JP2005303298A - 磁気トンネル接合型磁気ランダムアクセスメモリセル、磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法 - Google Patents

磁気トンネル接合型磁気ランダムアクセスメモリセル、磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法 Download PDF

Info

Publication number
JP2005303298A
JP2005303298A JP2005110125A JP2005110125A JP2005303298A JP 2005303298 A JP2005303298 A JP 2005303298A JP 2005110125 A JP2005110125 A JP 2005110125A JP 2005110125 A JP2005110125 A JP 2005110125A JP 2005303298 A JP2005303298 A JP 2005303298A
Authority
JP
Japan
Prior art keywords
layer
magnetic
tunnel junction
random access
access memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005110125A
Other languages
English (en)
Other versions
JP5036135B2 (ja
Inventor
Guo Yimin
一民 郭
Po Kang Wang
王 伯剛
Shi Xizeng
西▲増▼ 石
Tai Min
閔 泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Headway Technologies Inc
Applied Spintronics Inc
Original Assignee
Headway Technologies Inc
Applied Spintronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Headway Technologies Inc, Applied Spintronics Inc filed Critical Headway Technologies Inc
Publication of JP2005303298A publication Critical patent/JP2005303298A/ja
Application granted granted Critical
Publication of JP5036135B2 publication Critical patent/JP5036135B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】 強磁性フリー層の磁化状態を安定化することにより、熱的要因および磁気的要因に起因して誤作動することを抑制することが可能な磁気トンネル接合型磁気ランダムアクセスメモリセルを提供する。
【解決手段】 隣接軟磁性層24を含む複合構造を有するようにビット線20を構成する。ビット線20のうちの隣接軟磁性層24とMTJ素子50のうちの強磁性フリー層38とが互いに静磁気的に結合されるため、そのMTJ素子50が形状磁気異方性を有していると、強磁性フリー層38の磁化状態が相対的に高安定な状態(強磁性フリー層38の磁化方向がロックされたC状態)と相対的に低安定な状態(強磁性フリー層38の磁化方向がアンロックされたS状態)との間において切り換えられながら、MTJ−MRAMセル150が選択されることにより情報が記録される。
【選択図】 図1A

Description

本発明は、磁気トンネル接合を利用した磁気トンネル接合型磁気ランダムアクセスメモリセル、複数の磁気トンネル接合型磁気ランダムアクセスメモリセルにより構成された磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ、ならびに複数の磁気トンネル接合型磁気ランダムアクセスメモリセルの中から記録対象の磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録する磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法に関する。
磁気トンネル接合(MTJ;magnetic tunnel junction)素子は、2つの電極を含んで構成されており、より具体的には2つの強磁性層が薄い絶縁性トンネルバリア層を挟んで積層された積層構造を有している。この絶縁性トンネルバリア層は、2つの強磁性層の間において電荷(一般に電子)が量子力学的トンネリング現象を利用して移動(トンネリング)可能なものである。この電子が絶縁性トンネルバリア層をトンネリングする確率(トンネリング確率)を上昇させるためには、その絶縁性トンネルバリア層の厚さが十分に薄くなければならない。
トンネリング確率は、電子のスピンに依存しており、より具体的には電子のスピンの差異に伴うトンネリングの発生可能性に依存している。すなわち、電子が絶縁性トンネルバリア層をトンネリングする際に流れる電流(トンネリング電流)は、スピンアップ電子の数とスピンダウン電子の数との間の比率に依存し、その比率は、2つの強磁性層の磁化方向に対する電子のスピン配向に依存する。これにより、通電時において2つの強磁性層の磁化方向が変化すると、トンネリング電流は2つの強磁性層の間の相対的な磁化方向の関数として変化する。したがって、MTJ素子では、トンネリング電流を測定することにより、2つの強磁性層の間の相対的な磁化方向を検出することが可能である。また、MTJ素子では、2つの強磁性層の間の相対的な磁化方向に応じて抵抗が変化するため、その抵抗を測定することも可能である。
MTJ素子を情報記憶デバイスに利用するためには、2つの強磁性層のうちの一方の強磁性層の磁化方向が他方の強磁性層の磁化方向に対して変化する際にトンネリング電流および抵抗が変化する現象を利用して、それらのトンネリング電流および抵抗を測定することにより2つの強磁性層の間の相対的な磁化方向の変化を検出する必要がある。
特に、情報記憶デバイスに利用されるMTJ素子では、そのMTJ素子に情報を記録可能とするために、2つの強磁性層の磁化方向を互いに平行な状態(低抵抗状態)と互いに反平行な状態(高抵抗状態)との間において切り換え可能な2つの磁化状態を有することが必要である。このMTJ素子に関する2つの磁化状態は、トンネリング電流または抵抗を測定することにより検出することが可能である。MTJ素子では、一般に、強磁性フリー層の磁化方向は自由に回転可能となるように設定されるが、実際のところは、強磁性フリー層の磁化方向は容易軸(結晶磁気異方性の方向)に沿って特定の方向に配向しやすい傾向を有している。これに対して、ピンド層の磁化方向は、容易軸に沿って特定の方向に永久的に配向される(固定される)。強磁性フリー層の磁化方向がピンド層の磁化方向に沿って配向されない場合、MTJ素子の抵抗は最大となり、一方、強磁性フリー層の磁化方向がピンド層の磁化方向に沿って配向された場合、MTJ素子の抵抗は最小となる。
MTJ素子を利用した情報記憶デバイス、すなわち磁気トンネル接合型磁気ランダムアクセスメモリ(MTJ−MRAM;magnetic random access memory )セルアレイ(以下、単に「MTJ−MRAM」ともいう。)を構成する複数のMTJ−MRAMセルは、一般に、上記したMTJ素子と共に、記録用の電流を流すための電流線(記録線)としてワード線およびビット線を併せて備えており、そのMTJ素子は、ワード線とビット線とが互いに交差する位置において、それらのワード線およびビット線により挟まれるように配置されている。ワード線およびビット線の双方が作動し、すなわちワード線およびビット線の双方に電流が流れると、MTJ素子において強磁性フリー層の磁化方向が変化することにより情報が記録される。これに対して、ワード線またはビット線のいずれか一方のみが作動している場合には、MTJ素子の抵抗が測定され、すなわちMTJ素子に記録されている情報が再生される。
この種のMTJ素子の構成に関しては、既にいくつかの態様が知られている。具体的には、ギャラガー(Gallagher )等は、フリー層と共に強磁性ピンド層を併せて備えたMTJ素子を提案している(例えば、特許文献1参照。)。この強磁性ピンド層の磁化方向は、その強磁性ピンド層の膜面内に存在しているが、フリー層の磁化方向が自由に回転可能である一方で、強磁性ピンド層の磁化方向は回転不能である。これらのフリー層および強磁性ピンド層は、絶縁性トンネルバリア層を挟んで積層されている。
米国特許第5650958号明細書
MTJ−MRAMは、ダイナミックランダムアクセスメモリ(DRAM;dynamic random access memory)などの他の情報記憶デバイスと競合するものであるが、そのMTJ−MRAMでは、一般に、サブミクロン寸法となるようにMTJ素子が極めて小さく形成される。パーキン(Parkin)等は、2つの強磁性層(フリー層を含む)がスペーサ層を挟んで互いに反平行に磁化されるように積層され、特に、スペーサ層が2つの強磁性層の間の交換結合を妨げると共に直接的な双極子結合を許容するように構成されたMTJ−MRAMを提案している(例えば、特許文献2参照。)。この種のMTJ−MRAMでは、フリー層が閉磁気ループを構成しており、2つの強磁性層の磁化方向が同時に回転する。
米国特許第6166948号明細書
この種のMTJ−MRAMに関して、パーキンは、サブミクロン寸法となるようにMTJ素子を形成した場合に、10Mbit〜100Mbitの容量範囲内においてDRAMと競合し得ることを指摘していると共に、そのサブミクロンに至るMTJ素子の小さな寸法が重大な問題、具体的には超常磁性と関連し得ることを併せて指摘している。この超常磁性では、MTJ素子の寸法が小さすぎるために十分な磁気異方性(磁化方向を維持するために必要な磁気的性質)が得られにくいため、そのMTJ素子において磁化が熱の影響を受けて自然に変動する。MTJ素子の断面積が極めて小さい場合に、上記した超常磁性に起因する問題を解決するするためには、強磁性層の厚さを大きくする必要がある。ただし、強磁性層の厚さを大きくした場合には、その強磁性層の磁化方向を回転させるために必要な磁界も大きくなるため、超常磁性に起因する問題が解決されることによりMTJ素子が熱的に安定化する一方で、消費電流が増加してしまう。
MTJ素子が磁化方向を維持する性質を有し、すなわちワード線およびビット線に電流が流れていないときにMTJ素子において情報を維持するためには、そのMTJ素子が十分な磁気異方性を有している必要がある。このMTJ素子の寸法が小さくされてきた過程では、磁気異方性を確保するために多様な形状(例えば長方形、菱形または楕円など)を有するようにMTJ素子を形成してきた経緯に基づき、そのMTJ素子では結晶磁気異方性の損失分が形状磁気異方性を利用して補填される。
ところが、MTJ素子は依然として磁気異方性の観点において問題を抱えている。すなわち、MTJ素子の形状に起因する重要な問題は、非円形となるようにMTJ素子を構成した場合に生じる不要な磁界、すなわち非円形の形状的要因に起因して生じる不規則で制御不能なエッジ磁界である。MTJ素子の寸法が小さくなると、そのMTJ素子自体の磁化に対してエッジ磁界が相対的に大きくなるため、MTJ−MRAMにおいて情報を記録または再生する際に、エッジ磁界に起因した悪影響が生じる。MTJ素子の形状磁気異方性が十分に大きくなると、超常磁性に起因する悪影響は低減されるが、MTJ素子に情報を記録する際にフリー層の磁化方向を回転させるために大電流を要してしまう。
このMTJ素子の形状磁気異方性が大きい場合に大電流を要する問題を解決するためには、低電流において磁界を集中させるメカニズムを開発すればよい。ダーラム(Durlam)等は、ダマスク模様の電流線(銅(Cu))の周囲に、磁束を集中させるための軟磁性層(ニッケル鉄合金(NiFe))を設けたMTJ−MRAMを提案している(例えば、特許文献3参照。)。この軟磁性層は、電流線(ディジット線)を三方から囲むように設けられている。
米国特許第6211090B1号明細書
従来設計のMTJ−MRAMでは、ワード線とビット線とが互いに交差する位置にMTJ−MRAMセルが配置されている場合に、それらのワード線およびビット線の双方に電流が流れることにより記録対象のMTJ−MRAMが選択され(選択状態に切り換えられ)、そのMTJ−MRAMセルに情報が記録される。このとき、電流が流れているワード線およびビット線が互いに交差する位置に配置されているMTJ−MRAMセル以外のMRAMセル、すなわち電流が流れているワード線と電流が流れていないビット線とが互いに交差する位置に配置されているMTJ−MRAMセル、あるいは電流が流れていないワード線と電流が流れているビット線とが互いに交差する位置に配置されているMTJ−MRAMセルでは、そのワード線またはビット線に流れている電流に基づく磁界のみが付与される。この種の磁界が付与されるMTJ−MRAMセルの状態は、いわゆる「半選択」された状態と呼ばれる。MTJ−MRAMでは、選択されたMTJ−MRAMセルのみにおいて強磁性フリー層の磁化方向が反転することにより情報が記録され、半選択されたMTJ−MRAMセルでは強磁性フリー層の磁化方向が切り換えられることにより情報が記録されてはならない。
MTJ−MRAMを構成している各MTJ−MRAMセルは、2つの磁界、すなわちワード線に流れている電流に基づいて生じる磁界およびビット線に流れている電流に基づいて生じる磁界が互いに重ね合わされた影響下において、活性(作動可能)であると考えられる。ワード線またはビット線のいずれか一方のみに電流が流れている場合には、MTJ−MRAMセルに付与される磁界(局所磁界)が磁化方向を反転させるのに十分でないため、MTJ−MRAMセルが不活性(作動不能)であると言える。ところが、この種の作動機構を有するMTJ−MRAMでは、1つの問題が生じる。すなわち、MTJ−MRAMセルの寸法が小さくなりすぎると、そのMTJ−MRAMセルが不活性であるにもかかわらずに、局所磁界の影響を受けて意図せずに磁化方向が反転してしまう。
この意図しない磁化方向の反転に関する問題を解決するために、ブルームキスト(Bloomquist)等は、MTJ−MRAMセルの下方側に位置する記録線をほぼ完全に被覆するように被覆層を設けたMTJ−MRAMを提案している(例えば、特許文献4参照。)。この被覆層は、記録線の上方に空間を確保するため、MTJ素子に隣接されるように2つの磁極(ワード線,ビット線)を配置させる。この被覆層を備えたMTJ−MRAMでは、記録線に電流を流すことにより、MTJ−MRAMセルに大きな磁界が付与される。
米国特許第6661688B2号明細書
また、バタチャラヤ(Bhattacharayya)等は、記録線が分割されており、その分割された記録線を利用して情報が記録されるMTJ−MRAMを提案している。各記録線は、電流が流れることにより生じる磁界を増加させるために、高透磁率を有する軟磁性材料により構成されている。
また、シャルマ(Sharma)等は、二重リファレンス層を備えた磁気メモリセル内に軟磁性リファレンス層(すなわちピンド層)を形成するためのシード層として機能する被覆ビット線を提案している(例えば、特許文献5参照。)。
米国特許第6593608B1号明細書
また、ジョーンズ(Jones )等は、溝に形成された自己配向型の被覆ビット線を提案している(例えば、特許文献6参照。)。
米国特許第6555858B1号明細書
さらに、リゾー(Rizzo )等は、導電線に平行な形状磁気異方性を有するように、磁性材料を使用して被覆層を形成する方法を提案している(例えば、特許文献7参照。)。この被覆層は、導電層を被覆しており、形状磁気異方性に非平行な誘発磁気異方性を有している。これらの2種類の磁気異方性が組み合わされることにより、被覆層の透磁率が増加すると共に、導電線に電流が流れた際に生じる磁界が増加する。
米国特許第6430085B1号明細書
ところで、MTJ−MRAMの記録性能を安定化させるためには、MTJ−MRAMセルに記録されている情報を維持し、すなわち熱的要因および磁気的要因に起因してMTJ−MRAMセルが誤作動することにより意図せずに情報が消去または上書きされることを抑制するために、強磁性フリー層の磁化状態を可能な限り安定化させる必要がある。しかしながら、上記した一連の従来のMTJ−MRAMでは、強磁性フリー層の磁化状態を切り換えるための磁界を増加させる観点において利点を有するものの、その強磁性フリー層の磁化状態を安定化させる観点においては未だ十分と言えないため、多分に改善の余地がある。したがって、MTJ−MRAMの記録性能の安定化を実現するためには、強磁性フリー層の磁化状態を可能な限り安定化させることが可能な技術の確立が望まれるところである。この場合には、特に、MTJ−MRAMセルの選択または非選択を安定に切り換えることにより、複数のMTJ−MRAMセルの中から記録対象のMTJ−MRAMセルを選択して記録可能であることも重要である。
本発明はかかる問題点に鑑みてなされたもので、その第1の目的は、強磁性フリー層の磁化状態を安定化することにより、熱的要因および磁気的要因に起因して誤作動することを抑制することが可能な磁気トンネル接合型磁気ランダムアクセスメモリセルおよび磁気トンネル接合型磁気ランダムアクセスメモリセルアレイを提供することにある。
また、本発明の第2の目的は、選択または非選択を安定に切り換えることが可能な磁気トンネル接合型磁気ランダムアクセスメモリセルおよび磁気トンネル接合型磁気ランダムアクセスメモリセルアレイを提供することにある。
さらに、本発明の第3の目的は、強磁性フリー層の磁化状態を安定に切り換えながら磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録することが可能な磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法を提供することにある。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルは、第1の方向に延在するワード線と、ワード線と異なる階層において、第1の方向と交差する第2の方向に延在すると共に隣接軟磁性層を含む複合構造を有するビット線と、ワード線とビット線との間に配置され、隣接軟磁性層に静磁気的に結合されることにより相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能な2つの切換モードを有する強磁性フリー層を含む磁気トンネル接合素子とを備えたものである。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルアレイは、強磁性フリー層を含む磁気トンネル接合素子と、隣接軟磁性層を含むビット線とを備えた磁気トンネル接合型磁気ランダムアクセスメモリセルを複数有し、各磁気トンネル接合型磁気ランダムアクセスメモリセルにおいて磁気トンネル接合素子のうちの強磁性フリー層が相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能であることにより、その強磁性フリー層の磁化方向がロックまたはアンロック可能であり、強磁性フリー層の磁化状態がその強磁性フリー層と隣接軟磁性層との間の静磁気的結合に基づいて生じているものである。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルまたは磁気トンネル接合型磁気ランダムアクセスメモリセルアレイでは、ビット線が隣接軟磁性層を含む複合構造を有しているため、そのビット線のうちの隣接軟磁性層と磁気トンネル接合素子のうちの強磁性フリー層とが互いに静磁気的に結合される。この場合には、磁気トンネル接合素子が磁気異方性(例えば形状磁気異方性または結晶磁気異方性)を有していると、強磁性フリー層の磁化状態が相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において切り換えられながら、磁気トンネル接合型磁気ランダムアクセスメモリセルが選択されることにより情報が記録される。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法は、相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能な強磁性フリー層を含む磁気トンネル接合素子と、その磁気トンネル接合素子の一方側に配置されたワード線および他方側に配置されたビット線とを備えると共に、初期状態において強磁性フリー層が相対的に高安定な磁化状態を有する磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録する方法であり、磁気トンネル接合型磁気ランダムアクセスメモリセルに電流を流すステップが、ワード線に時間T1において第1の電流値を有する電流I1を第1の方向に流すことにより、強磁性フリー層の磁化方向を回転させずに相対的に高安定な磁化状態から相対的に低安定な磁化状態に磁化状態を切り換える第1のステップと、ビット線に時間T1よりも大きな時間T2において第2の電流値を有する電流I2を第1の方向と交差する第2の方向に流すことにより、強磁性フリー層の磁化方向を反転させる第2のステップと、ワード線に時間T2よりも大きな時間T3において第3の電流値を有する電流I3を第1の方向と反対の第3の方向に流すことにより、強磁性フリー層の磁化方向を回転させずに相対的に低安定な磁化状態から相対的に高安定な磁化状態に磁化状態を切り換える第3のステップと、時間T3よりも大きな時間T4においてビット線に流していた電流の電流値をゼロまで減少させる第4のステップと、時間T4よりも大きな時間T5においてワード線に流していた電流の電流値をゼロまで減少させる第5のステップとを含むものである。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法では、上記したステップを経てワード線およびビット線に順次電流が流されることにより、上記したように、強磁性フリー層の磁化状態が相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において切り換えられながら、磁気トンネル接合型磁気ランダムアクセスメモリセルが選択されることにより情報が記録される。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルでは、磁気トンネル接合素子が角部が丸みを帯びた三角形状の断面形状を有しており、強磁性フリー層が隣接軟磁性層に静磁気的に結合されているときに、その強磁性フリー層が内部に2つの磁路を生じさせる形状磁気異方性を有することにより2つの切換モードを有していてもよいし、あるいは磁気トンネル接合素子が外部磁場中においてアニールされたことにより結晶磁気異方性を有しており、強磁性フリー層が隣接軟磁性層に静磁気的に結合されているときに、その強磁性フリー層が内部に2つの磁路を生じさせる結晶磁気異方性を有することにより2つの切換モードを有していてもよい。
また、本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルでは、ビット線が、隣接軟磁性層と、その隣接軟磁性層の一方の面に設けられた第1の非磁性導電性層と、隣接軟磁性層の他方の面に設けられた第2の非磁性導電性層とを含み、そのビット線中では第1の非磁性導電性層および第2の非磁性導電性層において優先的に電流が流れるようにするのが好ましい。この場合には、第1の非磁性導電性層および第2の非磁性導電性層がいずれも銅(Cu)、金(Au)、アルミニウム(Al)、銀(Ag)、銅銀合金(CuAg)、タンタル(Ta)、クロム(Cr)、ニッケルクロム合金(NiCr)、ニッケル鉄クロム合金(NiFeCr)、ルテニウム(Ru)またはロジウム(Rh)により構成されていると共に100nm未満の厚さを有していてもよい。また、隣接軟磁性層がコバルト(Co)、鉄(Fe)およびニッケル(Ni)を含む合金により構成されていると共に強磁性フリー層の厚さの5倍未満の厚さを有していてもよい。
また、本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルでは、磁気トンネル接合素子が、シード層と、反強磁性ピンニング層と、互いに等しくかつ反平行な磁気モーメントを有する第1の強磁性層および第2の強磁性層が第1の結合層を挟んで積層された積層構造を有するシンセティックフェリ磁性ピンド層と、絶縁性トンネルバリア層と、強磁性フリー層と、保護層とがこの順に積層された積層構造を有していてもよい。この場合には、強磁性フリー層が互いに等しくかつ反平行な磁気モーメントを有する第3の強磁性層および第4の強磁性層が第2の結合層を挟んで積層された積層構造を有するシンセティックフェリ磁性フリー層であり、第3の強磁性層と第4の強磁性層との間の磁気モーメントの差異がそれらの第3の強磁性層または第4の強磁性層のうちのいずれか一方の磁気モーメントよりも小さくなっていてもよい。なお、反強磁性ピンニング層が白金マンガン合金(PtMn)、ニッケルマンガン合金(NiMn)、オスミウムマンガン合金(OsMn)、イリジウムマンガン合金(IrMn)、酸化ニッケル(NiO)またはコバルトニッケル合金酸化物(CoNiO)により構成されていると共に4nm以上30nm以下の範囲内の厚さを有しており、第1の強磁性層、第2の強磁性層、第3の強磁性層および第4の強磁性層がいずれもコバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)により構成されていると共に1nm以上10nm以下の範囲内の厚さを有しており、第1の結合層および第2の結合層がロジウム(Rh)、ルテニウム(Ru)、銅(Cu)またはクロム(Cr)により構成されていると共に第1の強磁性層および第2の強磁性層を互いに反平行に結合させることが可能な厚さを有していてもよい。特に、隣接軟磁性層と強磁性フリー層との間の間隔がその強磁性フリー層の幅の5分の1未満であるのが好ましい。
また、本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルでは、ビット線の幅が磁気トンネル接合素子の幅の50%よりも大きくなっていると共に、そのビット線の厚さが100nm未満であるのが好ましい。
また、本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルでは、ワード線が磁気トンネル接合素子から遠い側に被覆軟磁性層を含んでいてもよい。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルアレイでは、磁気トンネル接合素子が角部が丸みを帯びた三角形状の断面形状を有しており、強磁性フリー層が内部に2つの磁路を生じさせる形状磁気異方性を有することにより磁化状態を切り換え可能であってもよい。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法では、第1の電流値が1mA以上10mA以下の範囲内となるように電流I1を流し、第2の電流値が0.5mA以上5mA以下の範囲内となるように電流I2を流し、第3の電流値が0.2mA以上2mA以下の範囲内となるように電流I3を流してもよい。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルまたは磁気トンネル接合型磁気ランダムアクセスメモリセルアレイによれば、ビット線が隣接軟磁性層を含む複合構造を有している構造的特徴に基づき、隣接軟磁性層と強磁性フリー層との間の静磁気的と共に磁気トンネル接合素子の磁気異方性を併せて利用して、強磁性フリー層の磁化状態が相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において切り換えられながら磁気トンネル接合型磁気ランダムアクセスメモリセルが選択されることにより情報が記録される。したがって、強磁性フリー層の磁化状態を安定化することにより、熱的要因および磁気的要因に起因して誤作動することを抑制することができると共に、選択または非選択を安定に切り換えることもできる。
さらに、本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法によれば、上記したステップを経てワード線およびビット線に順次電流を流す方法的特徴に基づき、強磁性フリー層の磁化状態が相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において切り換えられながら磁気トンネル接合型磁気ランダムアクセスメモリセルが選択されることにより情報が記録される。したがって、強磁性フリー層の磁化状態を安定に切り換えながら磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録することができる。
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
まず、図1A、図1Bおよび図2を参照して、本発明の一実施の形態に係る磁気トンネル接合型磁気ランダムアクセスメモリ(MTJ−MRAM)セルアレイの構成について説明する。図1Aおよび図1Bは、MTJ−MRAMセルアレイ500の構成を表しており、図1Aは断面構成(XZ面に沿った断面構成)を示し、図1Bは平面構成(Z軸方向から見た平面構成)を示している。また、図2は、MTJ−MRAMセルアレイ500の磁化状態を説明するためのものであり、図1Bに対応する平面構成を示している。
なお、本発明の「磁気トンネル接合型磁気ランダムアクセスメモリ(MTJ−MRAM)セル」は本実施の形態に係るMTJ−MRAMセルアレイ500を構成するもの(MTJ−MRAMセル150,151)であり、本発明の「磁気トンネル接合型磁気ランダムアクセスメモリ(MTJ−MRAM)セルの選択記録方法」は本実施の形態に係るMTJ−MRAMセルアレイ500の動作に基づいて実現されるため、それらの「磁気トンネル接合型磁気ランダムアクセスメモリセル」および「磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法」に関しては、以下で併せて説明する。
本実施の形態に係るMTJ−MRAMセルアレイ500は、情報が磁気的に記録される情報記憶デバイスであり、複数のMTJ−MRAMセルを含んで構成されている。すなわち、MTJ−MRAMセルアレイ500は、図1Aおよび図1Bに示したように、複数のMTJ−MRAMセルが互いに電気的に接続されることによりマトリックス状に配列された集合体(アレイ)である。なお、図1Bでは、複数のMTJ−MRAMセルを代表して、互いに隣り合う2つのMTJ−MRAMセル150,151を示しており、図1Aでは、MTJ−MRAMセル150のみを示している。
MTJ−MRAMセル150は、図1Aおよび図1Bに示したように、Y軸方向(第1の方向)に延在するワード線10と、そのワード線10と異なる階層において、Y軸方向と交差するX軸方向(第2の方向)に延在するビット線20と、それらのワード線10とビット線20との間に配置された磁気トンネル接合(MTJ)素子50とを備えている。より具体的には、MTJ−MRAMセル150は、例えば、ビット線20と、MTJ素子50と、リードワード線42と、絶縁層100と、ワード線10とがこの順に(Z軸方向に)積層された積層構造を有している。
ワード線10は、MTJ素子50にアクセスして情報を記録または再生するために、必要に応じて電流が流れる電流線(記録線)である。このワード線10は、例えば、図1Aに示したように、MTJ素子50から遠い側に被覆軟磁性層44を含んでいる。より具体的には、ワード線10は、例えば、MTJ素子50に近い側から順に、導電層43と、上記した被覆軟磁性層44とが積層された積層構造(2層構造)を有している。この被覆軟磁性層44は、ワード線10に電流が流れることにより生じる磁界を増加させるためのものである。
なお、ワード線10は、例えば、必ずしも軟磁性被覆44を含む2層構造を有していなければならないわけではなく、その被覆軟磁性層44を含まずに導電層43のみからなる単層構造を有していてもよい。
MTJ素子50は、ビット線20のうちの後述する隣接軟磁性層24に静磁気的に結合されることにより、相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能な2つの切換モードを有する強磁性フリー層38を含んでいる。より具体的には、MTJ素子50は、例えば、ビット線20に近い側から順に、シード層30と、反強磁性ピンニング層32と、ピンド層34と、絶縁性トンネルバリア層36と、上記した強磁性フリー層38と、保護層40とが積層された積層構造を有している。
シード層30は、反強磁性層ピンニング層32の結晶成長を促進させるためのものであり、ビット線20に隣接されている。このシード層30は、例えば、ニッケルクロム合金(NiCr)、ニッケル鉄クロム合金(NiFeCr)またはニッケル鉄合金(NiFe)などにより構成されていると共に、約2nm〜10nmの厚さを有している。なお、「厚さ」とはZ軸方向の寸法である。
反強磁性ピンニング層32は、ピンド層34の磁化方向を固定するためのものである。この反強磁性ピンニング層32は、例えば、白金マンガン合金(PtMn)、ニッケルマンガン合金(NiMn)、オスミウムマンガン合金(OsMn)、イリジウムマンガン合金(IrMn)、酸化ニッケル(NiO)またはコバルトニッケル合金酸化物(CoNiO)などの反強磁性材料により構成されていると共に、約4nm〜30nmの厚さを有している。
ピンド層34は、例えば、互いに等しくかつ反平行な磁気モーメントを有する2つの強磁性層341(第2の強磁性層),343(第1の強磁性層)が結合層342(第1の結合層)を挟んで積層された積層構造を有するシンセティックフェリ磁性ピンド層である。強磁性層341,343は、例えば、いずれもコバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)などの強磁性材料により構成されていると共に、約1nm〜10nmの厚さを有している。これらの強磁性層341,343の磁気モーメントは、ネット磁気モーメントがほぼゼロとなるように適正化されている。結合層342は、例えば、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)またはクロム(Cr)などの非磁性材料により構成されていると共に、強磁性層341,343を互いに反平行に結合させることが可能な厚さを有している。
なお、ピンド層34は、例えば、必ずしも積層構造を有するシンセティックフェリ磁性ピンド層でなければならないわけではなく、単層構造を有するシングルピンド層であってもよい。
絶縁性トンネルバリア層36は、例えば、酸化アルミニウム(Al2 3 )などの絶縁性材料により構成されていると共に、約0.7〜1.5nmの厚さを有している。なお、絶縁性トンネルバリア層36は、例えば、酸化アルミニウム(Al2 3 )−酸化ハフニウム(HfO2 )の二層構造として構成される場合もある。
強磁性フリー層38は、例えば、コバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)などの強磁性材料により構成された単層構造を有していると共に、約1nm〜10nmの厚さを有している。MTJ素子50では、例えば、強磁性フリー層38がビット線20のうちの隣接軟磁性層24に静磁気的に結合されているときに、その強磁性フリー層38が、後述するMTJ素子50の非対称な断面形状に基づいて、内部に2つの磁路(相対的に高安定な磁化状態または相対的に低安定な磁化状態)を生じさせる形状磁気異方性を有することにより、上記した2つの切換モードを有している。この「2つの磁化状態」のうち、「相対的に高安定な磁化状態」とは、強磁性フリー層38の磁化状態が相対的に高安定化することにより、その強磁性フリー層38の磁化方向がロックされた(磁化方向が回転不能とされた)状態であり、「C状態」と呼ばれる。一方、「相対的に低安定な磁化状態」とは、強磁性フリー層38の磁化状態が相対的に低安定化することにより、その強磁性フリー層38の磁化方向がアンロックされた(磁化方向が回転可能とされた)状態であり、「S状態」と呼ばれる。
保護層40は、例えば、ルテニウム(Ru)またはタンタル(Ta)などの非磁性材料により構成されていると共に、約1nm〜10nmの厚さを有している。
特に、MTJ素子50は、例えば、図1Bに示したように、ワード線10とビット線20とが互いに交差する位置に配置されており、形状磁気異方性を生じさせる非対称な断面形状を有している。この「断面形状」とは、図1Bに示されているように、XY面に沿った断面形状である。ここでは、例えば、MTJ素子50は、角部が丸みを帯びた三角形状の断面形状を有している。言い換えれば、MTJ素子50は、例えば、一方側(上方部分9)と他方側(下方部分7)との間において互いに異なる曲率半径を有することにより歪んだ円形状の断面形状を有しており、ここでは曲率半径が上方部分9よりも下方部分7において大きくなっている。この場合には、MTJ素子50の非対称な断面形状に基づいて、上記したようにMTJ素子50において形状磁気異方性が生じるため、幅広の下方部分7よりも幅狭の上方部分9において磁化方向が回転しやすくなり、すなわち下方部分7よりも上方部分9において自己消磁磁界が大きくなる。このMTJ素子50の形状磁気異方性は、強磁性フリー層38がビット線20のうちの隣接軟磁性層24と静磁気的に結合されるときに、その強磁性フリー層38において上記した2つの磁化状態を生じさせるために重要な性質である。
図1Bでは、例えば、MTJ−MRAMセル150(MTJ素子50)のうちの強磁性フリー層38の磁化状態がC状態(強磁性フリー層38の磁化方向がロックされた状態)であると共に、MTJ−MRAMセル151(MTJ素子51)のうちの強磁性フリー層38の磁化状態がS状態(強磁性フリー層38の磁化方向がアンロックされた状態)である場合を示している。このMTJ素子50では、強磁性フリー層38において3種類の磁化方向が生じており、すなわち下方部分7の磁化方向17と、上方部分9の磁化方向19と、それらの下方部分7と上方部分9との間の中央部分8の磁化方向18とが併存している。強磁性フリー層38の磁化状態がS状態である場合には、中央部分8の磁化方向18が下方部分7の磁化方向17および上方部分9の磁化方向19の双方の影響を受けて容易に回転可能である。なお、ビット線20のうちの隣接軟磁性層24では、ワード線10に電流が流れることにより磁界21が生じている。強磁性フリー層38の磁化状態は、ビット線20において生じる磁界21を利用してC状態とS状態との間において切り換えられる。この磁界21の方向は、ビット線20に流れる電流の方向に応じて決定される。
ビット線20は、ワード線10と同様に、MTJ素子50にアクセスして情報を記録または再生するために、必要に応じて電流が流れる電流線(記録線)である。このビット線20は、図1Aに示したように、隣接軟磁性層(SAL;soft magnetic layer )24を含む複合構造を有している。より具体的には、ビット線20は、例えば、上記した隣接軟磁性層24と、その隣接軟磁性層24の一方の面(上面)に設けられた上部導電層22(第1の非磁性導電層)と、隣接軟磁性層24の他方の面(下面)に設けられた下部導電層26(第2の非磁性導電層)とを含んでおり、すなわちMTJ素子50に近い側から順に、上部導電層22、隣接軟磁性層24および下部導電層26が積層された積層構造(3層構造)を有している。このビット線20では、上部導電層22および下部導電層26が主要な電流の流路として機能し、すなわち上部導電層22および下部導電層26において電流が優先的に流れるようになっている。このビット線20の厚さは、例えば、約100nm未満である。特に、ビット線20の幅(図1BにおけるY軸方向の寸法)は、例えば、MTJ素子50の幅(図1AにおけるX軸方向の寸法)の約50%よりも大きくなっているのが好ましい。なお、ここでは具体的に図面を参照して説明しないが、ビット線20は、一般に、例えばシリコン(Si)などの基板が誘電体層により覆われている場合に、その誘電体層に設けられた溝に配設されている。
上部導電層22および下部導電層26は、例えば、いずれも銅(Cu)、金(Au)、アルミニウム(Al)、銀(Ag)、銅銀合金(CuAg)、タンタル(Ta)、クロム(Cr)、ニッケルクロム合金(NiCr)、ニッケル鉄クロム合金(NiFeCr)、ルテニウム(Ru)またはロジウム(Rh)などの非磁性導電性材料により構成されていると共に、約100nm未満の厚さを有している。なお、上部導電層22および下部導電層26は、例えば、上記した一連の材料の合金により構成されていてもよいし、あるいは一連の材料を含む積層構造を有していてもよい。
この上部導電層22の厚さは、例えば、MTJ素子50のうちの強磁性フリー層38と隣接軟磁性層24との間を離間させつつ、それらの強磁性フリー層38と隣接軟磁性層24とが互いに静磁気的に結合可能となるように近接させるために、上記した約100nm未満の範囲内において可能な限り薄いのが好ましい。特に、隣接軟磁性層24と強磁性フリー層38との間の間隔は、例えば、その強磁性層フリー層38の幅(図1AにおけるX軸方向の寸法)の約5分の1未満であるのが好ましい。
隣接軟磁性層24は、例えば、コバルト(Co)、鉄(Fe)およびニッケル(Ni)を含む合金などの高透磁率を有する軟磁性(低保持力)材料により構成されていると共に、強磁性フリー層38の厚さの約5倍未満の厚さを有している。より具体的には、隣接軟磁性層24は、極めて薄い厚さを有しており、例えば、約3nm〜50nmの厚さを有している。この隣接軟磁性層24は、例えば、ワード線10において+Y軸方向に向かって電流が流れた際に−X軸方向に磁化され、一方、ワード線10において−X軸方向に向かって電流が流れた際に+X軸方向に磁化される。なぜなら、隣接軟磁性層24は、ビット線20の一部としてX軸方向に延在しているため、そのX軸方向に沿って磁化されやすい傾向にあるからである。ビット線20において+X軸方向に向かって電流が流れると、そのビット線20自体においてY軸方向に磁界を生じさせるため、ビット線20ではX軸方向の磁界成分およびY軸方向の磁界成分が生じる。
この隣接軟磁性層24は、上記したように高透磁率を有していることに基づき、ビット線20に電流が流れることにより生じる磁界を集中させると共に、強磁性フリー層38に静磁気的に結合されることにより、その強磁性フリー層38の磁化状態を切り換える機能を担っている。また、隣接軟磁性層24は、ビット線20に電流が流れていない場合においても、強磁性フリー層38において静磁気的結合に基づく相互作用(磁気異方性)を生じさせると共に、その強磁性フリー層38の磁化状態をC状態またはS状態のまま維持させる機能も担っている。この隣接軟磁性層24と強磁性フリー層38との間の相互作用である磁気異方性は、隣接軟磁性層24、強磁性フリー層38、ならびに隣接軟磁性層24と強磁性フリー層38との間の間隔のそれぞれのMsT(磁気モーメントMsと厚さまたは間隔Tとの積)に基づいて決定され、MTJ−MRAMセルアレイ500の製造プロセスにおいて厚さまたは間隔を制御することにより調整可能である。
このビット線20では、図2に示したように、強磁性フリー層38が容易軸方向(強磁性フリー層38の内部に上向きの矢印で示した方向;+Y軸方向)に磁化されている場合に、そのビット線20の内部領域、すなわちビット線20のうちの強磁性フリー層38に対応する輪郭領域60が特定の方向に磁化される。すなわち、強磁性フリー層38が容易軸方向(+Y軸方向)に磁化されている場合に、隣接軟磁性層24において完全に磁界が生じないとすると、ビット線20では、隣接軟磁性層24と強磁性フリー層38との間の静磁気的結合に基づいて、その強磁性フリー層38の磁化方向と鏡像関係となる方向(−Y軸方向)に磁化されるはずである。しかしながら、ビット線20では、実際のところ、ワード線10に電流が流れることにより生じた+X軸方向の磁界の影響と、上記した隣接軟磁性層24と強磁性フリー層38との間の静磁気的結合の影響とが組み合わされることにより、僅かに−Y軸方向(輪郭領域60の内部に右斜め下向きの矢印で示した方向)に磁化される。なお、図2では、Z軸方向において互いに重なり合っている強磁性フリー層38および輪郭領域60を見やすくするために、その強磁性フリー層38を輪郭領域60から+Y軸方向にずらして示していると共に、ワード線10,11の図示を省略している。
このビット線20が下部導電層26を含む3層構造を有している場合には、MTJ素子50を作動させるためにビット線20に流さなければならない電流が大きくなる点において問題が生じるが、そのビット線20が低抵抗を有すると共にSN(signal-to-noise )比が向上する点において利点が得られる。なお、ビット線20は、例えば、必ずしも下部導電層26を含む3層構造を有していなければならないわけではなく、その下部導電層26を含まずに2層構造(隣接軟磁性層24/上部導電層22)を有していてもよい。
絶縁層100は、MTJ素子50とワード線10との間の電気的に分離すると共に、そのMTJ素子50をその周辺から電気的に分離するものである。なお、図1Aでは、図示内容を簡略化するために、リードワード線42とワード線10との間のみに絶縁層100を示しているが、実際には、絶縁層100は、例えば、リードワード線42とワード線10との間だけでなく、MTJ素子50の周囲にも設けられている。
なお、図1BにMTJ−MRAMセル150と共に示したMTJ−MRAMセル151は、そのMTJ−MRAMセル150の構成とほぼ同様の構成を有している。より具体的には、MTJ−MRAMセル151は、ワード線10に代えてワード線11を備えると共に、MTJ素子50に代えてMTJ素子51を備える点を除き、MTJ−MRAMセル150と同様の構成を有している。もちろん、ワード線11およびMTJ素子51の構成は、それぞれワード線10およびMTJ素子50の構成と同様である。
次に、図3および図4を参照して、図1A、図1Bおよび図2に示したMTJ−MRAMセルアレイ500の動作について説明する。図3は、MTJ−MRAMセル50を作動させるためのシーケンス、すなわち時間と電流との間の関係(時間vs電流)を説明するためのものであり、(A)はワード線10に関して示し、(B)はビット線20に関して示している。図3のうちの(A)では、「横軸」が時間Tを示し、「縦軸」がワード線10に流れる電流IWを示しており、図3(B)では、「横軸」が時間Tを示し、「縦軸」がビット線20に流れる電流IBを示している。図4は、強磁性フリー層38の磁化状態を説明するためのものであり、図1Bに対応する平面構成を示している。図4のうちの(A)〜(D)では、図3に示したシーケンスに対応する4種類の磁化状態を示している。
このMTJ−MRAMセルアレイ500において、複数のMTJ−MRAMセル150,151の中から記録対象のMTJ−MRAMセル150を選択して情報を記録(ここでは再記録)する場合には、初期状態において、図4(A)に示したように、MTJ−MRAMセル150に既に情報として特定のビット(論理0または論理1)が記録されているために、強磁性フリー層38の磁化状態がC状態となっている。強磁性フリー層38の内部に示した大きな矢印、すなわち中央部分8の磁化方向18は、その強磁性フリー層38と隣接軟磁性層24との間の静磁気的結合を利用して生じた重要な磁化方向である。なお、強磁性フリー層38の内部に示した小さな矢印、すなわち下方部分7の磁化方向17および上方部分9の磁化方向19は、いずれも中央部分8の磁化方向18が意図せずに回転することを抑制することにより、その強磁性フリー層38の磁化状態を安定化させるための局所的な磁化方向である。この初期状態では、上記したように強磁性フリー層38の磁化状態がC状態であるため、意図せずに中央部分8の磁化方向18が回転しないように強磁性フリー層38の磁化状態が維持されている。
このMTJ−MRAMセル150を選択して情報を再記録する際には、まず、図3(A)に示したように、ワード線10に、時間T1において電流値C1(第1の電流値)を有する電流I1を−Y軸方向(第1の方向)に流す。ここでは、例えば、ワード線10に正の電流値C1を有する電流I1を流し、より具体的には電流値C1=約1mA〜10mAとなるように電流I1を流す。このワード線10に電流I1を流した際には、図3(A),(B)間の関係から明らかなように、ビット線20には未だ電流が流れていない。このワード線10に電流I1が流れると、ビット線20のうちの隣接軟磁性層24において+X軸方向に磁界21が誘発され、その磁界21が強磁性フリー層38の容易軸に沿った磁化(+Y軸方向の磁化)と結合されるため、図4(B)に示したように、強磁性フリー層38のうちの中央部分8の磁化方向18が回転せずに、上方部分9の磁化方向19のみが+X軸方向に向かって時計回りに回転する。これにより、中央部分8の磁化方向18が+X軸方向に向かって時計回りに回転可能となり、すなわちロックされていた磁化方向18がアンロックされるため、強磁性フリー層38の磁化状態がC状態からS状態へ切り換えられることにより、MTJ−MRAMセル150が記録準備状態となる。なお、MTJ−MRAMセル150がC状態からS状態へ切り換えられる場合には、そのMTJ−MRAMセル150のみに限らず、MTJ−MRAMセル150と同様にワード線10に沿って配置されている他の複数のMTJ−MRAMセルの磁化状態も併せてC状態からS状態へ切り換えられる。
続いて、図3(B)に示したように、ビット線20に、時間T1よりも大きな時間T2(T2>T1)において電流値C2(第2の電流値)を有する電流I2を+X軸方向(第2の方向)に流す。ここでは、例えば、ビット線20に正の電流値C2を有する電流I2を流し、より具体的には電流値C2=0.5mA〜5mAとなるように電流I2を流す。このビット線20に電流I2が流れることにより、ワード線10およびビット線20の双方に電流が流れるため、記録対象としてMTJ−MRAMセル150が選択される。このビット線20に電流I2が流れると、そのビット線20において磁界(直交磁界)が生じる。このとき生じる直交磁界は、強磁性フリー層38の磁化状態がS状態である場合に、中央部分8の磁化方向18を−Y軸方向に向かって時計回りに回転させることが可能な十分な大きさを有している。これにより、図4(C)に示したように、上記した直交磁界の影響を受けて、中央部分8の磁化方向18が−Y軸方向に向かって時計回りに回転(反転)すると共に、下方部分7の磁化方向17および上方部分9の磁化方向19も併せて−Y軸方向に向かって時計回りに回転するため、MTJ−MRAMセル150に情報として特定のビット(論理0または論理1)が記録される。なお、ワード線10およびビット線20の双方に電流が流れることにより選択されたMTJ−MRAMセル150では、上記したように情報が記録されるが、ワード線10またはビット線20のいずれか一方のみに電流が流れることにより半選択された他の複数のMTJ−MRAMセルでは、中央部分8の磁化方向18を回転させ得るだけの十分な大きさの直交磁界が生じないため、情報が記録されない。
続いて、図3(A)に示したように、ワード線10に、時間T2よりも大きな時間T3(T3>T2)において電流値C3(第3の電流値)を有する電流I3を−Y軸方向と反対の+Y軸方向(第3の方向)に流す。ここでは、例えば、ワード線10に負の電流値C3を有する電流I3を流し、より具体的には電流値C3=約0.2mA〜2mAとなるように電流I3を流す。このワード線10に電流I3が流れると、図4(D)に示したように、MTJ素子50の非対称な断面形状に基づく形状磁気異方性を利用して、下方部分7の磁化方向17が回転せずに、上方部分9の磁化方向19のみが選択的に回転する。これにより、アンロックされていた中央部分8の磁化方向18がロックされるため、強磁性フリー層38の磁化状態がS状態からC状態へ切り換えられることにより、MTJ−MRAMセル150が記録完了状態となる。なお、MTJ−MRAMセル150がS状態からC状態へ切り換えられる場合には、そのMTJ−MRAMセル150のみに限らず、MTJ−MRAMセル150と同様にワード線10に沿って配置されている他の複数のMTJ−MRAMセルも併せてS状態からC状態へ切り換えられる。
最後に、時間T3よりも大きな時間T4(T4>T3)において、ビット線20に流していた電流の電流値をゼロまで減少させたのち、時間T4よりも大きな時間T5(T5>T4)において、ワード線10に流していた電流の電流値をゼロまで減少させる。ワード線10およびビット線20のそれぞれにおいて電流を順に停止させる過程では、隣接軟磁性層24と強磁性フリー層38との間の静磁気的結合に基づく双極子相互作用を利用して、中央部分8の磁化方向18が−Y軸方向を向いたまま維持され、すなわち強磁性フリー層38の磁化状態がC状態のまま維持される。これにより、MTJ−MRAMセル150が選択されることにより情報が記録されるため、そのMTJ−MRAMセル150に対する選択記録処理が完了する。
ここで、MTJ−MRAMセル150における隣接軟磁性層24と強磁性フリー層38との間の静磁気的結合に関するモデルとして双極子−双極子相互作用を考慮すると、下記に示した関係式で表されるように、その双極子−双極子相互作用に基づく磁気異方性Kinに関して比例関係が得られる。
Kin∝Ms(SAL)×Ms(FREE)×T(SAL)×a2 ×r-3
(ただし、「Ms(SAL)」は隣接軟磁性層24の磁気モーメント、「Ms(FREE)」は強磁性フリー層38の磁気モーメント、「T(SAL)」は隣接軟磁性層24の厚さ、「a」はMTJ素子50の直径、「r」は隣接軟磁性層24と強磁性フリー層38との間の間隔をそれぞれ表している。)
上記した関係式において、磁気異方性Kinが間隔rに顕著に依存し、すなわち磁気異方性Kinが間隔rの三乗に反比例することは、ビット線20の厚さが薄く、すなわち強磁性フリー層38が隣接軟磁性層24に近接していることを表している。特に、ビット線20に電流が流れることにより強磁性フリー層38の磁化状態が切り換えられるためには、そのビット線20に流れる電流が十分に大きくなければならない。なお、磁気異方性Kinを減少させたい場合には、例えば、ビット線20の延在方向(X軸方向)に沿うようにMTJ素子50の断面形状を設定すればよい。
次に、図1Aおよび図1Bを参照して、本実施の形態に係るMTJ−MRAMセルアレイ500の製造方法について簡単に説明する。以下では、MTJ−MRAMセルアレイ500の製造方法を代表して、MTJ−MRAMセル150の製造方法について言及する。なお、MTJ−MRAMセル150の製造方法を説明する際には、そのMTJ−MRAMセル150を構成する一連の構成要素の材質や厚さなどに関しては既に詳細に説明したので、それらの説明を随時省略する。
MTJ−MRAMセル150を製造する際には、まず、下部導電層26、隣接軟磁性層24および上部導電層22をこの順に形成して積層させることにより、複合構造を有するようにビット線20を形成する。続いて、ビット線20上に、シード層30、反強磁性ピンニング層32、ピンド層34、絶縁性トンネルバリア層36、強磁性フリー層38および保護層40をこの順に形成して積層させることにより、MTJ素子50を形成する。なお、ピンド層34を形成する際には、強磁性層341、結合層342および強磁性層343をこの順に形成して積層させることにより、シンセティックフェリ磁性ピンド層となるようにする。続いて、シード層30から保護層40に至る一連の積層構造を一括してパターニングすることにより、MTJ素子50の断面形状が所望の断面形状となるようにする。ここでは、例えば、図1Bに示したように、MTJ素子50の断面形状が、角部が丸みを帯びた三角形状となるようにする。続いて、MTJ素子50上にリードワード線42を形成したのち、そのリードワード線42と共にMTJ素子50の周囲を覆うように絶縁層100を形成する。最後に、絶縁層100上に、導電層43および被覆軟磁性層44をこの順に形成して積層させることにより、ワード線10を形成する。これにより、MTJ−MRAMセル150が完成する。
本実施の形態に係るMTJ−MRAMセルアレイ500およびMTJ−MRAMセル150では、ビット線20が隣接軟磁性層24を含む複合構造を有しているので、そのビット線20のうちの隣接軟磁性層24とMTJ素子50のうちの強磁性フリー層38とが互いに静磁気的に結合される。この場合には、MTJ素子50が磁気異方性(例えばMTJ素子50の断面形状に基づく形状磁気異方性)を有していると、上記したように、ワード線10およびビット線20に電流が流れた際に、強磁性フリー層38の磁化状態がC状態とS状態との間において切り換えられながらMTJ−MRAMセル150が選択されることにより情報が記録される。より具体的には、MTJ−MRAMセル150では、ワード線10のみに電流が流れると、中央部分8の磁化方向18がアンロックされることにより強磁性フリー層38の磁化状態がC状態からS状態へ切り換えられ、あるいは中央部分8の磁化方向18がロックされることにより強磁性フリー層38の磁化状態がS状態からC状態に切り換えられると共に、ワード線10およびビット線20の双方に電流が流れると、中央部分8の磁化方向18が回転(反転)することにより情報が記録される。したがって、MTJ−MRAMセル150に情報を記録する過程において強磁性フリー層38の磁化状態が適正に維持されることにより、熱的要因および磁気的要因に起因して強磁性フリー層38の磁化状態が意図せずに切り換えられることが抑制されるため、強磁性フリー層38の磁化状態を安定化することにより、熱的要因および磁気的要因に起因して誤作動することを抑制することができる。
また、本実施の形態では、上記したように、強磁性フリー層38の磁化状態をC状態とS状態との間において切り換えられながらMTJ−MRAMセル150が選択されて情報が記録されることにより、情報が記録される際に必要に応じてMTJ−MRAMセル150が選択または非選択されるため、そのMTJ−MRAMセル150の選択または非選択を安定に切り換えることができる。
また、本実施の形態では、図3および図4を参照して説明したように、一連の手順を経てワード線10およびビット線20に順次電流を流すことにより、上記したように、強磁性フリー層38の磁化状態がC状態とS状態との間において切り換えられながら、MTJ−MRAMセル150が選択されて情報が記録されるため、その強磁性フリー層38の磁化状態を安定に切り換えながらMTJ−MRAMセル150を選択して情報を記録することができる。
確認までに、上記したMTJ−MRAMセル150に関する一連の効果は、MTJ−MRAMセル151に関しても同様に得られる。
なお、本実施の形態では、図1Aを参照して説明したように、単層構造を有するように強磁性フリー層38を構成したが、必ずしもこれに限られるものではなく、例えば、図1Aに対応する図5に示したように、積層構造を有するように強磁性フリー層38を構成してもよい。この積層構造を有する強磁性フリー層38は、例えば、互いに等しくかつ反平行な磁気モーメントを有する2つの強磁性層381(第4の強磁性層),383(第3の強磁性層)が結合層382(第2の結合層)を挟んで積層された積層構造を有している。強磁性層381,383は、例えば、いずれもコバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)などの強磁性材料により構成されていると共に、約1nm〜10nmの厚さを有している。結合層382は、例えば、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)またはクロム(Cr)などの非磁性材料により構成されていると共に、強磁性層341,343を互いに反平行に結合させることが可能な厚さを有している。この場合においても、上記実施の形態と同様の効果を得ることができる。
また、本実施の形態では、図1Bを参照して説明したように、磁気異方性として形状磁気異方性を有するようにMTJ素子50を構成したが、必ずしもこれに限られるものではなく、例えば、形状磁気異方性に代えて結晶磁気異方性を有するようにMTJ素子50を構成してもよい。この場合には、例えば、形状磁気異方性を有し得る断面形状を有するようにMTJ素子50をパターニングする代わりに、そのMTJ素子50を形成する際に、反強磁性ピンニング層32を利用してピンド層34の磁化方向を反強磁性的に固定する(いわゆるピン止めする)ために外部磁場中においてMTJ素子50をアニールすることにより、そのMTJ素子50が結晶磁気異方性を有するようにする。この場合においても、強磁性フリー層38が隣接軟磁性層24に静磁気的に結合されているときに、その強磁性フリー層38が、上記したMTJ素子50の結晶磁気異方性に基づいて、内部に2つの磁路(相対的に高安定な磁化状態または相対的に低安定な磁化状態)を生じさせる結晶磁気異方性を有することにより2つの切換モードを有するため、上記実施の形態と同様の効果を得ることができる。
また、本実施の形態では、図1Bに示したワード線10,11に磁気被覆層を設けてもよい。この場合には、ワード線10,11に磁気被覆層を設けない場合と比較して、各ワード線10,11が電流が流れることにより生じる磁界が各MTJ−MRAMセル150,151に的確に及ぶため、その磁界の付与効果を各MTJ−MRAMセル150,151ごとに向上させることができる。
以上、実施の形態を挙げて本発明を説明したが、本発明は上記実施の形態に限定されず、種々の変形が可能である。具体的には、本発明の磁気トンネル接合型磁気ランダムアクセスメモリセルアレイまたは磁気トンネル接合型磁気ランダムアクセスメモリセルの構成(材質および寸法など)や、磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法の手順(電流を流し始める時間および電流値など)は、上記したように、ビット線が隣接軟磁性層を含む複合構造を有することにより、強磁性フリー層の磁化状態をC状態とS状態との間において切り換えながら磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録することが可能な限り、自由に変更可能である。
本発明に係る磁気トンネル接合型磁気ランダムアクセスメモリセル、磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法は、磁気トンネル接合を利用したいわゆるMRAMに適用することが可能である。
本発明の一実施の形態に係る磁気トンネル接合型磁気ランダムアクセスメモリセルアレイの断面構成を表す断面図である。 図1Aに示した磁気トンネル接合型磁気ランダムアクセスメモリセルアレイの平面構成を表す平面図である。 図1Aおよび図1Bに示した磁気トンネル接合型磁気ランダムアクセスメモリの磁化状態を説明するための平面図である。 本発明の一実施の形態に係る磁気トンネル接合型磁気ランダムアクセスメモリセルアレイを作動させるためのシーケンス(時間vs電流)を説明するためのタイミング図である。 図3に示したシーケンスに対応する強磁性フリー層の磁化状態を説明するための平面図である。 本発明の一実施の形態に係る磁気トンネル接合型磁気ランダムアクセスメモリセルアレイの構成に関する変形例を表す断面図である。
符号の説明
7…下方部分、8…中央部分、9…上方部分、10,11…ワード線、17,18,19…磁化方向、20…ビット線、21…磁界、22…上部導電層、24…隣接軟磁性層、26…下部導電層、30…シード層、32…反強磁性ピンニング層、34ピンド層、36…絶縁性トンネルバリア層、38…強磁性フリー層、40…保護層、43…導電層、44…被覆軟磁性層、50,51…MTJ素子、60…輪郭領域、150,151…MTJ−MRAMセル、341,343,381,383…強磁性層、342,382…結合層、500…MTJ−MRAMセルアレイ、C1,C2,C3…電流値、I1,I2,I3…電流、T1,T2,T3,T4,T5…時間。









Claims (18)

  1. 第1の方向に延在するワード線と、
    前記ワード線と異なる階層において、前記第1の方向と交差する第2の方向に延在すると共に隣接軟磁性層を含む複合構造を有するビット線と、
    前記ワード線と前記ビット線との間に配置され、前記隣接軟磁性層に静磁気的に結合されることにより相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能な2つの切換モードを有する強磁性フリー層を含む磁気トンネル接合素子と、を備えた
    ことを特徴とする磁気トンネル接合型磁気ランダムアクセスメモリセル。
  2. 前記磁気トンネル接合素子が、角部が丸みを帯びた三角形状の断面形状を有しており、
    前記強磁性フリー層が前記隣接軟磁性層に静磁気的に結合されているときに、その強磁性フリー層が、内部に2つの磁路を生じさせる形状磁気異方性を有することにより前記2つの切換モードを有している
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  3. 前記磁気トンネル接合素子が、外部磁場中においてアニールされたことにより結晶磁気異方性を有しており、
    前記強磁性フリー層が前記隣接軟磁性層に静磁気的に結合されているときに、その強磁性フリー層が、内部に2つの磁路を生じさせる結晶磁気異方性を有することにより前記2つの切換モードを有している
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  4. 前記ビット線が、
    前記隣接軟磁性層と、
    その隣接軟磁性層の一方の面に設けられた第1の非磁性導電性層と、
    前記隣接軟磁性層の他方の面に設けられた第2の非磁性導電性層と、を含み、
    そのビット線中では、前記第1の非磁性導電性層および前記第2の非磁性導電性層において優先的に電流が流れる
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  5. 前記第1の非磁性導電性層および前記第2の非磁性導電性層が、いずれも銅(Cu)、金(Au)、アルミニウム(Al)、銀(Ag)、銅銀合金(CuAg)、タンタル(Ta)、クロム(Cr)、ニッケルクロム合金(NiCr)、ニッケル鉄クロム合金(NiFeCr)、ルテニウム(Ru)またはロジウム(Rh)により構成されていると共に、100nm未満の厚さを有している
    ことを特徴とする請求項4記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  6. 前記隣接軟磁性層が、コバルト(Co)、鉄(Fe)およびニッケル(Ni)を含む合金により構成されていると共に、前記強磁性フリー層の厚さの5倍未満の厚さを有している
    ことを特徴とする請求項4記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  7. 前記磁気トンネル接合素子が、
    シード層と、
    反強磁性ピンニング層と、
    互いに等しくかつ反平行な磁気モーメントを有する第1の強磁性層および第2の強磁性層が第1の結合層を挟んで積層された積層構造を有するシンセティックフェリ磁性ピンド層と、
    絶縁性トンネルバリア層と、
    前記強磁性フリー層と、
    保護層と、がこの順に積層された積層構造を有している
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  8. 前記強磁性フリー層が、互いに等しくかつ反平行な磁気モーメントを有する第3の強磁性層および第4の強磁性層が第2の結合層を挟んで積層された積層構造を有するシンセティックフェリ磁性フリー層であり、
    前記第3の強磁性層と前記第4の強磁性層との間の磁気モーメントの差異が、それらの第3の強磁性層または第4の強磁性層のうちのいずれか一方の磁気モーメントよりも小さくなっている
    ことを特徴とする請求項7記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  9. 前記反強磁性ピンニング層が、白金マンガン合金(PtMn)、ニッケルマンガン合金(NiMn)、オスミウムマンガン合金(OsMn)、イリジウムマンガン合金(IrMn)、酸化ニッケル(NiO)またはコバルトニッケル合金酸化物(CoNiO)により構成されていると共に、4nm以上30nm以下の範囲内の厚さを有しており、
    前記第1の強磁性層および前記第2の強磁性層が、いずれもコバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)により構成されていると共に、1nm以上10nm以下の範囲内の厚さを有しており、
    前記第1の結合層が、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)またはクロム(Cr)により構成されていると共に、前記第1の強磁性層および前記第2の強磁性層を互いに反平行に結合させることが可能な厚さを有している
    ことを特徴とする請求項7記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  10. 前記第3の強磁性層および前記第4の強磁性層が、いずれもコバルト鉄合金(CoFe)、コバルト鉄合金ホウ化物(CoFeB)またはニッケル鉄合金(NiFe)により構成されていると共に、1nm以上10nm以下の範囲内の厚さを有しており、
    前記第2の結合層が、ロジウム(Rh)、ルテニウム(Ru)、銅(Cu)またはクロム(Cr)により構成されていると共に、前記第1の強磁性層および前記第2の強磁性層を互いに反平行に結合させることが可能な厚さを有している
    ことを特徴とする請求項8記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  11. 前記隣接軟磁性層と前記強磁性フリー層との間の間隔が、その強磁性フリー層の幅の5分の1未満である
    ことを特徴とする請求項7または請求項8に記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  12. 前記ビット線の幅が、前記磁気トンネル接合素子の幅の50%よりも大きくなっている
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  13. 前記ビット線の厚さが、100nm未満である
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  14. 前記ワード線が、前記磁気トンネル接合素子から遠い側に被覆軟磁性層を含んでいる
    ことを特徴とする請求項1記載の磁気トンネル接合型磁気ランダムアクセスメモリセル。
  15. 強磁性フリー層を含む磁気トンネル接合素子と、隣接軟磁性層を含むビット線と、を備えた磁気トンネル接合型磁気ランダムアクセスメモリセルを複数有し、
    各磁気トンネル接合型磁気ランダムアクセスメモリセルにおいて前記磁気トンネル接合素子のうちの前記強磁性フリー層が、相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能であることにより、その強磁性フリー層の磁化方向がロックまたはアンロック可能であり、
    前記強磁性フリー層の磁化状態が、その強磁性フリー層と隣接軟磁性層との間の静磁気的結合に基づいて生じている
    ことを特徴とする磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ。
  16. 前記磁気トンネル接合素子が、角部が丸みを帯びた三角形状の断面形状を有しており、
    前記強磁性フリー層が、内部に2つの磁路を生じさせる形状磁気異方性を有することにより磁化状態を切り換え可能である
    ことを特徴とする請求項15記載の磁気トンネル接合型磁気ランダムアクセスメモリセルアレイ。
  17. 相対的に高安定な磁化状態と相対的に低安定な磁化状態との間において磁化状態を切り換え可能な強磁性フリー層を含む磁気トンネル接合素子と、その磁気トンネル接合素子の一方側に配置されたワード線および他方側に配置されたビット線と、を備えると共に、初期状態において前記強磁性フリー層が相対的に高安定な磁化状態を有する磁気トンネル接合型磁気ランダムアクセスメモリセルを選択して情報を記録する方法であって、
    前記磁気トンネル接合型磁気ランダムアクセスメモリセルに電流を流すステップが、
    前記ワード線に、時間T1において第1の電流値を有する電流I1を第1の方向に流すことにより、前記強磁性フリー層の磁化方向を回転させずに相対的に高安定な磁化状態から相対的に低安定な磁化状態に磁化状態を切り換える第1のステップと、
    前記ビット線に、前記時間T1よりも大きな時間T2において第2の電流値を有する電流I2を前記第1の方向と交差する第2の方向に流すことにより、前記強磁性フリー層の磁化方向を反転させる第2のステップと、
    前記ワード線に、前記時間T2よりも大きな時間T3において第3の電流値を有する電流I3を前記第1の方向と反対の第3の方向に流すことにより、前記強磁性フリー層の磁化方向を回転させずに相対的に低安定な磁化状態から相対的に高安定な磁化状態に磁化状態を切り換える第3のステップと、
    前記時間T3よりも大きな時間T4において、前記ビット線に流していた電流の電流値をゼロまで減少させる第4のステップと、
    前記時間T4よりも大きな時間T5において、前記ワード線に流していた電流の電流値をゼロまで減少させる第5のステップと、を含む
    ことを特徴とする磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法。
  18. 前記第1の電流値が1mA以上10mA以下の範囲内となるように前記電流I1を流し、
    前記第2の電流値が0.5mA以上5mA以下の範囲内となるように前記電流I2を流し、
    前記第3の電流値が0.2mA以上2mA以下の範囲内となるように前記電流I3を流す
    ことを特徴とする請求項17記載の磁気トンネル接合型磁気ランダムアクセスメモリセルの選択記録方法。











































JP2005110125A 2004-04-06 2005-04-06 磁気トンネル接合型磁気ランダムアクセスメモリのメモリセル、メモリセルアレイ、およびメモリセルの選択記録方法 Expired - Fee Related JP5036135B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/818,581 US7211874B2 (en) 2004-04-06 2004-04-06 Magnetic random access memory array with free layer locking mechanism
US10/818581 2004-04-06

Publications (2)

Publication Number Publication Date
JP2005303298A true JP2005303298A (ja) 2005-10-27
JP5036135B2 JP5036135B2 (ja) 2012-09-26

Family

ID=34912688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005110125A Expired - Fee Related JP5036135B2 (ja) 2004-04-06 2005-04-06 磁気トンネル接合型磁気ランダムアクセスメモリのメモリセル、メモリセルアレイ、およびメモリセルの選択記録方法

Country Status (5)

Country Link
US (2) US7211874B2 (ja)
EP (1) EP1585138A3 (ja)
JP (1) JP5036135B2 (ja)
KR (1) KR101145690B1 (ja)
TW (1) TWI295058B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061435A1 (ja) * 2016-09-28 2018-04-05 Tdk株式会社 スピン流磁化反転素子及び素子集合体
US9966122B2 (en) 2016-08-04 2018-05-08 Kabushiki Kaisha Toshiba Magnetic memory device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979586B2 (en) 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US7646627B2 (en) * 2006-05-18 2010-01-12 Renesas Technology Corp. Magnetic random access memory having improved read disturb suppression and thermal disturbance resistance
CN100514694C (zh) * 2006-04-11 2009-07-15 中国科学院物理研究所 基于双势垒磁性隧道结的逻辑元件和磁逻辑元件阵列
US20070286954A1 (en) * 2006-06-13 2007-12-13 Applied Materials, Inc. Methods for low temperature deposition of an amorphous carbon layer
US7456029B2 (en) * 2006-06-28 2008-11-25 Magic Technologies, Inc. Planar flux concentrator for MRAM devices
TWI412035B (zh) * 2008-04-17 2013-10-11 Sony Corp Recording method of magnetic memory element
US7935435B2 (en) * 2008-08-08 2011-05-03 Seagate Technology Llc Magnetic memory cell construction
US7876603B2 (en) 2008-09-30 2011-01-25 Micron Technology, Inc. Spin current generator for STT-MRAM or other spintronics applications
US8310861B2 (en) 2008-09-30 2012-11-13 Micron Technology, Inc. STT-MRAM cell structure incorporating piezoelectric stress material
US8102700B2 (en) 2008-09-30 2012-01-24 Micron Technology, Inc. Unidirectional spin torque transfer magnetic memory cell structure
US7944738B2 (en) * 2008-11-05 2011-05-17 Micron Technology, Inc. Spin torque transfer cell structure utilizing field-induced antiferromagnetic or ferromagnetic coupling
US8553449B2 (en) 2009-01-09 2013-10-08 Micron Technology, Inc. STT-MRAM cell structures
US7957182B2 (en) 2009-01-12 2011-06-07 Micron Technology, Inc. Memory cell having nonmagnetic filament contact and methods of operating and fabricating the same
US8284594B2 (en) * 2009-09-03 2012-10-09 International Business Machines Corporation Magnetic devices and structures
US8169816B2 (en) * 2009-09-15 2012-05-01 Magic Technologies, Inc. Fabrication methods of partial cladded write line to enhance write margin for magnetic random access memory
JP5150673B2 (ja) * 2010-03-19 2013-02-20 株式会社東芝 スピンメモリおよびスピントランジスタ
TWI447726B (zh) * 2010-04-02 2014-08-01 Ind Tech Res Inst 磁性隨機存取記憶體
JP5655391B2 (ja) * 2010-06-23 2015-01-21 ソニー株式会社 記憶素子及び記憶装置
JP5786341B2 (ja) * 2010-09-06 2015-09-30 ソニー株式会社 記憶素子、メモリ装置
KR102023626B1 (ko) * 2013-01-25 2019-09-20 삼성전자 주식회사 스핀 홀 효과를 이용한 메모리 소자와 그 제조 및 동작방법
KR102043727B1 (ko) 2013-03-04 2019-12-02 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법, 이 반도체 장치를 포함하는 마이크로 프로세서, 프로세서, 시스템, 데이터 저장 시스템 및 메모리 시스템
KR102465539B1 (ko) 2015-09-18 2022-11-11 삼성전자주식회사 자기 터널 접합 구조체를 포함하는 반도체 소자 및 그의 형성 방법
US10439133B2 (en) * 2017-03-13 2019-10-08 Samsung Electronics Co., Ltd. Method and system for providing a magnetic junction having a low damping hybrid free layer
CN109244233B (zh) * 2018-07-26 2021-02-19 西安交通大学 基于人工反铁磁固定层的磁性隧道结器件及随机存储装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246566A (ja) * 2001-02-14 2002-08-30 Sony Corp 磁気メモリ装置
JP2003078112A (ja) * 2001-09-04 2003-03-14 Sony Corp 強磁性膜を用いた磁気デバイス及び磁気記録媒体並びに強誘電性膜を用いたデバイス
JP2004296858A (ja) * 2003-03-27 2004-10-21 Mitsubishi Electric Corp 磁気記憶素子及び磁気記憶装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
US5966323A (en) * 1997-12-18 1999-10-12 Motorola, Inc. Low switching field magnetoresistive tunneling junction for high density arrays
US5969978A (en) * 1998-09-30 1999-10-19 The United States Of America As Represented By The Secretary Of The Navy Read/write memory architecture employing closed ring elements
US6005800A (en) * 1998-11-23 1999-12-21 International Business Machines Corporation Magnetic memory array with paired asymmetric memory cells for improved write margin
US6166948A (en) * 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
JP2001196661A (ja) * 1999-10-27 2001-07-19 Sony Corp 磁化制御方法、情報記憶方法、磁気機能素子および情報記憶素子
US6211090B1 (en) * 2000-03-21 2001-04-03 Motorola, Inc. Method of fabricating flux concentrating layer for use with magnetoresistive random access memories
KR100713617B1 (ko) * 2000-04-07 2007-05-02 엘지.필립스 엘시디 주식회사 액정표시장치의 모듈
JP4309075B2 (ja) * 2000-07-27 2009-08-05 株式会社東芝 磁気記憶装置
US6979586B2 (en) * 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US6555858B1 (en) * 2000-11-15 2003-04-29 Motorola, Inc. Self-aligned magnetic clad write line and its method of formation
US6430085B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6576969B2 (en) * 2001-09-25 2003-06-10 Hewlett-Packard Development Company, L.P. Magneto-resistive device having soft reference layer
US6661688B2 (en) * 2001-12-05 2003-12-09 Hewlett-Packard Development Company, L.P. Method and article for concentrating fields at sense layers
US6593608B1 (en) * 2002-03-15 2003-07-15 Hewlett-Packard Development Company, L.P. Magneto resistive storage device having double tunnel junction
US6597049B1 (en) * 2002-04-25 2003-07-22 Hewlett-Packard Development Company, L.P. Conductor structure for a magnetic memory
US6740947B1 (en) * 2002-11-13 2004-05-25 Hewlett-Packard Development Company, L.P. MRAM with asymmetric cladded conductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246566A (ja) * 2001-02-14 2002-08-30 Sony Corp 磁気メモリ装置
JP2003078112A (ja) * 2001-09-04 2003-03-14 Sony Corp 強磁性膜を用いた磁気デバイス及び磁気記録媒体並びに強誘電性膜を用いたデバイス
JP2004296858A (ja) * 2003-03-27 2004-10-21 Mitsubishi Electric Corp 磁気記憶素子及び磁気記憶装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9966122B2 (en) 2016-08-04 2018-05-08 Kabushiki Kaisha Toshiba Magnetic memory device
US10504574B2 (en) 2016-08-04 2019-12-10 Kabushiki Kaisha Toshiba Magnetic memory device
WO2018061435A1 (ja) * 2016-09-28 2018-04-05 Tdk株式会社 スピン流磁化反転素子及び素子集合体
JPWO2018061435A1 (ja) * 2016-09-28 2019-07-04 Tdk株式会社 スピン流磁化反転素子及び素子集合体
US11495735B2 (en) 2016-09-28 2022-11-08 Tdk Corporation Spin-current magnetization rotational element and element assembly

Also Published As

Publication number Publication date
TW200620277A (en) 2006-06-16
KR20060045526A (ko) 2006-05-17
US7443707B2 (en) 2008-10-28
EP1585138A3 (en) 2006-11-02
TWI295058B (en) 2008-03-21
US7211874B2 (en) 2007-05-01
KR101145690B1 (ko) 2012-05-24
JP5036135B2 (ja) 2012-09-26
EP1585138A2 (en) 2005-10-12
US20070184561A1 (en) 2007-08-09
US20050219895A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP5036135B2 (ja) 磁気トンネル接合型磁気ランダムアクセスメモリのメモリセル、メモリセルアレイ、およびメモリセルの選択記録方法
JP5068939B2 (ja) 磁気トンネル接合型磁気ランダムアクセスメモリセルおよびその製造方法、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルアレイおよびその製造方法
US8331141B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
US9171601B2 (en) Scalable magnetic memory cell with reduced write current
US8988934B2 (en) Multibit cell of magnetic random access memory with perpendicular magnetization
US6958927B1 (en) Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6845038B1 (en) Magnetic tunnel junction memory device
JP4815051B2 (ja) 低切替磁界磁性トンネル接合
US8679577B2 (en) Magnetic memory cell construction
US6888742B1 (en) Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US8411494B2 (en) Three-dimensional magnetic random access memory with high speed writing
JP5177938B2 (ja) 磁気メモリセルおよび磁気メモリアレイならびにそれらの製造方法
US20050045913A1 (en) Magnetic memory element utilizing spin transfer switching and storing multiple bits
JP2006032973A (ja) 磁気メモリセルおよびその製造方法ならびに磁気メモリセルアレイ
JP2012519963A (ja) 垂直異方性を有するst−ramセル
JP2001156357A (ja) 磁気抵抗効果素子および磁気記録素子
JP2006516360A (ja) スピン・トランスファおよび磁気素子を使用するmramデバイスを利用する静磁結合磁気素子
JP2008523589A (ja) 高度集合組織の磁気抵抗効果素子及び磁気メモリを提供するための方法及びシステム
JP2001237472A (ja) 磁気抵抗効果素子および磁気抵抗効果記憶素子およびデジタル信号を記憶させる方法
JP4460965B2 (ja) 磁気ランダムアクセスメモリ
JP2007516604A (ja) 複合磁気フリー層を有する磁気エレクトロニクス情報デバイス
US20140252438A1 (en) Three-Dimensional Magnetic Random Access Memory With High Speed Writing
JP3977576B2 (ja) 磁気メモリ装置
US7826254B2 (en) Magnetic storage device and method for producing the same
JP3977816B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110929

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111004

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111130

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees