JP2005002849A - コンプレッサインペラ及びこれを用いたターボチャージャ - Google Patents

コンプレッサインペラ及びこれを用いたターボチャージャ Download PDF

Info

Publication number
JP2005002849A
JP2005002849A JP2003165847A JP2003165847A JP2005002849A JP 2005002849 A JP2005002849 A JP 2005002849A JP 2003165847 A JP2003165847 A JP 2003165847A JP 2003165847 A JP2003165847 A JP 2003165847A JP 2005002849 A JP2005002849 A JP 2005002849A
Authority
JP
Japan
Prior art keywords
compressor impeller
impeller
stress
mounting hole
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003165847A
Other languages
English (en)
Inventor
Masayuki Sato
正幸 佐藤
Toshihiko Nishiyama
利彦 西山
Hiroshi Sugito
博 杉戸
Ninkiyu Iino
任久 飯野
Tetsuaki Ogawa
哲明 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2003165847A priority Critical patent/JP2005002849A/ja
Publication of JP2005002849A publication Critical patent/JP2005002849A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/266Rotors specially for elastic fluids mounting compressor rotors on shafts

Abstract

【課題】高回転数で回転させても破損の少ない、コンプレッサインペラ及びこれを用いたターボチャージャを提供する。
【解決手段】内部に駆動用のシャフト(23)を挿入する取付孔(25)を略中心に有し、取付孔(25)の内壁の一部に、全周にわたって軸方向幅が、取付孔(25)の軸方向長さの20%以上75%以下である窪み(32)を設け、前記窪み(32)の軸方向におけるインペラ入口側及びインペラ裏面側に、内径(D)が駆動用のシャフト(23)の外径と略一致し、その内部にシャフト(23)を挿入可能な支持部(36A,36B)を設けたことを特徴とするコンプレッサインペラ、及びこのようなコンプレッサインペラを用いたターボチャージャ。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、コンプレッサインペラの引っ張り応力低減技術及びこれを用いたターボチャージャに関する。
【0002】
【従来の技術】
従来から、空気を圧縮してエンジンの吸気量を増やす手段として、排気ガスのエネルギーを利用してタービンインペラを回転させ、タービンインペラとシャフトによって連結された遠心型のコンプレッサインペラを駆動する、ターボチャージャが知られている。
【0003】
図12に、一般的なターボチャージャ11の断面図を示す。図12においてターボチャージャ11は、エンジンの排気ガスから回転エネルギーを取り出す排気側部12と、この回転エネルギーによって、空気を圧縮してエンジンに送り込む吸気側部13とから構成されている。
【0004】
排気側部12は、複数の図示しない翼部を備えたタービンインペラ14を備えており、排気側ハウジング15に囲繞されている。
排気側ハウジング15は、タービンインペラ14の外周部を取り巻くように環状に形成され、タービンインペラ14に排気ガスを供給する排気流入通路19を備えている。排気流入通路19は、図示しないエンジンから排出された、排気ガスが流れるエンジン排気流路20に接続されている。
【0005】
また排気側ハウジング15は、タービンインペラ14にエネルギーを与えた後の排気ガスを排出する、排気流出口21を備えている。排気流出口21は、タービンインペラ14の回転中心と略同心状に略円筒状に形成され、排気流出口21と反対側の開口部は、排気側インナープレート22によって塞がれている。
【0006】
タービンインペラ14は、排気流入通路19から流入してきた排気ガスによって、エネルギーを与えられ、回転する。
タービンインペラ14には、排気側インナープレート22を貫通して一体にシャフト23が形成されており、このシャフト23は、軸受24によって回転自在に支承されている。
【0007】
シャフト23のタービンインペラ14と反対側には、空気を圧縮する遠心型のコンプレッサインペラ16が取着されている。コンプレッサインペラ16には、中央部に取付孔25が貫通しており、シャフト23は、この取付孔25に、わずかな隙間ばめ、または締まりばめ程度で挿入されている。シャフト23の先端部に形成されたオネジ部40に、取付ナット26を締結することによって、コンプレッサインペラ16をシャフト23に固定している。
【0008】
コンプレッサインペラ16は、吸気側ハウジング17の内部に収納されている。吸気側ハウジング17は、コンプレッサインペラ16の回転中心と略同心状に略円筒状に形成され、コンプレッサインペラ16に空気を吸い込む吸気流入口27を備えている。
コンプレッサインペラ16によって圧縮された空気は、遠心状に排出され、コンプレッサインペラ16の外周部を取り巻くように環状に形成された吸気排出通路28を通って、図示しないエンジンの給気口に供給される。
【0009】
図13に、コンプレッサインペラ16の斜視図、図14に、そのA−A視断面図を示す。以下の説明においては、取付孔25の貫通方向を、軸方向と呼ぶ。また、コンプレッサインペラ16の径の小さな側(図14中上側)をインペラ入口側、コンプレッサインペラ16の径の大きな側(図14中下側)をインペラ裏面側と呼ぶ。
【0010】
図13、図14に示すように、コンプレッサインペラ16は、軸方向から空気を吸い込んで、軸方向に対して直角をなす半径方向に排出する流路を有する、ラジアルコンプレッサインペラである。
コンプレッサインペラ16は、この流路を形成するインペラ側の壁面であるハブ29と、ハブ29の外側に複数設けられた翼部18と、ハブ29の中心を貫通した取付孔25とを備えている。取付孔25は、シャフト(図示せず)の外径に対し、僅かに大きいか、又はわずかに小さい直径を有している。
【0011】
尚、以下の説明においては、コンプレッサインペラ16に空気を吸い込む部位をインペラ入口部35とし、半径方向に空気を排出する部位をインペラ出口部33とし、また、インペラ出口部33とインペラ入口部35との中間部の曲面を、ハブ中央部34と呼ぶ。
【0012】
翼部18は、インペラ出口部33からハブ中央部34のカーブに沿って、インペラ入口部35近くにまで達している。インペラ出口部33においては、翼部18は、インペラ出口部33と略同一径となっている。また、翼部18にはインペラ入口部35により近くまで達する長翼部18Aと、短い短翼部18Bとがあり、両者は交互に配置されている。
【0013】
このとき、コンプレッサインペラ16の回転数は、数万rpmという高い値にまで至る。コンプレッサインペラ16は、軽量化を実現するために、例えばアルミニウムの鋳物等で製造されているため、高速回転がもたらす遠心力によって、その径方向に非常に強い引っ張り応力を受け、疲労による破損を起こすことがある。
そして、コンプレッサインペラ16を高速で回転させた場合の破損は、特に取付孔25の内壁に起こりやすいことが、知られている。
【0014】
このような課題を解決するために、例えば特許文献1に開示されたような技術が知られている。
特許文献1によれば、取付孔25の内壁全体にわたって、小さな金属球をぶつけるショットピーニングや、球状の工具を押しつけるローリング等の加工を施してている。これにより、取付孔25の内壁に予め圧縮応力を残留させておき、疲労限界に達するまでに必要な引っ張り応力を大きくして、コンプレッサインペラ16の耐久性を高めようとするものである。
【0015】
【特許文献1】
USP6,164,931号公報
【0016】
【発明が解決しようとする課題】
しかしながら、前記従来技術には、次に述べるような問題がある。
即ち、従来技術のように、取付孔25内壁全体にショットピーニング等によって圧縮応力をかけても、圧縮残留応力が残るのはその極表面のみであり、取付孔25内壁の内側では、引っ張り応力が残留している。
その結果、コンプレッサインペラ16の回転数を高くするに従い、やはり破損が生じるといった問題がある。
【0017】
特に、コンプレッサインペラ16を用いたターボチャージャ11を備えたエンジンを、例えば建設機械などの作業機械に用いる場合、積込作業のような高負荷(即ちターボチャージャが高回転)の状態と、殆んど負荷のない(即ち低回転)の状態とを、短い時間間隔で繰り返すことになる。
その結果、コンプレッサインペラ16にかかる応力振幅が高くなり、破損を起こしやすくなってしまう。
【0018】
また近年、ディーゼルエンジンの排気ガスに含まれる窒素酸化物(NOx)を低減する対策として、EGR(Exhaust Gas Recirculation:排気ガス再循環装置)と呼ばれる技術が、実施されるようになっている。
これは、エンジンから排出された排気ガスの一部を、エンジンの吸気系統に戻して再燃焼させるものである。
【0019】
EGRを実現するためには、より多くの空気をエンジン内に取り込む必要があり、ターボチャージャ11を、より高過給化させる必要がある。従って、コンプレッサインペラ16をより高い回転数で回転させる必要があり、従来技術のみではまだ充分ではなく、より耐久性の高いコンプレッサインペラ16が望まれている。
【0020】
本発明は、上記の問題に着目してなされたものであり、高回転数で回転させても破損の少ないコンプレッサインペラ、及びこれを用いたターボチャージャを提供することを目的としている。
【0021】
【課題を解決するための手段、作用及び効果】
上記の目的を達成するために、本発明に関わるコンプレッサインペラは、
内部に駆動用のシャフトを挿入する取付孔を略中心に有し、
取付孔の内壁の一部に、全周にわたって窪みを設け、
前記窪みの軸方向におけるインペラ入口側及びインペラ裏面側に、取付孔の内径が駆動用のシャフトの外径と略一致し、その内部にシャフトを挿入可能な支持部を設けている。
このような窪みにより、コンプレッサインペラにかかる引っ張り応力が低減されるので、高回転が可能となり、高過給化が可能である。また、破損が少なくなって、長寿命化が実現できる。
【0022】
また本発明のコンプレッサインペラは、
前記窪みの軸方向幅位置とコンプレッサインペラの最大外周部位の軸方向位置とが、少なくとも一部で重なるようにしている。
コンプレッサインペラにかかる引っ張り応力が最大となるのは、軸方向における、コンプレッサインペラの最大外周部位近傍である。従って、この近傍に窪みを設けることにより、応力集中を分散させて、引っ張り応力低減を図ることができる。
【0023】
また本発明のコンプレッサインペラは、
前記窪みの軸方向幅が、取付孔の軸方向長さの20%以上75%以下である。
即ち、窪みの軸方向幅が、20%以上でないと、応力低減効果が小さく、また、75%を越えると、窪みの両端部での支持が不十分となる。
【0024】
また本発明のコンプレッサインペラは、
前記窪みと支持部との間を、滑らかな形状を有する接続部によって接続している。
これにより、引っ張り応力がより集中しにくくなるので、コンプレッサインペラの破損が少なくなる。
【0025】
また本発明のコンプレッサインペラは、
前記窪みの最大深さを、コンプレッサインペラの最大外周部位の直径の1%以上6%以下としている。
このような最大深さの窪みが、引っ張り応力を低減させる効果が最も大きい。
【0026】
また本発明のコンプレッサインペラは、
前記窪みの製造工程の少なくとも一部を、ローリング加工によって形成している。
これにより、応力低減窪みの内部に圧縮応力が残留するので、破損に至るまでに必要な引っ張り応力が大きくなり、破損しにくくなる。
【0027】
また、本発明のコンプレッサインペラを用いることにより、破損が起きにくくなるので、これを高負荷のかかる建設機械のエンジンに対して、用いることができる。また、ターボチャージャを高過給化することができるので、EGR等に対しても、用いることができる。
【0028】
【発明の実施の形態】
以下、本発明に関わる実施形態を詳細に説明する。
以下、外周部の直径が最大となる部位を、最大外周部位30と呼び、その直径をWで表す(図14参照)。
【0029】
図1に、コンプレッサインペラ16の応力分布を、側面断面図で示す。ここで38は、取付孔25の中心線である。
図1において、二点鎖線31が、コンプレッサインペラ16を取付孔25の周囲に高速で回転させた場合の等応力線である。尚、軸方向の基準位置0は、翼部18の下側のつけ根部分を取っている。図1に示すように、軸方向の最大外周部位30近傍において、円弧状の等応力線31が現れている。
【0030】
また、図2に、図1に示したコンプレッサインペラ16にかかる引っ張り応力の大きさの軸方向分布を示す。図2において、横軸が、軸方向の位置を示す基準位置0からの距離H、縦軸が引っ張り応力の大きさTである。
図1、図2に示すように、コンプレッサインペラ16の最大外周部位30の近傍において、取付孔25内壁にかかる引っ張り応力Tが最大となっている。
【0031】
以上の結果に基づき、まず、第1実施形態を説明する。
図3に、第1実施形態に関わるコンプレッサインペラ16の側面断面図を示す。また図4に、図3におけるQ部の詳細図を示す。
図3、図4に示すように、取付孔25の内壁は、軸方向における最大外周部位30近傍において、全周にわたって窪み32を有している。言い換えれば、取付孔25の直径を、最大外周部位30近傍において、全周にわたってわずかに大きくしている。
以下、このような窪みを、応力低減窪み32と呼ぶ。
【0032】
尚、応力低減窪み32の軸方向上下両側には、シャフト23と略同一の直径Dを有する支持部36A,36Bが設けられ、シャフト23に対してわずかな隙間ばめ、または締まりばめ程度となっていることが望ましい。
これにより、応力低減窪み32の近傍において、取付孔25とシャフト23との間でガタが生じず、コンプレッサインペラ16がしっかりと固定されて、振動が少なくなり、引っ張り応力も小さくなる。
【0033】
このとき、図4における破線31は、図1に示した、応力低減窪み32がない場合の等応力線31の1つである。即ち応力低減窪み32の形状としては、等応力線31に沿った形状であるのが、最も好ましい。しかしながら、製作を容易とするために、例えば等応力線31に類似した円弧状でもよい。
そして、応力低減窪み32と支持部36A,36Bとの間は、接続部37A,37Bにより、それぞれ滑らかに繋がっているのがよい。
【0034】
また、図4においては、応力低減窪み32の軸方向の幅位置が、最大外周部位30を含むようになっているが、これに限られるものではない。即ち、等応力線31の形状に沿うように、等応力線31が最も大きく取付孔25から離れた位置と、応力低減窪み32が最大深さPを有する位置とが、軸方向において略一致することが好適である。
また、応力低減窪み32の軸方向の幅位置は、少なくともその一部が、最大外周部位30の軸方向の位置と重なることが望ましい。
【0035】
図5に、さまざまな最大深さPを有する応力低減窪み32に対し、コンピュータシミュレーションによって求めたコンプレッサインペラ16にかかる応力線図を、グラフで示す。図5において、横軸が軸方向の距離Hであり、縦軸はその部位にかかる引っ張り応力Tである。
【0036】
図5において、実線G1は、図2に示したものと同じ、応力低減窪み32を設けない場合の応力線図である。
また、破線G2は最大深さPが「小」の応力低減窪み32を設けた場合の応力線図、一点鎖線G3は最大深さPが「中」の応力低減窪み32を設けた場合の応力線図、二点鎖線G4は最大深さPが「大」の応力低減窪み32を設けた場合の応力線図を示している。
【0037】
図5に示すように、応力低減窪み32を設けない場合の、応力線図G1における引っ張り応力Tの最大値はT1である。
これに対し、応力線図G2に示すように、最大深さPが「小」の応力低減窪み32を設けた場合の引っ張り応力Tの最大値はT2と、T1より小さくなっている。
【0038】
また、応力線図G3に示すように、最大深さPが「中」の応力低減窪み32を設けた場合の引っ張り応力Tの最大値はT3であり、T2よりもさらに小さくなっている。しかも、応力線図G3の形状がよりフラットに近く、引っ張り応力の集中が起きにくくなっていて、最適な応力線図になっている。
【0039】
一方、応力線図G4に示すように、最大深さPが「大」の応力低減窪み32を設けた場合の引っ張り応力Tの最大値はT4と、非常に大きくなっている。
【0040】
即ち、応力線図G3に示すように、応力低減窪み32の最大深さPを適切に定めることにより、コンプレッサインペラ16にかかる引っ張り応力を最小にすることができる。
【0041】
本願発明人は、さまざまな形状のハブ29及び翼部18を有するコンプレッサインペラ16について、コンピュータシミュレーションを行なった。その結果、応力低減窪み32の最大深さPを、最大外周部位30の直径Wに対して、1%〜6%程度にすると、好適な応力線図が得られることが判明した。
【0042】
また、応力低減窪み32の軸方向幅は、取付孔25の軸方向長さの20%以上75%以下であることが望ましい。これは、応力低減窪み32の軸方向幅が取付孔25の軸方向長さの75%を越えると、取付孔25とシャフト23との間で、ガタが生じやすくなり、振動が大きくなって、かえって強度が弱くなるためである。また、取付孔25の軸方向長さの20%未満であれば、応力低減の効果が小さくなってしまう。
【0043】
図6に、応力低減窪み32の他の実施例を示す。図6に示すように、応力低減窪み32の内部が滑らかな円弧状であれば、応力低減窪み32と支持部36A,36Bとの間は、必ずしも滑らかでなくてもよい。
また、応力低減窪み32の断面形状を、楕円の一部のような形状や、俵形としてもよい。
【0044】
このように第1実施形態によれば、コンプレッサインペラ16の取付孔25の内壁に、全周にわたって応力低減窪み32を設けている。これにより、コンプレッサインペラ16にかかる引っ張り応力が低減され、しかも均一化されるので、高回転が可能であり、しかもコンプレッサインペラ16が破損しにくくなって寿命が長くなる。
【0045】
また、応力低減窪み32の最大深さPを、コンプレッサインペラ16の最大外周部の直径Wの1%〜6%程度としている。これにより、引っ張り応力をより低減させ、しかも軸方向の各部において、より均一化させることが可能であり、コンプレッサインペラ16の破損を、効果的に防止できる。
【0046】
また、応力低減窪み32の内部を、滑らかな形状としている。これにより、引っ張り応力が特定の箇所に集中することが少なくなるので、コンプレッサインペラ16の破損が少なくなる。
【0047】
次に、第2実施形態について、説明する。
図7に、第2実施形態に関わる取付孔25及び応力低減窪み32を備えた、コンプレッサインペラ16の側面断面図を示す。図7において、取付孔25は、取付孔25の下部に内径が大きな大径部25Bを、取付孔25の上部に、内径が小さな小径部25Bを備えた構造となっている。そして、シャフト23も、先端部の外径が小さく、基端部の外径が大きな構造となっている。
【0048】
このような構造のコンプレッサインペラ16においては、軸方向において、取付孔25の大径部25Bが最大外周部位30にかからないように大径部25Bを構成する。そして、小径部25Bに、応力低減窪み32を設けるようにする。
【0049】
即ち、取付孔25の直径が数mmを越えると、直径が大きいほど、内壁にかかる引っ張り応力は大きくなる。従って、軸方向における最大外周部位30においては、取付孔25の直径をなるべく小さくし、そこに応力低減窪み32を設けることにより、コンプレッサインペラ16にかかる引っ張り応力を小さくするのがよい。
尚、図7においては、軸方向における最大外周部位30の軸方向の位置と、応力低減窪み32の軸方向の位置とは、一部が重なっている。
【0050】
また、例えばシャフト23の剛性等の関係で、取付孔25の大径部25Bに応力低減窪み32を設けなければならない場合でも、図8に示すようにすることにより、引っ張り応力の低減は可能である。
【0051】
次に、第3実施形態について説明する。
図9に、第3実施形態に関わる応力低減窪み32の製作方法をフローチャートで示す。また、図10に、その説明図を示す。
応力低減窪み32を設ける際には、まず、旋盤等によって、所望する応力低減窪み32の最大深さPよりも、わずかに浅い応力低減窪み32を製作する(ステップS11)。
【0052】
そして次に、図10に示すように、軸の中間部にローラが固定されたローラ工具39を取付孔25の内部に挿入し、応力低減窪み32にローラを押しつけて回転させ、応力低減窪み32の深さを所望の最大深さPまでローリング加工する(ステップS12)。これにより、応力低減窪み32の表面に、圧縮応力が残留する。
その結果、従来技術で説明したように、大きな引っ張り応力が応力低減窪み32にかかっても、残留している圧縮応力により、破損が起きにくくなる。
【0053】
尚この際に、応力低減窪み32の内部だけでなく、取付孔25の内壁全体にローラを押しつけ、ローラ加工を行なってもよい。これにより、取付孔25の内壁表面部を基点とする破損が起こりにくくなる。
また、応力低減窪み32の最大深さPが浅い場合には、ローリング加工のみによって、形成してもよい。
また、図10においては、ローラ工具39を回転させるように説明しているが、コンプレッサインペラ16を回転させてもよい。又は、両方を回転させてもよい。
【0054】
また、本発明の説明においては、取付孔25がコンプレッサインペラ16を貫通しているように説明したが、これに限られるものではない。例えば図11に示すように、取付孔25がコンプレッサインペラ16の途中で塞がれ、シャフト23の先端に設けられたオネジ部40と、取付孔25の奥に設けられたメネジ部41とによって固定される場合でも、上記のような応力低減窪み32を設けることにより、引っ張り応力の低減が可能である。
さらには、応力低減窪み32は、1つだけ設けるように説明したが、複数設けてもよい。
【図面の簡単な説明】
【図1】ハブの応力分布を示す側面断面図。
【図2】取付孔内壁にかかる引っ張り応力の大きさの軸方向分布を示すグラフ。
【図3】第1実施形態に関わるコンプレッサインペラの側面断面図を示す。
【図4】図3におけるQ部の詳細図。
【図5】応力線図を示すグラフ。
【図6】応力低減窪みの他の実施例を示す説明図。
【図7】第2実施形態に関わるコンプレッサインペラの側面断面図。
【図8】第2実施形態に関わるコンプレッサインペラの他の実施例を示す側面断面図。
【図9】第3実施形態に関わる応力低減窪みの製作方法を示すフローチャート。
【図10】第3実施形態に関わる応力低減窪みの製作方法を示す説明図。
【図11】応力低減窪みの他の実施例を示す説明図。
【図12】一般的なターボチャージャの断面図。
【図13】コンプレッサインペラの斜視図。
【図14】図13のA−A視断面図。
【符号の説明】
11:ターボチャージャ、12:排気側部、13:吸気側部、14:タービンインペラ、15:排気側ハウジング、16:コンプレッサインペラ、17:吸気側ハウジング、18:翼部、19:排気流入通路、20:エンジン排気流路、21:排気流出口、22:排気側インナープレート、23:シャフト、24:軸受、25:取付孔、26:取付ナット、27:吸気流入口、28:吸気排出通路、29:ハブ、30:最大外周部位、31:等応力線、32:応力低減窪み、33:インペラ出口部、34:ハブ中央部、35:インペラ入口部、36:支持部、37:接続部、38:中心線、39:ローラ工具、40:オネジ部、41:メネジ部。

Claims (7)

  1. 内部に駆動用のシャフト(23)を挿入する取付孔(25)を略中心に有し、
    取付孔(25)の内壁の一部に、全周にわたって窪み(32)を設け、
    前記窪み(32)の軸方向におけるインペラ入口側及びインペラ裏面側に、内径(D)が駆動用のシャフト(23)の外径と略一致し、その内部にシャフト(23)を挿入可能な支持部(36A,36B)を設けた
    ことを特徴とするコンプレッサインペラ。
  2. 前記窪み(32)の軸方向幅位置とコンプレッサインペラ(16)の最大外周部位(30)の軸方向位置とが、少なくとも一部で重なるようにした
    ことを特徴とする請求項1に記載のコンプレッサインペラ。
  3. 前記窪み(32)の軸方向幅が、取付孔(25)の軸方向長さの20%以上75%以下である
    ことを特徴とする請求項1又は2に記載のコンプレッサインペラ。
  4. 前記窪み(32)と支持部(36A,36B)との間を、滑らかな形状を有する接続部(37A,37B)によって接続した
    ことを特徴とする請求項1〜3のいずれかに記載のコンプレッサインペラ。
  5. 前記窪み(32)の最大深さ(P)を、コンプレッサインペラ(16)の最大外周部位(30)の直径(W)の1%以上6%以下とした
    ことを特徴とする請求項1〜4のいずれかに記載のコンプレッサインペラ。
  6. 前記窪み(32)の製造工程の少なくとも一部を、ローリング加工によって形成した
    ことを特徴とする請求項1〜5のいずれかに記載のコンプレッサインペラ。
  7. 請求項1〜6のいずれかに記載のコンプレッサインペラ(16)を備えた
    ことを特徴とする、コンプレッサインペラを用いたターボチャージャ。
JP2003165847A 2003-06-11 2003-06-11 コンプレッサインペラ及びこれを用いたターボチャージャ Pending JP2005002849A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003165847A JP2005002849A (ja) 2003-06-11 2003-06-11 コンプレッサインペラ及びこれを用いたターボチャージャ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003165847A JP2005002849A (ja) 2003-06-11 2003-06-11 コンプレッサインペラ及びこれを用いたターボチャージャ

Publications (1)

Publication Number Publication Date
JP2005002849A true JP2005002849A (ja) 2005-01-06

Family

ID=34092168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003165847A Pending JP2005002849A (ja) 2003-06-11 2003-06-11 コンプレッサインペラ及びこれを用いたターボチャージャ

Country Status (1)

Country Link
JP (1) JP2005002849A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163966A (ja) * 2009-01-15 2010-07-29 Toyota Motor Corp ターボチャージャおよびターボチャージャの製造方法
JP2011122536A (ja) * 2009-12-11 2011-06-23 Ihi Corp ロータ軸及び過給機
JP2012017713A (ja) * 2010-07-09 2012-01-26 Ihi Corp インペラの製造方法
WO2013122000A1 (ja) 2012-02-13 2013-08-22 三菱重工コンプレッサ株式会社 インペラ及びこれを備えた回転機械
JP2013185543A (ja) * 2012-03-09 2013-09-19 Ihi Corp ターボ機械及び過給機
WO2014196214A1 (ja) 2013-06-04 2014-12-11 三菱重工業株式会社 インペラ、回転機械、および、回転機械の組立方法
WO2015087414A1 (ja) * 2013-12-11 2015-06-18 三菱重工業株式会社 回転体及び該回転体の製造方法
WO2018167892A1 (ja) * 2017-03-15 2018-09-20 三菱重工エンジン&ターボチャージャ株式会社 過給機

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163966A (ja) * 2009-01-15 2010-07-29 Toyota Motor Corp ターボチャージャおよびターボチャージャの製造方法
CN102282339A (zh) * 2009-01-15 2011-12-14 丰田自动车株式会社 涡轮增压器和用于涡轮增压器的制造方法
KR101278750B1 (ko) * 2009-01-15 2013-06-25 아이신 다카오카 가부시키가이샤 터보차저 및 터보차저의 제조 방법
US9222367B2 (en) 2009-01-15 2015-12-29 Toyota Jidosha Kabushiki Kaisha Turbocharger and manufacturing method for turbocharger
JP2011122536A (ja) * 2009-12-11 2011-06-23 Ihi Corp ロータ軸及び過給機
JP2012017713A (ja) * 2010-07-09 2012-01-26 Ihi Corp インペラの製造方法
JP2013164054A (ja) * 2012-02-13 2013-08-22 Mitsubishi Heavy Industries Compressor Corp インペラ及びこれを備えた回転機械
US11073020B2 (en) 2012-02-13 2021-07-27 Mitsubishi Heavy Industries Compressor Corporation Impeller and rotating machine provided with same
EP2944823A1 (en) 2012-02-13 2015-11-18 Mitsubishi Heavy Industries Compressor Corporation Impeller and rotating machine provided with same
EP2816236A4 (en) * 2012-02-13 2015-11-18 Mitsubishi Heavy Ind Compressor Corp AUBES WHEEL AND ROTATING MACHINE EQUIPPED WITH SAME
WO2013122000A1 (ja) 2012-02-13 2013-08-22 三菱重工コンプレッサ株式会社 インペラ及びこれを備えた回転機械
US9951627B2 (en) 2012-02-13 2018-04-24 Mitsubishi Heavy Industries Compressor Corporation Impeller and rotating machine provided with same
JP2013185543A (ja) * 2012-03-09 2013-09-19 Ihi Corp ターボ機械及び過給機
WO2014196214A1 (ja) 2013-06-04 2014-12-11 三菱重工業株式会社 インペラ、回転機械、および、回転機械の組立方法
US10514045B2 (en) 2013-06-04 2019-12-24 Mitsubishi Heavy Industries Compressor Corporation Impeller, rotating machine, and method for assembling rotating machine
JPWO2015087414A1 (ja) * 2013-12-11 2017-03-16 三菱重工業株式会社 回転体及び該回転体の製造方法
EP3081746A4 (en) * 2013-12-11 2016-12-21 Mitsubishi Heavy Ind Ltd ROTATING BODY AND METHOD FOR PRODUCING THE ROTATING BODY
US20160273545A1 (en) * 2013-12-11 2016-09-22 Mitsubishi Heavy Industries, Ltd. Rotational body and method for manufacturing the same
US10578116B2 (en) 2013-12-11 2020-03-03 Mitsubishi Heavy Industries, Ltd. Rotational body and method for manufacturing the same
WO2015087414A1 (ja) * 2013-12-11 2015-06-18 三菱重工業株式会社 回転体及び該回転体の製造方法
WO2018167892A1 (ja) * 2017-03-15 2018-09-20 三菱重工エンジン&ターボチャージャ株式会社 過給機
CN110382838A (zh) * 2017-03-15 2019-10-25 三菱重工发动机和增压器株式会社 增压器
JPWO2018167892A1 (ja) * 2017-03-15 2019-11-14 三菱重工エンジン&ターボチャージャ株式会社 過給機
US11193391B2 (en) 2017-03-15 2021-12-07 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Supercharger

Similar Documents

Publication Publication Date Title
CA2536171C (en) Turbocharger compressor wheel with treated counterbore and configurable for a compact axial length
US7223077B2 (en) Structure for connecting compressor wheel and shaft
US9951793B2 (en) Ported shroud geometry to reduce blade-pass noise
JP2794338B2 (ja) 孔なしハブコンプレツサホイールを備えるターボチヤージヤコンプレツサホイール装置
CN104350255B (zh) 用于涡轮机叶轮平衡料移除的方法
JP5062464B2 (ja) モータロータ
CA2837819C (fr) Element de turbomachine a dispositifs de generation de tourbillons
US7722336B2 (en) Compressor wheel
JPH0115719B2 (ja)
US20080008595A1 (en) Compressor wheel
JP4911286B2 (ja) ファンのダブテール構造
US7040867B2 (en) Compressor wheel joint
JP2005030382A (ja) ターボ機械の圧縮装置及びそのコンプレッサインペラ
US7118335B2 (en) Compressor wheel and shield
JPWO2008117413A1 (ja) ファン動翼支持構造とこれを有するターボファンエンジン
JP2005002849A (ja) コンプレッサインペラ及びこれを用いたターボチャージャ
JP2004300934A (ja) ファン静翼、航空エンジン用ファン、及び航空エンジン
JP5141262B2 (ja) 過給機
JP2013142359A (ja) インペラ取付装置
JP2013224584A (ja) 遠心圧縮機及び過給機
EP0129311A1 (en) Compressor wheel assembly
JP2005315138A (ja) ターボファンエンジン
JP2005330816A (ja) ターボ機械およびターボ機械のコンプレッサインペラ
KR20150004870A (ko) 응력 감소 수퍼백 휠
JP7164317B2 (ja) 不均衡補正領域を有する圧縮機部を備えたターボチャージャー