JP2005174664A - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
JP2005174664A
JP2005174664A JP2003410798A JP2003410798A JP2005174664A JP 2005174664 A JP2005174664 A JP 2005174664A JP 2003410798 A JP2003410798 A JP 2003410798A JP 2003410798 A JP2003410798 A JP 2003410798A JP 2005174664 A JP2005174664 A JP 2005174664A
Authority
JP
Japan
Prior art keywords
electrode
fuel
fuel electrode
porous body
single cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003410798A
Other languages
English (en)
Inventor
Masaru Miyayama
勝 宮山
Yuji Noguchi
祐二 野口
Keisuke Nagasaka
圭介 永坂
Atsushi Akiyama
淳志 秋山
Kazutomo Hoshino
和友 星野
Kazuaki Takahashi
和明 高橋
Noriyuki Takahashi
憲之 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003410798A priority Critical patent/JP2005174664A/ja
Publication of JP2005174664A publication Critical patent/JP2005174664A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】 強度及び耐熱衝撃性が向上し、また発電特性が向上した固体電解質型燃料電池を提供する。
【解決手段】 燃料極3、固体電解質4及び空気極5がこの順で積層されている単セル1を備えた固体電解質型燃料電池において、単セル1における燃料極の外面に、金属多孔質体の気孔中に燃料極3の構成材料が入り込んだ複合多孔質体からなる支持体2が更に積層されており、且つ空気極5が、以下の一般式(1)で表されることを特徴とする。La1-xSrxCo1-yFey(3±δ)(1)(式中、0.1≦x≦0.9、0.1≦y≦0.9、0≦δ<1である。)
【選択図】図2

Description

本発明は、燃料極及び空気極にそれぞれ燃料ガス及び酸素を含む酸化性ガスを供給して発電を行う固体電解質型燃料電池に関し、更に詳しくは発電特性及び耐熱衝撃性が向上した固体電解質型燃料電池に関する。
燃料極と空気極とで固体酸化物電解質を挟持して構成される単セルを発電要素として有し、燃料極側に水素、メタンなどの炭化水素系燃料ガスを供給し、空気極側に空気など酸素を含む酸化性ガスを供給して発電を行う固体電解質型燃料電池(以下SOFCともいう)が知られている。SOFCは1000℃前後の高温で作動することから発電効率が高く、また廃熱を有効利用できることから大型の発電機として注目されている。
しかしSOFCは、作動温度が1000℃前後という高温であること、及びセルを構成する材料が耐熱性のセラミックス材料であることから、信頼性や長期間の耐久性に問題があった。更に、電池の作動及び停止に時間がかかるという欠点があり、急熱や急冷に起因する熱衝撃性が低いという問題があった。
これとは別に、SOFCは、炭化水素系ガスを内部改質して発電を行うことから、炭化水素系ガスの改質触媒を有していることが一般的である。例えば燃料極の外面に触媒機能を有する多孔質基材を配したSOFCが知られている(特許文献1参照)。しかし、かかる多孔質基材を配したSOFCの発電特性は、空気極の構成材料の制限もあって、十分に高いものとは言えなかった。
特開2003−132906号公報
従って本発明の目的は、前述した従来技術が有する種々の問題を解消し得る燃料電池を提供することにある。
本発明は、燃料極、固体電解質及び空気極がこの順で積層されている単セルと、燃料極に燃料ガスを供給する手段と、空気極に酸化剤ガスを供給する手段とを備えた固体電解質型燃料電池において、
前記単セルにおける前記燃料極の外面に、金属多孔質体の気孔中に前記燃料極の構成材料が入り込んだ複合多孔質体からなる支持体が更に積層されており、且つ
前記前記空気極が、以下の一般式(1)で表されることを特徴とする固体電解質型燃料電池を提供することにより前記目的を達成したものである。
La1-xSrxCo1-yFey(3±δ) (1)
(式中、0.1≦x≦0.9、0.1≦y≦0.9、0≦δ<1である。)
本発明の固体電解質型燃料電池によれば、強度及び耐熱衝撃性が向上し、また発電特性も向上する。
以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。図1には本発明の一実施形態の模式図が示されている。図1に示す固体電解質型燃料電池10は平板型のものであり、単セル1と、単セル1を上下から挟持する一対のインターコネクタ11,11とを備えている。各インターコネクタ11には、単セル1との対向面に、一方向に延びる複数個の凸部(リブ)12が所定間隔をおいて形成されている。隣り合う凸部12間は、断面が矩形の溝部13となっている。この溝部13は、炭化水素系燃料ガス及び空気等の酸化剤ガスの供給排出用流路として用いられる。燃料ガス及び酸化剤ガスは、図示しない燃料ガス供給手段及び酸化剤ガス供給手段からそれぞれ供給される。各インターコネクタ11は、それに形成されている溝部13が互いに直交するように配置されている。以上の構成が燃料電池の最小単位を構成しており、この構成を数十個〜数百個並設してなるセルスタックから燃料電池が構成されている。
インターコネクタ11は耐熱性の導電性材料、例えばインコネルなどの耐熱性合金から構成されている。インターコネクタ11と単セル1との当接部には、導電性ペースト等が塗布されており、これによってインターコネクタ11と単セル1との電気的な導通が図られている。
図2は単セル11の断面の要部を拡大して示す模式図である。単セル1においては燃料極3、電解質膜4及び空気極5がこの順で積層されている。更に燃料極3の外面には支持体2が更に積層されている。
支持体2は金属多孔質体を有している。支持体2は燃料電池1の強度を高める役割を有している。また支持体2は集電体としても作用する。金属多孔質体の気孔内には燃料極3の構成材料が入り込んだ状態となっている。つまり支持体2は、金属多孔質体と燃料極3の構成材料との複合体、即ち複合多孔質体となっている。後述する実施例から明らかなように、支持体2をこのような複合多孔質体とすることで、金属多孔質体を単体で用いる場合に比較して、単セル1の強度及び耐熱衝撃性を向上させることができる。
金属多孔質体は、炭化水素系ガスに対して触媒活性作用を有することが好ましい。また金属多孔質体は耐熱性を有することが好ましい。これらの観点から、金属多孔質体としてニッケル、ニッケル合金、ハステロイ又はステンレス鋼を用いることが好ましい。これらの材料からなる金属多孔質体を用いることで、単セル1の強度及び耐熱衝撃性を向上させつつ、発電特性を向上させることができる。
金属多孔質体はその多孔度が20〜97体積%、特に50〜80体積%であることが、単セル1の強度及び耐熱衝撃性の向上の点、及び発電特性の向上の点から好ましい。同様の理由により、金属多孔質体はその厚さが数十μm〜数mmであることが好ましい。また金属多孔質体の厚さをこの程度にすることで、後述する電解質膜を薄膜化でき、単セル1の内部抵抗を低減させることができる。内部抵抗の低減は単セル1を高効率化させる点から極めて有利である。
金属多孔質体の気孔は連通孔(オープンセル)であることが燃料ガスの良好な流通の点から好ましい。同様の理由により、気孔径は10μm〜数百μmであることが好ましい。
単セル1の強度及び耐熱衝撃性を一層高める観点並びに発電特性を一層高める観点から、複合多孔質体からなる支持体2は、燃料極3の構成材料の粉末を、例えばペーストの状態で金属多孔質体の気孔中に充填して形成されたものであることが好ましい。効果的な複合化の観点から、燃料極3の構成材料の粉末は、例えばペーストの状態で金属多孔質体に塗布されることが好ましい。更に支持体2は、燃料極3の構成材料の粉末の充填後、金属多孔質体をプレス加工又はロール加工して圧縮変形させて得られたものであることが好ましい。プレス加工やロール加工による金属多孔質体の圧縮の程度は、圧縮前の厚みの10〜90%、特に30〜70%であることが効果的である。
金属多孔質体には、炭化水素系ガスに対する触媒活性物質であるCu、Zn、Ru、Pt、Rhなどを坦持させてもよい。
空気極5としては、以下の一般式(1)で表されるペロブスカイト型酸化物が用いられる。後述する実施例から明らかなように、この物質は、従来固体電解質型燃料電池の空気極として用いられてきた物質、例えばLaSrMnO3、LaSrCoO3、SmSrMnO3などに比較して、空気極へ吸着した酸素分子の還元反応に一層活性である。その結果、本実施形態の燃料電池10は従来の燃料電池に比較して発電効率が非常に向上したものとなる。
La1-xSrxCo1-yFey(3±δ) (1)
(式中、0.1≦x≦0.9、0.1≦y≦0.9である。またδは一般式(1)におけるLa、Sr、Co及びFeとOとの化学量論比を整合させる数を表し、0≦δ<1である。)
本発明者らの検討の結果、一般式(1)で表される物質はイオン伝導性及び電子伝導性を兼ね備えた混合導電体であることが判明した。単セル1における電極反応は、反応ガス−固体電解質(イオン伝導体)−電極材料(電子伝導体)の三相が相接する三相界面近傍で生ずると考えられる。空気極5での酸素のイオン化反応は(1/2)O2+2e-→O2-に従い進行する。この反応は一般には上記の三相界面で進行するが、前記の混合導電体ではその表面でも進行することが判明した。その結果、前記の混合導電体には、有効面積が格段に大きくなり、高電流密度まで分極が生じないという利点がある。
特に、一般式(1)におけるxが0.2≦x≦0.8であり、yが0.2≦y≦0.8である場合にはイオン伝導性が極めて高くなる。例えばx=0.8、y=0.2の場合には、800℃でのイオン伝導度が1.1Scm-2となり、この値はイオン伝導体として良く知られている酸化ジルコニウムや酸化セリウムのイオン伝導度の数十倍〜数百倍である。その結果、表面でイオン化された酸素イオンは結晶中を十分に高速で移動できるようになる。従って一般式(1)で表される物質は効率の高い酸素極材料として極めて適したものとなる。
一般式(1)で表される物質は、La23、SrCoO3、CoO及びFeOの各粉末を混合し、焼成することで得られる。各粉末の配合量は、最終的に得られる物質におけるLa、Sr、Co及びFeの量が、一般式(1)で表される組成となるような量とする。
空気極5の厚みは本発明において臨界的ではないが、5〜300μm、特に10〜100μmであることが好ましい。
単セル1における燃料極3としては、従来この種の燃料電池に用いられてきた材料を特に制限なく用いることができる。例えばニッケルとCe0.8Gd0.21.9との混合体を用いることができる。特に好ましい材料はニッケル又は酸化ニッケルと、希土類酸化物をドープした酸化セリウムとの混合体である。この材料においては、酸化セリウムによるイオン伝導と電子伝導との混合伝導、及びニッケル(又は酸化ニッケルが還元されたもの)の電子伝導によって電極反応が促進されると考えられる。特に本発明では、炭化水素系ガスに対して触媒活性作用を有する金属多孔質体の気孔内に、燃料極3の構成材料が入り込んで複合多孔質体を形成しているので、燃料極3における電極反応が一層促進される。燃料極3の厚みは本発明において臨界的ではないが、5〜300μm、特に10〜100μmであることが好ましい。
単セル1における電解質膜4としては、従来この種の燃料電池に用いられてきた材料を特に制限なく用いることができる。例えばサマリウムなどの希土類酸化物をドープした酸化セリウムや酸化ジルコニウムなどが挙げられる。特に酸化サマリウムや酸化ガドリニウムをドープした酸化セリウムは比較的低温でもイオン伝導度が大きく、固体電解質として好適である。電解質膜4の厚みは本発明において臨界的ではないが、5〜300μm、特に10〜100μmであることが内部抵抗の低減化の点から好ましい。
次に図2に示す単セル1の好ましい製造方法について説明する。先ず前述した複合多孔質体からなる支持体2を製造する。支持体2は、燃料極3の構成材料の粉末を含むペースト(以下このペーストを複合体用ペーストという)を金属多孔質体に塗工して該金属多孔質体の気孔中に充填した後、該金属多孔質体をプレス加工又はロール加工して圧縮変形させることで得られる。
複合体用ペーストは例えば、燃料極3の構成材料の粉末と各種バインダとを混練したものからなる。バインダとしては、例えばポリビニルアルコール、ポリビニルブチラール、メチルセルロース、ポリエチレン、アクリル系樹脂、アラビアゴム、テレピネオール、ポリエチレングリコールなどが用いられる。これらのバインダは、後述する各種ペーストにも含まれる。
複合体用ペースト中には気孔形成剤を含有させておくことが好ましい。この理由は、複合多孔質体を、ガスが透過できる程度の多孔質体とすることが、ガス流通性を確保する点から有利だからである。気孔形成剤としては、カーボンの粉末などを用いることができる。
複合体用ペーストは例えばディップコート法、スプレーコート法、ドクターブレード法、テープキャスティング法、スクリーン印刷などを用いて塗工することができる(後述する各種ペーストに関しても同じ)。
次いで、金属多孔質体の面のうち、複合体用ペーストを塗布した面に燃料極の構成材料の粉末のペースト(以下このペーストを燃料極用ペーストという)を塗工し、乾燥させる。この塗工膜は、後述する焼結によって燃料極3となる。金属多孔質体に直接燃料極用ペーストを塗工して、金属多孔質体の気孔中に充填すると共に金属多孔質体の表面に燃料極用の塗工膜を形成することも可能であるが、金属多孔質体の気孔が大きい場合には、燃料極用ペーストが気孔内に過度に入り込みやすく、その結果、燃料極用の塗工膜の表面を平滑にしづらくなる。そこで、本実施形態では先ず複合体用ペーストを塗工した後に燃料極用ペーストを塗工するという二段階の操作を行っている。この操作を行うことで、燃料極用の塗工膜の表面は平滑となる。
燃料極用の塗工膜上に、電解質膜4の構成材料の粉末を含むペースト(以下このペーストを電解質用ペーストという)を塗工し、乾燥させる。これによって電解質用の塗工膜を形成する。この塗工膜は、後述する焼結によって電解質膜4となる。この塗工膜上に、空気極5の構成材料の粉末を含むペースト(以下このペーストを空気極用ペーストという)を塗工し、乾燥させる。これによって空気極用の塗工膜を形成する。この塗工膜は、後述する焼結によって空気極5となる。然る後、全体を一体焼結することで、燃料極3、電解質膜4及び空気極4が形成され、燃料電池1が得られる。焼結温度は1100℃〜1400℃程度である。金属多孔質体の酸化による劣化を防止するため、焼結は窒素雰囲気等の不活性ガス雰囲気下で行うことが好ましい。
本実施形態の単セル1の製造方法の別法として次に述べる方法も採用できる。先ずドクターブレード法、テープキャスティング法、押出成形法などによって電解質膜4の生シートを得る。これとは別に、複合多孔質体からなる支持体2上に燃料極用の塗工膜を形成しておく。生シート又は生シートを焼結したもの(以下、生シート等という)を、燃料極用の塗工膜上に積層する。次に、生シート等の上に空気極5の構成材料の粉末を含むペーストを塗工する。最後に全体を一体焼結することで単セル1が得られる。或いは、生シート等を、燃料極用の塗工膜上に積層した後に一旦焼結を行い、焼結後に空気極5の構成材料の粉末を含むペーストを塗工し、再び焼結を行ってもよい。何れの場合においても、燃料極用の塗工膜を支持体上に形成することに代えて、生シート等の上に形成してもよい。また空気極5に関しては、生シート等を燃料極用の塗工膜上に積層するに先立ち、空気極用の塗工膜を生シート等の上に予め形成しておいてもよい。本法の場合も、焼結は窒素雰囲気等の不活性ガス雰囲気下で行うことが好ましい。
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されない。例えば前記実施形態の燃料電池は平板型のものであったが、これに代えて円筒型の燃料電池に本発明を適用することもできる。
以下実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されない。
〔実施例1〕
(1)電解質用ペーストの作製
酸化セリウム(平均粒径約1μm)80モル%及び酸化サマリウム(平均粒径約1μm)20モル%を秤量し、ボールミルで12時間混合した。次いで1250℃で10時間仮焼した。仮焼により得られた粉末を、ボールミルを用いて2時間粉砕した。これによって酸化サマリウムをドープした酸化セリウム(平均粒径約0.7μm)からなる固体電解質を得た。この固体電解質にバインダとしてアクリル系樹脂、ポリビニルブチラール、テレピネオール、ポリエチレングリコールを加え、真空脱気混練機を用いて10分間混練した。これによって電解質用ペーストを得た。
(2)燃料極用ペーストの作製
(1)で得られた固体電解質35重量部に、NiO(平均粒径約1μm)65重量部を加え、ビーズミルで2時間混合粉砕した。これによってNiOと酸化サマリウムをドープした酸化セリウムとの混合体を得た。この混合体に、(1)で用いたバインダと同様のバインダを加え、真空脱気混練機を用いて10分間混練した。これによって燃料極用ペーストを得た。
(3)複合体用ペーストの作製
(2)で得られたNiOと酸化サマリウムをドープした酸化セリウムとの混合体90重量部に、カーボン粉末(気孔形成剤)10重量部を加え、ビーズミルで2時間混合粉砕した。その後は(2)と同様にして複合体用ペーストを得た。
(4)空気極用ペーストの作製
La23、SrCoO3、CoO及びFeOの各粉末(平均粒径約1μm)をボールミルで12時間混合した。次いで1250℃で10時間仮焼した。各粉末の混合比は、最終的得られる粉末の組成がLa0.2Sr0.8Co0.8Fe0.2(3-δ)となるようにした。仮焼により得られた粉末を、ボールミルを用いて2時間粉砕した。これによって上記の組成を有する粉末を得た。その後は(1)と同様にして空気極用ペーストを得た。
(5)複合多孔質体の作製
金属多孔質体として、厚さ1.6mm、多孔度90体積%、気孔径0.5mmのオープンセル型ニッケル多孔質体(住友電工製のセルメット(商品名))を用いた。ニッケル多孔質体の一面に複合体用ペーストを塗工し、該ペーストをニッケル多孔質体の気孔内に充填した。次いでニッケル多孔質体をプレス加工し厚みを0.5mmとした。これによって複合多孔質体を得た。
(6)燃料極用の塗工膜の形成
複合多孔質体の面のうち、複合体用ペーストを塗工した面に、スクリーン印刷によって燃料極用ペーストを塗工した。塗工膜の厚さは約50μmとした。次いで塗工膜を100℃で2時間乾燥させた。
(7)電解質用の塗工膜の形成
燃料極用の塗工膜上に、スクリーン印刷によって電解質用ペーストを塗工した。塗工膜の厚さは約50μmとした。次いで塗工膜を100℃で2時間乾燥させた。
(8)空気極用の塗工膜の形成
電解質用の塗工膜上に、スクリーン印刷によって空気極用ペーストを塗工した。塗工膜の厚さは約50μmとした。次いで塗工膜を100℃で2時間乾燥させた。
(9)単セルの作製
塗工膜全体を500℃で1時間焼成し、脱バインダーを行った。続いて窒素雰囲気中、1300℃で4時間一体焼結させた。これによって単セルを得た。
〔実施例2〕
酸化セリウム(平均粒径約1μm)80モル%及び酸化サマリウム(平均粒径約1.5μm)20モル%を秤量し、ボールミルで12時間混合した。次いで1250℃で10時間仮焼した。仮焼により得られた粉末を、ビーズミルを用いて2時間粉砕した。これによって酸化サマリウムをドープした酸化セリウム(平均粒径約0.7μm)からなる固体電解質を得た。この固体電解質100重量部に、メチルセルロース4重量部、グリセリン3重量部、潤滑剤5重量部、水12重量部を加えて高速ミキサーで30分間混練した。真空押出成形機を用いて混練物をシート状に押し出し、100℃で12時間乾燥させ生シートを得た。生シートの厚さは約0.3mmであった。この生シートを1400℃で4時間焼結させて、酸化サマリウムをドープした酸化セリウムからなる固体電解質を得た。
固体電解質の形成とは別に、実施例1で用いたニッケル多孔質体と同様のものを用意し、該多孔質体の一面に、実施例1で用いた複合体用ペーストと同様のものをスクリーン印刷によって塗工し、該ペーストをニッケル多孔質体の気孔内に充填した。次いでニッケル多孔質体をプレス加工し厚みを0.5mmとした。これによって複合多孔質体を得た。次に、複合多孔質体の面のうち、複合体用ペーストを塗工した面に、実施例1で用いた燃料極用ペーストと同様のものをスクリーン印刷によって塗工した。塗工膜の厚さは約50μmとした。燃料極用の塗工膜上に、先に作製した固体電解質を載置し、全体を100℃で2時間乾燥させた。然る後、全体を1350℃で2時間焼結させた。焼結後、固体電解質上に、実施例1で用いた空気極用ペーストと同様のものをスクリーン印刷によって塗工した。塗工膜の厚さは約50μmとした。この塗工膜を100℃で2時間乾燥させた後、全体を1300℃で4時間焼結させて、図2に示す単セルを得た。各焼結工程は何れも窒素雰囲気下で行った。その後は実施例1と同様にして単セルを得た。
〔比較例1〕
実施例1において、(5)の工程を行わず、ニッケル多孔質体の表面に直接燃料極用の塗工膜を形成する以外は実施例1と同様にして単セルを得た。この単セルにおける支持体は、ニッケル多孔質体と燃料極の構成材料との複合体となっていなかった。これ以外は実施例1と同様にして単セルを得た。
〔比較例2〕
実施例2において、ニッケル多孔質体を用いず、固体電解質膜の各面に燃料極用ペースト及び空気極用ペーストをそれぞれ塗工し、空気中、1300℃で4時間焼結させて単セルを得た。これ以外は実施例2と同様にして単セルを得た。
〔比較例3〕
比較例1で用いた空気極用ペーストにおいて、La0.2Sr0.8Co0.8Fe0.2(3-δ)に代えてLaSrMnO3を用いる以外は比較例1と同様にして単セルを得た。得られた単セルを用い実施例1と同様にして単セルを得た。
〔性能評価〕
実施例及び比較例で得られた単セルについて、以下の方法で耐熱衝撃性及び発電特性を測定した。その結果を以下の表1に示す。
〔耐熱衝撃性〕
30×30mmの単セルを600℃の電気炉に入れて30分保持した後、炉から室温の大気中に取り出し、亀裂の有無を調べた。
〔発電特性〕
燃料ガスとしてメタンを用い、また酸化性ガスとして空気を用いた。単セルを隔壁として、燃料極側にメタンを供給し、また酸素極側に空気を供給して600℃で単セルの発電特性を評価した。発電特性は単位面積当たりの最大出力で表した。
Figure 2005174664
表1に示す結果から明らかなように、実施例の単セルは耐熱衝撃性が高いことが判る。また実施例の単セルは、比較例に比べて発電特性が高いことも判る。
本発明の燃料電池の要部を拡大して示す模式図である。 図1に示す燃料電池における単セルの構造を示す模式図である。
符号の説明
1 単セル
2 支持体
3 燃料極
4 電解質膜
5 空気極
10 燃料電池
11 インターコネクタ
12 凸部(リブ)
13 溝部

Claims (5)

  1. 燃料極、固体電解質及び空気極がこの順で積層されている単セルと、燃料極に燃料ガスを供給する手段と、空気極に酸化剤ガスを供給する手段とを備えた固体電解質型燃料電池において、
    前記単セルにおける前記燃料極の外面に、金属多孔質体の気孔中に前記燃料極の構成材料が入り込んだ複合多孔質体からなる支持体が更に積層されており、且つ
    前記前記空気極が、以下の一般式(1)で表されることを特徴とする固体電解質型燃料電池。
    La1-xSrxCo1-yFey(3±δ) (1)
    (式中、0.1≦x≦0.9、0.1≦y≦0.9、0≦δ<1である。)
  2. 前記燃料極が、ニッケル又は酸化ニッケルと、希土類酸化物をドープした酸化セリウムとの混合体からなる請求項1記載の固体電解質型燃料電池。
  3. 前記金属多孔質体が、ニッケル、ニッケル合金、ハステロイ又はステンレス鋼からなる請求項1又は2記載の固体電解質型燃料電池。
  4. 前記燃料極の構成材料の粉末を前記金属多孔質体の気孔中に塗布により充填して、前記支持体が形成されている請求項1〜3の何れかに記載の固体電解質型燃料電池。
  5. 前記燃料極の構成材料の粉末を前記金属多孔質体の気孔中に充填した後、該金属多孔質体をプレス加工又はロール加工して圧縮変形させて、前記支持体が形成されている請求項1〜4の何れかに記載の固体電解質型燃料電池。
JP2003410798A 2003-12-09 2003-12-09 固体電解質型燃料電池 Pending JP2005174664A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003410798A JP2005174664A (ja) 2003-12-09 2003-12-09 固体電解質型燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003410798A JP2005174664A (ja) 2003-12-09 2003-12-09 固体電解質型燃料電池

Publications (1)

Publication Number Publication Date
JP2005174664A true JP2005174664A (ja) 2005-06-30

Family

ID=34731784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003410798A Pending JP2005174664A (ja) 2003-12-09 2003-12-09 固体電解質型燃料電池

Country Status (1)

Country Link
JP (1) JP2005174664A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224552A (ja) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd 積層体
EP2043187A1 (en) 2007-09-28 2009-04-01 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
JP2009187887A (ja) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
JP2012099408A (ja) * 2010-11-04 2012-05-24 Toyota Motor Corp 燃料電池の製造方法
JP2012527068A (ja) * 2009-05-11 2012-11-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 炭化水素を内部改質する高温燃料電池のセル
JP2016533017A (ja) * 2013-09-04 2016-10-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド 金属支持固体酸化物燃料電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224552A (ja) * 2005-02-18 2006-08-31 Dainippon Printing Co Ltd 積層体
JP4555116B2 (ja) * 2005-02-18 2010-09-29 大日本印刷株式会社 積層体
EP2043187A1 (en) 2007-09-28 2009-04-01 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
US8628892B2 (en) 2007-09-28 2014-01-14 Dai Nippon Printing Co., Ltd. Solid oxide fuel cell and manufacturing method thereof
JP2009187887A (ja) * 2008-02-08 2009-08-20 Ngk Spark Plug Co Ltd 燃料極集電体及び固体電解質形燃料電池
JP2012527068A (ja) * 2009-05-11 2012-11-01 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ 炭化水素を内部改質する高温燃料電池のセル
JP2012099408A (ja) * 2010-11-04 2012-05-24 Toyota Motor Corp 燃料電池の製造方法
JP2016533017A (ja) * 2013-09-04 2016-10-20 シーリーズ インテレクチュアル プロパティ カンパニー リミティド 金属支持固体酸化物燃料電池
JP2019197742A (ja) * 2013-09-04 2019-11-14 シーリーズ インテレクチュアル プロパティ カンパニー リミティド 金属支持固体酸化物燃料電池

Similar Documents

Publication Publication Date Title
JP6398647B2 (ja) 固体酸化物型燃料電池用アノードの製造方法および燃料電池用電解質層−電極接合体の製造方法
JP6658754B2 (ja) 固体酸化物形燃料電池、および電解質層−アノード接合体の製造方法
WO2001091218A2 (en) Electrode-supported solid state electrochemical cell
JP5225336B2 (ja) 燃料電池セル及び燃料電池
JP5547040B2 (ja) 電解質・電極接合体及びその製造方法
JP2011171289A (ja) 電解質・電極接合体及びその製造方法
JP6370696B2 (ja) セル構造体、電解質膜−電極接合体、および、燃料電池
JP5543320B2 (ja) 電解質・電極接合体及びその製造方法
JP2011119178A (ja) 固体酸化物形燃料電池
JP5144236B2 (ja) 固体酸化物形燃料電池
JP2005174662A (ja) 単室型燃料電池
JP5072188B2 (ja) 集電材フィルムおよびこれを用いた平板型固体酸化物形燃料電池
KR102111859B1 (ko) 고체산화물 연료 전지 및 이를 포함하는 전지 모듈
JP4374631B2 (ja) 酸化物イオン混合伝導体とその用途
JP2005174664A (ja) 固体電解質型燃料電池
JP2005174663A (ja) 単室型燃料電池
JP6836156B2 (ja) 燃料電池
JP2020030991A (ja) 固体酸化物形燃料電池セル
JP7301768B2 (ja) 電気化学セル、電気化学セルスタックおよび電気化学セル用電解質
JP7107875B2 (ja) 燃料極-固体電解質層複合体の製造方法
JP6088949B2 (ja) 燃料電池単セルおよびその製造方法
JP5117834B2 (ja) 固体酸化物形燃料電池
KR102463568B1 (ko) 공기극 활물질 및 이를 포함하는 전기화학 소자
JP2012074305A (ja) 固体酸化物形燃料電池用発電セル
JP5205731B2 (ja) 固体酸化物形燃料電池及びそのスタック構造