示すフローチャートである。 目標吹出温度における補正値を決めるためのマップを示す図である。 図5の空調制御処理中において内外気モードを決めるための制御マップを示す図である。 図5の空調制御処理中において吹出口モードを決めるための制御マップを示す図である。 図5の空調制御処理中においてブロワ電圧を決めるための制御マップを示す図である。 第1実施形態の目標吹出温度の演算処理を示すフローチャートである。 内気温Trのバランス点を決めるためのマップを示す図である。 過渡期補正値を決めるためのマップを示す図である。 図10において熱履歴補正値の演算処理を示すフローチャートである。 熱履歴補正値における補正係数f1を決めるためのマップを示す図である。 第2実施形態の目標吹出温度の演算処理を示すフローチャートである。 表面温度Tirのバランス点を決めるためのマップを示す図である。 第2実施形態の目標吹出温度における寄与度係数fkを決めるためのマップを示す図である。
符号の説明
1a、1b、1c、1d…空調ゾーン、5…前席空調システム、
6…後席空調システム、70a、70b、70c、70d…非接触温度センサ、
8…エアコンECU。

Claims (5)

  1. 車室内の内気温度を検出する内気温センサ(84)と、前記車室内の対象物の表面温度を検出する非接触温度センサ(70a、70b、70c、70d)とを備え、前記検出された内気温度と表面温度とに応じて、前記車室内の空調特性を制御する車両用空調制御装置(8)において、
    前記車室内の空調状態が定常状態であるか過渡状態であるかを判定する空調状態判定手段(S210)と、
    前記空調状態が定常状態であると判定される場合における前記内気温度の前記空調特性に与える寄与度を、前記空調状態が過渡状態であると判定される場合における前記内気温度の前記空調特性に与える寄与度よりも小さく設定する空調制御手段(S220)と、
    を備えることを特徴とする車両用空調制御装置。
  2. 前記空調状態が冷房時か暖房時かを判定する手段(S210)を備え、
    前記空調制御手段は、前記冷房時における前記内気温度の前記空調特性に与える寄与度を、前記暖房時における前記内気温度の前記空調特性に与える寄与度よりも大きく設定することを特徴とする請求項1に記載の車両用空調制御装置。
  3. 車室内の内気温度を検出する内気温センサ(84)と、前記車室内の対象物の表面温度を検出する非接触温度センサ(70a、70b、70c、70d)とを備え、前記検出された内気温度と表面温度とに応じて、前記車室内の空調特性を制御する車両用空調制御装置(8)において、
    前記車室内の空調状態が定常状態であるか過渡状態であるかを判定する空調状態判定手段(S210)と、
    前記空調状態が定常状態であると判定される場合における前記表面温度の前記空調特性に与える寄与度を、前記空調状態が過渡状態であると判定される場合における前記表面温度の前記空調特性に与える寄与度よりも大きく設定する空調制御手段(S224)と、
    を備えることを特徴とする車両用空調制御装置。
  4. 乗員により設定温度が設定される温度設定手段(9a、10a、11a、12a)を備え、
    前記空調制御手段は、前記設定温度と、前記検出された内気温度と表面温度との少なくともいずれか一方とに基づき算出される目標吹出温度を前記空調特性とすることを特徴とする請求項1ないし3のいずれか1つに記載の車両用空調制御装置。
  5. 前記車室外の外気温度を検出する外気温センサ(81)を備え、
    前記空調状態判定手段は、前記検出された外気温度に応じて予め設定されている定常時における内気温度のバランス点を算出する手段(S210)と、前記内気温度のバランス点と前記検出された内気温度との差に基づいて前記空調状態を判定する手段(S210)とを備えることを特徴とする請求項1ないし4のいずれか1つに記載の車両用空調制御装置。
JP2004122798A 2004-04-19 2004-04-19 車両用空調制御装置 Pending JP2005306095A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004122798A JP2005306095A (ja) 2004-04-19 2004-04-19 車両用空調制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004122798A JP2005306095A (ja) 2004-04-19 2004-04-19 車両用空調制御装置

Publications (1)

Publication Number Publication Date
JP2005306095A true JP2005306095A (ja) 2005-11-04

Family

ID=35435356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004122798A Pending JP2005306095A (ja) 2004-04-19 2004-04-19 車両用空調制御装置

Country Status (1)

Country Link
JP (1) JP2005306095A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154577A1 (ja) * 2016-03-11 2017-09-14 株式会社デンソー 輻射ヒータ装置
EP3284622A4 (en) * 2015-04-16 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control device
WO2018229384A1 (fr) 2017-06-16 2018-12-20 Valeo Systemes Thermiques Dispositif d'identification d'un indice de famille d'habillement
JP2019034693A (ja) * 2017-08-21 2019-03-07 株式会社デンソー 車両用空調装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3284622A4 (en) * 2015-04-16 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning control device
WO2017154577A1 (ja) * 2016-03-11 2017-09-14 株式会社デンソー 輻射ヒータ装置
JP2017159858A (ja) * 2016-03-11 2017-09-14 株式会社デンソー 輻射ヒータ装置
US10906378B2 (en) 2016-03-11 2021-02-02 Denso Corporation Radiant heater device
WO2018229384A1 (fr) 2017-06-16 2018-12-20 Valeo Systemes Thermiques Dispositif d'identification d'un indice de famille d'habillement
US11995897B2 (en) 2017-06-16 2024-05-28 Valeo Systemes Thermiques Device for detecting the type and the level of clothing of a passenger of a motor vehicle utilizing a neural network
JP2019034693A (ja) * 2017-08-21 2019-03-07 株式会社デンソー 車両用空調装置

Similar Documents

Publication Publication Date Title
JP4591133B2 (ja) 車両用空調装置
US7389812B2 (en) Vehicle air conditioning system having non-contacting temperature sensors
JP4114651B2 (ja) 車両用空調装置
JP2005329929A (ja) 車両用温度検出装置および車両用空調装置
JP2006240578A (ja) 車両用着座判定装置、および車両用空調装置
JP2005306095A (ja) 車両用空調制御装置
JP4277722B2 (ja) 車両用空調装置
JP4269905B2 (ja) 車両用空調装置
JP2004330961A (ja) 車両用空調装置
JP2006248352A (ja) 車両用温度検出装置および車両用空調装置
JP3627580B2 (ja) 車両用空調装置
JP2005297902A (ja) 車両用空調装置
JP2018144813A (ja) 車両用空調装置
JP4259258B2 (ja) 車両用空調装置
JP4458908B2 (ja) 車両用空調装置
JP6537790B2 (ja) 車両用空調装置
JP6647347B2 (ja) 車両用空調装置
JP2007296882A (ja) 車両用空調装置
JP4292939B2 (ja) 車両用空調装置
JP2005297903A (ja) 車両用温度検出装置および車両用空調装置
JP4207708B2 (ja) 車両用空調装置
JP2005138775A (ja) 車両用温度検出装置および車両用空調装置
JP4120613B2 (ja) 車両用温度検出装置、および車両用空調装置
JP2005140571A (ja) 車両用非接触温度センサおよび車両用空調装置
JP2007261369A (ja) 車両用空調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A977 Report on retrieval

Effective date: 20081113

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20081202

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331