JP2005024453A - X-ray inspection device - Google Patents

X-ray inspection device Download PDF

Info

Publication number
JP2005024453A
JP2005024453A JP2003192083A JP2003192083A JP2005024453A JP 2005024453 A JP2005024453 A JP 2005024453A JP 2003192083 A JP2003192083 A JP 2003192083A JP 2003192083 A JP2003192083 A JP 2003192083A JP 2005024453 A JP2005024453 A JP 2005024453A
Authority
JP
Japan
Prior art keywords
contents
ray
reference position
inspection
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003192083A
Other languages
Japanese (ja)
Other versions
JP3860144B2 (en
Inventor
Masahiro Yagi
将博 八木
Takayuki Seki
隆行 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Infivis Co Ltd
Original Assignee
Anritsu Infivis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Infivis Co Ltd filed Critical Anritsu Infivis Co Ltd
Priority to JP2003192083A priority Critical patent/JP3860144B2/en
Publication of JP2005024453A publication Critical patent/JP2005024453A/en
Application granted granted Critical
Publication of JP3860144B2 publication Critical patent/JP3860144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray inspection device capable of stably inspecting missing items by reducing the influence on the conveyance direction due to displacement. <P>SOLUTION: A mask region setting means 15a sets a mask region for detecting missing items compatible with the contents of an object to be inspected. A reference position calculating means 19 compares the X-ray transmission image of the contents obtained, when the object to be inspected is exposed to X-rays, with a reference position detection limit value preset according to the arrangement of the contents, and discriminates the position of the X-ray transmission image of the contents exceeding the reference position detecting limit value first, as nearly the tip position of the contents positioned at the top of a housing body for calculating as a reference position. A missing item discriminating means 20a overlaps the X-ray transmission image of the contents to the set mask region for missing item detection, for discriminating the presence or absence of the missing item of the contents with the reference position calculated by the reference position calculation means set as a reference. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、X線を曝射したときのX線の透過量から被検査物中の異物を検出するX線検査装置に関し、特に被検査物の内容物の欠品を正確に検出できるX線検査装置に関する。
【0002】
【従来の技術】
X線異物検出装置は、搬送ライン上を順次搬送されてくる各品種の被検査物(例えば、生肉、魚、加工食品、医薬など)にX線を曝射し、この曝射したX線の透過量から被検査物中に金属、ガラス、石、骨などの異物が混入しているか否かを検出する装置である。
この出願の発明に関連する先行技術文献情報としては下記のものがある。
【0003】
【特許文献1】
特開2002−228761号公報
【0004】
ところで、被検査物としてトレイや箱などの収容体に内容物が収容されている場合、この種のX線異物検出装置では、被検査物における異物混入の有無を判定する前処理の段階で収容体内での内容物の有無を検出して欠品(不良品)判別が行われる。
【0005】
この欠品判定処理では、収容体における内容物の収容位置を想定した座標軸位置に欠品検出用マスク領域を予め設定し、X線曝射時のX線透過データに基づいて画像展開した内容物と、欠品検出用マスク領域とを重ね合わせ、欠品検出用マスク領域内に内容物が存在すればその被検査物を正常と判断し、欠品検出用マスク領域内に内容物が存在しなければその被検査物を欠品(不良品)と判断している。
【0006】
しかしながら、上述した従来の欠品判定処理では、欠品検出用マスク領域内に完全に内容物が重ならなければ被検査物が欠品と判断しているため、収容体内で内容物が移動した場合、内容物が収容体に存在していても欠品と誤判断することがあった。
【0007】
そこで、上記問題に対処するため、本件出願人は、上記特許文献1に開示されるX異物検出装置を既に提案している。この特許文献1に開示されるX線異物検出装置では、被検査物として内容物が収容された収容体の先端位置を基準として欠品検出用マスク領域を設定し、この設定された欠品検出用マスク領域内に占める内容物の面積の割合によって欠品の有無を判断している。
【0008】
【発明が解決しようとする課題】
上記特許文献1に開示されるX線異物検出装置によれば、収容体としての包装体やトレイがある程度剛性を有していれば、収容体の先端位置が変化しないので、収容体内の内容物の欠品を高精度に検出することができる。しかし、搬送方向に対して収容体の先端にバラツキがある場合には、検出される収容体の先端の位置によって欠品検出用マスク領域が全体的にずれてしまい、欠品の誤判断を招くおそれがあった。
【0009】
さらに具体例を示して説明すると、収容体として例えばフィルム状の包装体に複数の内容物が袋詰めされた被検査物の場合には、包装体内での搬送方向に対する内容物の移動量は極めて少ない。ところが、この種の被検査物の収容に用いられる収容体Sは、図7(a),(b)に示すように、シール部Saの折れ曲がり具合によってバラツキがある。
【0010】
このようなシール部Saの状態にバラツキのある被検査物Wを欠品検査対象とした場合、上記特許文献1に開示されるX線異物検出装置では、包装体Sのシール部Saの先端位置Pを基準として欠品検出用マスク領域を設定する。このため、図7(a)の状態では、包装体Sのシール部Saの先端位置P1を基準として欠品検出用マスク領域が設定される。これに対し、図7(b)の状態では、折れ曲がったシール部Saの先端位置P2を基準として欠品検出用マスク領域が設定される。したがって、上記特許文献1に開示されるX線異物検出装置を採用した場合には、図7(a),(b)に示すように、包装体Sのシール部Saのバラツキによる先端位置のずれ分t1だけ欠品検出用マスク領域が搬送方向に対して全体的にずれてしまい、欠品検出用マスク領域内に占める内容物Waの面積の割合が変化して誤った欠品検査を行うおそれがあった。
【0011】
また、例えば焼売や餃子を内容物Waとするレトルト食品の場合には、図8に示すように、被検査物Wとして複数の焼売や餃子が内容物としてトレイTの上に配置された状態でフィルム状の包装体Sに包装される。このような場合、包装体Sのシール部Saの先端位置が変化しなくても、包装体S内でトレイTが搬送方向に対して移動することがある。
【0012】
このため、上記特許文献1に開示されるX線異物検出装置を採用して欠品検査を行うと、包装体Sの先端位置を基準として欠品検出用マスク領域を設定するので、トレイTの移動量分だけ欠品検出用マスク領域が搬送方向に対して全体的にずれてしまい、上記同様、欠品検出用マスク領域内に占める内容物Waの面積の割合が変化して誤った欠品検査を行うおそれがあった。
【0013】
ところで、上記のように包装体S内のトレイT上に複数の内容物Waが配置された被検査物Wを欠品検査対象とした場合、図8に示す包装体S内のトレイTの先端位置P3を基準として欠品検出用マスク領域を設定することも考えられる。しかし、通常、この種のトレイTは薄く形成されているものが多く、X線曝射時のX線透過データからではトレイTの判別がつきにくく、X線による検出が困難であった。仮に、トレイTの先端位置P3を検出できて、トレイTの先端位置P3を基準として欠品検出用マスク領域を設定した場合でも、図8(a),(b)に示すように、包装体S内のトレイT上で内容物Waが搬送方向に対して移動すると、この内容物Waの移動量t2分だけ検品検出用マスク領域が全体的にずれてしまい、上記同様、欠品検出用マスク領域内に占める内容物Waの面積の割合が変化して誤った欠品検査を行うおそれがあった。
【0014】
そこで、本発明は上述した課題に鑑みてなされたものであって、搬送方向に対する位置ずれによる影響を少なくして安定した欠品検査を行うことができるX線検査装置を提供することを目的とする。
【0015】
【課題を解決するための手段】
次に、上記の課題を解決するための手段を、実施の形態に対応する図面を参照して説明する。
請求項1記載のX線検査装置は、収容体に収容された被検査物WにX線を曝射し、このX線の曝射に伴うX線透過量に基づいて前記被検査物の検査を行うX線検査装置1において、
前記被検査物の内容物に適合する欠品検出用マスク領域Mを設定し、前記被検査物へのX線の曝射時に得られる前記被検査物の内容物WaのX線透過画像に基づいて検出される前記収容体の先頭に位置する内容物の略先端位置を基準位置RFとして、前記内容物のX線透過画像と前記欠品検出用マスク領域とを重ね合わせて前記内容物の欠品の有無を判別する信号処理手段14を備えたことを特徴とする。
【0016】
請求項2記載のX線検査装置は、収容体に収容された被検査物WにX線を曝射し、このX線の曝射に伴うX線透過量に基づいて前記被検査物の検査を行うX線検査装置1において、
前記被検査物の内容物に適合する欠品検出用マスク領域Mを設定するマスク領域設定手段15aと、
前記被検査物へのX線の曝射時に得られる前記被検査物の内容物WaのX線透過画像と、前記被検査物の内容物の配置に応じて予め設定された基準位置検出リミット値とを比較し、該基準位置検出リミット値を最初に越える前記内容物のX線透過画像の位置を前記収容体の先頭に位置する内容物の略先端位置と判別し基準位置RFとして算出する基準位置算出手段19と、
前記基準位置算出手段が算出した基準位置を基準として、前記内容物のX線透過画像と前記欠品検出用マスク領域とを重ね合わせて前記内容物の欠品の有無を判別する判別手段20とを備えたことを特徴とする。
【0017】
請求項3記載のX線検査装置は、請求項2記載のX線検査装置において、
前記判別手段20は、前記欠品検出用マスク領域M内に含まれる前記内容物WaのX線透過画像の面積の割合と、予め設定された基準値との比較に基づいて前記内容物の欠品の有無を判別することを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明に係るX線検査装置の好適な実施の形態を図面を参照して詳細に説明する。
【0019】
図1は本発明に係るX線検査装置の外観図、図2は本発明に係るX線検査装置の電気的構成を示すブロック図、図3(a)〜(c)は本発明に係るX線検査装置で検査される欠品検査対象とそのX線透過画像のレベルを示す図、図4は欠品検出用マスク領域の一例を示す図、図5は収容体に収容される被検査物の抽出画像の一例を示す図、図6(a)は収容体内に被検査物が正常に収容された状態を示す図、図6(b)は被検査物が欠品状態を示す図、図6(c)は面積比による判別処理を説明するための図である。なお、図3(c)は内容物のみを強調した濃淡レベルを概略的に示している。
【0020】
本例のX線検査装置1は、搬送ラインの一部に設けられ、所定間隔をおいて順次搬送されてくる被検査物の欠品検査(内容物の欠品の有無)や被検査物の異物混入検査(被検査物中の異物混入の有無)を行うものである。
【0021】
特に、本例のX線検査装置1は、被検査物として内容物が収容体に収容された場合の欠品検査を安定して行う場合に適している。
【0022】
欠品検査対象となる被検査物は、内容物が収容体に収容されたものであり、正常な状態で内容物が収容体内で半個分以上の移動が無いものとしている。具体的には、図3に示すような被検査物Wとして内容物Waが包装体Sにより包装されたもの、図8に示すような被検査物Wとして内容物WaがトレイT上に並べられて包装体Sにより包装されたものなどがある。
【0023】
なお、本例では、包装体Sのみ又はトレイTを内包する包装体Sを収容体と称している。また、本例では、被検査物Wとして8つの内容物Waが包装体Sに収容されたものを例にとって説明している。
【0024】
図1に示すX線検査装置1は、搬送部2と異物検出部3とが装置本体4内部に設けられ、表示器5が装置本体4の前面上部に設けられている。
【0025】
搬送部2は、内容物Waが収容体(包装体S、又は包装体SとトレイTの組み合わせ)に収容された同一品種の被検査物Wを、所定間隔をおいて順次搬送している。この搬送部2は、例えば装置本体4に対して水平に配置されたベルトコンベアで構成することができる。搬送部2は、図1に示す駆動モータ6の駆動により予め設定された所定の搬送速度で搬入口7から搬入された被検査物Wを搬出口8側(図1の搬送方向X)に向けて搬送させる。
【0026】
異物検出部3は、搬送される被検査物Wを搬送路途中において欠品の有無や異物混入の有無を検出するもので、搬送部2の上方に所定高さ離れて設けられるX線発生器9と、搬送部2内にX線発生器9と対向して設けられるX線検出器10を備えて構成される。
【0027】
X線発生器9は、金属製の箱体11内部に設けられる円筒状のX線管12を不図示の絶縁油により浸漬した構成であり、X線管12の陰極からの電子ビームを陽極ターゲットに照射させてX線を生成している。X線管12は、その長手方向が被検査物Wの搬送方向Xと直交する方向(図1のY方向)に設けられている。X線管12により生成されたX線は、下方のX線検出器10に向けて、長手方向に沿った不図示のスリットにより略三角形状のスクリーン状にして曝射するようになっている。
【0028】
X線検出器10は、収容体Sに収容された被検査物Wに対してX線が曝射されたときに、被検査物Wを透過してくるX線を検出し、この検出したX線の透過量に応じた電気信号を出力している。このX線検出器10は、搬送部2上を搬送される被検査物Wの搬送方向Xと直交するY方向に沿って設けられる。このX線検出器10には、ライン状に配列された複数のフォトダイオードと、フォトダイオード上に設けられたシンチレータとを備えたアレイ状のラインセンサが用いられる。
【0029】
図2に示すように、搬送部2の搬入口7側には、被検査物Wの通過を検出するための位置検出手段13が設けられている。この位置検出手段13は、例えば搬送部2としてのベルトコンベアの入口側に設けられる一対の投受光器からなるフォトセンサで構成される。この構成により、被検査物Wがフォトセンサの前を通過している間では位置検出手段13からオン信号が信号処理手段14にタイミング信号として入力される。
【0030】
このような構成によるX線検出器10では、搬送部2上を搬送される被検査物Wに対してX線発生器9からX線が曝射される。そして、この被検査物WへのX線の曝射に伴って被検査物Wを透過してくるX線をシンチレータで受けて光に変換する。このシンチレータで変換された光は、その下部に配置されるフォトダイオードによって受光される。そして、各フォトダイオードは、受光した光を電気信号に変換して出力する。このX線検出器10は、受けたX線の強さに対応したレベルを有した電気信号を信号処理手段14に出力する。
【0031】
図2において、信号処理手段14は、CPUやメモリなどを備えて構成され、位置検出手段13が被検査物Wを検出したときのオン信号をタイミング信号とし、位置検出手段13がオン信号を出力している期間が被検査物W(包装体S)の長さと判断し、X線検出器10からの電気信号を取り込んで各種信号処理を行っている。
【0032】
図2に示すように、信号処理手段14は、設定入力手段15、記憶手段(データメモリ)16、画像処理手段17を備えている。
【0033】
設定入力手段15は、被検査物Wとして包装体Sに収容された内容物Waの欠品検査や異物混入検査に関する各種設定、表示に関する各種設定、各種指示を与えるためのユーザが操作する複数のキーやスイッチ等で構成される。
【0034】
図2に示すように、設定入力手段15はマスク領域設定手段15aを有している。このマスク領域設定手段15aは、被検査物Wとして包装体Sに収容された内容物Waの欠品検査を行う際に、収容体内の内容物Waの配置に応じて被検査物W毎に予め記憶された複数種類の欠品検出用マスク領域Mのうち、検査対象となる被検査物Wの内容物Waに適合する欠品検出用マスク領域Mを設定している。この欠品検出用マスク領域Mは、図4に示すように、最初の内容物Waの略先端位置を基準として、座標軸位置x,y及びマスク範囲xL,yLを各マスク領域毎に設定することにより選択設定される。図4及び図5に示すように、欠品検出用マスク領域Mは、基準位置RFを基準とし、各マスク領域の座標軸位置x,yが被検査物Wの対応する各内容物Waのほぼ中心に位置し、マスク範囲xL,yLが内容物Waの大きさに応じて設定される。
【0035】
さらに説明すると、上記設定項目の座標軸位置x,y及びマスク範囲xL,yLは、検査を行う前の初期設定時に実際に被検査物Wを搬送部2で搬送させて設定することができる。例えば収容体内に欠品なく収容した被検査物をサンプルとして複数用意し、搬送部2で搬送させながら上記設定項目を変化させて「OK」と判別されるか確認する。その際、座標軸位置x,yを収容体内で各所に移動させ、また、マスク範囲xL,yLを変化させて全てのサンプルで「OK」と判別されるか確認する。そして、上記設定項目に加え、面積比Bを可変させて全てのサンプルで「OK」となったときの値を最良の設定とする。なお、上記設定を行う際には、収容体に内容物を収容しない状態のサンプルについて全て「NG」と判別されるか確認しておく。
【0036】
また、設定入力手段15は、上記設定の他、搬送部2の搬送速度の設定、後述する基準位置RFを算出する際の基準となる基準位置検出リミット値の設定、後述する欠品の有無の判別に使用する面積比Bの設定、被検査物W中の異物の混入の有無を判別するための基準となる異物検出リミット値を設定している。
【0037】
なお、上記面積比Bや各検出リミット値は、内容物Waが包装体S内に占める面積の割合、包装体Sの種類、被検査物Wの品種、検出対象となる異物の種類などに応じて適宜設定可能とされている。
【0038】
記憶手段16には、各被検査物W毎のX線透過データが格納される。このX線透過データは、X線検出器10からの電気信号を不図示のA/D変換器によりA/D変換したデータを位置検出手段13の検出タイミングで取り込むことにより得られる。さらに説明すると、この記憶手段16には、1つの被検査物Wの検査を行う毎に、X線検出器10の1ライン(図1のY方向)あたり例えば640個のX線透過データが、少なくとも搬送される被検査物Wの搬送方向の長さ(前端から後端までの検出期間に相当)に対応した所定ライン数(480ライン)だけ格納される。
【0039】
画像処理手段17は、記憶手段16に格納された1つの被検査物WのX線透過データに基づいて各種画像処理を行っており、内容物画像抽出手段18、マスク基準位置算出手段19、判別手段20を備えている。また、画像処理手段17は、X線検出器10が出力したX線透過量を示す画像データを表示器5に表示出力している。その際、被検査物W内の異物部分の表示濃度を他の部分と異なるように濃く表示したり、異物部分以外と異なる色で表示している。これにより、包装体S内に内容物Waが収容された被検査物Wを平面で見た外形の状態と、この被検査物W内でのX線の透過具合を表示器5の表示画面上で確認することができ、異物の混入位置も把握できる。また、画像処理手段17は、「OK」,「NG」の良否判定結果や総検査数、良品数、NG総数などの検査結果を表示器5に表示出力している。
【0040】
内容物画像抽出手段18は、記憶手段16に格納されたX線透過データに基づくX線透過画像から図5に示すような包装体Sを除く被検査物Wの内容物Waのみの抽出画像Aを抽出している。この内容物Waのみの抽出画像Aを抽出する際には、予め設定入力手段15により収容体と内容物Waの各X線透過量の略中間レベル付近に検出リミット値を設定しておく。一般に、内容物Waの方が収容体よりもX線透過量が低いので、内容物画像抽出手段18は、記憶手段16のX線透過データに基づくX線透過画像において、検出リミット値より低い領域を内容物Waと判定し、内容物Waのみの抽出画像Aを抽出する。この内容物Waのみの抽出画像Aは、所定の濃淡レベルを有する画像として処理される。
【0041】
マスク基準位置算出手段19は、被検査物WへのX線の曝射時に得られる被検査物Wの内容物Waの抽出画像Aの濃淡レベルと、被検査物Wの内容物Waの配置に応じて予め設定された基準位置検出リミット値とを比較し、基準位置検出リミット値を最初に越える内容物Waの濃淡レベルの位置を収容体(包装体S又はトレイTを内包する包装体S)の先頭に位置する内容物Waの略先端位置と判別し、この略先端位置を基準位置RFとして算出している。
【0042】
さらに説明すると、このマスク基準位置算出手段19では、内容物画像抽出手段18によって抽出された被検査物Wの内容物Waのみの所定の濃淡レベルを有sルウ抽出画像Aが入力されると、この抽出画像Aの各ライン(搬送方向と直交する方向)毎の画素の濃淡レベルと、予め設定入力手段15で設定された基準位置検出リミット値とを比較する。そして、ライン毎の画素の濃淡レベルが基準位置検出リミット値を越えた位置を最初の内容物Waの先頭位置と判断し、その位置を基準位置RFとして算出している。なお、上記基準位置検出リミット値は、被検査物Wの内容物Waに応じて設定入力手段15から予め設定されており、被検査物Wの内容物Waが検出できる値に設定される。例えば被検査物Wの内容物Waが球形状の場合には、内容物Waと搬送部2のベルト面との中間値に設定される。
【0043】
判別手段20は、欠品判別手段20a、異物判別手段20b、良否判別手段20cを有している。欠品判別手段20aは、マスク領域設定手段15aにより予め設定された欠品検出用マスク領域Mを読み出し、マスク基準位置算出手段19により内容物Waの先頭位置の検出に基づいて算出された基準位置RFを基準として、読み出した欠品検出用マスク領域Mと、内容物Waの抽出画像Aとを重ね合わせて欠品の有無を判別している。この欠品の有無の判別処理は、以下に説明する各画素の論理積演算によって行われる。この論理積演算は、画素単位で走査して行われ、重ね合わせの状態で欠品検出用マスク領域Mの範囲内に内容物Waの抽出画像Aが位置していれば、その画素を1つづつカウントしていく。設定される欠品検出用マスク領域Mは画素数nを有しており、欠品検出用マスク領域Mに含まれる内容物Waの抽出画像Aの画素数までカウント値CNTが増加していくことになる。
【0044】
図6(a)は包装体S内に内容物Waが正常に収容された状態を示す図である。図6(a)には、欠品検出用マスク領域Mと、内容物Waの抽出画像Aを重ね合わせた状態が示されている。この図6(a)の状態では、欠品検出用マスク領域Mに内容物Waの抽出画像Aの全てが含まれるので、カウント値CNTは欠品検出用マスク領域Mの画素数nに一致(厳密にはほぼ一致)する値となる。
【0045】
欠品判別手段20aは、上記カウント値CNTと、欠品検出用マスク領域Mの画素数n×面積比Bとを比較し、カウント値CNTの方が高ければ「OK」、カウント値CNTの方が低ければ「NG(欠品)」と判別する。図6(a)の例では、カウント値CNTが欠品検出用マスク領域Mの画素数nにほぼ一致するので、「OK」、すなわち包装体S内に内容物Waが存在していると判断する。このときの判別結果は、判別信号(OK信号、又はNG信号)として良否判別手段20cに出力される。
【0046】
図6(b)は内容物Waの欠品状態を示す図である。図6(b)のように、包装体S内において内容物Waが存在しない状態(欠品)のとき、欠品検出用マスク領域Mと、内容物Waの抽出画像Aを重ね合わせた状態では、欠品検出用マスク領域Mに内容物Waの抽出画像Aが含まれないので、カウント値CNTは0(厳密には限りなく0に近い値)となる。この場合、欠品判別手段20aは、上記カウント値CNTと、欠品検出用マスク領域Mの画素数n×面積比Bとを比較すると、カウント値CNTの方が低いので、「NG(欠品)」と判別する。このときの判別結果は、判別信号(NG信号)として良否判別手段20cに出力される。
【0047】
図6(c)は面積比による内容物Waの検出状態を示す図である。X線検出時に、被検査物Wは、包装体S内で内容物Waが僅かながらも移動したり、包装体S内で内容物Waを載せたトレイTが移動することがある。このため、本例では、欠品検出用マスク領域M内に占める内容物Waの抽出画像Aの面積の割合によって内容物Waの存在の有無を判別している。
【0048】
図6(c)の場合、欠品検出用マスク領域Mと、内容物Waの抽出画像Aを重ね合わせた状態では、内容物Waの抽出画像Aの一部(図示の例では略半部の50%)のみが欠品検出用マスク領域Mに重なり、欠品検出用マスク領域M全体には含まれない状態である。この場合、カウント値CNTは2/nとなる。ここで、設定入力手段15により面積比Bとして40%が設定されていれば、欠品判別手段20aは、カウント値CNTと、欠品検出用マスク領域Mの画素数n×面積比B(40%)とを比較し、カウント値CNTの方が高いので、判別結果は「OK」、すなわち、包装体S内に内容物Waが存在していると判断する。
【0049】
異物判別手段20bは、被検査物Wの内容物領域において、内容物領域内で濃淡レベルが他と違う部分を異物として判断している。さらに説明すると、異物判別手段20bは、記憶手段16に格納された被検査物WのX線透過データの濃淡レベルと、設定入力手段15により予め設定された異物検出リミット値とを比較し、X線透過データが異物検出リミット値を越えたときに、その被検査物Wに異物が混入していると判断している。このときの判別結果は、判別信号(OK信号、又はNG信号)として良否判別手段20cに出力される。なお、異物検出リミット値は、被検査物W毎に適宜設定入力手段15から設定可能となっている。
【0050】
良否判別手段20cは、欠品判別手段20aからの判別信号と異物判別手段20bからの判別信号に基づき、その被検査物Wが正常又は不良を示す選別信号を外部出力している。
【0051】
すなわち、この良否判別手段20cでは、欠品判別手段20a及び異物判別手段20bの両方から正常を示す判別信号(OK信号)が入力されると、その被検査物Wに欠品及び異物混入無しと判別し、正常を示す選別信号を外部出力する。これに対し、欠品判別手段20aから欠品を示す判別信号(NG信号)が入力されるか、異物判別手段20bから異物混入を示す判別信号(NG信号)が入力されると、被検査物Wに欠品又は異物混入有りと判別し、不良を示す選別信号を外部出力する。
【0052】
表示器5の表示画面には、判別手段20の判別結果に基づいて被検査物Wを平面視したX線透過画像、「OK」や「NG」の良否判定結果、総検査数、良品数、NG総数などの検査結果が設定入力手段15からの所定のキー操作に基づいて表示される。
【0053】
上記構成のX線検査装置1を用いて包装体Sに収容された被検査物Wの欠品検査を行う場合には、信号処理手段14において以下の処理が実行される。まず、検査対象となる被検査物Wの品種に応じて最適な欠品検出用マスク領域Mをマクス領域設定手段15aより予め入力しておく。
【0054】
搬送部2上を搬送される被検査物WにX線が曝射されると、このX線の曝射に伴うX線透過データが記憶手段16に格納される。そして、画像処理手段17は、記憶手段16に格納されたX線透過データから全体の濃淡画像(被検査物Wと搬送部2のベルト面を含む全体画像)を作成する。
【0055】
次に、内容物抽出手段18は、作成されたX線透過画像の全体の濃淡画像から包装体Sを除く被検査物Wの内容物Waのみの抽出画像Aを抽出する。
【0056】
次に、マスク基準位置算出手段19は、抽出された被検査物Wの内容物Waのみの抽出画像Aの各ライン(図1の搬送方向Xと直交するY方向)毎の画素の濃淡レベルと、予め設定入力手段15で設定された基準位置検出リミット値とを比較する。そして、ライン毎の画素の濃淡レベルが基準位置検出リミット値を越えた位置を最初の内容物Waの略先端位置と判断し、この略先端位置を基準位置RFとして算出する。
【0057】
その後、欠品判別手段20aは、マスク領域設定手段15aから予め設定された欠品検出用マスク領域Mを読み出し、マスク基準位置算出手段19により算出された先頭の内容物Waの略先端位置である基準位置RFを基準として、欠品検出用マスク領域Mと、内容物Waの抽出画像Aとを重ね合わせ、前述した判別処理により欠品の有無を判別する。
【0058】
ところで、本例のX線検査装置1では、上述した被検査物Wの欠品検査とともに、被検査物WにX線を曝射したときのX線透過量から被検査物W中の異物混入の有無の検査も行われる。
【0059】
被検査物W中の異物混入の有無を検査する場合には、記憶手段16に記憶されたX線透過データと、設定入力手段15により予め設定された異物検出リミット値とを比較する。そして、X線透過データが異物検出リミット値を越えたときに、その被検査物Wに異物が混入していると判断する。
【0060】
このように、本例のX線検査装置では、搬送されて来る被検査物の収容体内の先頭に位置する内容物の略先端位置を検出し、この検出した略先端位置を基準位置として、欠品検出用マスク領域と、被検査物の内容物の抽出画像とを重ね合わせて被検査物の内容物の欠品検査を行うので、収容体内での内容物の移動や内容物を載せたトレイなどの移動による位置のバラツキに影響されることなく、安定した欠品検査を行うことができる。
【0061】
具体的には、図3(c)に示すように、包装体S内の最初の内容物Waの略先端位置を基準位置RFとして、欠品検出用マスク領域Mと内容物Waの抽出画像を重ね合わせて欠品検査を行うので、図3(a),(b)に示す如く包装体Sのシール部Saに折れ曲がりなどによるバラツキがあっても、このバラツキに影響されることなく、正確な欠品検査を行うことができる。
【0062】
また、包装体S内の最初の内容物Waが欠落している場合には、その次の内容物Waの略先端位置が基準位置RFとして、欠品検出用マスク領域Mと内容物Waの抽出画像を重ね合わせるため、欠品検出用マスク領域Mが全体的に搬送方向にずれることになるが、欠品と判別されるマスク領域が存在するので、誤って欠品無しと判別するのを防止できる。
【0063】
さらに、実際には収容体内に内容物が存在していても、収容体内で内容物や内容物を載せたトレイが移動してずれた状態のままX線検出される場合がある。しかし、本例のX線検査装置では、欠品検査時に、欠品検出用マスク領域内に含まれる内容物のX線透過画像の割合と、予め設定された基準値(欠品検出用マスク領域の画素数×面積比)との比較に基づいて内容物の欠品の有無を判別するので、誤って「NG(欠品)」と判別するのを防止でき、欠品判別の信頼性を向上させることができる。しかも、欠品検出用マスク領域内に内容物全体が含まれない場合でも、欠品検出用マスク領域内に重なる内容物の面積の割合が予め設定された面積比以上であれば、内容物が存在するものとして検出することができる。
【0064】
さらに、被検査物の内容物の欠品検査に加え、被検査物中の異物混入検査も同時に行うので、異なる検査項目を1つの装置で行え、設備費を抑えることができる。
【0065】
ところで、上述した実施の形態では、1つの内容物Waに対して1つのマスク領域が割り当てられた欠品検出用マスク領域Mを用いる構成としたが、1つの内容物Waに対して複数のマスク領域を割り当てた欠品検出用マスク領域を用いることも可能である。この場合、内容物Waの欠品検査に加え、内容物Waの一部欠けなどの欠損を検出することができる。
【0066】
【発明の効果】
以上説明したように、本発明に係るX線検査装置によれば、被検査物の収容体内の先頭に位置する内容物の略先端位置を検出し、この検出した略先端位置を基準位置として、欠品検出用マスク領域と、被検査物の内容物の抽出画像とを重ね合わせて被検査物の内容物の欠品検査を行うので、収容体内での内容物の移動や内容物を載せたトレイの移動による位置のバラツキに影響されず、安定した欠品検査を行うことができる。
【0067】
また、収容体内で内容物や内容物を載せたトレイが移動してずれた状態のままX線検出された場合であっても、欠品検出用マスク領域内に含まれる内容物のX線透過画像の面積の割合と、予め設定された基準値との比較に基づいて内容物の欠品の有無を判別するので、誤判別を防止して欠品判別の信頼性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係るX線検査装置の外観図である。
【図2】本発明に係るX線検査装置の電気的構成を示すブロック図である。
【図3】(a)〜(c)本発明に係るX線検査装置で検査される欠品検査対象とそのX線透過画像のレベルを示す図である。
【図4】欠品検出用マスク領域の一例を示す図である。
【図5】収容体に収容される被検査物の抽出画像の一例を示す図である。
【図6】(a)収容体内に被検査物が正常に収容された状態を示す図である。
(b)被検査物が欠品状態を示す図である。
(c)面積比による判別処理を説明するための図本発明に係るX線検査装置の外観図である。
【図7】収容体に収容された被検査物の一例を示す図であって、特許文献1のX線異物検出装置を採用した場合の課題を説明するための図である。
【図8】収容体に収容された被検査物の他の例を示す図であって、特許文献1のX線異物検出装置を採用した場合の課題を説明するための図である。
【符号の説明】
1…X線検査装置、14…信号処理手段、15a…マスク領域設定手段、19…マスク基準位置算出手段、20…判別手段、W…被検査物、Wa…内容物、S…収容体、Sa…シール部、RF…基準位置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an X-ray inspection apparatus that detects foreign matter in an inspection object from the amount of X-ray transmission when X-rays are exposed, and in particular, X-ray that can accurately detect a missing item in the inspection object. It relates to an inspection device.
[0002]
[Prior art]
The X-ray foreign object detection apparatus irradiates X-rays to inspection objects of various varieties (for example, raw meat, fish, processed foods, medicines, etc.) that are sequentially transported on the transport line, and It is a device that detects whether or not foreign matter such as metal, glass, stone, and bone is mixed in the object to be inspected from the amount of transmission.
Prior art document information relating to the invention of this application includes the following.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-228761
[0004]
By the way, when the contents are accommodated in a container such as a tray or a box as an object to be inspected, this type of X-ray foreign object detection device accommodates the object in the pre-processing stage for determining the presence or absence of foreign objects in the object to be inspected. The presence / absence of contents in the body is detected to determine a missing item (defective product).
[0005]
In this shortage determination process, a shortage detection mask area is set in advance on the coordinate axis position assuming the storage position of the content in the container, and the image is developed based on the X-ray transmission data at the time of X-ray exposure. And the missing item detection mask area are overlapped, and if the contents exist in the missing item detection mask area, the inspection object is judged to be normal, and the contents exist in the missing item detection mask area. If not, the inspected item is judged as a missing item (defective product).
[0006]
However, in the above-described conventional shortage determination process, if the contents do not completely overlap within the shortage detection mask area, it is determined that the object to be inspected is a shortage. In some cases, the contents were misjudged as missing parts even if the contents were present in the container.
[0007]
Therefore, in order to cope with the above problem, the present applicant has already proposed the X foreign object detection device disclosed in Patent Document 1. In the X-ray foreign matter detection apparatus disclosed in Patent Document 1, a missing part detection mask region is set with reference to the tip position of a container in which contents are stored as an inspection object, and the set missing part detection is performed. The presence / absence of a missing item is determined based on the ratio of the area of the contents in the mask area.
[0008]
[Problems to be solved by the invention]
According to the X-ray foreign object detection device disclosed in Patent Document 1 above, if the package or tray as the container has a certain degree of rigidity, the tip position of the container does not change. Can be detected with high accuracy. However, if there is variation in the tip of the container relative to the transport direction, the missing part detection mask area is entirely displaced depending on the position of the tip of the container to be detected, leading to an erroneous determination of the missing part. There was a fear.
[0009]
When a specific example is shown and described, for example, in the case of an inspected object in which a plurality of contents are packed in a film-like package as a container, the amount of movement of the contents in the package in the transport direction is extremely high. Few. However, as shown in FIGS. 7A and 7B, the container S used for accommodating this type of inspected object varies depending on how the seal portion Sa is bent.
[0010]
When the inspection object W having a variation in the state of the seal part Sa is a shortage inspection target, the tip position of the seal part Sa of the package S is used in the X-ray foreign object detection device disclosed in Patent Document 1. A missing part detection mask area is set with reference to P. For this reason, in the state of FIG. 7A, a missing item detection mask region is set with reference to the tip position P1 of the seal portion Sa of the package S. On the other hand, in the state of FIG. 7B, a missing part detection mask region is set with reference to the tip position P2 of the bent seal portion Sa. Therefore, when the X-ray foreign object detection device disclosed in Patent Document 1 is employed, the tip position shifts due to variations in the seal portion Sa of the package S as shown in FIGS. There is a risk that the missing part detection mask area will be entirely displaced with respect to the transport direction by the amount t1, and the proportion of the area of the content Wa in the missing part detection mask area will change, resulting in erroneous missing part inspection. was there.
[0011]
In addition, for example, in the case of retort food that uses shochu and dumplings as the contents Wa, as shown in FIG. 8, in a state where a plurality of shochu and dumplings are arranged on the tray T as the contents to be inspected. It is packaged in a film-shaped package S. In such a case, the tray T may move in the package S with respect to the transport direction even if the tip position of the seal portion Sa of the package S does not change.
[0012]
For this reason, when the missing item inspection is performed using the X-ray foreign matter detecting device disclosed in Patent Document 1, the missing item detection mask area is set with reference to the tip position of the package S. The missing item detection mask area is displaced as a whole with respect to the transport direction by the amount of movement, and as described above, the proportion of the area of the content Wa in the missing item detection mask area changes, resulting in an incorrect missing item. There was a risk of inspection.
[0013]
By the way, when the to-be-inspected object W by which the several content Wa was arrange | positioned on the tray T in the package S as mentioned above is made into a missing item inspection object, the front-end | tip of the tray T in the package S shown in FIG. It is also conceivable to set a missing part detection mask region based on the position P3. However, in many cases, this type of tray T is often formed thin, and it is difficult to distinguish the tray T from X-ray transmission data at the time of X-ray exposure, and detection by X-rays is difficult. Even when the leading edge position P3 of the tray T can be detected and the missing part detection mask area is set with reference to the leading edge position P3 of the tray T, as shown in FIGS. When the content Wa moves on the tray T in S with respect to the transport direction, the inspection detection mask area is entirely displaced by the amount of movement t2 of the content Wa. There was a risk that the proportion of the area of the content Wa in the region would change and an incorrect shortage inspection was performed.
[0014]
Accordingly, the present invention has been made in view of the above-described problems, and an object of the present invention is to provide an X-ray inspection apparatus capable of performing a stable shortage inspection while reducing the influence of a positional deviation in the transport direction. To do.
[0015]
[Means for Solving the Problems]
Next, means for solving the above problems will be described with reference to the drawings corresponding to the embodiments.
The X-ray inspection apparatus according to claim 1 exposes an X-ray to the inspection object W accommodated in a container, and inspects the inspection object based on an X-ray transmission amount associated with the X-ray exposure. In the X-ray inspection apparatus 1 that performs
Based on an X-ray transmission image of the contents Wa of the inspection object obtained by setting a missing part detection mask region M that matches the contents of the inspection object and exposing the inspection object to X-rays. With the approximate tip position of the content located at the head of the container detected in this manner as a reference position RF, the X-ray transmission image of the content and the missing item detection mask region are overlapped, and the missing portion of the content is detected. A signal processing means 14 for determining the presence or absence of a product is provided.
[0016]
The X-ray inspection apparatus according to claim 2 irradiates the inspection object W accommodated in the container with X-rays, and inspects the inspection object based on an X-ray transmission amount associated with the X-ray exposure. In the X-ray inspection apparatus 1 that performs
A mask area setting means 15a for setting a missing part detection mask area M that matches the contents of the inspection object;
X-ray transmission image of the content Wa of the inspection object obtained at the time of X-ray exposure to the inspection object, and a reference position detection limit value set in advance according to the arrangement of the content of the inspection object And the position of the X-ray transmission image of the content that first exceeds the reference position detection limit value is determined as the approximate tip position of the content located at the head of the container and is calculated as a reference position RF. Position calculating means 19;
A discriminating unit for discriminating whether or not the content item is missing by superimposing the X-ray transmission image of the content and the missing item detection mask area on the basis of the reference position calculated by the reference position calculating unit; It is provided with.
[0017]
The X-ray inspection apparatus according to claim 3 is the X-ray inspection apparatus according to claim 2,
The discriminating means 20 determines whether the content is missing based on a comparison between the ratio of the area of the X-ray transmission image of the content Wa contained in the missing part detection mask region M and a preset reference value. It is characterized by determining the presence or absence of goods.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an X-ray inspection apparatus according to the invention will be described in detail with reference to the drawings.
[0019]
FIG. 1 is an external view of an X-ray inspection apparatus according to the present invention, FIG. 2 is a block diagram showing an electrical configuration of the X-ray inspection apparatus according to the present invention, and FIGS. FIG. 4 is a diagram showing an example of a missing part inspection target to be inspected by a line inspection apparatus and the level of an X-ray transmission image thereof; FIG. 4 is a diagram showing an example of a missing part detection mask region; FIG. 6A is a diagram showing a state in which an object to be inspected is normally accommodated in the container, FIG. 6B is a diagram showing a state in which the object to be inspected is missing, FIG. FIG. 6C is a diagram for explaining the discrimination process based on the area ratio. FIG. 3 (c) schematically shows a light and shade level in which only the contents are emphasized.
[0020]
The X-ray inspection apparatus 1 of the present example is provided in a part of the transport line and inspects for missing items (presence / absence of missing items) of the inspected items that are sequentially conveyed at predetermined intervals. A foreign matter contamination inspection (presence or absence of foreign matter contamination in the inspection object) is performed.
[0021]
In particular, the X-ray inspection apparatus 1 of this example is suitable for the case where the shortage inspection is stably performed when the contents are accommodated in the container as the inspection object.
[0022]
The inspection object to be inspected for shortage is one in which the contents are contained in the container, and the contents do not move more than half in the container in a normal state. Specifically, the content Wa is packaged by the package S as the inspection object W as shown in FIG. 3, and the content Wa is arranged on the tray T as the inspection object W as shown in FIG. And the like packaged by the package S.
[0023]
In this example, only the package S or the package S containing the tray T is referred to as a container. Further, in this example, an example in which eight contents Wa are accommodated in the package S as the inspection object W is described.
[0024]
In the X-ray inspection apparatus 1 shown in FIG. 1, a conveyance unit 2 and a foreign matter detection unit 3 are provided in the apparatus main body 4, and a display 5 is provided in the upper front portion of the apparatus main body 4.
[0025]
The transport unit 2 sequentially transports the same type of inspection object W in which the contents Wa are stored in a container (the package S or a combination of the package S and the tray T) at predetermined intervals. This conveyance part 2 can be comprised with the belt conveyor arrange | positioned horizontally with respect to the apparatus main body 4, for example. The conveyance unit 2 directs the inspection object W carried in from the carry-in port 7 at a predetermined conveyance speed set in advance by driving of the drive motor 6 shown in FIG. 1 toward the carry-out port 8 (carrying direction X in FIG. 1). To transport.
[0026]
The foreign matter detection unit 3 detects the presence or absence of a missing part or the presence of foreign matter in the middle of the transport path of the workpiece W to be transported, and an X-ray generator provided at a predetermined height above the transport unit 2 9 and an X-ray detector 10 provided in the transport unit 2 so as to face the X-ray generator 9.
[0027]
The X-ray generator 9 has a configuration in which a cylindrical X-ray tube 12 provided in a metal box 11 is immersed in insulating oil (not shown), and an electron beam from the cathode of the X-ray tube 12 is an anode target. X-rays are generated by irradiation. The X-ray tube 12 is provided in a direction (Y direction in FIG. 1) whose longitudinal direction is orthogonal to the conveyance direction X of the inspection object W. The X-rays generated by the X-ray tube 12 are exposed to the lower X-ray detector 10 in the form of a substantially triangular screen by a slit (not shown) along the longitudinal direction.
[0028]
The X-ray detector 10 detects X-rays transmitted through the inspection object W when the X-rays are exposed to the inspection object W accommodated in the container S, and the detected X-rays are detected. An electrical signal corresponding to the transmission amount of the line is output. The X-ray detector 10 is provided along the Y direction orthogonal to the transport direction X of the inspection object W transported on the transport unit 2. The X-ray detector 10 uses an array line sensor including a plurality of photodiodes arranged in a line and a scintillator provided on the photodiode.
[0029]
As shown in FIG. 2, position detection means 13 for detecting the passage of the inspection object W is provided on the carry-in entrance 7 side of the transport unit 2. This position detection means 13 is comprised by the photo sensor which consists of a pair of light projector / receiver provided in the entrance side of the belt conveyor as the conveyance part 2, for example. With this configuration, an ON signal is input from the position detection unit 13 to the signal processing unit 14 as a timing signal while the inspection object W passes in front of the photosensor.
[0030]
In the X-ray detector 10 having such a configuration, X-rays are exposed from the X-ray generator 9 to the inspection object W transported on the transport unit 2. Then, the X-ray transmitted through the inspection object W with the X-ray exposure to the inspection object W is received by the scintillator and converted into light. The light converted by the scintillator is received by a photodiode disposed under the scintillator. Each photodiode converts the received light into an electrical signal and outputs it. The X-ray detector 10 outputs an electric signal having a level corresponding to the intensity of the received X-ray to the signal processing means 14.
[0031]
In FIG. 2, the signal processing unit 14 includes a CPU, a memory, and the like, and an on signal when the position detection unit 13 detects the inspection object W is used as a timing signal, and the position detection unit 13 outputs an on signal. The period during which it is determined is the length of the inspection object W (packaging body S), and various signal processings are performed by taking in an electrical signal from the X-ray detector 10.
[0032]
As shown in FIG. 2, the signal processing unit 14 includes a setting input unit 15, a storage unit (data memory) 16, and an image processing unit 17.
[0033]
The setting input means 15 includes a plurality of settings operated by the user for giving various settings regarding the missing item inspection and foreign matter mixing inspection of the contents Wa contained in the package S as the inspection object W, various settings regarding display, and various instructions. Consists of keys and switches.
[0034]
As shown in FIG. 2, the setting input means 15 has a mask area setting means 15a. This mask area setting means 15a preliminarily inspects each object to be inspected according to the arrangement of the contents Wa in the container when performing a lack inspection of the contents Wa stored in the package S as the object to be inspected. Of the plurality of types of missing part detection mask areas M stored, a missing part detection mask area M that matches the contents Wa of the inspection object W to be inspected is set. As shown in FIG. 4, in the missing part detection mask area M, the coordinate axis positions x and y and the mask ranges xL and yL are set for each mask area with the approximate tip position of the first content Wa as a reference. Is selected and set. As shown in FIGS. 4 and 5, the missing part detection mask area M is based on the reference position RF, and the coordinate axis positions x and y of each mask area are substantially the centers of the corresponding contents Wa of the object W to be inspected. The mask ranges xL and yL are set according to the size of the contents Wa.
[0035]
More specifically, the coordinate axis positions x and y and the mask ranges xL and yL of the setting items can be set by actually transporting the inspection object W by the transport unit 2 at the initial setting before performing the inspection. For example, a plurality of objects to be inspected stored without missing items in the container are prepared as samples, and the above setting items are changed while being transported by the transport unit 2 to confirm whether or not “OK” is determined. At this time, the coordinate axis positions x and y are moved to various places in the container, and the mask ranges xL and yL are changed to check whether or not “OK” is determined for all samples. In addition to the above setting items, the value when the area ratio B is varied and becomes “OK” in all samples is set as the best setting. Note that when performing the above setting, it is confirmed whether or not all samples in a state where no contents are stored in the container are determined to be “NG”.
[0036]
In addition to the above settings, the setting input means 15 sets the conveyance speed of the conveyance unit 2, the setting of a reference position detection limit value used as a reference when calculating a reference position RF described later, and the presence / absence of a missing item described later. The setting of the area ratio B used for the discrimination and the foreign matter detection limit value serving as a reference for discriminating the presence or absence of foreign matter in the inspection object W are set.
[0037]
The area ratio B and each detection limit value depend on the ratio of the area occupied by the contents Wa in the package S, the type of the package S, the type of the inspection object W, the type of foreign matter to be detected, and the like. Can be set as appropriate.
[0038]
The storage means 16 stores X-ray transmission data for each inspection object W. This X-ray transmission data is obtained by taking in data obtained by A / D converting the electrical signal from the X-ray detector 10 by an A / D converter (not shown) at the detection timing of the position detecting means 13. To explain further, for example, 640 pieces of X-ray transmission data per line (Y direction in FIG. 1) of the X-ray detector 10 are stored in the storage means 16 every time one inspection object W is inspected. A predetermined number of lines (480 lines) corresponding to at least the length in the transport direction of the inspection object W to be transported (corresponding to a detection period from the front end to the rear end) is stored.
[0039]
The image processing unit 17 performs various types of image processing based on the X-ray transmission data of one inspection object W stored in the storage unit 16, and includes a content image extraction unit 18, a mask reference position calculation unit 19, and a discrimination. Means 20 are provided. Further, the image processing means 17 displays and outputs image data indicating the X-ray transmission amount output from the X-ray detector 10 on the display 5. At this time, the display density of the foreign matter portion in the inspection object W is displayed so as to be different from other portions, or is displayed in a color different from that other than the foreign matter portion. Thereby, the state of the outer shape of the inspection object W in which the contents Wa are accommodated in the package S as viewed in a plane, and the transmission of X-rays in the inspection object W are displayed on the display screen of the display 5. It is possible to confirm the position of the foreign object, and the position where the foreign substance is mixed can be grasped. Further, the image processing means 17 displays and outputs on the display 5 the results of OK / NG judgment results and the inspection results such as the total number of inspections, the number of non-defective products, and the total number of NG.
[0040]
The content image extracting means 18 is an extracted image A of only the content Wa of the inspection object W excluding the package S as shown in FIG. 5 from the X-ray transmission image based on the X-ray transmission data stored in the storage means 16. Is extracted. When extracting the extracted image A of only the contents Wa, a detection limit value is set by the setting input means 15 in the vicinity of a substantially intermediate level between the X-ray transmission amounts of the container and the contents Wa in advance. In general, since the content Wa has a lower X-ray transmission amount than the container, the content image extraction means 18 is an area lower than the detection limit value in the X-ray transmission image based on the X-ray transmission data in the storage means 16. Is extracted as the content Wa, and the extracted image A of only the content Wa is extracted. The extracted image A containing only the content Wa is processed as an image having a predetermined gray level.
[0041]
The mask reference position calculation means 19 determines the density level of the extracted image A of the contents Wa of the inspection object W obtained when the inspection object W is exposed to X-rays and the arrangement of the contents Wa of the inspection object W. Accordingly, the reference position detection limit value set in advance is compared, and the position of the density level of the content Wa that first exceeds the reference position detection limit value is contained (packaging body S or packaging body S containing the tray T). Is determined as the approximate tip position of the content Wa located at the head of the content, and the approximate tip position is calculated as the reference position RF.
[0042]
More specifically, in this mask reference position calculation means 19, when the sulfur-extracted image A having a predetermined shading level of only the contents Wa of the inspection object W extracted by the contents image extraction means 18 is inputted, The gray level of the pixel for each line (direction orthogonal to the conveyance direction) of the extracted image A is compared with the reference position detection limit value set in advance by the setting input unit 15. Then, the position where the gray level of the pixel for each line exceeds the reference position detection limit value is determined as the head position of the first content Wa, and the position is calculated as the reference position RF. The reference position detection limit value is set in advance from the setting input unit 15 in accordance with the content Wa of the inspection object W, and is set to a value at which the content Wa of the inspection object W can be detected. For example, when the content Wa of the inspection object W is spherical, the intermediate value between the content Wa and the belt surface of the transport unit 2 is set.
[0043]
The determination unit 20 includes a shortage determination unit 20a, a foreign matter determination unit 20b, and a pass / fail determination unit 20c. The missing item discriminating means 20a reads the missing item detection mask area M set in advance by the mask area setting means 15a, and the reference position calculated by the mask reference position calculating means 19 based on the detection of the leading position of the contents Wa. Using the RF as a reference, the read out missing part detection mask area M and the extracted image A of the contents Wa are overlapped to determine whether there is a missing part. The process of determining whether or not there is a shortage is performed by a logical product operation of each pixel described below. This AND operation is performed by scanning in units of pixels, and if the extracted image A of the content Wa is positioned within the shortage detection mask area M in an overlapped state, one pixel is detected. Count one by one. The shortage detection mask area M to be set has the number of pixels n, and the count value CNT is increased to the number of pixels of the extracted image A of the contents Wa included in the shortage detection mask area M. become.
[0044]
FIG. 6A is a view showing a state in which the contents Wa are normally accommodated in the package S. FIG. FIG. 6A shows a state in which the missing part detection mask region M and the extracted image A of the contents Wa are superimposed. In the state of FIG. 6A, since the missing part detection mask area M includes all of the extracted images A of the contents Wa, the count value CNT matches the number of pixels n in the missing part detection mask area M ( (Strictly, it is almost the same)
[0045]
The shortage determination means 20a compares the count value CNT with the number of pixels n × area ratio B of the shortage detection mask area M. If the count value CNT is higher, “OK” is obtained, and the count value CNT is greater. Is low, it is determined as “NG (out of stock)”. In the example of FIG. 6A, since the count value CNT substantially matches the number n of pixels in the missing item detection mask area M, it is determined that “OK”, that is, the content Wa exists in the package S. To do. The discrimination result at this time is output as a discrimination signal (OK signal or NG signal) to the pass / fail discrimination means 20c.
[0046]
FIG. 6B is a diagram showing a missing state of the contents Wa. As shown in FIG. 6B, when the content Wa is not present in the package S (out of stock), the shortage detection mask area M and the extracted image A of the content Wa are overlaid. Since the extracted image A of the content Wa is not included in the missing item detection mask area M, the count value CNT is 0 (strictly, a value close to 0 as far as possible). In this case, the shortage determination means 20a compares the count value CNT with the number of pixels n × area ratio B of the shortage detection mask area M, and the count value CNT is lower. ) ”. The discrimination result at this time is output as a discrimination signal (NG signal) to the pass / fail discrimination means 20c.
[0047]
FIG. 6C is a diagram illustrating a detection state of the content Wa by the area ratio. At the time of X-ray detection, the inspected object W may move slightly in the package S, or the tray T on which the content Wa is placed may move in the package S. Therefore, in this example, the presence / absence of the content Wa is determined based on the ratio of the area of the extracted image A of the content Wa occupying the shortage detection mask region M.
[0048]
In the case of FIG. 6C, in a state where the missing part detection mask region M and the extracted image A of the content Wa are overlapped, a part of the extracted image A of the content Wa (substantially half in the illustrated example). 50%) overlaps the missing item detection mask area M and is not included in the entire missing item detection mask area M. In this case, the count value CNT is 2 / n. Here, if 40% is set as the area ratio B by the setting input means 15, the shortage determination means 20 a has the count value CNT and the number of pixels n of the shortage detection mask area M × the area ratio B (40 %) And the count value CNT is higher, the determination result is “OK”, that is, it is determined that the content Wa exists in the package S.
[0049]
The foreign matter discriminating means 20b judges a portion of the content area of the object W to be inspected as a foreign object in the content area where the contrast level is different from the others. More specifically, the foreign matter determination means 20b compares the density level of the X-ray transmission data of the inspection object W stored in the storage means 16 with the foreign matter detection limit value set in advance by the setting input means 15, and X When the line transmission data exceeds the foreign object detection limit value, it is determined that the foreign object is mixed in the inspection object W. The discrimination result at this time is output as a discrimination signal (OK signal or NG signal) to the pass / fail discrimination means 20c. The foreign object detection limit value can be set from the setting input unit 15 as appropriate for each inspection object W.
[0050]
The pass / fail determination means 20c externally outputs a selection signal indicating whether the inspection object W is normal or defective based on the determination signal from the shortage determination means 20a and the determination signal from the foreign matter determination means 20b.
[0051]
That is, in this pass / fail judgment means 20c, when a discrimination signal (OK signal) indicating normality is input from both the missing part discrimination means 20a and the foreign matter discrimination means 20b, it is determined that there is no missing part and no foreign matter in the inspection object W. A discrimination signal indicating normality is output to the outside. On the other hand, when a determination signal (NG signal) indicating a shortage is input from the shortage determination means 20a or a determination signal (NG signal) indicating the entry of foreign matter is input from the foreign matter determination means 20b, It is determined that there is a shortage or foreign matter mixed in W, and a selection signal indicating a defect is output to the outside.
[0052]
On the display screen of the display 5, an X-ray transmission image obtained by planarly viewing the inspection object W based on the determination result of the determination means 20, “OK” or “NG” pass / fail judgment result, total inspection number, non-defective product number, Inspection results such as the total number of NG are displayed based on a predetermined key operation from the setting input means 15.
[0053]
When the missing item inspection of the inspection object W accommodated in the package S is performed using the X-ray inspection apparatus 1 having the above configuration, the following processing is executed in the signal processing unit 14. First, an optimum shortage detection mask region M is input in advance from the maximum region setting means 15a in accordance with the type of the inspection object W to be inspected.
[0054]
When X-rays are exposed to the inspection object W transported on the transport unit 2, X-ray transmission data associated with the X-ray exposure is stored in the storage unit 16. Then, the image processing unit 17 creates an entire grayscale image (entire image including the inspection object W and the belt surface of the transport unit 2) from the X-ray transmission data stored in the storage unit 16.
[0055]
Next, the content extraction means 18 extracts the extracted image A of only the content Wa of the inspection object W excluding the package S from the entire gray image of the created X-ray transmission image.
[0056]
Next, the mask reference position calculation means 19 calculates the pixel gray level for each line (Y direction orthogonal to the conveyance direction X in FIG. 1) of the extracted image A of only the contents Wa of the extracted inspection object W. The reference position detection limit value set in advance by the setting input means 15 is compared. Then, the position where the gray level of the pixel for each line exceeds the reference position detection limit value is determined as the approximate tip position of the first content Wa, and this approximate tip position is calculated as the reference position RF.
[0057]
Thereafter, the shortage determination means 20a reads out a preset shortage detection mask area M from the mask area setting means 15a, and is the approximate tip position of the leading content Wa calculated by the mask reference position calculation means 19. With reference to the reference position RF, the missing part detection mask region M and the extracted image A of the contents Wa are superimposed, and the presence / absence of a missing part is determined by the above-described determination process.
[0058]
By the way, in the X-ray inspection apparatus 1 of the present example, in addition to the above-described shortage inspection of the inspection object W, foreign matter mixed in the inspection object W from the X-ray transmission amount when the inspection object W is exposed to X-rays. An inspection for the presence or absence is also performed.
[0059]
When inspecting the presence or absence of foreign matter in the inspected object W, the X-ray transmission data stored in the storage unit 16 is compared with the foreign matter detection limit value preset by the setting input unit 15. Then, when the X-ray transmission data exceeds the foreign object detection limit value, it is determined that the foreign object is mixed in the inspection object W.
[0060]
As described above, in the X-ray inspection apparatus of the present example, the approximate tip position of the content located at the top of the container of the inspection object being conveyed is detected, and the detected approximate tip position is used as a reference position. The product detection mask area and the extracted image of the contents of the object to be inspected are overlapped to inspect the contents of the object to be inspected. Stable missing item inspection can be performed without being affected by variations in position due to movement.
[0061]
Specifically, as shown in FIG. 3 (c), an extraction image of the missing item detection mask region M and the content Wa is obtained with the approximate tip position of the first content Wa in the package S as the reference position RF. Since the shortage inspection is performed by superimposing, even if the seal part Sa of the package S has a variation due to bending or the like as shown in FIGS. 3A and 3B, it is accurate without being affected by this variation. Stockout inspection can be performed.
[0062]
In addition, when the first content Wa in the package S is missing, the approximate tip position of the next content Wa is set as the reference position RF, and the shortage detection mask area M and the content Wa are extracted. Since the images are overlapped, the missing part detection mask area M is entirely displaced in the transport direction, but there is a mask area that is determined to be a missing part, so that it is prevented from erroneously determining that there is no missing part. it can.
[0063]
Furthermore, even if the contents are actually present in the container, the X-ray may be detected while the contents and the tray on which the contents are placed are moved and shifted in the container. However, in the X-ray inspection apparatus of this example, at the time of the shortage inspection, the ratio of the X-ray transmission image of the contents contained in the shortage detection mask region and the preset reference value (the shortage detection mask region). Based on the comparison with the number of pixels x area ratio), it is possible to prevent the content from being misidentified as “NG (missing item)” and improve the reliability of missing item discrimination. Can be made. Moreover, even if the entire contents are not included in the missing part detection mask area, if the ratio of the area of the contents overlapping in the missing part detection mask area is equal to or larger than a preset area ratio, the contents are It can be detected as existing.
[0064]
Furthermore, since the inspection of foreign matters in the inspection object is simultaneously performed in addition to the shortage inspection of the contents of the inspection object, different inspection items can be performed by one apparatus, and the equipment cost can be reduced.
[0065]
By the way, in the above-described embodiment, the shortage detection mask area M in which one mask area is assigned to one content Wa is used. However, a plurality of masks are used for one content Wa. It is also possible to use a missing part detection mask area to which an area is assigned. In this case, in addition to the shortage inspection of the content Wa, a defect such as a partial chipping of the content Wa can be detected.
[0066]
【The invention's effect】
As described above, according to the X-ray inspection apparatus according to the present invention, the approximate tip position of the content located at the head in the container of the inspection object is detected, and the detected substantially tip position is used as a reference position. Since the missing item detection mask area and the extracted image of the contents of the inspection object are superimposed, the inspection of the contents of the inspection object is performed, so the movement of the contents in the container and the contents are placed. Stable shortage inspection can be performed without being affected by variations in position due to movement of the tray.
[0067]
Further, even when X-rays are detected while the contents and the tray on which the contents are placed are moved and shifted in the container, the X-ray transmission of the contents contained in the shortage detection mask area is performed. Since the presence / absence of a missing item in the contents is determined based on a comparison between the ratio of the area of the image and a preset reference value, it is possible to prevent erroneous determination and improve the reliability of the missing item determination.
[Brief description of the drawings]
FIG. 1 is an external view of an X-ray inspection apparatus according to the present invention.
FIG. 2 is a block diagram showing an electrical configuration of an X-ray inspection apparatus according to the present invention.
FIGS. 3A to 3C are diagrams showing a shortage inspection target to be inspected by the X-ray inspection apparatus according to the present invention and the level of an X-ray transmission image thereof.
FIG. 4 is a diagram illustrating an example of a missing part detection mask region;
FIG. 5 is a diagram illustrating an example of an extracted image of an inspection object accommodated in a container.
FIG. 6A is a diagram showing a state in which an object to be inspected is normally stored in the container.
(B) It is a figure which shows a to-be-inspected item missing item state.
(C) The figure for demonstrating the discrimination | determination process by area ratio It is an external view of the X-ray inspection apparatus which concerns on this invention.
FIG. 7 is a diagram illustrating an example of an object to be inspected accommodated in a container, and is a diagram for explaining a problem when the X-ray foreign object detection device of Patent Document 1 is adopted.
FIG. 8 is a diagram illustrating another example of an object to be inspected accommodated in a container, and is a diagram for explaining a problem when the X-ray foreign object detection device of Patent Document 1 is employed.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... X-ray inspection apparatus, 14 ... Signal processing means, 15a ... Mask area setting means, 19 ... Mask reference position calculation means, 20 ... Discrimination means, W ... Inspection object, Wa ... Contents, S ... Container, Sa ... seal part, RF ... reference position.

Claims (3)

収容体に収容された被検査物(W)にX線を曝射し、このX線の曝射に伴うX線透過量に基づいて前記被検査物の検査を行うX線検査装置(1)において、
前記被検査物の内容物に適合する欠品検出用マスク領域(M)を設定し、前記被検査物へのX線の曝射時に得られる前記被検査物の内容物(Wa)のX線透過画像に基づいて検出される前記収容体の先頭に位置する内容物の略先端位置を基準位置(RF)として、前記内容物のX線透過画像と前記欠品検出用マスク領域とを重ね合わせて前記内容物の欠品の有無を判別する信号処理手段(14)を備えたことを特徴とするX線検査装置。
X-ray inspection apparatus (1) that inspects the object to be inspected based on the amount of X-ray transmission accompanying the X-ray exposure by exposing the object to be inspected (W) accommodated in the container. In
An X-ray of the contents (Wa) of the inspection object obtained by setting a missing part detection mask region (M) that matches the contents of the inspection object and exposing the inspection object to X-rays. The X-ray transmission image of the contents and the missing item detection mask area are overlapped with the approximate tip position of the contents located at the head of the container detected based on the transmission image as a reference position (RF). An X-ray inspection apparatus comprising signal processing means (14) for determining whether or not the contents are missing.
収容体に収容された被検査物(W)にX線を曝射し、このX線の曝射に伴うX線透過量に基づいて前記被検査物の検査を行うX線検査装置(1)において、
前記被検査物の内容物に適合する欠品検出用マスク領域(M)を設定するマスク領域設定手段(15a)と、
前記被検査物へのX線の曝射時に得られる前記被検査物の内容物(Wa)のX線透過画像と、前記被検査物の内容物の配置に応じて予め設定された基準位置検出リミット値とを比較し、該基準位置検出リミット値を最初に越える前記内容物のX線透過画像の位置を前記収容体の先頭に位置する内容物の略先端位置と判別し基準位置(RF)として算出する基準位置算出手段(19)と、
前記基準位置算出手段が算出した基準位置を基準として、前記内容物のX線透過画像と前記欠品検出用マスク領域とを重ね合わせて前記内容物の欠品の有無を判別する判別手段(20)とを備えたことを特徴とするX線検査装置。
X-ray inspection apparatus (1) that inspects the object to be inspected based on the amount of X-ray transmission accompanying the X-ray exposure by exposing the object to be inspected (W) accommodated in the container. In
Mask area setting means (15a) for setting a missing part detection mask area (M) that matches the contents of the inspection object;
X-ray transmission image of the contents (Wa) of the inspection object obtained at the time of X-ray exposure to the inspection object, and a reference position detection set in advance according to the arrangement of the contents of the inspection object A limit value is compared, and the position of the X-ray transmission image of the content that first exceeds the reference position detection limit value is determined as the approximate tip position of the content positioned at the head of the container, and the reference position (RF) Reference position calculating means (19) for calculating as
Discriminating means (20) for discriminating the presence or absence of a missing part of the content by superimposing the X-ray transmission image of the content and the missing part detection mask region on the basis of the reference position calculated by the reference position calculating means. And an X-ray inspection apparatus.
前記判別手段(20)は、前記欠品検出用マスク領域(M)内に含まれる前記内容物(Wa)のX線透過画像の面積の割合と、予め設定された基準値との比較に基づいて前記内容物の欠品の有無を判別することを特徴とする請求項2記載のX線検査装置。The discriminating means (20) is based on a comparison between the ratio of the area of the X-ray transmission image of the contents (Wa) contained in the missing part detection mask area (M) and a preset reference value. The X-ray inspection apparatus according to claim 2, wherein the presence or absence of the content is determined.
JP2003192083A 2003-07-04 2003-07-04 X-ray inspection equipment Expired - Lifetime JP3860144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192083A JP3860144B2 (en) 2003-07-04 2003-07-04 X-ray inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192083A JP3860144B2 (en) 2003-07-04 2003-07-04 X-ray inspection equipment

Publications (2)

Publication Number Publication Date
JP2005024453A true JP2005024453A (en) 2005-01-27
JP3860144B2 JP3860144B2 (en) 2006-12-20

Family

ID=34189479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192083A Expired - Lifetime JP3860144B2 (en) 2003-07-04 2003-07-04 X-ray inspection equipment

Country Status (1)

Country Link
JP (1) JP3860144B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system
JP2007003485A (en) * 2005-06-27 2007-01-11 Institute Of Physical & Chemical Research Enclosure inspection method and its device
JP2009264837A (en) * 2008-04-23 2009-11-12 Ishida Co Ltd X-ray inspection device
WO2014087862A1 (en) * 2012-12-07 2014-06-12 株式会社イシダ X-ray inspection device
WO2021193733A1 (en) * 2020-03-24 2021-09-30 株式会社システムスクエア Training data generation device, inspection device, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242143A (en) * 1989-03-16 1990-09-26 Sofutetsukusu Kk Method and apparatus for inspecting stick housed type electronic component
JPH09292351A (en) * 1996-04-26 1997-11-11 Toshiba Fa Syst Eng Kk Radiographic examination device
JP2000135268A (en) * 1998-08-26 2000-05-16 Yuyama Seisakusho:Kk Tablet testing device
JP2002214357A (en) * 2001-01-19 2002-07-31 Nichirei Corp X-ray image inspection system and method
JP2002228761A (en) * 2001-02-02 2002-08-14 Anritsu Corp X-ray foreign mater detector and method of detecting defective in the detector
JP2002243665A (en) * 2001-02-09 2002-08-28 Anritsu Corp X-ray foreign-body detection apparatus and method of detecting defective in the same
JP2002310944A (en) * 2001-04-17 2002-10-23 Shimadzu Corp Radiation inspection system
JP2003065976A (en) * 2001-08-29 2003-03-05 Anritsu Corp X-ray foreign matter inspection apparatus
JP2005003480A (en) * 2003-06-11 2005-01-06 Ishida Co Ltd X-ray examination apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242143A (en) * 1989-03-16 1990-09-26 Sofutetsukusu Kk Method and apparatus for inspecting stick housed type electronic component
JPH09292351A (en) * 1996-04-26 1997-11-11 Toshiba Fa Syst Eng Kk Radiographic examination device
JP2000135268A (en) * 1998-08-26 2000-05-16 Yuyama Seisakusho:Kk Tablet testing device
JP2002214357A (en) * 2001-01-19 2002-07-31 Nichirei Corp X-ray image inspection system and method
JP2002228761A (en) * 2001-02-02 2002-08-14 Anritsu Corp X-ray foreign mater detector and method of detecting defective in the detector
JP2002243665A (en) * 2001-02-09 2002-08-28 Anritsu Corp X-ray foreign-body detection apparatus and method of detecting defective in the same
JP2002310944A (en) * 2001-04-17 2002-10-23 Shimadzu Corp Radiation inspection system
JP2003065976A (en) * 2001-08-29 2003-03-05 Anritsu Corp X-ray foreign matter inspection apparatus
JP2005003480A (en) * 2003-06-11 2005-01-06 Ishida Co Ltd X-ray examination apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127962A (en) * 2003-10-27 2005-05-19 Anritsu Sanki System Co Ltd X-ray inspection system
JP2007003485A (en) * 2005-06-27 2007-01-11 Institute Of Physical & Chemical Research Enclosure inspection method and its device
JP4730526B2 (en) * 2005-06-27 2011-07-20 独立行政法人理化学研究所 Inclusion inspection device
JP2009264837A (en) * 2008-04-23 2009-11-12 Ishida Co Ltd X-ray inspection device
WO2014087862A1 (en) * 2012-12-07 2014-06-12 株式会社イシダ X-ray inspection device
JP2014115138A (en) * 2012-12-07 2014-06-26 Ishida Co Ltd X-ray inspection device
CN104781656A (en) * 2012-12-07 2015-07-15 株式会社石田 X-ray inspection device
WO2021193733A1 (en) * 2020-03-24 2021-09-30 株式会社システムスクエア Training data generation device, inspection device, and program
JP2021152489A (en) * 2020-03-24 2021-09-30 株式会社 システムスクエア Teacher data generation device, inspection device, and program

Also Published As

Publication number Publication date
JP3860144B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP5739230B2 (en) X-ray inspection equipment
JP3875842B2 (en) X-ray foreign object detection apparatus and defective product detection method in the apparatus
JP3943099B2 (en) X-ray inspection equipment
KR20210126163A (en) Inspection device
KR102387529B1 (en) inspection device
JP3828781B2 (en) X-ray foreign object detection device
JP5243008B2 (en) X-ray foreign object detection device
JP3618701B2 (en) X-ray foreign object detection device
JP3943072B2 (en) X-ray inspection equipment
JP3860154B2 (en) X-ray inspection equipment
JP4585915B2 (en) X-ray inspection equipment
JP3737950B2 (en) X-ray foreign object detection apparatus and defective product detection method in the apparatus
JP3917129B2 (en) X-ray inspection equipment
JP3860144B2 (en) X-ray inspection equipment
JP3756751B2 (en) X-ray foreign object detection device
JP2005003480A (en) X-ray examination apparatus
JP3955558B2 (en) X-ray inspection equipment
JP2005031069A (en) X-ray inspection apparatus
JP4170366B2 (en) X-ray inspection equipment
JP4460139B2 (en) X-ray foreign object detection device
JP3828843B2 (en) X-ray foreign object detection device, X-ray foreign object detection method, and X-ray foreign object detection program
JP3955559B2 (en) X-ray inspection equipment
JP2009080030A (en) X-ray inspection device
JP2010112850A (en) X-ray inspection device
JP6629776B2 (en) X-ray inspection apparatus and X-ray inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3860144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term