JP2005233743A - 表面層評価方法 - Google Patents

表面層評価方法 Download PDF

Info

Publication number
JP2005233743A
JP2005233743A JP2004042513A JP2004042513A JP2005233743A JP 2005233743 A JP2005233743 A JP 2005233743A JP 2004042513 A JP2004042513 A JP 2004042513A JP 2004042513 A JP2004042513 A JP 2004042513A JP 2005233743 A JP2005233743 A JP 2005233743A
Authority
JP
Japan
Prior art keywords
thin film
multilayer thin
sample portion
layer
convex sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004042513A
Other languages
English (en)
Other versions
JP4316400B2 (ja
Inventor
Yasuyuki Goto
康之 後藤
Masahiro Fukuda
真大 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004042513A priority Critical patent/JP4316400B2/ja
Publication of JP2005233743A publication Critical patent/JP2005233743A/ja
Application granted granted Critical
Publication of JP4316400B2 publication Critical patent/JP4316400B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

【課題】 表面層評価方法に関し、形状加工に伴う多層薄膜の剥離及び界面の変形を防止して、精度良く且つ再現性良く表面構造を評価する
【解決手段】 頂部が多層薄膜2から構成される角錐台状からなり、且つ、角錐台の頂面の法線に対する角錐台の斜面のなす角が30°〜60°である凸状試料部1に少なくともパルス状電界5を印加して凸状試料部1の先端部を構成する物質を遊離させる。
【選択図】 図1

Description

本発明は表面層評価方法に関するものであり、特に、多層薄膜構造からなる表面層の界面構造をアトムプローブ法によって測定する際の測定対象となる表面層を含んだ基体の加工形状及び多層薄膜の積層構造に特徴のある表面層評価方法に関するものである。
従来、基板表面における吸着、表面反応、多層膜の界面構造を評価したり、或いは、材料の点欠陥等のナノオーダーの欠陥等を検出するためにアトムプローブ法が用いられている(例えば、非特許文献1参照)。
この様なアトムプローブ法においては、測定対象となる試料を先端半径が0.1μm以下の針状体に加工し、この針状体にパルス状の高電圧を印加して針状体の先端から構成物質を離脱させ、その飛行時間や飛来位置を精度良く測定することによって、構成物質の質量や存在位置を特定している。
図8参照
図8は、上述のアトムプローブ法の原理の説明図であり、先端半径が例えば、100nm(=0.1μm)の針状試料51にパルス高電圧を印加して針状試料51の先端から構成物質52,53を電界蒸発させ、飛来する構成物質52,53の到達時間(TOF:Time of Flight)を測定器54によって測定し、到達時間から構成物質52,53のイオン種を同定するものである。
この様な針状試料に電圧を印加して先端部を蒸発させていくと先端部がだんだん太くなって、それ以上の分析が困難になるため、試料に複数のピラミッド状測定部を形成しておき、一つのピラミッドが分析困難になると次にピラミッドに移って測定を続けることが提案されている(例えば、特許文献1参照)。
また、飛行時間だけではなく、MCP(マルチチャンネルプレート)等の測定器を用いて飛来位置分布を精度良く測定することによって、構成物質の3次元構造を再構築することも試みられている(例えば、特許文献2参照)。
この様なアトムプローブ法においては、依然としてサブミクロンオーダーの径を有する針状体を形成することが必須であり、このような針状体を加工形成することは非常に困難であり、且つ、測定対象となる試料の種類にも限りがあるが現状であった。
一方、近年、シリコン基板を頂面の面積が7μm×7μm程度で急峻な傾斜角の四角錐台状に加工し、この四角錐台状構造を針として、この針に電圧を印加することによって表面の吸着物質を分析することが提案されており(例えば、非特許文献2参照)、このように先端部がサブミクロンオーダーの径でないばあいにもアトムプロービング法が可能であることが実証されている。
特開平07−043373号公報 特開平09−152410号公報 T.T.Tsong,"Atom−probe Field Ion Microscopy,Cambridge University Press,1990 Jpn.J.Appl.Phys.Vol.42,No.7B,pp.4816−4824,2003
しかし、上述の四角錐台状構造シリコン基板を用いた測定方法は、表面の吸着物質の分析が対象であり、測定対象となる試料の種類が限定されるという問題がある。
そこで、本発明者は、GMR(巨大磁気抵抗)効果素子やCMOS半導体素子等の積層構造を解析する際に、シリコン基板上に多層薄膜構造を積層させ、この多層薄膜構造の組成及び界面状態を評価することを試みたが、先端部を細くするために斜面を急峻な四角錐台状にした場合には、頂部に設けた多層薄膜の剥離が生ずるという問題がある。
或いは、多層薄膜を設けたシリコン基板を四角錐台状に加工する際に外力が加わって、多層薄膜の界面状態が変化するため、精度が高く且つ再現性のある解析が困難になるという問題もある。
したがって、本発明は、形状加工に伴う多層薄膜の剥離及び界面の変形を防止して、精度良く且つ再現性良く表面構造を評価することを目的とする。
図1は本発明の原理的構成図であり、ここで図1を参照して、本発明における課題を解決するための手段を説明する。
図1参照
上記課題を解決するために、本発明は、凸状試料部1に少なくともパルス状電界5を印加して凸状試料部1の先端部を構成する物質6を遊離させる表面層評価方法において、凸状試料部1の頂部が多層薄膜2から構成される角錐台状からなり、且つ、角錐台の頂面の法線に対する角錐台の斜面のなす角が30°〜60°であることを特徴とする。
本発明者は鋭意研究の結果、凸状試料部1を角錐台状とした場合に、角錐台の頂面の法線に対する角錐台の斜面のなす角を30°〜60°、より好適には、35°〜50°とすることによって、形状加工に伴う多層薄膜2の剥離が非常に起こりにくくなることを見出すととともに、凸状試料部1の先端部が優先的に加工され、均一な電界蒸発が生ずることを見出したものである。
なお、本発明における角錐台は、数学的に厳密な意味での角錐台を意味するものではない。
この場合、角錐台としては、四角錐台状が形状加工の容易性の観点から好適であり、且つ、頂面の寸法としては20μm×20μm以下とすることが好適であり、20μm×20μmを超えると電解蒸発を起こすための印加電圧が増大しすぎる。
また、本発明は、凸状試料部1に少なくともパルス状電界5を印加して凸状試料部1の先端部を構成する物質6を遊離させる表面層評価方法において、凸状試料部1の頂部が多層薄膜2から構成される角錐台状からなり、且つ、多層薄膜2中に被評価対象となる各薄膜の組成とは異なる1原子層以上からなる基準層3が少なくとも一層存在することを特徴とする。
このように、表面層評価に際しては、積層構造の積層位置の基準となる基準層3を設けることが望ましく、それによって、多層薄膜2の積層構造及び界面構造をより正確に評価することが可能になる。
なお、基準層3は多層薄膜2の上部或いは下部の両方に挿入しても良し、或いは、何方か一方に挿入しても良い。
この場合も、形状加工に伴う多層薄膜2の剥離及び界面の変形を防止するためには、頂面の寸法が20μm×20μm以下で頂面の法線に対する角錐台の斜面のなす角が30°〜60°、より好適には、35°〜50°の四角錐台を用いることが望ましい。
また、得られた測定結果に基づいて、基準層3を基準として多層薄膜構造を再構成することにより、多層薄膜構造の三次元解析が可能になる。
また、凸状試料部1の近傍に、凸状試料部1の頂部を構成する多層薄膜2と同等の多層薄膜構成からなる二次イオン質量分析(SIMS)測定領域4を設けても良く、二次イオン質量分析測定領域4を凸状試料部1の観察後、或いは、観察前にSIMS分析法により1次元で評価することによって、より精度の高い解析が可能になる。
なお、凸状試料部1に、パルス状電界5とともに、パルス状電磁界を印加するようにしても良く、それによって、先端寸法の増大に伴う電界の不足分を電磁波、典型的にはレーザ光で補うことができる。
なお、この場合の凸状試料部1の頂部を構成する多層薄膜2を積層させる基板としては、強度、加工容易性、電界印加容易性等の観点からシリコン基板が好適である。
本発明においては、凸状試料部に少なくともパルス状電界を印加して凸状試料部の先端部を構成する物質を遊離させることによって表面層を解析する際に、凸状試料部の形状を頂面の法線に対して斜面のなす角が30°〜60°の角錐台としているので、形状加工に伴う多層薄膜の剥離及び界面の変形を防止して、精度良く且つ再現性良く表面構造を評価することが可能になる。
本発明は、凸状試料部の頂部が多層薄膜から構成される角錐台状、特に、四角錐台状からなり、且つ、角錐台の頂面の法線に対する角錐台の斜面のなす角が30°〜60°より好適には、35°〜50°の凸状試料部に少なくともパルス状電界を印加して凸状試料部の先端部を電界蒸発させて表面層の組成及び構造を評価するものである。
また、本発明は、評価対象となる多層薄膜の上下の少なくとも一方に予め基準層を挿入しておくことにより、この基準層を基準にして多層薄膜の三次元構造を精度良く再構成するものである。
但し、評価対象となる多層薄膜のうちの一層が、観察領域内で十分に平坦な面を有していれば、その層を基準層として用いても良い。
ここで、図2及び図3を参照して、本発明の実施例1の表面評価方法を説明する。
図2参照
図2を参照して凸状試料部の形成方法を説明するが、まず、CMP(化学機械研磨)後のシリコン基板11をフッ酸処理したのち洗浄し、次いで、スパッタリング法を用いてシリコン基板11上に厚さが、例えば、0.75nmのRu層12、2nmのCoFeB層13、0.75nmのRu層14、2nmのCoFeB層15、0.75nmのRu層16、2nmのCoFeB層17、及び、2nmのRu層18を順次成膜して多層薄膜構造19を形成したのち、例えば、真空中において280℃で3時間のアニール処理を施す。
次いで、先端の形状がV字型のダイシングソーを用いて多層薄膜構造19を設けたシリコン基板11を例えば、1.0mm/秒の走査速度で加工して、頂面の寸法が、20μm×20μm以下、例えば、10μm×10μmで、傾斜角が30°〜60°、例えば、30°(ダイシングソーの先端部の垂線との角度が30°の場合)の四角錐台状の凸状試料部20を形成する。
次いで、凸状試料部20を洗浄処理してダイシングソー加工に伴う残渣等を除去したのち、例えば、真空中において600℃で3分間のアニール処理を施すことによって測定用試料が完成する。
次いで、作製した試料に試料側が正電位になるように、例えば、2.5kVのDC電圧を印加するとともに、さらにその上から例えば、1.5kVのパルス状電圧を印加することで試料表面原子の電界蒸発化を利用したアトムプローブ分析を行なった。
図3参照
図3はその測定結果の説明図であり、横軸は検出されたイオンの質量(質量/電荷比)、縦軸は検出されたイオンの個数であり、ここでは全検出イオン数は1214個である。 この測定結果に対して、完全なイオンの同定は行っていないが、試料形状を四角錐台状としても十分なアトムプローブ分析可能であることが明らかになった。
なお、斜面の傾斜角は、多層薄膜構造19の剥離防止の観点からは大きいほうが望ましいが、60°を超えると、十分な試料観察を行うことが困難になり、十分なアトムプローブの装置の操作が行われなかった。
一方、電界蒸発容易性の観点からは、傾斜角は小さいほうが望ましいが、30°未満の場合には、形状加工に伴う剥離或いは界面変形が多発するので、傾斜角としては30°〜60°が望ましく、両方の観点の確実性を考慮するならば、35°〜50°が好適である。
次に、図4乃至図6を参照して、本発明の実施例2の表面層評価方法を説明する。
図4参照
図4を参照して凸状試料部の形成方法を説明するが、まず、CMP後のシリコン基板21をフッ酸処理したのち洗浄し、次いで、マグネトロンスパッタリング法を用いてシリコン基板21上に厚さが、例えば、30nmのPdPtMn層22、1nmのRu下部マーカ層23、3nmのCo層25、3nmのCu層26、及び、3nmのFe層27からなる観察層24、1nmのRu上部マーカ層28、及び、30nmのPdPtMn層キャップ層29を順次成膜して多層薄膜構造30を形成したのち、例えば、真空中において250℃で3分間のアニール処理を施して密着性を改善する。
次いで、上記の実施例1と同様に、先端の形状がV字型のダイシングソーを用いて多層薄膜30を設けたシリコン基板21を例えば、1.0mm/秒の走査速度で加工して、頂面の寸法が、20μm×20μm以下、例えば、10μm×10μmで、傾斜角が30°〜60°、例えば、30°(ダイシングソーの先端部の垂線との角度が30°の場合)の四角錐台状の凸状試料部31を形成する。
次いで、凸状試料部31を洗浄処理してダイシングソー加工に伴う残渣等を除去したのち、例えば、真空中において600℃で3分間のアニール処理を施すことによって測定用試料が完成する。
次いで、作製した試料に試料側が正電位になるように、例えば、3.0kVのDC電圧を印加するとともに、さらにその上から例えば、1.5kVのパルス状電圧を印加することで試料表面原子の電界蒸発化を利用したアトムプローブ分析を行なう。
図5参照
図5は実施例2における測定原理の説明図であり、凸状試料部31は経時的に蒸発して蒸発するが、電界強度が強くなる角部が優先して蒸発するので、同時に電界蒸発する面は図において破線の曲線で示すように曲面状になる。
したがって、各薄膜を構成する構成物質は、各パルス電圧印加毎に経時的に異なった空間広がりを有して検出されることになり、図においては、Ru下部マーカ層22とRu上部マーカ層28について各3つ時点における空間的広がり状態を示している。
図6参照
図6は、上述の測定結果に基づいて、多層薄膜構造30の三次元構造を再構成した三次元再構成像を模式的に示したものであり、この三次元再構成像によって各界面構造或いは成長過程における成膜条件の不備による積層における欠陥等を評価することができる。
この様な評価結果を、得られる素子特性、この場合には、GMR(巨大磁気抵抗効果)素子としての特性と対比することによって、界面状態が素子に及ぼす特性を評価することができ、その結果を多層薄膜の製造条件にフィードバックすることによって良好な特性を有する多層薄膜構造デバイスを再現性良く製造することが可能になる。
実際に、素子作成工程中に、本評価工程を入れた場合、従来のTATを30%、歩留りを15%改善することができた。
次に、図7を参照して、本発明の実施例3を説明する。
図7参照
図7は本発明の実施例3に用いる被測定試料の概念的断面図であり、シリコン基板41に上記実施例1或いは実施例2に示した凸状試料部と同じ形状の凸状試料部43を形成するとともに、その近傍に凸状試料部43の頂部を構成する多層薄膜構造42と同等の構成を有するSIMS測定領域44を設けたものである。
この場合、SIMS測定領域44を凸状試料部43の観察後、或いは、観察前にSIMS分析法により1次元で評価し、その結果を凸状試料部43による測定結果に反映させることによって、例えば、Ru層の存在を確認することによって、より精度の高い解析が可能になる。
以上、本発明の各実施例を説明してきたが、本発明は各実施例に記載した条件・構成に限られるものではなく、各種の変更が可能であり、例えば、各実施例に記載した多層薄膜構造は単なる一例にすぎず、解析対象となるデバイスの多層薄膜構造に応じて適宜変更されるものである。
また、上記実施例においては、角錐台の形状を四角錐台としているが、四角錐台に限られるものではなく、三角錐台等の他の角錐台としても良いものである。
また、角錐台の形状は、ダイシングソー先端の形状を反映した形状となっているので、このダイシングソー先端の形状を変えることにより、角錐台の斜面と垂線との角度を自由に制御することができる。
また、上記の実施例2においては、マーカ層を解析対象となる多層薄膜構造の上下に設けているが、上下に設ける必要は必ずしもなく、上下のどちらか一方に設けるようにしても良いものである。
また、マーカとして用いる材料はRuに限られるものではなく、分析対象となる元素と異なる元素であれば良く、例えば、観察目的元素がCo,Fe,Ru等であれば、Au,Pt,Ir等が目印元素として有効である。
また、上記の実施例3においては、凸状試料部の近傍にSIMS測定領域を設けているが、SIMS測定領域の代わりにTEM(透過電子顕微鏡)測定領域を設けても良いものであり、TEM測定することによって、例えば、多層薄膜構造中にRuが予定した積層構造で存在していることを確認することができる。
また、上記の各実施例においては、パルス電圧の他に固定バイアスとなるDC電圧を重畳印加しているが、このDC電界は必ずしも必要なのではない。
また、上記各実施例においては、電圧しか印加していないものの、パルス電圧に同期させてレーザ光等のパルス電磁波を印加しても良いものであり、電磁波によるパルス電磁界により試料先端部における電界蒸発を容易に引き起こすことができる。
また、上記の各実施例においては、多層薄膜構造を堆積させる基板として、機械的強度、加工容易性、導電性等を考慮してシリコン基板を用いているが、シリコン基板に限られるものではなく、ゲルマニウム基板等の他の半導体基板を用いても良いものであり、さらには、Al等の金属基板等を用いても良いものである。
ここで再び図1を参照して、本発明の詳細な特徴を改めて説明する。
再び、図1参照
(付記1) 凸状試料部1に少なくともパルス状電界5を印加して前記凸状試料部1の先端部を構成する物質6を遊離させる表面層評価方法において、前記凸状試料部1の頂部が多層薄膜2から構成される角錐台状からなり、且つ、前記角錐台の頂面の法線に対する前記角錐台の斜面のなす角が30°〜60°であることを特徴とする表面層評価方法。
(付記2) 上記角錐台が、前記頂面の寸法が20μm×20μm以下の四角錐台であることを特徴とする付記1記載の表面層評価方法。
(付記3) 凸状試料部に少なくともパルス状電界5を印加して前記凸状試料部1の先端部を構成する物質6を遊離させる表面層評価方法において、前記凸状試料部1の頂部が多層薄膜2から構成される角錐台状からなり、且つ、前記多層薄膜2中に被評価対象となる各薄膜の組成とは異なる1原子層以上からなる基準層3が少なくとも一層存在することを特徴とする表面層評価方法。
(付記4) 上記角錐台が、前記頂面の寸法が20μm×20μm以下で、且つ、前記頂面の法線に対する前記角錐台の斜面のなす角が30°〜60°である四角錐台であることを特徴とする付記3記載の表面層評価方法。
(付記5) 上記得られた測定結果に基づいて、上記基準層3を基準として多層薄膜2構造を再構成することを特徴とする付記3または4に記載の表面層評価方法。
(付記6) 上記凸状試料部1の近傍に、上記凸状試料部1の頂部を構成する多層薄膜2と同等の多層薄膜2構成からなる二次イオン質量分析測定領域4を設けたことを特徴とする付記1乃至5のいずれか1に記載の表面層評価方法。
(付記7) 上記凸状試料部1に、上記パルス状電界5とともに、パルス状電磁界を印加することを特徴とする付記1乃至6のいずれか1に記載の表面評価方法。
(付記8) 上記凸状試料部の頂部を構成する多層薄膜2を積層させる基板が、シリコン基板からなることを特徴とする付記1乃至7のいずれか1に記載の表面評価方法。
本発明の活用例としては、デバイスを構成する多層薄膜積層構造の解析方法であるが、多層薄膜積層構造の解析方法に限られるものではなく、多層構造の境界が明瞭ではない混在構造等からなる表面層の三次元構造の解析方法等にも適用されるものである。
本発明の原理的構成の説明図である。 本発明の実施例1の凸状試料部の形成工程の説明図である。 本発明の実施例1における測定結果の説明図である。 本発明の実施例2の凸状試料部の形成工程の説明図である。 本発明の実施例2の測定原理の説明図である。 本発明の実施例2における三次元再構成像の説明図である。 本発明の実施例3に用いる被測定試料の概念的断面図である。 アトムプロービング法の原理の説明図である。
符号の説明
1 凸状試料部
2 多層薄膜
3 基準層
4 二次イオン質量分析測定領域
5 パルス状電界
6 物質
11 シリコン基板
12 Ru層
13 CoFeB層
14 Ru層
15 CoFeB層
16 Ru層
17 CoFeB層
18 Ru層
19 多層薄膜構造
20 凸状試料部
21 シリコン基板
22 PdPtMn層
23 Ru下部マーカ層
24 観察層
25 Co層
26 Cu層
27 Fe層
28 Ru上部マーカ層
29 PdPtMnキャップ層
30 多層薄膜構造
31 凸状試料部
41 シリコン基板
42 多層薄膜構造
43 凸状試料部
44 SIMS測定領域
51 針状試料
52 構成物質
53 構成物質
54 測定器

Claims (5)

  1. 凸状試料部に少なくともパルス状電界を印加して前記凸状試料部の先端部を構成する物質を遊離させる表面層評価方法において、前記凸状試料部の頂部が多層薄膜から構成される角錐台状部からなり、且つ、前記角錐台の頂面の法線に対する前記角錐台の斜面のなす角が30°〜60°であることを特徴とする表面層評価方法。
  2. 上記角錐台が、前記頂面の寸法が20μm×20μm以下の四角錐台であることを特徴とする請求項1記載の表面層評価方法。
  3. 凸状試料部に少なくともパルス状電界を印加して前記凸状試料部の先端部を構成する物質を遊離させる表面層評価方法において、前記凸状試料部の頂部が多層薄膜から構成される角錐台状部からなり、且つ、前記多層薄膜中に被評価対象となる各薄膜の組成とは異なる1原子層以上からなる基準層が少なくとも一層存在することを特徴とする表面層評価方法。
  4. 上記凸状試料部の近傍に、上記凸状試料部の頂部を構成する多層薄膜と同等の多層薄膜構成からなる二次イオン質量分析測定領域を設けたことを特徴とする請求項1乃至3のいずれか1項に記載の表面層評価方法。
  5. 上記凸状試料部に、上記パルス状電界とともに、パルス状電磁界を印加することを特徴とする請求項1乃至4のいずれか1項に記載の表面評価方法。
JP2004042513A 2004-02-19 2004-02-19 表面層評価方法 Expired - Fee Related JP4316400B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042513A JP4316400B2 (ja) 2004-02-19 2004-02-19 表面層評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042513A JP4316400B2 (ja) 2004-02-19 2004-02-19 表面層評価方法

Publications (2)

Publication Number Publication Date
JP2005233743A true JP2005233743A (ja) 2005-09-02
JP4316400B2 JP4316400B2 (ja) 2009-08-19

Family

ID=35016868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042513A Expired - Fee Related JP4316400B2 (ja) 2004-02-19 2004-02-19 表面層評価方法

Country Status (1)

Country Link
JP (1) JP4316400B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (ja) * 2004-08-10 2006-02-23 Fujitsu Ltd ナノレベル構造組成評価用試料、その製造方法、及び、ナノレベル構造組成評価方法
JP2009025127A (ja) * 2007-07-19 2009-02-05 Toppan Printing Co Ltd 試料の作製方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052967A (ja) * 2004-08-10 2006-02-23 Fujitsu Ltd ナノレベル構造組成評価用試料、その製造方法、及び、ナノレベル構造組成評価方法
JP2009025127A (ja) * 2007-07-19 2009-02-05 Toppan Printing Co Ltd 試料の作製方法

Also Published As

Publication number Publication date
JP4316400B2 (ja) 2009-08-19

Similar Documents

Publication Publication Date Title
Larson et al. Local electrode atom probe tomography
EP2916343B1 (en) Fabrication of a Lamella for Correlative Atomic-Resolution Tomographic Analyses
JP4628361B2 (ja) 電子顕微鏡検査用試料の調製方法ならびにそれに用いる試料支持体および搬送ホルダ
Baer et al. Characterization of thin films and coatings
JP2012073069A (ja) 半導体デバイス基板の欠陥部観察用試料の作製方法
JP2004245660A (ja) 小片試料の作製とその壁面の観察方法及びそのシステム
CN107860620B (zh) 一种透射电子显微镜样品及其制备方法
WO2005090941A1 (ja) アトムプローブ装置及びその試料予備加工方法
JP4784888B2 (ja) Fibによるアトムプローブ分析用試料の作製方法とそれを実施する装置
JP4316400B2 (ja) 表面層評価方法
JP4902712B2 (ja) アトムプローブ分析方法
JP4309857B2 (ja) 電界イオン顕微鏡又はアトムプローブに用いられる針状体の形成方法及び電界イオン顕微鏡又はアトムプローブに用いられる針状体
US20120117696A1 (en) Integrated metallic microtip coupon structure for atom probe tomographic analysis
TW201819884A (zh) 針狀試片、其製備方法以及其分析方法
KR20180096527A (ko) 투과 전자 현미경 검사를 위한 방법 및 장치
JPH0743373A (ja) 導電性部材の観察・計測方法及びその装置
JP4464223B2 (ja) ナノレベル構造組成評価用試料、その製造方法、及び、ナノレベル構造組成評価方法
Swami et al. Electron beam lithography on non-planar, suspended, 3D AFM cantilever for nanoscale thermal probing
Latif Nanofabrication using focused ion beam
JP6658354B2 (ja) 試料表面の作製方法、試料表面の分析方法、電界支援酸化用プローブおよびこれを備えた走査型プローブ顕微鏡
Paul et al. Field ion microscopy for the characterization of scanning probes
JP2000195460A (ja) 走査電子顕微鏡による分析方法
KR101853323B1 (ko) 시편의 분석 방법
Kral et al. Plan-View to Cross-Section Conversion Work-Flow for Defect Analysis
Kelly et al. Atom probe tomography defines mainstream microscopy at the atomic scale

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees