JP2005227616A - フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置 - Google Patents

フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置 Download PDF

Info

Publication number
JP2005227616A
JP2005227616A JP2004037309A JP2004037309A JP2005227616A JP 2005227616 A JP2005227616 A JP 2005227616A JP 2004037309 A JP2004037309 A JP 2004037309A JP 2004037309 A JP2004037309 A JP 2004037309A JP 2005227616 A JP2005227616 A JP 2005227616A
Authority
JP
Japan
Prior art keywords
phthalocyanine pigment
time
electrophotographic
electrophotographic photosensitive
photosensitive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004037309A
Other languages
English (en)
Other versions
JP4239847B2 (ja
Inventor
Kazuya Hongo
和哉 本郷
Katsumi Nukada
克己 額田
Yukiko Nakajima
由貴子 中島
Tetsuo Ota
哲生 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004037309A priority Critical patent/JP4239847B2/ja
Publication of JP2005227616A publication Critical patent/JP2005227616A/ja
Application granted granted Critical
Publication of JP4239847B2 publication Critical patent/JP4239847B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

【課題】 電子写真感光体に用いた場合に、充分な感度、帯電性、暗減衰特性を達成し、かぶりなどの画質欠陥を生じることなく長期にわたって安定した画像品質を得ることが可能なフタロシアニン顔料を効率的かつ確実に製造することが可能なフタロシアニン顔料及びその製造方法、並びにそれを用いた電子写真感光体、プロセスカートリッジ及び電子写真装置を提供すること。
【解決手段】 原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、フタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長を湿式粉砕の時間ごとにプロットした曲線の極小点の時間をTaとしたときに、0.7Ta〜1.3Taの範囲内から選ばれる時間を、前期所定時間とする、フタロシアニン顔料の製造方法。
【選択図】 なし

Description

本発明は、フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置に関するものである。
電荷発生材料として電子写真感光体に使用される光導電物質としては、種々の無機系及び有機系の光導電物質が知られている。この中でも、有機系光導電物質は、電子写真感光体に使用した場合、膜の透明性、良好な成膜性、可とう性を有し、無公害であるとともに、比較的低コストである等の利点があるために、従来種々のものについて研究開発がなされてきた。
近年、感光波長領域を近赤外線の半導体レーザーの波長領域にも有し、レーザープリンター、フルカラーデジタル複写機、FAX等のデジタル記録用に使用できる電子写真感光体に対する要求が高まっており、そのような電子写真感光体に用いる光導電物質として、幾つかのものが提案されている。なかでも、特にフタロシアニン化合物については、その結晶型と電子写真特性との関係について数多くの報告がなされている。
一般に、フタロシアニン化合物からなる顔料は、その製造方法または処理方法の相違により、幾つかの結晶型を示し、この結晶型の違いがフタロシアニン顔料の光電変換特性に大きな影響を及ぼすことが知られている。フタロシアニン顔料の結晶型については、例えば、無金属フタロシアニン顔料について見ると、α型、β型、π型、γ型、X型等の結晶型が知られている。
また、CuKα特性X線に対するブラッグ角度(2θ±0.2°)の27.3°に最大ピークを有するチタニルフタロシアニン顔料は、高感度な光導電物質として報告されている(例えば、特許文献1)。
さらにまた、ガリウムフタロシアニン結晶に関しても、その結晶型と電子写真特性について多くの報告がなされており、CuKα特性X線に対するブラッグ角度(2θ±0.2°)の7.5°、9.9°、12.5°、16.3°、18.6°、25.1°及び28.3°に回折ピークを有する極めて高感度のヒドロキシガリウムフタロシアニン及びそれを用いた電子写真感光体が、光感度、環境安定性等に優れていることが報告されている(例えば、特許文献2〜3及び非特許文献1)。
特開平3−269061号公報 特開平5−263007号公報 特開平7−53892号公報 ジャーナル・オブ・イメイジング・サイエンス・アンド・テクノロジー(Journal of Imaging Science and Technology)、米国、Vol.40、No.3、May/June、p.24
しかしながら、従来のフタロシアニン顔料は、電子写真感光体に用いた場合に、画像の解像度や黒点濃度についてはほぼ問題ないレベルを達成していたものの、画像のバックグラウンドにおけるかぶりなどの画像欠陥を防止するという点では必ずしも充分でなく、更なる改善が望まれていた。
そこで、本発明は、上記従来技術の有する課題に鑑みてなされたものであり、電子写真感光体に用いた場合に、充分な感度、帯電性、暗減衰特性を達成し、かぶりなどの画質欠陥を生じることなく長期にわたって安定した画像品質を得ることが可能なフタロシアニン顔料を効率的かつ確実に製造することが可能なフタロシアニン顔料及びその製造方法、並びにそれを用いた電子写真感光体、プロセスカートリッジ及び電子写真装置を提供することを目的とする。
本発明は、原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、フタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長(以下、λMAXという場合がある。)を湿式粉砕の時間ごとにプロットした曲線の極小点の時間をTaとしたときに、0.7Ta〜1.3Taの範囲内から選んだ時間を、湿式粉砕する所定時間(以下、「湿式粉砕時間」という場合がある。)とすることを特徴とするものである。
フタロシアニン顔料のλMAXは、湿式粉砕を始めてから最初の間は短波長側にシフトしていくが、ある時点で極小となった後、徐々に長波長側に戻る傾向を示す。すなわち、λMAXを湿式粉砕の時間ごとにプロットした曲線は極小値を示す。本発明の製造方法では、この極小点の時間をTaとしたときに、0.7Ta〜1.3Taの範囲内から選んだ時間で湿式粉砕を中止するが、このような方法により湿式粉砕時間を決定するため、本発明の製造方法で得られるフタロシアニン顔料は、従来にない微粒子化状態と粒子均一性を有し、電子写真感光体に用いた場合に、充分な感度、帯電性、暗減衰特性を達成し、かぶりなどの画質欠陥を生じることなく長期にわたって安定した画像品質が得られる。
上記のような製造方法によって得られるフタロシアニン顔料は、λMAXが従来より短波長側にシフトしたものとなる。このことは、フタロシアニン顔料中の分子間の相互作用が弱くなっていることを反映していると考えられ、その結果として、顔料中を電荷が流れにくくなり、暗電流が減少して、かぶり防止の効果が得られたものと推察される。
本発明はまた、原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、フタロシアニン顔料のBET比表面積を湿式粉砕の時間ごとにプロットした曲線の極大点の時間をTbとしたときに、0.7Tb〜1.3Tbの範囲内から選んだ時間を、湿式粉砕時間とすることを特徴とするものである。
フタロシアニン顔料のBET比表面積は、湿式粉砕を始めてから最初の間は徐々に増大していくが、ある時点で極大となった後、徐々に減少する傾向を示す。すなわち、BET比表面積を湿式粉砕の時間ごとにプロットした曲線は極大値を示す。本発明の製造方法では、この極大点の時間をTbとしたときに、0.7Tb〜1.3Tbの範囲内から選んだ時間で湿式粉砕を中止するが、このような方法により湿式粉砕時間を決定するため、本発明の製造方法で得られるフタロシアニン顔料は、電子写真感光体に用いた場合に、充分な感度、帯電性、暗減衰特性を達成し、かぶりなどの画質欠陥を生じることなく長期にわたって安定した画像品質が得られる。
上記のような製造方法によって得られるフタロシアニン顔料は、その結晶構造や製造工程に由来する粗大粒子や粒子の凝集体が減少し、粒子の形状の均一性が増したことによって、光電特性のばらつきや粗大粒子存在部の電荷リークが抑制された結果、かぶり防止の効果が得られたものと推察される。
本発明はまた、原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、下記式(1)で算出される時間をTcとしたときに、0.7Tc〜1.3Tcの範囲内から選んだ時間を湿式粉砕時間とすることを特徴とするものである。
Tc=(Ta+Tb)/2 ・・・(1)
(式中、Taはフタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長を湿式粉砕の時間ごとにプロットした曲線の極小点の時間を示し、Tbはフタロシアニン顔料のBET比表面積を湿式粉砕の時間ごとにプロットした曲線の極大点の時間を示す。)
この製造方法により、上記のような、λMAXを短波長にシフトさせることによる効果と、BET比表面積を増大させることによる効果とを兼ね備えた、フタロシアニン顔料を得ることが可能となる。
本発明のフタロシアニン顔料の製造方法においては、湿式粉砕時間を、上記範囲内から選ばれる時間、且つ、得られるフタロシアニン顔料の平均粒径が0.1μm以下となる時間の範囲内とすることが、分散性を良好にし、画質欠陥をさらに減少させるられる点で、好ましい。
さらに、上記湿式粉砕は、外径0.1〜3.0mmの球形状メディアを使用した粉砕装置により、前記メディアの使用量を原料であるフタロシアニン顔料1重量部に対して50重量部以上として行われることが、湿式粉砕時間を短縮できる等の点で、好ましい。
本発明のフタロシアニン顔料は、上記のようなフタロシアニン顔料の製造方法によって得られ、平均粒径が0.10μm以下で、かつ、BET比表面積が45m/g以上であることを特徴とするものである。なお、このフタロシアニン顔料は、ヒドロキシガリウムフタロシアニン顔料、チタニルフタロシアニン顔料及び無金属フタロシアニン顔料からなる群より選ばれる少なくとも一種を含有することが好ましい。
このようなフタロシアニン顔料を電子写真感光体用光電導物質として用いることによって、充分な感度、帯電性、暗減衰特性を達成し、かぶりなどの画質欠陥を生じることなく長期にわたって安定した画像品質が得られる。
本発明の電子写真感光体は、導電性支持体と、該支持体上に配置された感光層と、を備える電子写真感光体であって、感光層が上記のフタロシアニン顔料を含有するものである。
本発明のプロセスカートリッジは、上記電子写真感光体と、上記電子写真感光体を帯電させるための帯電手段、上記電子写真感光体上に静電潜像を形成するための露光手段、上記電子写真感光体上に形成された静電潜像をトナーにより現像してトナー像を形成するための現像手段、及び上記電子写真感光体上に残存したトナーを除去するためのクリーニング手段からなる群より選ばれる少なくとも1種と、を備えるものである。
本発明の電子写真装置は、上記電子写真感光体と、上記電子写真感光体を帯電させるための帯電手段と、上記電子写真感光体上に静電潜像を形成するための露光手段と、上記電子写真感光体上に形成された静電潜像をトナーにより現像してトナー像を形成するための現像手段と、上記トナー像を被転写体に転写するための転写手段と、を備えるものである。
これらの電子写真感光体、プロセスカートリッジ及び電子写真装置は、いずれも上記本発明のフタロシアニン顔料を使用するものであり、顔料の分散性に優れるとともに、十分な感度、帯電性及び暗減衰特性とが得られ、それによって、かぶりなどの画質欠陥を生じることなく長期間にわたって安定した画像品質を得ることが可能となる。
本発明によれば、得られるフタロシアニン顔料の粒径が十分に小さく、且つ均一となるので、これを電子写真感光体の材料に用いた場合に、十分な感度、帯電性、暗減衰特性を達成し、画質欠陥を生じることなく長期にわたって安定した画像品質を得ることが可能となる。また、本発明のフタロシアニン顔料を用いた電子写真感光体を備える本発明のプロセスカートリッジ並びに電子写真装置においては、バックグラウンドにおけるかぶり等の画像欠陥を生じることなく、長期にわたって十分に高い画質を得ることが可能となる。
以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付することとする。
(フタロシアニン顔料の製造方法)
本発明のフタロシアニン顔料の製造方法では、原料であるフタロシアニン顔料を所定時間湿式粉砕することにより結晶変換させて、目的物であるフタロシアニン顔料を得る。
原料として用いるフタロシアニン顔料としては、ヒドロキシガリウムフタロシアニン顔料、チタニルフタロシアニン顔料または無金属フタロシアニン顔料の粗結晶を、アシッドぺースティング処理等によって微細化したものが好ましい。
ヒドロキシガリウムフタロシアニン顔料の場合、CuKα特性X線を用いたX線回折スペクトルにおいて、ブラッグ角度(2θ±0.2°)6.9°、13.2〜14.2°、16.5°、26.0°及び26.4°、又は、7.0°、13.4°、16.6°、26.0°及び26.7°に回折ピークを有するヒドロキシガリウムフタロシアニン顔料(以下、「I型ヒドロキシガリウムフタロシアニン顔料」という)を、原料として用いることが好ましい。I型ヒドロキシガリウムフタロシアニン顔料は、従来公知の方法によって得ることができる。以下にその一例を示す。
先ず、o−フタロジニトリル又は1,3−ジイミノイソインドリンと三塩化ガリウムとを所定の溶媒中で反応させる方法(I型クロロガリウムフタロシアニン法)、o−フタロジニトリル、アルコキシガリウムおよびエチレングリコールを所定の溶媒中で加熱し反応させてフタロシアニン二量体(フタロシアニン・ダイマー)を合成する方法(フタロシアニン・ダイマー法)、等により粗ガリウムフタロシアニンを製造する。上記の反応における溶媒としては、α−クロロナフタレン、β−クロロナフタレン、α−メチルナフタレン、メトキシナフタレン、ジメチルアミノエタノール、ジフェニルエタン、エチレングリコール、ジアルキルエーテル、キノリン、スルホラン、ジクロロベンゼン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルスルホアミドなどの不活性且つ高沸点の溶剤を用いることが好ましい。
次に、上記の工程で得られた粗ガリウムフタロシアニンをアシッドペースティング処理することによって、粗ガリウムフタロシアニンを微粒子化するとともにI型ヒドロキシガリウムフタロシアニン顔料に変換する。ここで、アシッドペースティング処理とは、具体的には、粗ガリウムフタロシアニンを硫酸などの酸に溶解させたものあるいは硫酸塩などの酸塩としたものを、アルカリ水溶液、水又は氷水中に注ぎ、再結晶させることをいう。前記アシッドペースティング処理に用いる酸としては硫酸が好ましく、特に、濃度70〜100%の硫酸がより好ましく、濃度95〜100%の硫酸がさらに好ましい。
チタニルフタロシアニン顔料の場合、1,3−ジイミノイソインドリンとチタニウムテトラブトキシドとを反応させる等の方法で合成されたチタニルフタロシアニン粗結晶を、ヒドロキシガリウムフタロシアニン顔料の場合と同様のアシッドぺースティング処理することによって得られる、非晶質または準非晶質の微細化されたチタニルフタロシアニン顔料を原料として用いることが好ましい。
無金属フタロシアニン顔料の場合、以下の方法で合成された無金属フタロシアニン粗結晶を、ヒドロキシガリウムフタロシアニン顔料の場合と同様のアシッドぺースティング処理することによって得られる、微細化されたα型無金属フタロシアニン顔料を原料として用いることが好ましい。
無金属フタロシアニン粗結晶を合成する方法としては、o−フタロジニトリル、または1,3−ジイミノイソインドリンを強塩基触媒の存在下で適当な溶媒を用いて加熱反応させる方法、アルカリ金属フタロシアニンを中間体として生成し、次に酸またはアルコールで洗浄する方法等を好適に採用できる。
これらの合成方法において使用する溶剤としては、α−クロロナフタレン、β−クロロナフタレン、α−メチルナフタレン、メトキシナフタレン、ジメチルアミノエタノール、ジフェニルエタン、エチレングリコール、ジアルキルエーテル、キノリン、スルホラン、ジクロロベンゼン、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルスルホアミド等の合成反応の際に不活性な高沸点の溶剤が好ましい。
以上のようにして得られた、微細化された各種フタロシアニン顔料を原料として用いて、溶剤とともに湿式粉砕することにより結晶変換する。
湿式粉砕処理は、外径0.1〜3.0mmの球形状メディアを使用した粉砕装置を用いて行われるのが好ましく、外径0.2〜2.5mmの球形状メディアを用いて行われるのがより好ましい。メディアの外形が3.0mmより大きい場合、粉砕効率が低下するため粒子径が小さくならずに凝集体が生成しやすい傾向にある。また、メディアの外径が0.1mmより小さい場合、メディアとフタロシアニン顔料とを分離し難くなる傾向にある。更に、メディアが球形状でなく、円柱状や不定形状等、他の形状の場合、粉砕効率が低下するとともに、粉砕によってメディアが磨耗し易く、磨耗粉が不純物となりフタロシアニン顔料の特性を劣化させ易くなる傾向がある。
上記メディアの材質は特に制限されないが、フタロシアニン顔料中に混入した場合にも画質欠陥を発生し難いものが好ましく、ガラス、ジルコニア、アルミナ、メノー等が好ましい。
上記メディアの使用量は、原料であるフタロシアニン顔料1重量部に対して50重量部以上、好ましくは55〜100重量部の範囲で、使用する装置等に応じて適正化される。メディアの使用量が50重量部未満であると、粉砕効率が充分でないために微細化が困難となる場合がある。
また、メディアの外径が小さくなると、同じ重量(使用量)でも装置内に占めるメディア密度が高まり、混合溶液の粘度が上昇して粉砕効率が変化するため、メディア外径を小さくするに従い、適宜メディア使用量と溶剤使用量とをコントロールすることによって最適な混合比で湿式処理を行うことが望ましい。
また、上記湿式粉砕処理を行う容器の材質についても特に制限されないが、フタロシアニン顔料中に混入した場合にも画質欠陥を発生し難いものが好ましく、ガラス、ジルコニア、アルミナ、メノー、ポリプロピレン、テフロン(登録商標)、ポリフェニレンサルファイド等が好ましい。また、鉄、ステンレスなどの金属容器の内面にガラス、ポリプロピレン、テフロン(登録商標)、ポリフェニレンサルファイド等をライニングしたものであってもよい。
湿式粉砕を行う温度は、好ましくは0〜100℃であり、より好ましくは5〜80℃であり、より一層好ましくは10〜50℃である。湿式粉砕を行う温度が0℃未満の場合には、結晶転移の速度が遅くなり、また、温度が100℃を超えるとフタロシアニン顔料の溶解性が高くって結晶成長しやすく、微粒化が困難となる傾向にある。
湿式粉砕に使用される溶剤としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどのアミド類、酢酸エチル、酢酸n−ブチル、酢酸iso−アミルなどのエステル類、アセトン、メチルエチルケトン、メチル−iso−ブチルケトンなどのケトン類の他に、ジメチルスルホキシドなどが挙げられる。これらの溶剤の使用量は、フタロシアニン顔料1重量部に対して通常は1〜200重量部であり、好ましくは1〜100重量部である。
湿式粉砕に用いられる装置としては、振動ミル、自動乳鉢、サンドミル、ダイノーミル、コボールミル、アトライター、遊星ボールミル、ボールミルなどの、メディアを分散媒体として使用する装置を用いることができる。
湿式粉砕過程におけるフタロシアニン顔料の微粒化及び結晶変換の進行速度は、湿式粉砕のスケール、攪拌スピード、メディア材質などによって大きく影響されるが、本発明の製造方法においては、以下に述べるような方法により湿式粉砕時間を決定する。
まず第一の方法として、フタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長を湿式粉砕の時間ごとにプロットした曲線の極小点の時間をTaとしたときに、0.7Ta〜1.3Taの範囲内、好ましくは0.8Ta〜1.2Taの範囲内、さらに好ましくは0.9Ta〜1.1 Taの範囲内から選んだ時間を、湿式粉砕時間とする。
なお、上記Taは、湿式粉砕過程にあるフタロシアニン顔料の700〜900nmの波長域での分光吸収スペクトルにおけるλMAXを、所定の粉砕時間ごとに測定し、測定されたλMAXの値を粉砕時間に対してプロットした点の集合を曲線と見なし、この曲線が有する極小点に対応する時間をTaとすることで、求めることができる。このとき、上記λMAXの測定は、好ましくは1〜50時間ごと、より好ましくは2〜40時間ごとに行うのがよい。
湿式粉砕過程にあるフタロシアニン顔料のλMAXは、例えば、湿式粉砕処理装置から顔料溶液を少量サンプリングし、これをアセトン、酢酸エチルなどの溶剤で希釈してから、分光光度計を用いて液セル法により測定することができる。
湿式粉砕時間を決定する第二の方法として、フタロシアニン顔料のBET比表面積を湿式粉砕の時間ごとにプロットした曲線の極大点の時間をTbとしたときに、0.7Tb〜1.3Tbの範囲内、好ましくは0.8Tb〜1.2Tbの範囲内、さらに好ましくは0.9Tb〜1.1Tbの範囲内から選んだ時間を、湿式粉砕時間とする。
なお、上記Tbは、湿式粉砕過程にあるフタロシアニン顔料のBET比表面積を所定の粉砕時間ごとに測定し、測定されたBET比表面積の値を粉砕時間に対してプロットした点の集合を曲線と見なし、この曲線が有する極大点に対応する時間をTbとすることで、求めることができる。このとき、上記BET比表面積の測定は、好ましくは1〜40時間ごと、より好ましくは2〜40時間ごとに行うのがよい。
湿式粉砕過程にあるフタロシアニン顔料のBET比表面積を測定する方法としては、例えば、湿式粉砕処理装置から顔料溶液を少量サンプリングし、フタロシアニン顔料をろ別して洗浄した後、さらに乾燥して粉末状にしてから、レーザ回折散乱式の粒度分布測定装置を用いて測定する方法を好適に採用できる。
湿式粉砕時間を決定する第三の方法として、上記と同様のTa及びTbを用いて下記式(1)で算出される時間をTcとしたときに、0.7Tc〜1.3Tc、好ましくは0.8Tc〜1.2Tc、さらに好ましくは0.9Tc〜1.1Tcの範囲内から選んだ時間を湿式粉砕時間とする
Tc=(Ta+Tb)/2 ・・・(1)
上記のように、λMAXやBET比表面積の経時変化に基づいて湿式粉砕処理時間を決定する場合、実施しようとする湿式粉砕と同様の湿式粉砕条件で、湿式粉砕時間と、λMAXやBET比表面積との関係について測定し、これを基に湿式粉砕時間を予め決定しておくことが好ましい。粉砕過程にある顔料液をサンプリングしてから最大吸収極大波長やBET比表面積を測定するまでには、やや長い時間を要する場合があり、その場合、測定値を得るまでの間に湿式粉砕過程にあるフタロシアニン顔料がさらに経時変化してしまう可能性があるが、予め湿式粉砕時間を決定しておけば、最適な時間で湿式粉砕を行うことが容易になるからである。
さらに、湿式粉砕時間は、得られるフタロシアニン顔料の平均粒径が0.1μm以下となる時間の範囲内とすることが、フタロシアニン顔料の分散性を良好にし、画質欠陥をさらに減少させられる点で好ましい。
湿式粉砕過程にあるフタロシアニン顔料の平均粒径は、湿式粉砕中の顔料液からフタロシアニン顔料を少量サンプリングし、レーザ回折散乱式などの粒度分布計を用いて測定できる。
以上のようにして決定される湿式粉砕時間は、通常5〜500時間の範囲、好ましくは7〜300時間の範囲である。湿式粉砕時間が5時間未満であると、結晶変換が完結せず、電子写真特性の低下、特に感度不足の問題が生じやすくなる傾向にある。また、湿式粉砕時間が500時間を超えると、粉砕ストレスの影響により感度低下、生産性低下、メディアの摩滅粉の混入などの問題が生じやすくなる傾向にある。湿式粉砕時間をこのように決定することにより、フタロシアニン顔料の粒子が均一に微粒子化した状態で湿式粉砕処理を完了することが可能となり、さらに、複数ロットの繰り返し湿式粉砕を実施した場合における、ロット間の品質ばらつきを抑制することが可能となる。
(フタロシアニン顔料)
本発明のフタロシアニン顔料は、上記本発明の製造方法によって得られ、平均粒径が0.10μm以下で、かつ、BET比表面積が45m/g以上であることを特徴とするものである。平均粒径は、0.01〜0.08μmであることがより好ましく、一方、BET比表面積は、50m/g以上であることが好ましく、55〜120m/gであることがより好ましい。
フタロシアニン顔料の平均粒径が0.10μmより大きい場合、又はBET比表面積が45m/g未満である場合は、顔料粒子が粗大化しているか、又は顔料粒子の凝集体が形成されており、電子写真感光体の材料として用いた場合の分散性や、感度、帯電性及び暗減衰特性といった特性に欠陥が生じやすい傾向にあり、それにより画質欠陥を生じやすくなる場合がある。
以上説明した本発明のフタロシアニン顔料は、染料、電子写真感光体、光ディスク、太陽電池、センサー、脱臭剤、抗菌剤、非線形光学材料などの種々の用途に利用することができる。中でも、本発明のフタロシアニン顔料を電子写真感光体の電荷発生材料として用いた場合には、感光体の最適な感度や優れた光電特性を得ることができる点、および感光膜に含まれる結着樹脂中への分散性に優れているので、画質特性に優れる点で特に有効である。
(電子写真感光体)
図1(a)は、本発明の電子写真感光体の第一実施形態を示す模式断面図である。図1(a)に示す電子写真感光体100は、電荷発生材料を含有する層(電荷発生層1)と電荷輸送材料を含有する層(電荷輸送層2)とに機能が分離された積層型感光層6を備えるものであり、導電性支持体3上に電荷発生層1、電荷輸送層2が順次積層された構造を有している。そして、本発明のフタロシアニン顔料は、電荷発生材料として電荷発生層1に含有される。
導電性支持体3としては、例えば、アルミニウム、銅、鉄、亜鉛、ニッケル等の金属製のもの、ポリマー製シート、紙、プラスチック、ガラス等の基体上にアルミニウム、銅、金、銀、白金、パラジウム、チタン、ニッケル−クロム、ステンレス鋼、銅−インジウム等の金属を蒸着することで導電処理したもの、酸化インジウム、酸化錫などの導電性金属化合物を上記基体上に蒸着することで導電処理したもの、金属箔を上記基体上にラミネ
ートすることで導電処理したもの、カーボンブラック、酸化インジウム、酸化錫−酸化アンチモン粉、金属粉、沃化銅等を結着樹脂に分散し、上記基体上に塗布することで導電処理したもの等が挙げられる。また、導電性支持体3の形状は、ドラム状、シート状、プレート状のいずれであってもよい。
ここで、金属パイプ基材を導電性支持体3として用いる場合、その表面は素管のままであっても、事前に鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニング、着色処理などの処理を行なうことが好ましい。表面処理を行ない基材表面を粗面化することにより、レーザービームのような可干渉光源を用いた場合に発生しうる感光体内での干渉光による木目状の濃度斑を防止することができる。
導電性支持体3として金属パイプ基材を用いる場合、その表面は素管のままであってもよいが、予め鏡面切削、エッチング、陽極酸化、粗切削、センタレス研削、サンドブラスト、ウエットホーニング、着色処理などの表面処理により基材表面を粗面化しておくことが好ましい。このように、基材表面を粗面化することにより、レーザービーム等の可干渉光源を用いた場合に発生し得る感光体内での干渉光による木目状の濃度斑を防止することができる。
電荷発生層1は電荷発生材料としての本発明のフタロシアニン顔料と結着樹脂とを含有するものである。
上記結着樹脂としては、ポリカーボネート、ポリスチレン、ポリスルホン、ポリエステル、ポリイミド、ポリエステルカーボネート、ポリビニルブチラール、メタクリル酸エステル重合体、酢酸ビニル単独重合体又は共重合体、セルロースエステル、セルロースエーテル、ポリブタジエン、ポリウレタン、フェノキシ樹脂、エポキシ樹脂、シリコーン樹脂、フッ素樹脂、及びこれらの部分架橋硬化物等が挙げられ、これらのうちの1種を単独で、あるいは2種以上を組み合わせて用いることができる。
電荷発生層1における本発明のフタロシアニン顔料と結着樹脂との配合比(重量比)は、好ましくは40:1〜1:4であり、より好ましくは20:1〜1:2である。本発明のフタロシアニン顔料の配合量が結着樹脂の配合量の40倍を超えると、電子写真感光体の製造工程において使用される分散液中の顔料の分散性が不十分となる傾向にあり、他方、結着樹脂の配合量の1/4未満であると、電子写真感光体の感度が不十分となる傾向にある。
また、電荷発生層1は、本発明のフタロシアニン顔料以外の他の電荷発生材料を含有していてもよい。ここで、電荷発生層1に用いられる他の電荷発生材料としては、アゾ顔料、ペリレン顔料、縮環芳香族系顔料等を用いることができる。これら他の電荷発生材料の配合量は、電荷発生層中に含まれる物質全量を基準として50重量%以下であることが好ましい。
なお、電荷発生層1上に電荷輸送層2などの他の層を更に成膜する場合には、その塗工液に使用される溶剤によって電荷発生層1が溶解あるいは膨潤することのないように、電荷発生層1の結着樹脂と、電荷発生層1の上に塗布される塗布液の溶剤と、の組み合わせを適宜選択することが好ましい。また、電荷発生層1の結着樹脂と後述する電荷輸送層2の結着樹脂とは、互いの屈折率同士が近いものを組み合わせて使用することが好ましく、具体的には、互いの屈折率の差が1以下であることが好ましい。このように屈折率の近い結着樹脂を組み合わせて用いると、電荷発生層1と電荷輸送層2との界面での光の反射が抑制され、干渉縞防止効果が向上する傾向にある。
電荷発生層1は、本発明のフタロシアニン顔料及び結着樹脂を所定の溶剤に加え、サンドミル、コロイドミル、アトライター、ダイノーミル、ジェットミル、コボールミル、ロールミル、超音波分散機、ゴーリンホモジナイザー、マイクロフルイダイザー、アルティマイザー、マイルダーなどを用いて混合、分散させることにより得られる塗工液を、ブレードコーティング法、マイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法などにより塗布し、乾燥することによって得ることができる。
ここで、電荷発生層1の塗工液に用いる溶剤としては、具体的には、メタノール、エタノール、n−ブタノール、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、酢酸メチル、酢酸n−ブチル、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、トルエン、キシレン、クロロベンゼン、ジメチルホルムアミド、ジメチルアセトアミド、水などが挙げられ、これらのうちの1種を単独で用いてもよく、2種以上の混合物として用いもよい。
このようにして得られる電荷発生層1の膜厚は、良好な電気特性と画質とを得るために、0.05〜5μmであることが好ましく、0.1〜1μmであることがより好ましい。電荷発生層1の膜厚が0.05μm未満であると、感度が低下する傾向にあり、膜厚が5μmを超えると、帯電性の不良などの弊害を生じやすくなる傾向がある。
電荷輸送層2は電荷輸送材料及び結着樹脂を含有するものである。電荷輸送層2に使用される電荷輸送材料としては、電荷を輸送する機能を有するものであれば特に制限なく使用することができる。例えば、2,5−ビス(p−ジエチルアミノフェニル)−1,3,4−オキサジアゾール等のオキサジアゾール誘導体、1,3,5−トリフェニル−ピラゾリン、1−[ピリジル−(2)]−3−(p−ジエチルアミノスチリル)−5−(p−ジエチルアミノスチリル)ピラゾリン等のピラゾリン誘導体、トリフェニルアミン、トリ(P−メチル)フェニルアミン、N,N’−ビス(3,4−ジメチルフェニル)ビフェニル−4−アミン、ジベンジルアニリン、9,9−ジメチル−N,N’−ジ(p−トリル)フルオレノン−2−アミン等の芳香族第3級アミノ化合物、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1−ビフェニル]−4,4’−ジアミン等の芳香族第3級ジアミノ化合物、3−(4’ジメチルアミノフェニル)−5,6−ジ−(4’−メトキシフェニル)−1,2,4−トリアジン等の1,2,4−トリアジン誘導体、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン、4−ジフェニルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン、[p−(ジエチルアミノ)フェニル](1−ナフチル)フェニルヒドラゾンなどのヒドラゾン誘導体、2−フェニル−4−スチリル−キナゾリン等のキナゾリン誘導体、6−ヒドロキシ−2,3−ジ(p−メトキシフェニル)−ベンゾフラン等のベンゾフラン誘導体、p−(2,2−ジフェニルビニル)−N,N’−ジフェニルアニリン等のα−スチルベン誘導体、エナミン誘導体、N−エチルカルバゾール等のカルバゾール誘導体、ポリ−N−ビニルカルバゾール及びその誘導体等の正孔輸送物質、クロラニル、ブロモアニル、アントラキノン等のキノン系化合物、テトラシアノキノジメタン系化合物、2,4,7−トリニトロフルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン等のフルオレノン化合物、2−(4−ビフェニル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、2,5−ビス(4−ナフチル)−1,3,4−オキサジアゾール、2,5−ビス(4−ジエチルアミノフェニル)1,3,4オキサジアゾール等のオキサジアゾール系化合物、キサントン系化合物、チオフェン化合物、3,3’,5,5’テトラ−t−ブチルジフェノキノン等のジフェノキノン化合物などの電子輸送物質等が挙げられる。さらに、電荷輸送材料としては、以上例示した化合物の基本構造を主鎖又は側鎖に有する重合体等も使用することができる。これらの電荷輸送材料は、1種を単独で又は2種以上を組み合わせて使用することができる。
電荷輸送層2に使用される結着樹脂としては、公知のものを特に制限なく使用することができるが、電気絶縁性のフィルムを形成することが可能な樹脂を用いることが好ましい。例えば、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリスチレン樹脂、ポリビニルアセテート樹脂、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、スチレン−アルキッド樹脂、ポリ−N−カルバゾール、ポリビニルブチラール、ポリビニルフォルマール、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、フェノール樹脂、ポリアミド、カルボキシ−メチルセルロース、塩化ビニリデン系ポリマーワックス、ポリウレタン等が挙げられる。これらの結着樹脂は、単独又は2種以上を組み合わせて用いることができる。特に、ポリカーボネート樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂が電荷輸送材料との相溶性、溶剤への溶解性、強度の点で優れているので好ましく用いられる。
また、結着樹脂と電荷輸送物質との配合比(質量比)は電気特性低下、膜強度低下に考慮しつつ任意に設定することができる。
さらに、電荷輸送層2の膜厚は5〜50μmであることが好ましく、10〜35μmであることがより好ましい。
電荷輸送層2の形成用の塗布液に用いる溶剤としては、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤を単独あるいは2種以上混合して用いることができる。電荷輸送層2の塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の方法を用いることができる。
図1(b)は、本発明の電子写真感光体の第二実施形態を示す模式断面図である。図1(b)に示す電子写真感光体110は、導電性支持体3と感光層6との間に下引層4を備えること以外は図1(a)に示した電子写真感光体100と同様の構造を有するものである。
この下引層4は、感光層6の帯電時において、導電性支持体3から感光層6への電荷の注入を阻止する機能を有する。また、この下引層4は、感光層6を導電性支持体3に対して一体的に接着保持させる接着層としても機能する。さらに、この下引層4は、導電性支持体3の光反射を防止する機能を有する。
下引層4は、結着樹脂、有機あるいは無機の粉末、電子輸送性物質等から任意に選択された材料により構成される。ここで、結着樹脂としては、ポリビニルブチラールなどのアセタール樹脂、ポリビニルアルコール樹脂、カゼイン、ポリアミド樹脂、セルロース樹脂、ゼラチン、ポリウレタン樹脂、ポリエステル樹脂、メタクリル樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリビニルアセテート樹脂、塩化ビニル−酢酸ビニル−無水マレイン酸樹脂、シリコーン樹脂、シリコーン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂、メラミン樹脂等の高分子樹脂化合物、ジルコニウムキレート化合物、チタニウムキレート化合物、アルミニウムキレート化合物、チタニウムアコキシド化合物、有機チタニウム化合物、シランカップリング剤等の公知の材料を用いることができる。そして、これらの化合物は単独で、あるいは複数の化合物の混合物として、あるいは重縮合物として用いることができる。さらにこれらの中でも、ジルコニウムキレート化合物、シランカップリング剤は残留電位が低く環境による電位変化が少なく、また繰り返し使用による電位の変化が少ないなど性能上優れているため好ましい。
上記のシランカップリング剤の例としては、ビニルトリメトキシシラン、γ-メタクリルオキシプロピル-トリス(β-メトキシエトキシ)シラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルメトキシシラン、N,N-ビス(β-ヒドロキシエチル)-γ-アミノプロピルトリエトキシシラン、γ-クロルプロピルトリメトキシシランなどが挙げられる。これらの中でも特に好ましく用いられるシリコン化合物としては、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシシラン)、3-メタクリロキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-クロロプロピルトリメトキシシラン等のシランカップリング剤が挙げられる。
チタニウムキレート化合物としては、テトライソプロピルチタネート、テトラノルマルブチルチタネート、ブチルチタネートダイマー、テトラ(2-エチルヘキシル)チタネート、チタンアセチルアセトネート、ポリチタンアセチルアセトネート、チタンオクチレングリコレート、チタンラクテートアンモニウム塩、チタンラクテート、チタンラクテートエチルエステル、チタントリエタノールアミネート、ポリヒドロキシチタンステアレート等が挙げられる。
アルミニウムキレート化合物としては、アルミニウムイソプロピレート、モノブトキシアルミニウムジイソプロピレート、アルミニウムブチレート、ジエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。
下引層4中には、電気特性の向上や光散乱性の向上などの目的により、各種の有機化合物の微粉末もしくは無機化合物の微粉末を添加することができる。特に、酸化チタン、酸化亜鉛、亜鉛華、硫化亜鉛、鉛白、リトポン等の白色顔料やアルミナ、炭酸カルシウム、硫酸バリウム等の体質顔料としての無機顔料やテフロン(登録商標)樹脂粒子、ベンゾグアナミン樹脂粒子、スチレン樹脂粒子などが有効である。添加微粉末の粒径は0.01〜2μmのものが用いられる。微粉末は必要に応じて添加されるが、その添加量は下引層4の固形分の総重量に対して、重量比で10〜90重量%であることが好ましく、30〜80重量%であることがより好ましい。
また、下引層4中には、先に説明した電子輸送性物質、電子輸送性顔料等を含有させることも低残留電位化や環境安定性の観点から有効である。さらに、下引層4の膜厚は0.01〜30μmであることが好ましく、0.05〜25μmであることがより好ましい。
また、下引層4を形成するための塗布液を調製する際に、微粉末状の物質を添加する場合には、樹脂成分を溶解した溶液中に添加して分散処理が行われる。この分散処理方法としては、ロールミル、ボールミル、振動ボールミル、アトライター、サンドミル、コロイドミル、ペイントシェーカーなどの方法を用いることができる。
この下引層4は導電性支持体3上に下引層4を形成するための塗布液を塗布し、乾燥させることにより形成することができる。このときの塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。
図1(c)は、本発明の電子写真感光体の第三実施形態を示す模式断面図である。図1(c)に示す電子写真感光体120は、感光層6上に保護層5を備えること以外は図1(a)に示した電子写真感光体100と同様の構成を有するものである。
保護層5は、電子写真感光体120の帯電時の電荷輸送層2の化学的変化を防止したり、感光層6の機械的強度を更に改善する為に用いられる。保護層5は、導電性材料を適当な結着樹脂中に含有させた塗布液を感光層6上に塗布することにより形成される。
保護層5に用いる導電性材料は特に限定されるものではなく、例えば、N,N’−ジメチルフェロセン等のメタロセン化合物、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−[1,1’−ビフェニル]−4,4’−ジアミン等の芳香族アミン化合物、酸化モリブデン、酸化タングステン、酸化アンチモン、酸化錫、酸化チタン、酸化インジウム、酸化錫とアンチモン、硫酸バリウムと酸化アンチモンとの固溶体の担体、上記金属酸化物の混合物、酸化チタン、酸化スズ、酸化亜鉛又は硫酸バリウムの単一粒子中に上記の金属酸化物を混合したもの、あるいは、酸化チタン、酸化スズ、酸化亜鉛、又は硫酸バリウムの単一粒子中に上記の金属酸化物を被覆したもの等が挙げられる。
保護層5に用いる結着樹脂としては、ポリアミド樹脂、ポリビニルアセタール樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等の公知の樹脂が用いられる。また、これらは必要に応じて互いに架橋させて使用することもできる。
保護層5の膜厚は1〜20μmであることが好ましく、2〜10μmであることがより好ましい。
保護層5を形成するための塗布液の塗布方法としては、ブレードコーティング法、ワイヤーバーコーティング法、スプレーコーティング法、浸漬コーティング法、ビードコーティング法、エアーナイフコーティング法、カーテンコーティング法等の通常の方法を用いることができる。また、保護層5を形成するための塗布液に用いる溶剤としては、ジオキサン、テトラヒドロフラン、メチレンクロライド、クロロホルム、クロルベンゼン、トルエン等の通常の有機溶剤を単独あるいは2種以上混合して用いることができるが、この塗布液が塗布される感光層6を溶解しにくい溶剤を用いることが好ましい。
以上、本発明の電子写真感光体の好適な実施形態について詳細に説明したが、本発明の電子写真感光体は上記実施形態に限定されるものではない。例えば、図2(a)に示す電子写真感光体130のように、導電性支持体3と感光層6との間に下引層4を備え、更に感光層6上に保護層5を備えるものであってもよい。
また、上記の実施形態の電子写真感光体100、110、及び120においては、感光層6が積層構造を有している場合について説明したが、例えば、図2(b)に示す電子写真感光体140のように、感光層6が単層構造を有するものでであってもよい。なお、この場合にも、導電性支持体3と感光層6との間に下引層4を備えていてもよく、感光層6上に保護層5を備えていてもよく、下引層4と保護層5の両方を共備えていてもよい。
以上説明した本発明の電子写真感光体は、近赤外光もしくは可視光に発光するレーザービームプリンター、デジタル複写機、LEDプリンター、レーザーファクシミリなどの電子写真装置や、このような電子写真装置に備えられるプロセスカートリッジに搭載することができる。また本発明の電子写真感光体は一成分系、二成分系の正規現像剤あるいは反転現像剤とも合わせて用いることができる。また本発明の電子写真感光体は帯電ローラー
や帯電ブラシを用いた接触帯電方式の電子写真装置に搭載されて、電流リークの発生が少ない良好な特性が得られる。
(電子写真装置及びプロセスカートリッジ)
図3及び図4は、それぞれ本発明の電子写真装置の好適な一実施施形態の基本構成を概略的に示す断面図である。
図3に示す電子写真装置200は、本発明の電子写真感光体7と、電子写感光体7をコロナ放電方式により帯電させる帯電手段8と、帯電手段8に接続された電源9と、帯電手段8により帯電される電子写真感光体7を露光して静電潜像を形成する露光手段10と、露光手段10により形成された静電潜像をトナーにより現像してトナー像を形成する現像手段11と、現像手段11により形成されたトナー像を被転写体20に転写する転写手段12と、クリーニング手段13と、除電器14と、定着装置15とを備える。
また、図4に示す電子写真装置210は、本発明の電子写真感光体7を接触方式により帯電させる帯電手段8を備えていること以外は、図3に示した電子写真装置200と同様の構成を有する。特に、直流電圧に交流電圧を重畳した接触式の帯電手段を採用する電子写真装置においては、優れた耐摩耗性を有するため、好ましく使用できる。なお、この場合には、除電器14が設けられていないものもある。
ここで、帯電手段8としては、例えばローラー状、ブラシ状、フィルム状又はピン電極状の導電性又は半導電性の帯電部材を用いた接触型帯電器、コロナ放電を利用したスコロトロン帯電器やコロトロン帯電器などの非接触型帯電器などが用いられる。
露光手段10としては、前記電子写真感光体表面に、半導体レーザ、LED(light emitting diode)、液晶シャッターなどの光源を所望の像様に露光できる光学系装置などが用いられる。
現像手段11としては、一成分系、二成分系などの正規又は反転現像剤を用いた従来公知の現像手段などが用いられる。
転写手段12としては、ベルト、ローラー、フィルム、ゴムブレード等を用いた接触型転写帯電器、コロナ放電を利用したスコロトロン転写帯電器やコロトロン転写帯電器などが用いられる。
なお、図3及び4には示していないが、本発明の電子写真装置は中間転写手段を備えるものであってもよい。本発明にかかる中間転写手段としては、導電性支持体上にゴム、エラストマー、樹脂などを含む弾性層と少なくとも1層の被服層とが積層された構造を有するものを使用することができ、その材料としては使用される材料は、ポリウレタン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ポリブタジエン系樹脂、ポリアミド系樹脂、ポリ塩化ビニル系樹脂、ポリエチレン系樹脂、フッ素樹脂等の樹脂に対して、導電性のカーボン粒子や金属粉等を分散混合させたもの等が挙げられる。また、前記中間転写手段の形状としては、ローラー状、ベルト状などが挙げられる。
図5は、本発明のプロセスカートリッジの好適な一実施形態の基本構成を概略的に示す断面図である。プロセスカートリッジ300は、本発明の電子写真感光体7とともに、帯電手段8、現像手段11、クリーニング手段13、露光のための開口部18、及び除電器14を、取り付けレール16を用いて組み合わせて一体化したものである。そして、このプロセスカートリッジ300は、転写手段12と、定着装置15と、図示しない他の構成部分とからなる電子写真装置本体に対して着脱自在としたものであり、電子写真装置本体
とともに電子写真装置を構成するものである。
以上説明した本発明の電子写真装置及びプロセスカートリッジにおいては、本発明のフタロシアニン顔料を用いた電子写真感光体を備えているため、画質欠陥を生じることなく長期間にわたって安定した画像品質を得ることできる。
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
以下に示す製造方法によりフタロシアニン顔料を調製し、これを用いて、図1(b)に示した電子写真感光体110と同様の三層構造を有する実施例4〜6及び比較例4〜6の電子写真感光体を作製した。
(合成例1)
<微細化ヒロドキシガリウムフタロシアニン顔料の合成>
フタロニトリル31.8重量部及びガリウムトリメトキシド10.1重量部をエチレングリコール150mlに加え、窒素雰囲気下、200℃にて24時間攪拌して反応を進行させた。生成物をろ別してN,N−ジメチルホルムアミド、メタノールで順次洗浄した後、乾燥して、25.1重量部のガリウムフタロシアニンを得た。
次に、得られたガリウムフタロシアニン2重量部を濃硫酸50重量部に溶解し、2時間攪拌した後、氷冷した蒸留水75ml、濃アンモニア水75mlおよびジクロロメタン150mlからなる混合溶液に滴下して結晶を析出させた。析出した結晶をろ別して蒸留水で十分に洗浄した後、乾燥して、微細化されたヒドロキシガリウムフタロシアニン結晶1.8重量部を得た。
このようにして得られた微細化ヒドロキシガリウムフタロシアニン顔料の粉末X線回折スペクトルを図6に示す。この顔料は、ブラッグ角度(2θ±0.2°)7.0°、13.4°、16.6°、26.0°および26.7°に強い回折ピークを有していた。
なお、本実施例におけるX線回折スペクトルの測定は、粉末法によりCuKα特性X線を用いて、以下の条件で行った。
使用測定器:理学電機社製X線回折装置RAD−Bシステム
X線管球:Cu
管電流:30mA
スキャン速度:2.0deg./min
サンプリング間隔:0.01deg.
スタート角度(2θ):5deg.
ストップ角度(2θ):35または40deg.
ステップ角度(2θ):0.01deg.
(実施例1)
<ヒドロキシガリウムフタロシアニン顔料E1の調製>
合成例1で得られた微細化ヒドロキシガリウムフタロシアニン顔料1重量部を、N,N−ジメチルホルムアミド15重量部中で、直径1.0mmのガラス製球形状メディア50重量部を使用して湿式粉砕した。
湿式粉砕過程にあるヒドロキシガリウムフタロシアニン顔料をサンプリングしてその分光吸収スペクトルにおけるλMAXを湿式粉砕時間192時間の時点まで測定し、得られた値を粉砕時間に対してプロットした曲線を図14に示す。図14から、湿式粉砕時間120時間の時点でλMAXが極小値となることが確認された。
そこで、湿式粉砕時間を120時間として改めて同様の条件で湿式粉砕し、ろ別して酢酸n−ブチルで洗浄後、乾燥してヒドロキシガリウムフタロシアニン顔料E1を得た。ヒドロキシガリウムフタロシアニン顔料E1の分光吸収スペクトルにおける最大吸収極大波長λMAX、BET比表面積及び平均粒径の値を表1に、粉末X線回折図を図7に、分光吸収スペクトルを図12にそれぞれ示す。
なお、本実施例における分光吸収スペクトル測定は、日立製作所製のU−4000型分光光度計を用いて液セル法により行った。分光吸収スペクトル測定に供する試料液は、微量のヒドロキシガリウムフタロシアニン顔料を室温の下でアセトンとともに超音波洗浄機(DTH-8210型、ヤマト科学社製)を使用して超音波処理して調製した。また、本実施例おいては、BET比表面積はBET式の比表面積測定器(フローソープII2300、島津製作所社製)を、平均粒径はレーザ回折散乱式粒度分布測定装置(LA−700、堀場製作所製)を、それぞれ用いて測定した。
(比較例1)
<ヒドロキシガリウムフタロシアニン顔料C1の調製>
合成例1で得られた微細化ヒドロキシガリウムフタロシアニン顔料1重量部を、N,N−ジメチルホルムアミド15重量部中で直径1.0mmのガラス製球状メディア30重量部を使用して24時間湿式粉砕した後、ヒドロキシガリウムフタロシアニン顔料をろ別して酢酸n−ブチルで洗浄後、乾燥してヒドロキシガリウムフタロシアニン顔料(C1)0.9重量部を得た。
ヒドロキシガリウムフタロシアニン顔料C1のλMAX、BET比表面積及び平均粒径の値を表1に、分光吸収スペクトルを図12にそれぞれ示す。なお、ヒドロキシガリウムフタロシアニン顔料C1の粉末X線回折図は、図7に示すものと同様であった。
(合成例2)
<非晶質チタニルフタロシアニン顔料の合成>
まず、1,3−ジイミノイソインドリン3重量部、チタニウムテトラブトキシド1.7重量部を1−クロルナフタレン20重量部に加え、190℃で5時間反応させた後、生成物をろ別後、アンモニア水、水、アセトンで順次洗浄して、チタニルフタロシアニン粗結晶4.0重量部を得た。得られたチタニルフタロシアニン粗結晶の粉末X線回折図を図8に示す。
次に、得られたチタニルフタロシアニン粗結晶2.0重量部を97%硫酸100重量部に5℃で溶解した後、氷水1300重量部中に注いで結晶を析出させた。析出した結晶をろ別して希アンモニア水、水で順次洗浄後、乾燥して、1.6重量部の非晶質チタニルフタロシアニン顔料を得た。得られた非晶質チタニルフタロシアニン顔料の粉末X線回折図を図9に示す。
(実施例2)
<チタニルフタロシアニン顔料E2の調製>
合成例2で得られた非晶質チタニルフタロシアニン顔料1.0重量部を水15重量部/モノクロルベンゼン1.5重量部の混合溶媒中で、直径1.0mmのガラス製球形状メディア55重量部を使用してガラス製ボールミルにより25℃で湿式粉砕した。
湿式粉砕過程において24時間ごとにサンプリングし、湿式粉砕過程にあるチタニルフタロシアニン顔料のBET比表面積を粉砕時間192時間の時点まで測定し、得られた値を粉砕時間に対してプロットした曲線を図15に示す。
図15に示すように、湿式粉砕時間96時間の時点でBET比表面積が極大値(65m/g)となった。そこで、湿式粉砕時間を96時間として改めて同様の条件で湿式粉砕を行い、ろ別してメタノールと水で洗浄後、乾燥して、チタニルフタロシアニン顔料(E2)0.9重量部を得た。チタニルフタロシアニン顔料E2の粉末X線回折スペクトルを図10に、λMAX、BET比表面積および平均粒径の値を表1にそれぞれ示す。
(比較例2)
合成例2で得られた非晶質チタニルフタロシアニン顔料1.0重量部を水10重量部/モノクロルベンゼン1重量部の混合溶媒中で、50℃において1時間攪拌した後、ろ別してメタノールと水で洗浄し、チタニルフタロシアニン顔料(C2)0.9重量部を得た。
チタニルフタロシアニン顔料C2のλMAX、BET比表面積及び平均粒径の値を表1に示す。また、粉末X線回折図は、図10に示すものと同様であった。
(合成例3)
<α型無金属フタロシアニン顔料の合成>
まず、o−フタロジニトリル 100重量部とピペリジン10重量部とを、クロロトルエン300重量部に加え、200℃において10時間攪拌しながら反応させ、赤紫色結晶を得た。
次いで、赤紫色結晶をろ別し、酸(5重量%酢酸水溶液)及びアルカリ(1重量%水酸化ナトリウム水溶液)により洗浄した後、メタノール、N,N−ジメチルホルムアミド、N−メチルピロリドンの順でさらに洗浄し、乾燥して、無金属フタロシアニン粗結晶を得た。
得られた無金属フタロシアニン粗結晶12重量部を、0〜5℃に冷却した97%硫酸200重量部に均一に溶解し、これを2000重量部の純水中に滴下して結晶を析出させた。析出した結晶をろ別し、アルカリ(1重量%水酸化ナトリウム水溶液)、メタノール、N,N−ジメチルホルムアミド、N−メチルピロリドンの順で洗浄した後、乾燥して、α型無金属フタロシアニン顔料10重量部を得た。
(実施例3)
<無金属フタロシアニン顔料E3の調製>
合成例3で得られたα型無金属フタロシアニン顔料1部を、別に準備したX型無金属フタロシアニン顔料0.05重量部とともに、メチルエチルケトン15重量部中で、直径1.0mmのアルミナ製球形状メディア60重量部を使用してアルミナ製ボールミルにより25℃で湿式粉砕した。
湿式粉砕過程にある無金属フタロシアニン顔料を24時間ごとにサンプリングしてそのλMAX及びBET比表面積を測定し、それぞれの値を粉砕時間に対して湿式粉砕時間240時間の時点までプロットした曲線を図16及び17に示す。
図16に示すように、湿式粉砕時間168時間の時点でλMAXが極小値となり、一方、図17に示すように、湿式粉砕時間192時間の時点でBET比表面積が極大値(71m/g)となった。
そこで、Taを168、Tbを192として上記の式(1)から算出される、180時間を湿式粉砕時間として、改めて同様の条件で湿式粉砕を行い、ろ別してメチルエチルケトンで洗浄後、乾燥して、無金属フタロシアニン顔料(E3)0.9重量部を得た。
得られた無金属フタロシアニン顔料E3の粉末X線回折図を図11に、分光吸収スペクトルを図13にそれぞれ示す。また、無金属フタロシアニン顔料E3の分光吸収スペクトルにおけるλMAX、BET法による比表面積値及び平均粒径の値を表1に示す。
(比較例3)
<無金属フタロシアニン顔料C3の調製>
合成例3で得られたα型無金属フタロシアニン結晶1重量部を、別に準備したX型無金属フタロシアニン顔料0.05重量部とともに、直径5.0mmのアルミナ製球形状メディア60重量部を使用してアルミナ製ボールミルにより4日間乾式粉砕処理を行い、無金属フタロシアニン顔料C3を得た。
無金属フタロシアニン顔料C3のλMAX、BET比表面積及び平均粒径の値を表1に、分光吸収スペクトルを図13にそれぞれ示す。なお、無金属フタロシアニン顔料C3の粉末X線回折図は、図11に示すものと同様であった。
(実施例4)
<電子写真感光体シートの作製>
ポリビニルブチラール樹脂であるBM‐1(商品名、積水化学社製)6重量部、硬化剤としてブロック化イソシアネートであるスミジュール3175(商品名、住友バイエルンウレタン社製)12重量部、酸化亜鉛であるNano Tech ZnO(商品名、シーアイ化成社製、一次粒径30nm)41重量部、シリコーンボールであるトスパール120(商品名、東芝シリコーン社製)1重量部、レベリング剤としてシリコーンオイルSH29PA(商品名、東レダウコーニングシリコーン社製)100ppm及びメチルエチルケトン52重量部を混合し、これをバッチ式ミルにて10時間混錬して、下引層作製用の塗布液を作製した。
この下引層作製用の塗布液を50μm厚のアルミニウムシート上に浸漬塗布し、150℃で30分間加熱乾燥することにより、膜厚20.0μmの下引層を作製した。
次に、塩化ビニル酢酸ビニル共重合樹脂であるVMCH(商品名、日本ユニカー社製)1重量部を酢酸n−ブチル100重量部に溶解させた溶液と、ヒドロキシガリウムフタロシアニン顔料(E1)1重量部とを混合し、外径1.0mmのガラスビーズ150重量部とともに、サンドミルにより5時間かけて分散し、電荷発生層作製用塗布液を調製した。 得られた電荷発生層作製用塗布液を上記の下引層上に浸漬塗布し、100℃で10分間加熱乾燥して膜厚0.20μmの電荷発生層を作製した。
さらに、電荷輸送物質としてN、N’−ジフェニル−N、N’−ビス(3−メチル)−[1,1’ビフェニル]−4,4’−ジアミン4重量部、結着樹脂として粘度平均分子量が3万のビスフェノールZ型ポリカーボネート樹脂6重量部、テトラヒドロフラン80重量部及び2,6-ジ-t-ブチル-4-メチルフェノール0.2重量部を混合し、電荷輸送層作製用の塗布液を調製した。
得られた電荷輸送層作製用の塗布液を、浸漬塗布装置を用いて上記の電荷発生層上に塗布し、120℃で40分間加熱乾燥して、膜厚25μmの電荷輸送層を作製し、目的の電子写真感光体シートを得た。
<電子写真感光体ドラムの作製>
84mmφ×347mm、肉厚1mmのアルミニウムパイプを研磨剤 アルミナビーズCB−A30S(商品名、昭和タイタニウム社製、平均粒径D50=30μm)を用いて液体ホーニング処理することにより粗面化し、中心線平均粗さRaが0.18μmとなるように粗面化したものを導電性支持体として用いたこと以外は上記電子写真感光体シートの作製と同様の手順により、下引層、 電荷発生層、電荷輸送層を順次作製し、目的の電子写真感光体ドラムを作製した。
(実施例5)
電荷発生材料としてヒドロキシガリウムフタロシアニン顔料E1の代えてチタニルフタロシアニン顔料E2を用いた以外は、実施例4と同様にして電子写真感光体シート及び電子写真感光体ドラムを作製した。
(実施例6)
電荷発生材料としてヒドロキシガリウムフタロシアニン顔料E1に代えて無金属フタロシアニン顔料E3を用いた以外は、実施例4と同様にして電子写真感光体シート及び電子写真感光体ドラムを作製した。
(比較例4)
電荷発生材料としてヒドロキシガリウムフタロシアニン顔料E1に代えてヒドロキシガリウムフタロシアニン顔料C1を用いた以外は、実施例4と同様にして電子写真感光体シート及び電子写真感光体ドラムを作製した。
(比較例5)
電荷発生材料としてヒドロキシガリウムフタロシアニン顔料E1に代えてチタニルフタロシアニン顔料C2を用いた以外は、実施例4と同様にして電子写真感光体シート及び電子写真感光体ドラムを作製した。
(比較例6)
電荷発生材料としてヒドロキシガリウムフタロシアニン顔料E1に代えて無金属フタロシアニン顔料C3を用いた以外は、実施例4と同様にして電子写真感光体シート及び電子写真感光体ドラムを作製した。
[電子写真感光体の電子写真特性評価試験]
(1) 使用初期の特性評価
上記のようにして得られた実施例4〜6及び比較例4〜6の電子写真感光体シートの電子写真特性を評価するために、以下の手順で電子写真特性の測定を行った。
先ず、20mmφの小面積マスクを使用し、20℃、50%RHの環境下において、静電複写紙試験装置(EPA8200:川口電機社製)を用いて−5.0kVのコロナ放電により電子写真感光体シートを負帯電させた。次いで、干渉フィルターを用いて780nmに分光したハロゲンランプ光を、電子写真感光体シート表面上における照度が5.0μW/cm2となるように調整して照射した。このときの初期表面電位V[V]、表面電位がVの1/2になるまでの半減露光量E1/2[μJ/cm2]、及び、表面電位V0を計測してから1秒後の表面電位をVとして、{(V−V)/V}×100で求められる暗減衰率(DDR)[%]をそれぞれ測定した。その結果を表2に示す。
(2)繰り返し特性の評価
上記帯電、露光および除電の操作を1万回繰り返した後の電子写真感光体シートについて、表面電位V[V]、表面電位がVの1/2になるまでの半減露光量E1/2[μJ/cm2]及び露光開始から暗減衰率(DDR)[%」をそれぞれ測定した。その結果を表2に示す。
(3)画質評価試験
実施例4〜6及び比較例4〜6の各電子写真感光体ドラムを、図4に示す構成を有するレーザープリンター(DocuPrint 260、富士ゼロックス社製)に装着して以下の画質評価を行った。
32.5℃/90%RHの環境下で、1ドット1スペースのハーフトーン画像および全面白の画像(バックグラウンド画像)を出力してその画像を目視およびルーペで観察し、黒線部のつぶれやトナーの飛び散りの度合いを評価した。また、電子写真感光体の暗電位Vdも測定した。
続いて、約2mm幅の線を縦横7mmおきに印字した画像を2万枚出力した後、上記と同様にハーフトーン画像及びバックグラウンド画像を出力し、その画像を目視およびルーペで観察することにより、黒線部のつぶれやトナーの飛び散りの度合いを評価した。
なお、上記のレーザープリンターにおいては、帯電装置としてローラー帯電器(BCR)、露光装置として780nmの半導体レーザーを使用したROS、現像方式として2成分系反転現像方式、転写装置としてローラー帯電器(BTR)、転写装置としてベルト中間転写方式を採用した。これらの結果を表3に示す。
(4)電荷発生材料の分散性評価
実施例4〜6、および比較例4〜6で用いた各フタロシアニン顔料の分散性の評価を行うために、ガラスプレート上に電荷発生層を形成し、顕微鏡を用いてその分散状態を観察した。その結果を表2に示す。なお、表2中、「良好」とは電荷発生層中に凝集体が見られなかったことを意味し、「不良」とは凝集体が観察されたり塗膜表面がざらついていたことを意味する。
Figure 2005227616
Figure 2005227616
Figure 2005227616
表1〜3に示すように、実施例1〜3に示したような製造方法にように得られたフタロシアニン顔料を用いた電子写真感光体は、従来の製造方法により得られるフタロシアニン顔料を比較して、優れた電子写真特性を有し、分散性が良好で、細線の太りや細り、かぶりなどの現象を生じることなく、繰り返し使用時においても良好な画質が得られることが確認された。
(a)〜(c)は、それぞれ本発明の電子写真感光体の第一〜第三実施形態を示す模式断面図である。 (a)〜(b)は、それぞれ本発明の他の実施形態を示す模式断面図である。 本発明の電子写真装置の好適な一実施形態の基本構成を概略的に示す断面図である。 本発明の電子写真装置の他の好適な一実施形態の基本構成を概略的に示す断面図である。 本発明のプロセスカートリッジの好適な一実施形態の基本構成を概略的に示す断面図である。 実施例において合成した微細化ヒドロキシガリウムフタロシアニン顔料の粉末X線回折図である。 実施例1において調製したヒドロキシガリウムフタロシアニン顔料E1の粉末X線回折図である。 合成例2において合成したチタニルフタロシアニン粗結晶の粉末X線回折図である。 合成例2において調製した非晶質チタニルフタロシアニン顔料の粉末X線回折図である。 実施例2において調製したチタニルフタロシアニン顔料E2の粉末X線回折図である。 実施例3において調製した無金属フタロシアニン顔料E3の粉末X線回折図である。 実施例1及び比較例1においてそれぞれ調製したヒドロキシガリウムフタロシアニン顔料E1及びC1の分光吸収スペクトルである。 実施例3及び比較例3においてそれぞれ調製した無金属フタロシアニン顔料E3及びC3の分光吸収スペクトルである。 実施例1において湿式粉砕過程にあるヒドロキシガリウムフタロシアニン顔料の最大吸収極大波長λMAXの経時変化を示した図である。 実施例2において湿式粉砕過程にあるチタニルフタロシアニン顔料のBET比表面積の経時変化を示した図である。 実施例3において湿式粉砕過程にある無金属フタロシアニン顔料の最大吸収極大波長λMAXの経時変化を示した図である。 実施例3において湿式粉砕過程にある無金属フタロシアニン顔料のBET比表面積の経時変化を示した図である。
符号の説明
1…電荷発生層、2…電荷輸送層、3…導電性支持体、4…下引層、5…保護層、6…感光層、7…電子写真感光体、8…帯電手段、9…電源、10…露光手段、11…現像手段、12…転写手段、13…クリーニング手段、14…除電器、15…定着装置、16…取り付けレール、18…露光のための開口部、20…被転写体、100,110,120,130,140…電子写真感光体、200,210…電子写真装置、300…プロセスカートリッジ。

Claims (10)

  1. 原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、
    フタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長を湿式粉砕の時間ごとにプロットした曲線の極小点の時間をTaとしたときに、0.7Ta〜1.3Taの範囲内から選んだ時間を、前記所定時間とする、フタロシアニン顔料の製造方法。
  2. 原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、
    フタロシアニン顔料のBET比表面積を湿式粉砕の時間ごとにプロットした曲線の極大点の時間をTbとしたときに、0.7Tb〜1.3Tbの範囲内から選んだ時間を、前記所定時間とする、フタロシアニン顔料の製造方法。
  3. 原料であるフタロシアニン顔料を所定時間湿式粉砕することにより、結晶変換されたフタロシアニン顔料を得る、フタロシアニン顔料の製造方法であって、
    下記式(1)で算出される時間をTcとしたときに、0.7Tc〜1.3Tcの範囲内から選んだ時間を、前記所定時間とする、フタロシアニン顔料の製造方法。
    Tc=(Ta+Tb)/2 ・・・(1)
    (式中、Taはフタロシアニン顔料の波長域700〜900nmでの分光吸収スペクトルにおける最大吸収極大波長を湿式粉砕の時間ごとにプロットした曲線の極小点の時間を示し、Tbはフタロシアニン顔料のBET比表面積を湿式粉砕の時間ごとにプロットした曲線の極大点の時間を示す。)
  4. 前記所定時間を、前記範囲内から選んだ時間、且つ、得られるクロロガリウムフタロシアニン顔料の平均粒径が0.1μm以下となる時間の範囲内とする、請求項1〜3のいずれか一項に記載のフタロシアニン顔料の製造方法。
  5. 前記湿式粉砕が、外径0.1〜3.0mmの球形状メディアを使用した粉砕装置により、前記メディアの使用量を原料であるフタロシアニン顔料1重量部に対して50重量部以上として行われる、請求項1〜4のいずれか一項に記載のフタロシアニン顔料の製造方法。
  6. 請求項1〜5のいずれか一項に記載のフタロシアニン顔料の製造方法で得られ、平均粒径が0.10μm以下で、かつ、BET比表面積が45m/g以上である、フタロシアニン顔料。
  7. ヒドロキシガリウムフタロシアニン顔料、チタニルフタロシアニン顔料及び無金属フタロシアニン顔料からなる群より選ばれる少なくとも一種を含有する、請求項6に記載のフタロシアニン顔料。
  8. 導電性支持体と、該支持体上に配置された感光層と、を備える電子写真感光体であって、
    前記感光層が請求項6または7に記載のフタロシアニン顔料を含有する電子写真感光体。
  9. 請求項8に記載の電子写真感光体と、
    前記電子写真感光体を帯電させるための帯電手段、前記電子写真感光体上に静電潜像を形成するための露光手段、前記電子写真感光体上に形成された静電潜像をトナーにより現像してトナー像を形成するための現像手段及び前記電子写真感光体上に残存したトナーを除去するためのクリーニング手段からなる群より選ばれる少なくとも1種と、
    を備えるプロセスカートリッジ。
  10. 請求項8に記載の電子写真感光体と、
    前記電子写真感光体を帯電させるための帯電手段と、
    前記電子写真感光体上に静電潜像を形成するための露光手段と、
    前記電子写真感光体上に形成された静電潜像をトナーにより現像してトナー像を形成するための現像手段と、
    前記トナー像を被転写体に転写するための転写手段と、
    を備える電子写真装置。
JP2004037309A 2004-02-13 2004-02-13 フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置 Expired - Fee Related JP4239847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004037309A JP4239847B2 (ja) 2004-02-13 2004-02-13 フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004037309A JP4239847B2 (ja) 2004-02-13 2004-02-13 フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置

Publications (2)

Publication Number Publication Date
JP2005227616A true JP2005227616A (ja) 2005-08-25
JP4239847B2 JP4239847B2 (ja) 2009-03-18

Family

ID=35002366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004037309A Expired - Fee Related JP4239847B2 (ja) 2004-02-13 2004-02-13 フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置

Country Status (1)

Country Link
JP (1) JP4239847B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237549A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置
JP2016020441A (ja) * 2014-07-15 2016-02-04 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
JP2017211501A (ja) * 2016-05-25 2017-11-30 株式会社リコー 電子写真感光体、画像形成装置、及びプロセスカートリッジ
CN113956261A (zh) * 2021-09-16 2022-01-21 昆明学院 新晶体结构氯化酞菁镓纳米带及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010237549A (ja) * 2009-03-31 2010-10-21 Kyocera Mita Corp 単層型電子写真感光体及び画像形成装置
JP2016020441A (ja) * 2014-07-15 2016-02-04 富士ゼロックス株式会社 樹脂組成物および樹脂成形体
JP2017211501A (ja) * 2016-05-25 2017-11-30 株式会社リコー 電子写真感光体、画像形成装置、及びプロセスカートリッジ
CN113956261A (zh) * 2021-09-16 2022-01-21 昆明学院 新晶体结构氯化酞菁镓纳米带及其制备方法

Also Published As

Publication number Publication date
JP4239847B2 (ja) 2009-03-18

Similar Documents

Publication Publication Date Title
JP4581781B2 (ja) 電子写真感光体及びその製造方法、プロセスカートリッジ並びに電子写真装置
JP4635461B2 (ja) ヒドロキシガリウムフタロシアニン顔料及びその製造方法、感光層形成用塗布液の製造方法、電子写真感光体、プロセスカートリッジ、電子写真装置、並びに、画像形成方法
US8568946B2 (en) Electrophotographic photoreceptor and image formation device comprising same
JP2008052105A (ja) 電子写真感光体及び画像形成装置
JP2007079493A (ja) ヒドロキシガリウムフタロシアニン混合顔料及びその製造方法、電子写真感光体、電子写真装置並びにプロセスカートリッジ
US6921618B2 (en) Photoconductive organic pigment, photoconductive organic pigment dispersion liquid, electrophotographic photoreceptor and electrophotographic device using the same
JP2009098484A (ja) 電子写真感光体、プロセスカートリッジ及び電子写真装置
US8993203B2 (en) Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge and image forming apparatus
JP4770613B2 (ja) 電子写真感光体、画像形成装置及びプロセスカートリッジ
JP2008139372A (ja) 積層型電子写真感光体及び画像形成装置
JP4239847B2 (ja) フタロシアニン顔料及びその製造方法、電子写真感光体、電子写真装置、プロセスカートリッジ並びに電子写真装置
JP2006267957A (ja) 電子写真感光体、複合体、複合体の製造方法、プロセスカートリッジ及び電子写真装置
JP2004352916A (ja) 顔料の製造方法、電子写真感光体、プロセスカートリッジ及び画像形成装置
JP4617235B2 (ja) 電子写真感光体及び電子写真感光体の製造方法
JP2005226013A (ja) クロロガリウムフタロシアニン顔料及びその製造方法、電子写真感光体、プロセスカートリッジ並びに電子写真装置
JP4329244B2 (ja) ヒドロキシガリウムフタロシアニン顔料およびその製造方法、並びにそれを用いた電子写真感光体および電子写真画像形成装置
JP4239866B2 (ja) 電子写真装置
JP3823852B2 (ja) 電子写真感光体の製造方法、電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2004125818A (ja) 有機感光体及び有機感光体の製造方法
JP2007057939A (ja) 電荷発生複合粒子、電子写真感光体、プロセスカートリッジ及び画像形成装置
JP4228928B2 (ja) 電子写真装置及びプロセスカートリッジ
JP2004018600A (ja) フタロシアニン顔料の製造方法並びにフタロシアニン顔料、電子写真感光体、プロセスカートリッジ及び電子写真装置
JP2002091039A (ja) 電子写真装置
JP4147714B2 (ja) X型無金属フタロシアニン顔料の製造方法
JP2005165037A (ja) 電子写真感光体、電子写真装置及びプロセスカートリッジ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees