JP2004535695A - 802.11用干渉抑圧方法 - Google Patents

802.11用干渉抑圧方法 Download PDF

Info

Publication number
JP2004535695A
JP2004535695A JP2002570440A JP2002570440A JP2004535695A JP 2004535695 A JP2004535695 A JP 2004535695A JP 2002570440 A JP2002570440 A JP 2002570440A JP 2002570440 A JP2002570440 A JP 2002570440A JP 2004535695 A JP2004535695 A JP 2004535695A
Authority
JP
Japan
Prior art keywords
station
signal
address
transmission
stations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002570440A
Other languages
English (en)
Other versions
JP2004535695A5 (ja
JP3987800B2 (ja
Inventor
マシュー ジェイ シャーマン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
AT&T Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/045,071 external-priority patent/US7046690B2/en
Priority claimed from US10/044,916 external-priority patent/US7305004B2/en
Application filed by AT&T Corp filed Critical AT&T Corp
Publication of JP2004535695A publication Critical patent/JP2004535695A/ja
Publication of JP2004535695A5 publication Critical patent/JP2004535695A5/ja
Application granted granted Critical
Publication of JP3987800B2 publication Critical patent/JP3987800B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

802.11送信元局(160−1)が、既知の手順中に他の局による送信が行われないよう、送信に必要なそれとは異なるデュレーションフィールドをセットする。即ち、送信元局(160−1)は、信号到達範囲内の局に対して、デュレーションフィールドを用いて媒体の実占有時間をスプーフする。送信信号の範囲内にいる局(160−4)は、送信信号のデュレーションフィールドをチェックし、その局のネットワークアロケーションベクトルを更新する。

Description

【技術分野】
【0001】
本願は、2001年3月2日提出の米国暫定出願第60/272854号「802.11用干渉抑圧方法」、2001年3月7日提出の米国暫定出願第60/274259号「802.11用干渉抑圧方法」、2001年3月14日提出の米国暫定出願第60/290789号「802.11用干渉抑圧方法」による利益を享受する出願であり、この参照を以てそれらの全体を本願に内挿することとする。
【0002】
本願は、2002年1月15日提出の米国出願第10/044916号及び第10/045071号「802.11用干渉抑圧方法」の継続であり、同日付で提出された802.11用干渉抑圧(Interference Suppression)方法関連の複数の米国出願に関連する。これらの出願は同時に継続しており同一人に譲受されている。
【背景技術】
【0003】
無線ローカルエリアネットワーク(WLAN)においては、無線通信能力を有するデータ処理装置等、複数の移動ネットワーク局が設けられる。このようなネットワークにおける無線媒体へのアクセスは、リッスン・ビフォー・トーク方式に基づく一組の媒体アクセス制御(MAC)プロトコルにより、各局(station)において制御される。
【0004】
IEEE802.11は媒体アクセス制御(media access control)用に好適に確立された規格である。802.11規格の拡張版(enhanced version)の一つに、802.11e規格がある。
【発明の開示】
【発明が解決しようとする課題】
【0005】
現行802.11規格向けにサービス品質(quality of service)を拡張する研究・開発においては、パケット或いはフレームが無線ローカルエリアネットワーク上に送出される時間を確保・保証することが望ましい。しかしながら、802.11e規格等のような新バージョンに含まれる新たなプロトコルが導入されるときには、これら新しいプロトコルを理解できない局が無線ローカルネットワーク上に存在するであろう。即ち、拡張版である802.11e規格に従うよう構成されていない古い局が、無線ローカルネットワーク上に存在するであろう。更に、新しい局すべてが、拡張版たる802.11e規格に従うわけではない。従って、古い局或いは拡張版たる802.11e規格に従っていない局は、拡張版たる802.11eプロトコルに対して干渉することとなろう。
【0006】
このようにして発生する干渉は、他の希望される送信の受信を邪魔し或いは遅延させるであろう。遅延した送信は、受信したときにはもはや役立たない。
【課題を解決するための手段】
【0007】
本発明の各種実施形態によれば、第1送信元局(source station)が媒体上への送信を行っている間、拡張版たる802.11eを実装していない又はこれに従っていない第2送信元局からの送信は、第1送信元局がいまだに媒体を使用していることから、その最初からくい止められる。従って、本発明の各種実施形態においては、第2送信元局からの干渉による宛先局(destination station)でのパケット受信ロスがくい止められる。
【0008】
本発明の実施形態によれば、空きチャネル評価・検出(clear channel assesment)を行い、媒体が空きになったと判断するまで、即ちキャリアも有意信号も存在しないと判断するまで、媒体使用を望んでいる送信元局は送信を行わない。本発明の実施形態においては、一連のシーケンスをなす複数の送信のうち先の送信波が後続の送信に関する情報と共に提供され、当該後続の送信に関する情報が媒体使用可否判定に使用される。
【0009】
本発明の各種実施形態においては、802.11におけるデュレーション(伝送継続時間)フィールドが、キャリアが存在しない時点又は非802.11キャリアが媒体上に存在する時点の到来周期を、示すために使われる。例えば、送信元局は、デュレーションフィールドを用いて、送信元局から送信するとその送信元局が他の送信に遅延を発生させるであろう時間を示すことができる。
【0010】
本発明の各種実施形態においては、802.11送信元局は、公知のシーケンスにおいて他の局による送信を防ぐために、送信のために必要なものとは異なるデュレーションフィールドを含む信号を、送信する。本発明のこれらの実施形態によれば、デュレーションフィールドは、「スプーフ (spoof) 」に用いられる。即ち、信号の到達範囲(range)内にいる局に対し、媒体が占有される実際の時間を偽って提示するために用いられる。
【0011】
本発明の他の実施形態においては、信号到達範囲内のすべての局というよりはむしろ一部の802.11局の集合によって、スプーフ方式(spoofing scheme)が用いられる。本発明の当該他の実施形態によれば、デュレーションフィールドの利用形態が、局の特定集合に対して適用するために更に一般化される。デュレーションフィールドをグループアドレッシングに適用することにより、局の集合が、信号中のデュレーションフィールドに従うべき集合か否かが判別される。即ち、特定の局の集合について送信が抑制される。
【0012】
本発明の各種実施形態においては、802.11送信元局が、他のプロトコルから借用した既に用いられているアドレスに対して、信号を送信する。これにより、既知のシーケンス中での特定の局による送信が防がれる。これらの実施形態によれば、そのアドレスが借用されたアドレスであることを認識できない局に対し、デュレーションフィールドが「スプーフ」即ち媒体が実際に占有される時間を偽って提示するのに使用される。
【0013】
本発明の他の実施形態においては、借用アドレスの利用により、特定局の集合への適用が更に一般化される。
【0014】
本発明の各種実施形態においては、802.11送信元局が、特定の局群による送信を抑制するための時間周期を示すために、借用アドレスへの送信を行う。即ち、これらの実施形態によれば、借用アドレスは、信号到達範囲内の特定の局に対し、ネットワークアロケーションベクトル(NAV)をセットするための実際の時間を偽って提示するのに、用いられる。
【0015】
本発明の他の実施形態においては、特定のグループ内の局だけが自局の抑制機構をセットするよう、グループアドレッシングが行われる。
【0016】
本発明の各種実施形態によれば、送信信号の到達範囲内にある局が、送信信号のデュレーションフィールド及びアドレスをチェックし、その局のネットワークアロケーションベクトルをセット又はリセットする。従って、スプーフの対象とされた局は送信を行わない。それは、その局のネットワークアロケーションベクトルが、その局がキャリアを聞けるか否かにかかわらず、媒体が使用中であることを示しているためである。
【0017】
本発明の各種実施形態によれば、それらのネットワークアロケーションベクトルが媒体使用中を表しているため、隠れ局(hidden station)を含め、スプーフされた信号の到達範囲内にある局が、スプーフによって抑圧される。それにより、未知の又は異種のプロトコルにより干渉を受けることがなくなる。即ち、これらの実施形態によれば、スプーフされた局は、例えば、1)より至急の(critical)送信が完遂されるまで送信を遅延させることができ、2)未知又は異種のプロトコルに媒体の特権的使用を許すことができ、3)隠れ局からの干渉を防ぐことができ、そして4)基本サービスセットが重複する媒体の共用を許すことができる。
【発明を実施するための最良の形態】
【0018】
図1に、無線ローカルエリアネットワーク(WLAN)の一例を示す。本発明の各種実施形態においては、ネットワーク局にメッセージを送信しネットワーク局からメッセージを受信する各種形態のローカルエリアネットワークを採用しうることに、留意されたい。
【0019】
図1に示すように、無線ローカルエリアネットワーク10は、分配システム100、同一の基本サービスを有する第1基本サービスセットBSS1内に設けられた局160−1及び160−2、並びに同一の基本サービスを有する第2基本サービスセットBSS2内に設けられた局160−3及び160−4を、含んでいる。例えば、局160−1及び160−2は、共通のコーディネイティング機能の下にあるセル内に設けられたネットワーク局であり、局のうち一個は、分配システム100へのアクセスのため、基本サービスセットへのアクセスポイント(AP)となっている。同様に、局160−3及び160−4は、共通のコーディネイティング機能の下にあるセル内に設けられたネットワーク局であり、局のうち一個は、分配システム100へのアクセスのため、第2基本サービスセットへのアクセスポイント(AP)となっている。局160−1〜160−4は分配システム100と共に拡張サービスセット(ESS)を形成しており、すべての局が、802.11の媒体アクセス制御(MAC)アーキテクチャ外の存在を介在させず互いに通信しあえる。局160−1〜160−4のうちアクセスポイントでないものはモバイルネットワーク局であり得ることに注意されたい。
【0020】
更に、局160−1,160−2,160−3及び160−4が、当該局が通信できるよう他の装置及び/又はネットワークに接続されていてもよいことに、留意されたい。更には、図1では無線ローカルエリアネットワーク10内に4個しか局を示していないけれども、無線ローカルエリアネットワークには4個より多くの局を設け得ることに、留意されたい。即ち、本発明によれば、基本サービスセットBSS1及びBSS2はそれぞれ2個より多くの局を含むことができる。
【0021】
図1に示すように、局160−2及び160−3は、それぞれ、基本サービスセットBSS1及びBSS2による分配システム100へのアクセスを提供するアクセスポイント(AP)でもある。分配システム100は、宛先マッピングへのアドレスを扱うのに必要な論理サービス及び複数の基本サービスセットのシームレスな統合を提供することによって、モバイルネットワーク局160−1及び160−4に対するモバイルネットワーク局サポートを、可能にしている。データは、基本サービスセットBSS1及びBSS2並びに分配システム100間でアクセスポイントを介し移動する。これらの実施形態によれば、アクセスポイントが局160−2及び160−3でもあり、従ってそれらはアドレス指定可能な存在である。図1では基本サービスセットBSS1及びBSS2が2個の分離したセットとして示されているけれども、本発明の各種実施形態においては、基本セット同士が部分的に重なり合い、物理的に切り離され、或いは物理的に並べられていても、かまわない。
【0022】
図1に示すように、例えば、局160−1から局160−4へとデータメッセージを送るには、メッセージが、局160−1から、分配システム100への基本サービスセットBSS1用の入力アクセスポイントたる局160−2へと送られる。アクセスポイントたる局160−2は、そのメッセージを分配システム100の分配サービスに渡す。その分配サービスは、そのメッセージを分配システム100内にて配達し、適切な分配システム内の適切な宛先局、即ち局160−4に届ける。図1に示した実施形態においては、メッセージは分配サービスにより局160−3即ち基本サービスセットBSS2用の出力アクセスポイントたる局160−3に届けられ、局160−3は無線媒体にアクセスしてそもそもの宛先たる局160−4にそのメッセージを送る。
【0023】
図2に、モバイルネットワーク局等、無線ローカルエリアネットワークにおける局の一例を示す。図2に示すように、局200は、アンテナ220、受信ユニット240、送信ユニット260、及び中央処理ユニット(CPU)280を備えている。モバイルネットワーク局200は、メッセージを選択的に送受信する。
【0024】
データ受信時には、モバイルネットワーク局200は信号をアンテナ220により受信し、受信ユニット240を通じて制御情報又はデータを復調する。受信ユニット240宛の制御情報に基づき、中央処理ユニット(CPU)280は受信ユニット240によるデータ受信を制御する。
【0025】
データ送信時には、中央処理ユニット(CPU)280は、ある時間周期について、媒体が使用されていないかどうかを識別する。もし中央処理ユニット(CPU)280が媒体はビジーであると判別したならば、中央処理ユニット(CPU)280は先送り(defer)モードへと進む。これに対し、中央処理ユニット(CPU)280が適当な時間周期において媒体が使用されていないことを検出したならば、送信ユニット260はデータを送信する。
【0026】
図3に、本発明の一実施形態において、データを送信局から受信局へと送信するときの制御情報交換方法の詳細動作を示す。図3に示すように、送信要求信号(RTS)81は、受信局への媒体接続可能性を識別するための制御情報として送信局により使用される。受信準備完了信号(CTS)82は、送信要求信号(RTS)81による識別に対する応答のための制御情報として受信局により使用される。データ83は、受信準備完了信号(CTS)が送信された後に送信局により送信される。アクノリッジ信号(Ack)84は、データ83の受信アクノリッジのための制御情報として受信局により使用される。送受信局間の送信プロセスの終了が受信局からのアクノリッジ信号(Ack)によるアクノリッジにより確認された後に、引き続くデータが、他の局により開始される後の処理に供される。
【0027】
図3に示すように、フレーム間にはフレーム間スペース(IFS)等の時間間隔が設けられている。局は、仮想キャリア検出を用いることにより媒体がアイドルかどうかを判別し、以て特定の時間間隔における媒体の送信利用可能性を判別する。図3に示すように、フレーム間スペース(IFS)には、ショートフレーム間スペース(SIFS)、PCFフレーム間スペース(PIFS)及びDCFフレーム間スペース(DIFS)が含まれる。
【0028】
図3に示すように、ショートフレーム間スペース(SIFS)は交換手順におけるギャップとして用いられる。例えば、図3に示すように、ショートフレーム間スペース(SIFS)816,812及び813は、それぞれ、送信要求(RTS)フレーム81,受信準備完了(CTS)フレーム82,データフレーム83及びアクノリッジ(Ack)フレーム84のギャップとして用いられている。ショートフレーム間スペース(SIF)は、無線インタフェースにて観測されるように、前のフレームの最終シンボルの終わりから次のフレームのプリアンブルの最初のシンボルまでの時間を表している。ショートフレーム間スペース(SIFS)は、フレーム間スペースの中で最も短いものであり、局が媒体を把握したときに用いられ、その局はフレーム交換手順を達成するための継続時間に亘り媒体を保持するのにこれを必要とする。フレーム交換手順において送信間に最小ギャップを用いることにより、他の局、即ち長いギャップに亘って媒体がアイドルになることを待たねばならない局による媒体使用試行を防ぎ、従ってフレーム交換手順を優先的に完了させることができる。
【0029】
図3に示すように、DCFフレーム間スペース(DIFS)は、データフレーム及び管理フレームを送信するための分配コーディネーション機能(DCF)の下での局動作に、用いられる。分配コーディネーション機能(DCF)を用いる局は、仮想キャリア検出機構が媒体はアイドルであると判別したときに、データフレームを送信する。図3に示すように、送信局から受信局への交換手順の開始時点において、DCFフレーム間スペース(DIFS)811が、送信要求信号(RTS)を送信する媒体上の接続可能性(回線占有状態)を確認するために費やされる。更に、図3に示すようにデータ83が配送された後、追加DCFフレーム間スペース(DIFS)814が費やされ、局はバックオフ手順を実行する。
【0030】
データフレームフォーマットは、全フレームにて固定された順番で生じる一組のフィールドから構成されている。これらのフィールドは、例えば、基本サービスセットの識別符号、送信元(source)局のアドレス、宛先(destination)局のアドレス、送信(transmitting)局及び受信(receiving)局のアドレス等を、示すものである。図4及び図5に、本発明によるフレームフォーマットの一例を示す。
【0031】
図4に、送信要求(RTS)フレームフォーマットの一例を示す。図4に示すように、送信要求(RTS)フレーム400は、フレーム制御のためのフレーム制御フィールド410と、デュレーションを示すデュレーションフィールド420と、受信局のアドレスを示す受信局アドレスフィールド430と、送信局のアドレスを示す送信局アドレスフィールド440と、パリティチェック計算等のためのフレームチェックシーケンスフィールド450とを、含んでいる。図4の送信要求フレームフォーマットにおいては、受信局アドレスは、係属中の送信すべきデータ又は管理フレームの直接の受信先である。送信局アドレスは、送信要求(RTS)フレーム400を送信する局のアドレスである。
【0032】
図5に、受信準備完了(CTS)フレームフォーマットの一例を示す。図5に示すように、受信準備完了(CTS)フレーム500は、フレーム制御フィールド510と、デュレーションフィールド520と、受信局アドレスフィールド530と、フレームチェックシーケンスフィールド550とを、含んでいる。図5に示した受信準備完了(CTS)フレームフォーマットにおいては、受信局アドレスは、直前の送信要求(RTS)フレーム400中の送信局フィールド440から、コピーしたアドレスである。なお、受信準備完了(CTS)フレーム500は送信要求(RTS)フレーム400への応答である。
【0033】
送信しようとしている局は、仮想及び物理キャリア検出を行い、他の局が送信中かどうかを判別する。送信中の局がないと判別した場合は、送信動作が進められる。送信局は、送信を行うより前に、他の局が必要な継続時間に亘って送信しないことを確信できる。他の局が送信中であると判別したときは、検出した局は現在の送信が終わるまで送信を遅らせる。
【0034】
送信要求(RTS)フレーム400及び受信準備完了(CTS)フレーム500は、媒体をこれから使用することをアナウンスするための媒体予約情報を頒布するため、実データに先立って交換される。本実施形態においては、送信要求(RTS)フレーム400及び受信準備完了(CTS)フレーム500は、デュレーションフィールドを含んでいる。これらデュレーションフィールドは、媒体を予約する時間を定めており、その時間において実データフレーム及びそれへの返答であるアクノリッジフレームが送信される。送信要求(RTS)信号を送信する動作開始(originating)局或いは受信準備完了(CTS)フレームを送信する宛先局の受信可能範囲内にいるすべての局は、媒体予約がなされたことを知る。従って、動作開始局からの信号を受信できない局であっても、データフレーム送信のための媒体使用が差し迫っていることを知ることができる。
【0035】
送信要求(RTS)信号81及び受信準備完了(CTS)信号82は、ネットワークアロケーションベクトル(NAV)を信号到達範囲内の各局にセットするための情報を含んでいる。図3に示すように、各ネットワークアロケーションベクトル(NAV)フィールド821及び822は、それぞれ、送信要求(RTS)信号81及び受信準備完了(CTS)信号82内に含まれている情報を示している。
【0036】
ネットワークアロケーションベクトル(NAV)は、実データの交換に先立って送信要求(RTS)信号81及び受信準備完了(CTS)信号82によりアナウンスされたデュレーション情報に基づき、媒体上の将来のトラフィックを予測値に保持する。
【0037】
有効なフレームを受信している局は、その局のネットワークアロケーションベクトル(NAV)を、フレーム中に含まれているデュレーションフィールドにより受信した情報により更新する。図3に示すように、送信要求(RTS)フレーム81を受信している局は、送信要求(RTS)フレーム81に従いそのネットワークアロケーションベクトル(NAV)821をセットし、また、受信準備完了(CTS)フレーム82のみを受信している局は、図3中の下側に示されているように、受信準備完了(CTS)フレーム82に従いそのネットワークアロケーションベクトル(NAV)822をセットする。
【0038】
各コンテンションフリーピリオド(CFP)の通常の開始においては、アクセスポイント(AP)は媒体を検出する。媒体がアイドルであると判別されたときは、アクセスポイント(AP)はビーコンフレームを送信する。初期ビーコンフレームの後、アクセスポイント(AP)は少なくとも一周期待ち、それから1)データフレーム、2)局のうち一つに対しデータパケットを転送するよう要求するCFポールフレーム、3)ポール及びポールされた局からのデータを含むデータ+CFポールフレーム、又は4)コンテンションフリーピリオド(CFP)の終了を示すCF−Endフレームを送信する。
【0039】
図3に示した実施形態においては、送信局から受信局への交換手順の開始点において、DCFフレーム間スペース(DIFS)811及び814がコンテンションピリオド(CP)内で費やされ、送信要求信号(RTS)81の送信のため媒体接続可能性(回線占有状態)が確認される。本発明の他の各種実施形態においては、媒体接続可能性を確認して送信要求信号(RTS)81を送信するため、より短いPCFフレーム間スペース(PIFS)が、送信要求信号(RTS)送信に伴うDCFフレーム間スペース(DIFS)811及び814の代わりに用いられる。このように、PCFフレーム間スペース(PIFS)を用いることにより、媒体への優先的アクセス可能性が得られる。
【0040】
短いPCFフレーム間スペース(PIFS)は通常は802.11コンテンションフリーピリオド(CFP)の外側で用いられるものではなく、また送信要求信号(RTS)は通常はコンテンションピリオド(CP)内でのみ送信されるものであるけれども、これらの実施形態においては、送信要求信号(RTS)はコンテンションフリーピリオド(CFP)内で使用されることがありまたPCFフレーム間スペース(PIFS)はコンテンションピリオド(CP)内で使用されることがある。これにより、不適当な時点における送信から各局を守ることができる。これらの実施形態においては、受信局は予測可能な形態で動作し抑圧されるため、潜在的に干渉可能性が低減される。
【0041】
例えば、続いてデータを送信するため媒体を使用することを望んでいる他の局が非常に遠くにあるか又は間に障害物があるのであれば、図1中の局160−1から局160−2へのフレーム送信は、当該他の局によっては聞かれないであろう。加えて、もし当該他の局即ち続いてデータを送信する他の局がデータ83を送信する局160−1のプロトコルを理解できないのであれば、当該引き続くデータの送信はデータ83の送信に干渉するであろう。何らかの拡張がなければ、当該他の局は、第1の局が媒体をまだ使用しているにもかかわらず、引き続いてデータを送信するであろう。従って、データ83の受信局である局160−2には、例えば、局160−1による送信及び当該他の局による引き続く送信が共に聞こえ、受信されるはずのデータ83が第2の送信局からの引き続くデータ送信によって失われてしまうであろう。
【0042】
上で述べたように、本発明の実施形態によれば、送信要求(RTS)信号81及び受信準備完了(CTS)信号82が、次のデータの引き続く送信のための媒体使用可能性を示す情報を含んでいる。例えば、送信要求(RTS)信号81及び受信準備完了(CTS)信号82は、媒体使用可能性を示すためデュレーションフィールド中にデュレーション値を含んでいる。信号到達範囲内にいる局は、その信号のデュレーションフィールドをチェックし、媒体がビジーになることがわかったときは先だってその局のネットワークアロケーションベクトル(NAV)を更新する。そして、媒体上にキャリアが検出されなくとも、その局は送信を行わない。それは、キャリアが聞こえなくても媒体が使用中であるといえるからである。即ち、本発明のこれらの実施形態においては、802.11デュレーションフィールドが、キャリアが存在していない時間周期を示し又は非802.11キャリアが存在する時間周期を示すために用いられている。デュレーションフィールドは、局からの送信を抑制し当該抑制した局からの干渉を排除するべく使用される。
【0043】
図6に、本発明による信号送信の一例拡張方法を示す。本実施形態においては、引き続く送信までのデュレーション時間以外の所定値にセットされたデュレーションフィールドが送信局によって送信され、その送信信号の到達範囲内にいる局が、その局のネットワークアロケーションベクトル(NAV)を、セットされたデュレーションフィールド値に従って更新する。
【0044】
図6に示すように、送信信号80、例えば受信準備完了信号(CTS)又は送信要求信号(RTS)の到達範囲内にいる局向けのネットワークアロケーションベクトル(NAV)は、到達範囲内にいる局による引き続く送信Tx1,Tx2,...TxNに必要な時間より大きくセットされる。到達範囲内にありデュレーションフィールドに従う局はそのデュレーションフィールドが続くシーケンスにて直ちに行われる送信に必要な時間を示していることを信じているであろうから、それら従う局は本質的に送信局によりスプーフされる(騙される)こととなる。即ち、デュレーションフィールドが、送信局によって、続くシーケンスにて直ちに行われる送信に必要な時間を示すという本来の目的にて使用されていない。むしろ、デュレーションフィールドは送信局によって信号80の到達範囲内にいる局による抑制された送信Tx1,Tx2,...TxNの所要時間を示すために使用される。抑制された送信Tx1,Tx2,...TxNが仮に始まったとすると、他の、よりクリティカルな送信は遅延され、802.11局では検出できないであろう802.11以外のプロトコルは802.11局と干渉をおこし、或いは送信している802.11局は異種プロトコル又は802.11の拡張版プロトコルと干渉するであろう。従って、図6においては、ネットワークアロケーションベクトル(NAV)により抑制された時間周期中、デュレーションフィールドに従う局からの送信Tx1,Tx2,...TxNは抑制される。デュレーションフィールドに従う局をスプーフすることにより、もともとプログラムされていない振る舞いを見せる従属局、例えばよりクリティカルな送信が終了するまで送信Tx1,Tx2,...TxNを遅延させ或いは検出できないプロトコルに干渉しないよう送信を抑制する従属局を、得ることができる。
【0045】
図1に示したネットワークにおいては、他の局が目標ビーコン送信時間(TBTT)を過ぎてビーコンを送信することを局160−2が防ごうとする場合、例えば、局160−2は他の局例えば局160−1に、プロトコルにて通常要求される時間を超えたデュレーション時間を含む信号を送り、現時点と、次の目標ビーコン送信時間との間の残り時間がカバーされるようにするであろう。局160−1及び送信信号到達範囲内にいる他の局は、デュレーションフィールドが不正確にセットされないようにするであろうし、またデュレーションフィールドを再送信することにより信号が更に広がるようにするかもしれない。このように、この例においては、局160−2が、そのデュレーションフィールドを目標ビーコン送信時間までの残り時間がカバーされるようセットされた信号、例えば送信要求信号(RTS)を、局160−1に送信し、受信局160−1は、そのデュレーションフィールドが同様に目標ビーコン送信時間までの残り時間がカバーされるようセットされた受信準備完了信号(CTS)にて、応答するであろう。送信要求信号(RTS)、受信準備完了信号(CTS)、或いはそれら両方の到達範囲内にいるすべての局は、そのネットワークアロケーションベクトル(NAV)を、目標ビーコン送信時間後までは送信を再試行しないようセットするであろう。
【0046】
本発明の他の実施形態によれば、デュレーションフィールドの利用形態は更に一般化され、到達範囲内にいるすべての局に対してというよりは特定の局群に対して適用される。即ち、これらの実施形態によれば、特定の局群のみがデュレーションフィールドによりスプーフされる。例えば、802.11e又はより後の拡張版に係る局は、どの局群がデュレーションフィールドに従うべきか及び無視すべきかを決定づけるべく、デュレーションフィールドによりグループアドレッシングされる。そのため、特定グループの局、例えば拡張版たる802.11eが適用されていない古い局(legacy station)は、その送信が抑制され得るであろう。即ち、拡張版たる802.11e規格が適用されている局にはその局が抑制時間にて送信することを防ぐプロトコルが既に含まれているであろうし、拡張版たる802.11e規格が適用されていない古い局はそのようなプロトコルを含んでいないであろうから、当該古い局は特定のグループとして扱うことができる。この場合においては、送信局は古い局のグループのみに信号を送信する。
【0047】
ある一群の局による媒体の使用をブロックしたい送信局は、デュレーションフィールドを、媒体使用を制約したい時間長にセットする。送信における他のパラメータは、デュレーションフィールドの値を認識すべき特定の局群を決める。この特定の局群に属さない局はデュレーションフィールドの値を無視するであろう。斯くして、図6に示した例にて、送信局が古い局のグループによる媒体の使用をブロックしようとした場合、ネットワークアロケーションベクトル(NAV)によりセットされた時間内にて抑制される送信Tx1,Tx2,...TxNとは、古い局からの送信のみになるであろう。
【0048】
本実施形態においては、アクセスポート(AP)たる送信局が信号例えば受信準備完了信号(CTS)をグループアドレスに送信する。グループアドレッシングにおいては、グループアドレス宛に送信した局は、割り当てられたグループアドレス及びそのアドレスの各々におけるメンバーシッププロパティのリストにアクセスする。その受信準備完了(CTS)信号の到達範囲内にいる局は、その信号の受信局アドレス(RA)がグループアドレスであるかどうか及びその局がそのグループに属しているか否かを識別する。特定の局の集合、例えば拡張版たる802.11e規格が適用される局の集合は、受信準備完了信号(CTS)中の受信局アドレス(RA)がグループアドレスにセットされているならば、その受信準備完了信号(CTS)のデュレーションフィールドを無視するであろう。当該特定の局の集合は、そのとき、送信局が拡張版たる802.11e規格が適用されていない局、例えば古い局をスプーフしているものと推測する。拡張版たる802.11eが適用されている局は、受信準備完了信号(CTS)中のデュレーションフィールドを無視し、引き続き自由に送信できる状態を採る。拡張版たる802.11e規格が適用される局は、本発明によれば、送信アクセスポート(AP)からビーコンを遅延させないように知らされているため、拡張版たる802.11e規格が適用される局は媒体を自由に使用できる。他方で、古い局及び拡張版たる802.11eが適用されていない局は、自分たちがスプーフされていることを検知せず、そのネットワークアロケーションベクトルを受信準備完了信号(CTS)のデュレーション値に設定して、送信を行わないようにする。従って、スプーフされた局は、目標ビーコン送信時間において送信すること及び送信アクセスポート(AP)からのビーコンを遅延させることを、妨げられる。
【0049】
各種実施形態においては、802.11規格が適用される局が、関連する規格により同様の目的、例えば送信一時停止等の目的で既に使用されているアドレスを、借用する。例えば、802.11フレームは802.3規格から送信一時停止用のマルチキャストアドレスを借用し、802.11規格における特定局による送信を抑制する。これらの実施形態においては、802.3から借用したマルチキャストアドレスを含む802.11フレームの受信により、拡張版たる802.11eに従っていない局例えば古い局は、マルチキャストにより自分がアドレッシングされたと仮想し、そのネットワークアロケーションベクトル(NAV)を802.11フレーム中のデュレーション値に従いセットし、送信を行わない。
【0050】
他方で、拡張版たる802.11eに従っている局は、802.11フレームのアドレスが借用したマルチキャストアドレスであると認識し、アドレス指定されたグループ内に拡張版たる802.11e局がないことを確認するチェックを行い、そして、ネットワークアロケーションベクトル(NAV)をセットせずにおく。従って、802.3規格における一時停止効果とは異なり、借用した802.3マルチキャストアドレスは802.11規格において局例えば拡張版たる802.11e局への信号として用いられ、当該802.11e局は送信を抑制する必要がなくなる。マルチキャストアドレスを再使用することにより、アドレス空間節約等の効果が得られる。
【0051】
表1は、信号到達範囲内にある局における受信準備完了(CTS)信号の効果の例を示している。古い局(LSTA)は常にそのネットワークアロケーションベクトル(NAV)を受信信号に従ってセットするため、古い局に関する効果は表1に示していないことに留意されたい。
【表1】
Figure 2004535695
【0052】
表1に示したように、受信準備完了(CTS)信号が送信されたとき、もし局(STA)がその受信準備完了(CTS)信号中の受信局アドレス(RA)はその局自身のアドレス即ちユニキャストアドレスであるものと識別したならば、その局は、自局のネットワークアロケーションベクトル(NAV)を、受信した受信準備完了(CTS)信号に従いセットする。もし局がその受信準備完了(CTS)信号中の受信局アドレス(RA)はグループアドレスのそれ即ちマルチキャストアドレスであると識別したならば、その局は自局が当該アドレスされたグループ内の局でない場合にネットワークアロケーションベクトル(NAV)をセットする。或いは、その局がマルチキャストアドレスのメンバーである場合にその局がそのネットワークアロケーションベクトル(NAV)をセットするよう、そのプロトコルを定義しておいてもよい。もしその受信準備完了(CTS)信号中の受信局アドレス(RA)がブロードキャストアドレスであるならば、拡張版たる802.11e規格に従っていない古い局のみが、そのネットワークアロケーションベクトル(NAV)をセットする。
【0053】
受信準備完了信号(CTS)を送信した局は、通常は、応答の信号が送られてくることを期待する。留意すべき点として、本発明の各種実施形態においては、受信準備完了信号(CTS)が単にネットワークアロケーションベクトル(NAV)のセッティングのために送信されることから、受信準備完了信号(CTS)を送信した局が何も応答を期待しない、という点がある。同様の規定は、例えば、802.11データ又はヌルフレーム即ち何もデータを含まないデータフレームに関して設けられており、本発明においてはこれを応用できる。
【0054】
本発明の他の実施形態によれば、送信要求(RTS)信号の後受信準備完了(RTS)信号を検出できなかったとき、或いは送信要求(RTS)信号の所定周期内に何もフレームが検出されなかったときについて、ネットワークアロケーションベクトルのリセット条件が追加される。一例として、基本サービスセット(BSS)内のいくつかの局が古い局即ち受信準備完了(CTS)信号を検出しなかったときにネットワークアロケーションベクトルをリセットすることを必要とする局である例を考える。この例においては、追加的なメッセージ例えば追加的な受信準備完了(CTS)信号がブロードキャストアドレス宛に又は送信局自身のアドレス宛てに送信される。この追加受信準備完了(CTS)信号又はその他同様の符号化フレームは、送信要求(RTS)信号への応答である最初の受信準備完了(CTS)信号の直後に送信すればよい。さもなくば、送信要求(RTS)信号の直後を追うように送信する。この条件を妨げない局、例えば拡張版たる802.11eに従う局は、追加受信準備完了信号(CTS)によって何ら影響を受けない。それは、この追加受信準備完了(CTS)信号に含まれているデュレーション値が、先の送信要求(RTS)及び受信準備完了(CTS)信号と同じく、ネットワークアロケーションベクトル(NAV)をリセットするためのネットワーク時間に相当するものであるからである。追加受信準備完了(CTS)信号を受信する局は、そのネットワークアロケーションベクトルをリセットするのを所望のデュレーションが満了するまで遅らせることができる。
【0055】
加えて、プロトコル共有時には、例えば、送信要求(RTS)信号を送信し更に追加受信準備完了(CTS)信号を送信する局を設けることにより、第1の受信準備完了(CTS)信号の聴取時に問題のある局がそのネットワークアロケーションベクトル(NAV)を不正にリセットすることが、防がれる。従って、ネットワークアロケーションベクトル(NAV)を送信要求(RTS)信号のそれに応じてセッティングすることが保証され、媒体が好適に予約される。
【0056】
なお、本発明が、第1の受信準備完了(CTS)信号の後に第2の受信準備完了(CTS)信号を送信する構成には限定されず、ヌル信号、アクノリッジ信号若しくはデータフレームの如き他のタイプのメッセージにより受信準備完了(CTS)信号と同様の機能を実現してもよいことに留意されたい。
【0057】
表2に、送信要求(RTS)信号がその到達範囲内の局に及ぼす効果の例を示す。いわゆる当業者であれば本願開示の原理を用いて他の似たような符号化を開発できるであろうことに、留意されたい。表1と同様、古い局は常のそのネットワークアロケーションベクトル(NAV)を受信信号に従いセットしているため、古い局に及ぼす効果は表2に示していない。
【表2】
Figure 2004535695
【0058】
表2に示すように、送信要求(RTS)信号が送信されると、局はその送信局アドレス(TA)及び受信局アドレス(RA)を識別し、自局のネットワークアロケーションベクトル(NAV)をそれらに従いセットする。表2に示すように、送信局アドレス(TA)が第1ユニキャストアドレス(unicast1)であるならば、局は、1)受信局アドレス(RA)がブロードキャストアドレスであるとき、2)受信局アドレス(RA)も第1ユニキャストアドレス(unicast1)であり且つその局が第1ユニキャストアドレス(unicast1)と同一の基本サービスセットに属しているとき、又は3)受信局アドレス(RA)がマルチキャストアドレス(multicast1)であり且つその局がアドレスされたグループと同一グループ内にないときに、ネットワークアロケーションベクトル(NAV)をセットする。更に、もし受信局アドレスが他のユニキャストアドレス(unicast2)であるときは、その局はそのネットワークアロケーションベクトルを同様にしてセットし、その局のアドレスが当該他のユニキャストアドレス(unicast2)であるなら受信準備完了(CTS)信号によって応答し、受信準備完了(CTS)信号中のネットワークアロケーションベクトル(NAV)に従う。
【0059】
表2に示すように、送信局アドレス(TA)が第1マルチキャストアドレス(multicast1)であるならば、局は、受信局アドレス(RA)がブロードキャストアドレスである場合にそのネットワークアロケーションベクトル(NAV)をセットする。更に、もし受信局アドレス(RA)も第1マルチキャストアドレス(multicast1)であるか、或いは他のマルチキャストアドレス(multicast2)若しくはユニキャストアドレス(unicast1)であるならば、その局は、もしその局が第1マルチキャストアドレス(multicast1)によりアドレスされたグループに属していないならそのネットワークアロケーションベクトル(NAV)をくだんの如くセットし、受信局アドレス(RA)によりアドレスされているなら受信準備完了(CTS)信号によって応答し、受信準備完了(CTS)信号により送信されるネットワークアロケーションベクトル(NAV)は無視し、しかしその物理的空きチャネル評価(CCA)には従う。その局が第1マルチキャストアドレス(multicast1)によりアドレスされたグループに属しているならばネットワークアロケーションベクトル(NAV)がセットされるよう、メッセージを符号化できることにも、留意されたい。
【0060】
更に、表2に示すように、送信局アドレス(TA)がブロードキャストアドレス(broadcast)であるならば、局は、1)受信局アドレス(RA)がブロードキャストアドレスである場合、2)受信局アドレス(RA)も第1ユニキャストアドレス(unicast1)であり且つその局が第1ユニキャストアドレス(unicast1)と同じ基本サービスセットに属している場合、又は3)受信局アドレス(RA)がマルチキャストアドレス(multicast1)であり且つその局がアドレスされたグループと同一のグループ内でない場合に、ネットワークアロケーションベクトル(NAV)をセットする。
【0061】
コンテンションフリーピリオド(CFP)においては、局は、送信要求(RTS)信号中のネットワークアロケーションベクトル(NAV)をいつ無視するか並びに送信要求(RTS)信号中のネットワークアロケーションベクトル(NAV)にいつ従うかを、決定することができなければならない。即ち、全局のネットワークアロケーションベクトル(NAV)はコンテンションフリーピリオド(CFP)中においてセットされるけれども、局が送信要求(RTS)信号を受信したときには、その局はその送信要求(RTS)信号に応答しなければならない。しかしながら、もしその局のネットワークアロケーションベクトル(NAV)がセットされると、その局が媒体を一定周期に亘り予約していれば、その局は応答できなくてもよくなる。従って、表2に示すように、送信要求(RTS)信号がコンテンションフリーピリオド(CFP)中に受信されると、その局は、なぜネットワークアロケーションベクトル(NAV)がセットされているのかを思い出し、そのネットワークアロケーションベクトル(NAV)を無視するか或いはこれに従うかを決定できなければならない。
【0062】
本発明の技術的用途が非802.11プロトコル共有にも亘る点に、留意されたい。媒体が非802.11プロトコルによる使用のため一定周期予約されているならば、その送信局は、他のプロトコルがアクティブであるので802.11局による媒体使用を妨げるべくそのデュレーションフィールドがセットされたメッセージを、送信することができる。例えば、図7においては、拡張版たる802.11e規格に従っている局は、そのデュレーションフィールドに特定のデュレーション値がセットされている信号80、例えば受信準備完了(CTS)信号を、自分宛に送ることができる。拡張版たる802.11e規格に従っている局を含むすべての局は、そのネットワークアロケーションベクトル(NAV)をそれに従ってセットする。そのため、その他の未知又は異種のプロトコルは当該特定のデュレーション値に係る時間間隔にて媒体を好適に使用できる。その受信準備完了(CTS)信号の到達範囲内にあり802.11規格に従っている局は、そのネットワークアロケーションベクトルを、当該他のプロトコルを検出できない場合でさえ、媒体を使用できないようにセットする。
【0063】
本発明において、802.11e規格又は将来的な802.11拡張版に従う局が、その規格内に新しいプロトコルを導入できることに、留意されたい。例えば、トークンパッシング方式を802.11e拡張規格に導入してもよい。また、非スケジュール型コンテンションフリーピリオド(CFP)をアクセスポイント(AP)等の送信局とそのサブセット局との間に導入してもよい。本発明の各種実施形態によれば、当該新しいプロトコルは、一つの局グループに特有のものであり、そのグループに属していない局は送信が抑制されるようセットされる。これらの実施形態においては、送信局は、自局から、そのデュレーション時間が特定の拡大された周期にセットされている送信要求信号(RTS)を、例えばそのグループのマルチキャストアドレスに送る。グループに属していない局は、送信を抑制するようセットされ、また送信局は自局の選択したプロトコルを実施する。
【0064】
本発明の他の実施形態においては、802.11のCF−Endメッセージが、デュレーション値に代わり、送信抑制期間の終了を示すために用いられる。即ち、CF−Endメッセージは通常は802.11規格においてコンテンションフリーピリオド(CFP)の終了を示すために用いられるものであるが、これらの実施形態によれば、CF−Endメッセージは他の目的に用いられる。例えば、送信元局がCF−Endメッセージを用いて表す時間は、送信元局からの送信が終わり他の通信を遅らせる必要がなくなったため、送信元局が抑制機構をリセットすることにより全局からの送信を抑制状態から回復させる時間である。
【0065】
本発明の各種実施形態によれば、公知のシーケンスによる多極の送信を防ぐため、802.11送信元局がCF−Endメッセージをコンテンションフリーピリオド(CFP)終了時以外においても送信する。即ち、これらの実施形態によれば、CF−Endメッセージもまたコンテンションフリーピリオド(CFP)の終期について嘘をつくことにより、信号到達範囲内の局をスプーフするために用いられる。CF−End信号の到達範囲内にある局は、その局のネットワークアロケーションベクトル(NAV)をそのネットワークアロケーションベクトル(NAV)のリセット時間に更新する。
【0066】
斯くして、送信局がもはや送信要求信号(RTS)内のデュレーションフィールドによるものはさておき時間追加を行う必要がないと決定した場合、例えば、送信局はCF−Endをブロードキャストアドレスに送ればよい。そのCF−EndはそのCF−End信号の到達範囲内にあるすべての局によりその局のネットワークアロケーションベクトルをリセットさせ元々デュレーションフィールド内で特定していた時間はさておいて時間を短縮させる。同様に、前の送信が終わったがネットワークアロケーションベクトルが抑制終期の終わりを示していない場合、CF−End信号によりセットされるため、その局は送信を行わない。なぜなら、その局のネットワークアロケーションベクトルが媒体使用中を示しているからである。
【0067】
このように拡張されたCF−Endは、また、特定グループ内の局のみが抑制機構をリセットするようグループアドレッシングに拡張され得ることに、留意されたい。
【0068】
表3に、信号到達範囲内にある局に対するCF−End信号の効果の例を示す。表1及び表2と同様、古い局のネットワークアロケーションベクトル(NAV)は常に受信信号に従ってセットされるため、表3においては古い局に対する効果を省略している。
【表3】
Figure 2004535695
【0069】
表3に示すように、CF−End信号が送信されたとき、局はCF−End信号中の送信局アドレス(TA)及び受信局アドレス(RA)を識別し、それに従いその局のネットワークアロケーションベクトル(NAV)をセットする。表3に示すように、送信局アドレス(TA)が第1ユニキャストアドレス(unicast1)であるならば、その局は、そのネットワークアロケーションベクトル(NAV)を、1)受信局アドレス(RA)がブロードキャストアドレスの場合、2)受信局アドレスも第1ユニキャストアドレス(unicast1)でありその局が第1ユニキャストアドレス(unicast1)と同じ基本サービスセット内にある場合、又は3)受信局アドレス(RA)がマルチキャストアドレス(multicast1)であり且つその局が当該アドレスされたグループと同じグループ内にある場合に、リセットする。更に、受信局アドレスが他のユニキャストアドレス(unicast2)であるならば、その局は、その局のアドレスが第2ユニキャストアドレス(unicast2)である場合に、そのネットワークアロケーションベクトル(NAV)をそれに従いリセットする。
【0070】
表3に示すように、送信局アドレス(TA)が第1マルチキャストアドレス(multicast1)であるならば、その局は、そのネットワークアロケーションベクトル(NAV)を、1)受信局アドレス(RA)がブロードキャストアドレスである場合、2)受信局アドレスが第1ユニキャストアドレス(unicast1)であり且つその局が当該アドレスされたグループと同じグループ内にある場合、又は3)受信局アドレス(RA)も第1マルチキャストアドレス(multicast1)であり且つその局が当該アドレスされたグループと同じグループ内にある場合に、リセットする。更に、受信局アドレス(RA)が他のマルチキャストアドレス(multicast2)である場合、その局が当該第2のグループに属しているならば、その局はそのネットワークアロケーションベクトル(NAV)をリセットする。
【0071】
表3に示すように、送信局アドレス(TA)がブロードキャストアドレス(broadcast)であるならば、その局は、そのネットワークアロケーションベクトル(NAV)を、1)受信局アドレス(RA)がブロードキャストアドレスである場合、2)受信局アドレス(RA)が第1ユニキャストアドレス(unicast1)であり且つその局が第1ユニキャストアドレス(unicast1)と同じ基本サービスセット内にない場合、又は3)受信局アドレス(RA)がマルチキャストアドレス(multicast1)であり且つその局が当該アドレスされたグループと同じグループ内にない場合に、リセットする。
【0072】
本発明の方法が基本サービスセット(BSS)の重複緩和に利用できることに留意されたい。即ち、本発明に係る方法は、2個又はそれ以上の802.11基本サービスセット(BSS)が同一エリアで動作している場合にも、適用できる。そのようなケースでは、本発明の各種実施形態によれば、送信局が互いに異種のプロトコルとして扱い、それら自身の基本サービスセット(BSS)内において上述したスケジュールで送信を抑制する。従って、図6に示した例においては、抑制された送信Tx1,Tx2,...TxNが各基本サービスセット内における送信となる。これらの実施形態においては、基本サービスセット(BSS)は媒体を共有できる。
【0073】
ある実施形態においては、複数の局グループが、他の基本サービスセットと干渉する基本サービスセット内の全局によって、定義される。この実施形態においては、グループアドレスは各グループに対応して割り当てられる。複数のサービスセットのうち第1及び第2基本サービスセットが、第1基本サービスセットにより干渉送信が抑圧されるよう時間設定されているとすると、第1基本サービスセットの送信局は、第2基本サービスセットと干渉するよう定義されているグループに対し、受信準備完了(CTS)信号等の信号を発行する。従って、第1基本サービスセットに対する衝撃は最小化され、第2基本サービスセットに対する干渉局のみが抑制される。
【0074】
数個の周囲の基本サービスセット(BSS)からのコンテンションフリーピリオド(CFP)についての抑制のため、所与の局についてのネットワークアロケーションベクトル(NAV)が連続的に設定され得ることに、留意されたい。従って、この連続的な設定下にある局は決して送信機会を得ることができない。
【0075】
本発明の他の各種実施形態によれば、抑制された局は、受信準備完了(CTS)信号等の信号を、当該抑制された局の基本サービスセット(BSS)のアクセスポイント(AP)からの送信要求(RTS)信号に応答して、抑制されるグループのうち一つのグループ中でアドレスされた局へと、送信することができる。即ち、抑制された局は、当該抑制された局自身のネットワークアロケーションベクトル(NAV)については無視して、送信局により示されたグループに対して受信準備完了信号(CTS)を送信するであろう。抑制された局は、まず物理的キャリアセンシングによって媒体上に何もメッセージがなく物理的にクリアになるまで、待つであろう。抑制された局自身の基本サービスセット(BSS)からのアクセスポイント(AP)が、抑制された局から受信準備完了(CTS)信号を受信したとき、アクセスポイント(AP)は、一組の干渉局が抑制されたことを知るであろう。そして、アクセスポイント(AP)は、自分から当該抑制された局へとCF−Endメッセージを送信する。これは、当該抑制された局のネットワークアロケーションベクトル(NAV)をクリアし、その局による送信は数周期に亘り許されることとなろう。送信局は、もし必要であるならば、クリアになった局がクリアな媒体にて送信できるようになるまで、いくつかの干渉局グループについて連続的にこのプロセスを繰り返すことができる。
【0076】
本質的には、本発明の各種実施形態によれば、送信要求信号(RTS)、受信準備完了信号(CTS)、CF−End等の信号の使用は、非スケジュール型コンテンションフリーピリオド(CFP)を発生させるであろうし、通常のコンテンションフリーピリオド(CFP)を実施するため、或いは802.11規格の将来版にて使用される他のプロトコルにおいて、使用されうるであろう。
【0077】
本発明の各実施形態における機能拡張された局が、ネットワークアロケーションベクトル(NAV)がなぜセットされているかを検出できることに、留意されたい。もし、例えば、当該機能拡張された局が、コンテンションフリーピリオド(CFP)内であるためセットされたネットワークアロケーションベクトル(NAV)と、最近送信されたメッセージフレーム例えばデータ、送信要求信号(RTS)若しくは受信準備完了信号(CTS)によりセットされたネットワークアロケーションベクトル(NAV)とを、区別できるものとすると、例えば、コンテンションフリーピリオド(CFP)についてのみネットワークアロケーションベクトル(NAV)を無視し、持続中の802.11フレーム交換手順を邪魔するネットワークアロケーションベクトル(NAV)に従う、という選択が可能になる。この例においては、受信準備完了信号(CTS)を短いフレーム時間間隔(SIF)の後に送信するという標準的な処理が用いられ得る。しかしながら、もし空きチャネル評価がアイドルでないのなら、或いはネットワークアロケーションベクトル(NAV)が持続中のフレーム交換手順による抑制を引き起こしているのなら、受信準備完了信号(CTS)による応答は生じないであろう。斯くして、本発明の各種実施形態によれば、送信要求信号(RTS)を送信する局は、もし受信準備完了信号(CTS)による応答を短いフレーム時間間隔(SIF)の後に受信できないならその局を抑制する、という動作を実現できるであろう。その点において、送信局は送信要求信号(RTS)のリトライ又は長時間経過後のギブアップの何れかを採ることができる。
【0078】
これらの実施形態によれば、PCFフレーム間スペース(PIFS)を、コンテンションフリーピリオド(CFP)の外においてさえ、媒体上でのアクセス優先権の保持を再試行するために使用することができ、送信要求(RTS)フレーム及び受信準備完了(CTS)フレームがコンテンションフリーピリオド(CFP)内で許されることに、留意されたい。
【0079】
図8は、本発明の一実施形態によるネットワークアロケーションベクトル更新方法を示すフローチャートである。図8に示すように、処理はステップ800にて始まり、ステップ810へと続いて、デュレーション値がセットされる。即ち、このステップにおいては、デュレーション値が後続の送信のための時間周期とは異なるよう即ち従属局(obeying stations)がスプーフされるようセットされる。
【0080】
ステップ820においては、セットされたデュレーション値を含む信号例えば受信準備完了(CTS)信号が送信される。次に、ステップ830においては、その信号中の受信局アドレス(RA)がその局のものかどうかが判別される。もし受信局アドレス(RA)がその局のものであるならば、制御はステップ860へと進み、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないならば、受信局アドレス(RA)がその局のアドレスでないので、制御はステップ840へと続く。
【0081】
ステップ840においては、その信号の受信局アドレス(RA)がグループアドレスであるか否か及びその局がアドレスされたグループ内の局でないか否かが判別される。もし受信局アドレス(RA)がグループアドレスであり且つその局がアドレスされたグループ内の局でないならば、処理はステップ860へと進みネットワークアロケーションベクトル(NAV)が更新される。もしそうでないならば、制御はステップ850へと続く。
【0082】
ステップ850においては、その信号の受信局アドレス(RA)がブロードキャストアドレスであるか否か及びその局が古い局でないかどうかが判別される。もし受信局アドレス(RA)がブロードキャストアドレスであり且つその局がアドレスされたグループに属していないならば、制御はステップ860へと進みネットワークアロケーションベクトル(NAV)が更新される。もしそうでないならば、制御はステップ870へと続く。ステップ870では、処理が終わる。
【0083】
図9は、本発明の他の実施形態によるネットワークアロケーションベクトル更新方法を示すフローチャートである。図9に示すように、処理はステップ900にて始まり、ステップ910へと続いて、デュレーション値がセットされる。即ち、このステップにおいては、従属局をスプーフすべく、引き続く送信に要する時間とは異なる時間周期にデュレーション値がセットされる。制御は更にステップ920に進む。
【0084】
ステップ920においては、セットしたデュレーション値を含む信号、例えば送信要求(RTS)信号が送信される。次に、ステップ930においては、その信号中の受信局アドレス(RA)がブロードキャストアドレスか否かが判別される。もしその受信局アドレス(RA)がブロードキャストアドレスならば、制御は980へとジャンプし、ネットワークアロケーションベクトル(NAV)が更新される。もし逆に、受信局アドレス(RA)がブロードキャストアドレスでないならば、制御はステップ940に進む。
【0085】
ステップ940においては、信号中の受信局アドレス(RA)がマルチキャストアドレスであるか否かが判別される。もし受信局アドレス(RA)がマルチキャストアドレスでないならば、制御はステップ960へと進む。受信局アドレス(RA)がマルチキャストアドレスならば、制御はステップ945へと続く。
【0086】
ステップ945においては、送信局アドレス(TA)がユニキャストアドレスであるか否か及びその局がマルチキャストアドレスにて識別されるグループ内の局でないか否かが判別される。もし送信局アドレス(TA)がユニキャストアドレスであり且つその局がグループ内の局でないのであれば、制御はステップ980に進み、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ950に続く。
【0087】
ステップ950においては、送信局アドレス(TA)がマルチキャストアドレスであるか否か及びその局が送信局アドレス(TA)中のマルチキャストアドレスにて識別されるグループ内の局でないか否かが判別される。もし送信局アドレス(TA)がマルチキャストアドレスであり且つその局が送信局アドレス(TA)中のマルチキャストアドレスにて識別されるグループ内の局でないのであれば、制御はステップ980に進み、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ955に続く。
【0088】
ステップ955においては、送信局アドレス(TA)がブロードキャストアドレスであるか否か及びその局がマルチキャストアドレスにて識別されるグループ内の局でないか否かが判別される。もし送信局アドレス(TA)がブロードキャストアドレスであり且つその局がグループ内の局でないのであれば、制御はステップ980に進み、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ990にジャンプする。
【0089】
次に、ステップ960においては、信号中の受信局アドレス(RA)がユニキャストアドレスであるか否かが判別される。もし受信局アドレス(RA)がユニキャストアドレスでないならば、制御はステップ990へとジャンプする。受信局アドレス(RA)がユニキャストアドレスならば、制御はステップ965へと続く。
【0090】
ステップ965においては、送信局アドレス(TA)が受信局アドレス(RA)に含まれるそれと同じユニキャストアドレスであるか否か及びその局がそのユニキャストアドレスにて識別される基本サービスセット(BSS)内の局でないか否かが判別される。もし送信局アドレス(TA)がそのユニキャストアドレスであり且つその局がその基本サービスセット(BSS)内の局でないのであれば、制御はステップ980にジャンプし、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ970に続く。
【0091】
ステップ970においては、送信局アドレス(TA)がマルチキャストアドレスであるか否か及びその局がその送信局アドレス(TA)に含まれるマルチキャストアドレスにて識別されるグループ内の局でないか否かが判別される。もし送信局アドレス(TA)がマルチキャストアドレスであり且つその局がそのグループ内の局でないのであれば、制御はステップ980にジャンプし、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ975に続く。
【0092】
ステップ975においては、送信局アドレス(TA)がブロードキャストアドレスであるか否か及びその局が上記ユニキャストアドレスにて識別される基本サービスセット(BSS)内の局でないか否かが判別される。もし送信局アドレス(TA)がブロードキャストアドレスであり且つその局がその基本サービスセット(BSS)内の局でないのであれば、制御はステップ980にジャンプし、ネットワークアロケーションベクトル(NAV)が更新される。もしそうでないのであれば、制御はステップ990にジャンプする。ステップ990において、処理は終了する。
【0093】
図10は、本発明の他の実施形態によるネットワークアロケーションベクトルリセット方法を示すフローチャートである。図10に示すように、処理はステップ1000にて始まり、ステップ1010へと進んで、CF−Endメッセージが送信される。このステップにおいては、CF−Endメッセージは、従属局をスプーフすべく、コンテンションフリーピリオドの終了を示すものとは異なる値を示している。次に、ステップ1020においては、そのメッセージ中の受信局アドレス(RA)がブロードキャストアドレスか否かが判別される。もし受信局アドレス(RA)がブロードキャストアドレスであるならば、制御はステップ1080へとジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もし逆に、受信局アドレス(RA)がブロードキャストアドレスでないならば、制御はステップ1030に続く。
【0094】
ステップ1030においては、信号中の受信局アドレス(RA)がマルチキャストアドレスであるか否かが判別される。もし受信局アドレス(RA)がマルチキャストアドレスでないならば、制御はステップ1050へとジャンプする。受信局アドレス(RA)がマルチキャストアドレスならば、制御はステップ1035へと続く。
【0095】
ステップ1035においては、送信局アドレス(TA)がユニキャストアドレスであるか否か及びその局がその受信局アドレス(RA)によりアドレスされたグループ内の局であるか否かが判別される。もし送信局アドレス(TA)がユニキャストアドレスであり且つその局がグループ内の局であるならば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1040に続く。
【0096】
ステップ1040においては、送信局アドレス(TA)がマルチキャストアドレスであるか否か及びその局が受信局アドレス(RA)によりアドレスされたグループ内の局であるか否かが判別される。もし送信局アドレス(TA)がマルチキャストアドレスであり且つその局が受信局アドレス(RA)によりアドレスされたグループ内の局であるならば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1045に続く。
【0097】
ステップ1045においては、送信局アドレス(TA)がブロードキャストアドレスであるか否か及びその局が受信局アドレス(RA)によりアドレスされたグループ内の局でないか否かが判別される。もし送信局アドレス(TA)がブロードキャストアドレスであり且つその局が受信局アドレス(RA)によりアドレスされたグループ内の局でないのであれば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1090にジャンプする。
【0098】
次に、ステップ1050においては、信号中の受信局アドレス(RA)がユニキャストアドレスであるか否かが判別される。もし受信局アドレス(RA)がユニキャストアドレスでないならば、制御はステップ1090へとジャンプする。受信局アドレス(RA)がユニキャストアドレスならば、制御はステップ1055へと続く。
【0099】
ステップ1055においては、送信局アドレス(TA)がユニキャストアドレスであるか否か、送信局アドレス(TA)が受信局アドレス(RA)と一致するか否か、及びその局が同じ基本サービスセット(BSS)内の局であるか否かが判別される。もし送信局アドレス(TA)がユニキャストアドレスであり、受信局アドレス(RA)と一致し、且つその局が同じ基本サービスセット(BSS)内の局であるのであれば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1060に続く。
【0100】
ステップ1060においては、送信局アドレス(TA)がもう一つのユニキャストアドレスであるか否か及びその局が受信局アドレス(RA)の局であるか否かが判別される。もし送信局アドレス(TA)が当該もう一つのユニチキャストアドレスであり且つその局が受信局アドレス(RA)の局であるならば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1065に続く。
【0101】
ステップ1065においては、送信局アドレス(TA)がマルチキャストアドレスであるか否か及びその局がそのマルチキャストアドレスにてアドレスされたグループ内の局であるか否かが判別される。もし送信局アドレス(TA)がマルチキャストアドレスであり且つその局がそのグループ内の局であるならば、制御はステップ1080にジャンプし、ネットワークアロケーションベクトル(NAV)がリセットされる。もしそうでないのであれば、制御はステップ1070に続く。
【0102】
ステップ1070においては、送信局アドレス(TA)がブロードキャストアドレスであるか否か及びその局が上記ユニキャストアドレスに係る基本サービスセット(BSS)と同じ基本サービスセット(BSS)内の局であるか否かが判別される。もし送信局アドレス(TA)がブロードキャストアドレスであり且つ上記ユニキャストアドレスに係る基本サービスセット(BSS)と同じ基本サービスセット(BSS)内の局であるのであれば、制御はステップ1080に進み、ネットワークアロケーションベクトルがリセットされる。もしそうでないならば、制御はステップ1090にジャンプする。ステップ1090では処理が終了する。
【0103】
図11は、本発明の他の実施形態によるネットワークアロケーションベクトル(NAV)更新方法を示すフローチャートである。図11に示すように、処理はステップ1100にて始まり、ステップ1110に進んで、デュレーション値がセットされる。即ち、このステップにおいては、従属局をスプーフすべく、引き続く送信のための時間周期とは異なる値にデュレーション値がセットされる。制御はステップ1120へと進む。
【0104】
ステップ1120においては、他の規格で既に使用されているアドレスからアドレスを決定する。そして、ステップ1130においては、この借用したアドレスへと、セットしたデュレーション値を含む信号を送信する。即ち、送信は802.11規格において行うけれども、アドレスは802.11規格における目的と同様の目的で他の規格例えば802.3規格により既に使用されているアドレスが、使用され得る。例えば、十六進表現で01−80−C2−00−00−01により与えられるPAUSEアドレスを、802.3規格から802.11規格へと借用できる。802.11送信において802.3規格等の他の規格からマルチキャストアドレスを再使用することにより、アドレス空間節約等の効果が得られる。制御はステップ1140へと進む。
【0105】
ステップ1140においては、信号到達範囲内の局が、このアドレスを借用されたアドレスとして認識できるか否かを判別する。もし認識できないのであれば、その局は、例えば、借用されたアドレスをアドレスとして自動的に仮定する古い局であり、制御はステップ1150に進んでネットワークアロケーションベクトル(NAV)が更新される。即ち、拡張版たる802.11e規格に従っていない局はスプーフされ、デュレーション値に従いネットワークアロケーションベクトル(NAV)を自動的にセットし、送信を行わない。
【0106】
他方、もしその局が拡張版たる802.11eに従う局であり、そのアドレスが借用アドレスであることを認識するのであれば、制御はステップ1160にジャンプし、自局がアドレスされたグループ内にないことを確認するためのチェックを行い、ネットワークアロケーションベクトル(NAV)はセットしない。制御はそしてステップ1170へと続き、処理が終了する。
【0107】
図12は、本発明の一実施形態による第1受信準備完了(CTS)信号受信後追加受信準備完了(CTS)信号受信方法を示すフローチャートである。図12に示すように、処理はステップ1200にて始まり、ステップ1210へと続いて、送信要求(RTS)信号が到達範囲内の局により受信される。次に、ステップ1220においては、自局が従属局であるか否かが判別される。もしその局が従属局ならば、制御はステップ1230へと進み、当該従属局のネットワークアロケーションベクトル(NAV)が更新される。さもなくば、その局は従属局ではないので制御はステップ1270へジャンプする。
【0108】
ステップ1240においては、タイマーがセットされる。次に、ステップ1250においては、受信準備完了信号(CTS)の受信前にタイマーが計時を終えたか否かが判別される。即ち、送信要求(RTS)信号を送信した局により送信された第1受信準備完了(CTS)信号又は追加受信準備完了(CTS)信号が従属局により所定時間以内に受信されたか否かについて、判別が行われる。
【0109】
もし、受信準備完了(CTS)信号受信前にタイマーが計時終了したならば、制御はステップ1260へと続き、ネットワークアロケーションベクトルがリセットされる。さもなくば、制御はステップ1270へとジャンプする。従って、第1受信準備完了(CTS)の直後に送信された追加受信準備完了(CTS)信号或いは送信要求(RTS)信号の直後に追って送信された追加受信準備完了(CTS)信号は、タイマーの計時終了より前に従属局、即ち第1受信準備完了(CTS)信号の聴取に問題がある従属局に送信され、従属局がそのネットワークアロケーションベクトル(NAV)を不正にリセットするという問題を防ぐことができる。制御は更にステップ1270に続き、処理は終了する。
【0110】
図13は、本発明の一実施形態におけるコンテンションフリーピリオド(CFP)中の送信要求(RTS)信号への応答方法を示すフローチャートである。図13に示すように、処理はステップ1300にて始まり、ステップ1310へと続き、送信要求(RTS)信号が受信される。即ち、このステップにおいては、従属局をスプーフすべく引き続く送信用の時間周期以外の値にセットされたデュレーション値を含む送信要求(RTS)信号を、コンテンションフリーピリオド(CFP)中に受信する。制御はステップ1320へと続く。
【0111】
ステップ1320においては、その局がアドレスされたか否かが判定される。もしその局がアドレスされているならば、処理はステップ1330へと続く。そうでなければ、制御はステップ1370にジャンプする。
【0112】
ステップ1330においては、ネットワークアロケーションベクトル(NAV)がコンテンションフリーピリオド(CFP)中にセットされた理由が追及される。次に、ステップ1340においては、ネットワークアロケーションベクトル(NAV)がセットされた理由に基づきデュレーション値を無視すべきか否かが判別される。即ち、全局のネットワークアロケーションベクトル(NAV)はコンテンションフリーピリオド(CFP)中にセットされるのであるが、送信要求(RTS)信号を受信したときには、その局はその送信要求(RTS)信号に応答しなければならず、その結果として、その局はなぜそのネットワークアロケーションベクトル(NAV)がセットされたかを決定・判別しなければならない。もし追求で得られた結果からしてデュレーション値が無視すべきものであるのであれば、制御はステップ1350へと続き、局は送信要求信号に応答する。さもなくば、デュレーション値に従い、制御はステップ1360へとジャンプして、コンテンションフリーピリオド(CFP)中にその局に媒体が予約される。即ち、媒体を予約した局は、送信要求(RTS)信号に応答することができない。制御はステップ1370へと続き、処理が終了する。
【0113】
ここで、より多様な可能性が存在することに、留意されたい。即ち、上に述べた実施形態群はまさに本発明の原理をいかにして適用するかに関するわずかな例示に過ぎない。いわゆる当業者であれば、本発明の精神及び技術的範囲から離れることなく、様々な他種の配置或いは方法を実施しうる。
【図面の簡単な説明】
【0114】
【図1】無線ローカルエリアネットワークの一例を示す図である。
【図2】無線ローカルエリアネットワークにおける局の一例を示す図である。
【図3】送信局から受信局へと送信を行うときの制御情報交換方法の詳細動作を示す図である。
【図4】送信要求(RTS)フレームフォーマットの一例を示す図である。
【図5】受信準備完了(CTS)フレームフォーマットの一例を示す図である。
【図6】本発明による信号送信拡張方法例を示す図である。
【図7】本発明による他の信号送信拡張方法例を示す図である。
【図8】本発明による信号送信拡張方法例を示すフローチャートである。
【図9】本発明による他の信号送信拡張方法例を示すフローチャートである。
【図10】本発明による他の信号送信拡張方法例を示すフローチャートである。
【図11】本発明による他の信号送信拡張方法例を示すフローチャートである。
【図12】本発明による他の信号送信拡張方法例を示すフローチャートである。

Claims (18)

  1. 第1の規格を用い媒体を介してデータを送信しながら局をスプーフする方法であって、
    引き続く所定のメッセージ送信に要する時間周期以外の値にデュレーション値をセットするステップと、
    上記デュレーション値を含む信号を、第2の規格にて既に使用されているアドレスに対して送信するステップであって、少なくとも一つの局がデュレーション値に従いネットワークアロケーションベクトルを更新する従属局であるステップとを、有する方法。
  2. 請求項1記載の方法であって、第1の規格が802.11規格である方法。
  3. 請求項2記載の方法であって、第2の規格が802.3規格である方法。
  4. 請求項3記載の方法であって、上記アドレスが802.3規格におけるPAUSEアドレスであり十六進表現にて01−80−C2−00−00−01で与えられる方法。
  5. 請求項1記載の方法であって、デュレーション値が従属局による送信を抑制する時間周期を表す方法。
  6. 請求項5記載の方法であって、従属局による送信が抑制されているとき未知のプロトコルによる送信が媒体を優先的に使用する方法。
  7. 請求項5記載の方法であって、従属局による送信が抑制されているとき隠れ局による送信が媒体を優先的に使用する方法。
  8. 請求項5記載の方法であって、従属局による送信が抑制されているとき至急の送信が媒体を優先的に使用する方法。
  9. 請求項5記載の方法であって、少なくともいくつかの局が互いに重複する基本サービスセット内に設けられており、従属局による送信が抑制されているとき当該重複する基本サービスセットの局が優先的に媒体を使用する方法。
  10. 請求項5記載の方法であって、従属局による送信が抑制されているとき規格の拡張版の局が媒体を優先的に使用する方法。
  11. 媒体を介しデータを送信しながら局をスプーフする方法であって、
    引き続く所定のメッセージ送信に要する時間周期以外の値にデュレーション値をセットするステップと、
    上記デュレーション値を含む第1の信号を送信するステップであって、少なくとも一つの局が、第1の信号後に第2の信号が検出されたときデュレーション値に従いネットワークアロケーションベクトルを更新し、第1の信号後に第2の信号が検出されなかったときネットワークアロケーションベクトルをリセットする従属局であるステップと、
    上記デュレーション値を含む第3の信号を送信するステップであって、上記少なくとも一つの局が第1の信号後に第2の信号が検出されなかったためネットワークアロケーションベクトルをリセットした場合に、当該少なくとも一つの局が第3の信号に含まれるデュレーション値に従いネットワークアロケーションベクトルを更新するステップとを、有する方法。
  12. 請求項11記載の方法であって、第1の信号が送信要求信号、第2の信号が受信準備完了信号である方法。
  13. 請求項12記載の方法であって、第3の信号が受信準備完了信号である方法。
  14. 請求項11記載の方法であって、第3の信号が第2の信号の直後に送信される方法。
  15. 請求項11記載の方法であって、第3の信号が第1の信号の直後に送信される方法。
  16. 媒体を介しデータを送信しながら局をスプーフする方法であって、
    引き続く所定のメッセージ送信に要する時間周期以外の値にデュレーション値をセットするステップと、
    コンテンションフリーピリオド中に上記デュレーション値を含む信号を送信するステップであって、少なくとも一つの局が、デュレーション値に従いネットワークアロケーションベクトルを更新し、ネットワークアロケーションベクトルが更新された理由を記録し、ネットワークアロケーションベクトルが更新された理由に基づき、コンテンションフリーピリオド中に送信された引き続く信号のデュレーション値をいつ無視するか及び当該引き続く信号のデュレーション値にいつ従うかを決定する従属局であるステップとを、有する方法。
  17. 請求項16記載の方法であって、更に、上記引き続く信号のデュレーション値を無視したとき当該引き続く信号に対して応答するステップを含む方法。
  18. 請求項16記載の方法であって、上記引き続く信号が送信要求信号である方法。
JP2002570440A 2001-03-02 2002-03-04 802.11用干渉抑圧方法 Expired - Fee Related JP3987800B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US27285401P 2001-03-02 2001-03-02
US27425901P 2001-03-07 2001-03-07
US29078901P 2001-05-14 2001-05-14
US10/045,071 US7046690B2 (en) 2001-01-16 2002-01-15 Interference suppression methods for 802.11
US10/044,916 US7305004B2 (en) 2001-01-16 2002-01-15 Interference suppression methods for 802.11
PCT/US2002/006435 WO2002071650A1 (en) 2001-03-02 2002-03-04 Interference suppression methods for 802.11

Publications (3)

Publication Number Publication Date
JP2004535695A true JP2004535695A (ja) 2004-11-25
JP2004535695A5 JP2004535695A5 (ja) 2005-12-22
JP3987800B2 JP3987800B2 (ja) 2007-10-10

Family

ID=27534887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002570440A Expired - Fee Related JP3987800B2 (ja) 2001-03-02 2002-03-04 802.11用干渉抑圧方法

Country Status (5)

Country Link
US (5) US7046650B2 (ja)
EP (1) EP1382135B1 (ja)
JP (1) JP3987800B2 (ja)
CA (1) CA2439697C (ja)
WO (1) WO2002071650A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005341557A (ja) * 2004-04-30 2005-12-08 Sharp Corp 無線lanシステム
JP2006516847A (ja) * 2003-01-09 2006-07-06 トムソン ライセンシング Wlanにおける帯域プロビジョニング方法及び装置
JP2007536865A (ja) * 2004-05-07 2007-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信ネットワークにおける媒体の分散的予約方法
JP2009500945A (ja) * 2005-07-05 2009-01-08 クゥアルコム・インコーポレイテッド 無線ネットワークにおけるネットワーキング拡張範囲およびレガシーデバイスのためのmacレベル保護
JP2009515417A (ja) * 2005-11-07 2009-04-09 サムスン エレクトロニクス カンパニー リミテッド 無線lanでステーション間の媒体接近に対する公正性を保証する方法及び装置
JP2009516466A (ja) * 2005-11-17 2009-04-16 サムスン エレクトロニクス カンパニー リミテッド 無線lanで衝突を防止するための媒体接近方法及び装置
JP2009522910A (ja) * 2006-01-05 2009-06-11 サムスン エレクトロニクス カンパニー リミテッド 無線lanで隠れノードに制御フレームを伝達する方法及び装置
JP2010512716A (ja) * 2006-12-14 2010-04-22 インテル コーポレイション サービスの優先制御を行う無線ローカルエリアネットワーク、無線通信装置及び方法
JP2014017866A (ja) * 2008-08-29 2014-01-30 Intel Corp 直接の信頼できるリンクアクセス方法及び装置
JP2015026935A (ja) * 2013-07-25 2015-02-05 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2015513862A (ja) * 2012-03-09 2015-05-14 アルカテル−ルーセント 無線ローカルエリアネットワークにおいて無線リソースのスケジューリングを行う方法
JP2016500223A (ja) * 2012-10-18 2016-01-07 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてチャネルアクセス方法及び装置
JP2016533058A (ja) * 2013-06-25 2016-10-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド コンフリクトを検出し、解決するためのシステム及び方法
WO2017039377A1 (ko) * 2015-09-02 2017-03-09 주식회사 윌러스표준기술연구소 네트워크 얼로케이션 벡터를 이용하는 무선 통신 방법 및 무선 통신 단말
JP2017531366A (ja) * 2014-08-22 2017-10-19 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を介してチャネル占有識別子を送信および受信するための技法
JP2018521569A (ja) * 2015-06-05 2018-08-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおいて送信を扱うためのステーション、アクセスポイント、及びそれらにおける方法

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7305004B2 (en) * 2001-01-16 2007-12-04 At&T Corp. Interference suppression methods for 802.11
US20020093929A1 (en) * 2001-01-18 2002-07-18 Koninklijke Philips Electronics N.V. System and method for sharing bandwidth between co-located 802.11a/e and HIPERLAN/2 systems
JP3530141B2 (ja) * 2001-03-06 2004-05-24 松下電器産業株式会社 無線lanシステム及び無線lanシステムの信号衝突回避方法
ES2305345T3 (es) 2001-09-14 2008-11-01 Telefonaktiebolaget Lm Ericsson (Publ) Un sistema de comunicaciones inalambricas con deteccion de fuentes de radiaciones extrañas.
EP2385665A1 (en) 2002-03-08 2011-11-09 Aware, Inc. System and method for OFDM communications using different cyclic prefix lengths
US7756090B2 (en) 2002-03-12 2010-07-13 Koninklijke Philips Electronics N.V. System and method for performing fast channel switching in a wireless medium
US7590079B2 (en) * 2002-10-25 2009-09-15 Motorola, Inc. Method of communication device initiated frame exchange
AU2003298440A1 (en) * 2003-02-14 2004-09-06 Nortel Networks Limited Antenna diversity
MXPA05009100A (es) * 2003-02-28 2006-05-19 Thomson Licensing Metodo para un canal descendente exclusivo de la red de area local inalambrica.
US7653031B2 (en) * 2003-03-05 2010-01-26 Timothy Gordon Godfrey Advance notification of transmit opportunities on a shared-communications channel
JP4666890B2 (ja) 2003-04-28 2011-04-06 ソニー株式会社 通信システム及び通信方法、並びに通信装置
US20040252637A1 (en) * 2003-06-12 2004-12-16 Laberteaux Kenneth P. Robust, low-delay, fast reconfiguring wireless system
US7317687B2 (en) * 2003-06-12 2008-01-08 Koninklijke Philips Electronics N.V. Transmitting data frames with less interframe space (ifs) time
US8107882B2 (en) * 2003-07-30 2012-01-31 Intellectual Ventures I Llc Intelligent downstream traffic delivery to multi-protocol stations
JP4016902B2 (ja) * 2003-07-30 2007-12-05 トヨタ自動車株式会社 外部信号供給装置および車両状態取得システム
US7792114B2 (en) * 2003-07-30 2010-09-07 Michael Andrew Fischer Signaling extended functionality and management information in a network
MY141977A (en) * 2003-08-08 2010-08-16 Intel Corp Sdma training operation
US20050094558A1 (en) * 2003-11-05 2005-05-05 Interdigital Technology Corporation Wireless local area network (WLAN) methods and components that utilize traffic prediction
EP1530316A1 (en) * 2003-11-10 2005-05-11 Go Networks Improving the performance of a wireless packet data communication system
US7734561B2 (en) * 2003-12-15 2010-06-08 International Business Machines Corporation System and method for providing autonomic management of a networked system using an action-centric approach
WO2005067213A1 (ja) * 2003-12-26 2005-07-21 Matsushita Electric Industrial Co., Ltd. 無線アクセスシステム
US7542453B2 (en) 2004-01-08 2009-06-02 Sony Corporation Wireless communication system, wireless communication apparatus, wireless communication method, and computer program
KR100934985B1 (ko) * 2004-01-19 2010-01-06 삼성전자주식회사 Dcf를 따르는 무선통신방법
JP2007519358A (ja) * 2004-01-26 2007-07-12 サムスン エレクトロニクス カンパニー リミテッド 無線ネットワーク通信において仮想キャリアセンスのための情報送受信および情報設定方法とこれを実現する装置
US7403488B2 (en) * 2004-02-17 2008-07-22 Mitsubishi Electric Research Labortories, Inc. Scheduling packet flows in multi-rate wireless local area networks
US7295542B2 (en) * 2004-03-04 2007-11-13 Sharp Laboratories Of America, Inc. System and method for beacon timing control in a mixed IEEE 802.11 network
JP2005295499A (ja) * 2004-03-08 2005-10-20 Matsushita Electric Ind Co Ltd 無線ネットワークにおけるメディアアクセスオーバヘッド低減方法
US20050232275A1 (en) * 2004-03-12 2005-10-20 Stephens Adrian P Legacy device fairness apparatus, systems, and methods
EP1592178B8 (en) 2004-04-30 2012-10-24 Sharp Kabushiki Kaisha Interoperability between different wireless LAN systems
CA2564318C (en) 2004-04-30 2017-12-19 Interdigital Technology Corporation Method and apparatus for minimizing redundant enhanced uplink allocation requests
KR101122359B1 (ko) * 2004-05-07 2012-03-23 인터디지탈 테크날러지 코포레이션 무선 근거리 통신망의 긴급 호 지원
US7710923B2 (en) * 2004-05-07 2010-05-04 Interdigital Technology Corporation System and method for implementing a media independent handover
US8145182B2 (en) * 2004-05-07 2012-03-27 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network
US8682279B2 (en) 2004-05-07 2014-03-25 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network
KR100837710B1 (ko) * 2004-05-14 2008-06-16 인터디지탈 테크날러지 코포레이션 이동국 커버지리를 개선하기 위하여 액세스 포인트안테나의 구성을 선택적으로 조정하는 방법
US7826431B2 (en) * 2004-05-14 2010-11-02 Interdigital Technology Corporation Method of selectively adjusting the configuration of an access point antenna to enhance mobile station coverage
KR100633104B1 (ko) * 2004-05-14 2006-10-12 삼성전자주식회사 인쇄옵션의 저장 및 인쇄가 가능한 인쇄방법
KR100678939B1 (ko) * 2004-08-27 2007-02-07 삼성전자주식회사 인프라스트럭처 모드의 무선 네트워크 환경에 있어서,무선 데이터 전송 방법
US7590078B2 (en) * 2004-10-05 2009-09-15 Qualcomm Incorporated Detecting legacy spoofing in reduced functionality user terminals
US10296064B2 (en) 2004-10-15 2019-05-21 Nokia Technologies Oy Reduction of power consumption in wireless communication terminals
US7447185B2 (en) 2004-12-29 2008-11-04 Intel Corporation Transmitting and protecting long frames in a wireless local area network
US7920530B2 (en) * 2005-01-18 2011-04-05 Marvell World Trade Ltd. WLAN TDM IFS time selection protocol
US7751374B2 (en) * 2005-01-18 2010-07-06 Marvell World Trade Ltd. WLAN TDM protocol
US8483190B2 (en) 2005-01-18 2013-07-09 Marvell World Trade Ltd. Wireless local area network (WLAN) time division multiplexed (TDM) interframe space (IFS) time selection protocol
US7826472B2 (en) * 2005-02-18 2010-11-02 Avaya Inc. Methods and systems for providing priority access to 802.11 endpoints using DCF protocol
WO2006092465A1 (en) 2005-03-04 2006-09-08 Nokia Corporation Link establishment in a wireless communication environment
EP1869814A1 (en) * 2005-04-12 2007-12-26 STMicroelectronics S.r.l. Method and system for controlling transmission of multicast packets over a local area network, related network and computer program product therefor
US7813312B2 (en) * 2005-05-06 2010-10-12 Interdigital Technology Corporation Method and system for preventing high speed downlink packet access transmissions loss
US7961749B2 (en) * 2005-08-18 2011-06-14 Samsung Electronics Co., Ltd. Signaling method and system for channel switching in a wireless local area network
KR101245082B1 (ko) * 2005-08-18 2013-03-18 삼성전자주식회사 무선랜에서 채널 변경을 위한 시그널링 방법 및 장치
KR101246774B1 (ko) * 2005-11-22 2013-03-26 삼성전자주식회사 무선 랜 메쉬 통신 시스템에서 신호 송수신 방법 및 장치
KR100782844B1 (ko) * 2006-01-12 2007-12-06 삼성전자주식회사 무선랜에서 채널 본딩을 이용하여 데이터 프레임을전송하는 방법 및 장치
US8194693B2 (en) * 2006-04-03 2012-06-05 British Telecommunications Public Limited Company Autonomous wireless networks
EP1843528A1 (en) * 2006-04-03 2007-10-10 BRITISH TELECOMMUNICATIONS public limited company Method and wireless sensor device for allocating time slots in a wireless sensor network
AU2007243312A1 (en) 2006-04-24 2007-11-08 Interdigital Technology Corporation Method and signaling procedure for transmission opportunity usage in a wireless mesh network
CN101438536B (zh) * 2006-05-09 2012-01-04 松下电器产业株式会社 干扰抑制方法和干扰抑制装置
US7821994B2 (en) * 2006-06-23 2010-10-26 Bae Systems Information And Electronic Systems Integration Inc. Supporting mobile Ad-Hoc network (MANET) and point to multi-point (PMP) communications among nodes in a wireless network
WO2008057882A2 (en) 2006-11-07 2008-05-15 Conexant Systems, Inc. Systems and methods for management of wireless clients
US20100039969A1 (en) * 2006-11-16 2010-02-18 Nec Corporation Radio communication device, radio communication method, and radio communication program
CN100558068C (zh) * 2006-12-19 2009-11-04 华为技术有限公司 一种超帧管理方法
JP4888396B2 (ja) * 2007-03-05 2012-02-29 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US8144676B2 (en) * 2007-09-04 2012-03-27 Conexant Systems, Inc. Network allocation
US7990944B2 (en) * 2007-09-06 2011-08-02 Wi-Lan, Inc. Contention-based communication
US7924747B2 (en) * 2007-11-29 2011-04-12 Bae Systems Information And Electronic Systems Integration Inc. Enhancement of node connectivity in a wireless communications network with changing topology via adaptive role changing
US8320358B2 (en) * 2007-12-12 2012-11-27 Qualcomm Incorporated Method and apparatus for resolving blinded-node problems in wireless networks
US20090160696A1 (en) * 2007-12-21 2009-06-25 Ralink Technology Corporation Configurable radar detection and avoidance system for wireless ofdm tranceivers
US7920494B2 (en) * 2008-01-04 2011-04-05 Motorola Mobility, Inc. Method and apparatus for performing mobility measurements in a communication network
JP5331807B2 (ja) * 2008-07-15 2013-10-30 パナソニック株式会社 制御装置、通信端末、制御方法、および通信方法
US8081615B2 (en) * 2008-10-10 2011-12-20 Mediatek Inc. Method and apparatus to allow coexistence between wireless devices
US20100195585A1 (en) * 2009-02-04 2010-08-05 Qualcomm Incorporated Methods and systems for scheduling among nodes for a data slot in wireless communication networks
US8503359B2 (en) * 2009-06-26 2013-08-06 Intel Corporation Use of delayed clear-to-send and denial-to-send in directional wireless networks
US8335198B2 (en) * 2009-08-03 2012-12-18 Intel Corporation Variable short interframe space
US8923172B2 (en) * 2009-08-24 2014-12-30 Qualcomm Incorporated Deterministic backoff channel access
US10383141B2 (en) * 2009-09-23 2019-08-13 Qualcomm Incorporated Uplink SDMA transmit opportunity scheduling
US8638682B2 (en) * 2009-10-01 2014-01-28 Qualcomm Incorporated Method and apparatus for conducting measurements when multiple carriers are supported
US9173191B2 (en) 2009-12-20 2015-10-27 Intel Corporation Device, system and method of simultaneously communicating with a group of wireless communication devices
US20110158163A1 (en) * 2009-12-28 2011-06-30 University Of Calcutta Energy efficient integrated routing protocol
WO2011129618A2 (ko) * 2010-04-13 2011-10-20 엘지전자 주식회사 무선랜 시스템에서 통신 방법 및 장치
US8619808B2 (en) * 2010-09-14 2013-12-31 Stmicroelectronics, Inc. Mechanism to update a NAV timer
KR101933738B1 (ko) * 2011-06-24 2018-12-28 인터디지탈 패튼 홀딩스, 인크 광대역 및 다중 대역폭 전송 프로토콜을 지원하는 방법 및 장치
GB2500283B (en) * 2012-03-12 2015-02-11 Broadcom Corp Method and apparatus for scaling an idle period
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US8649458B2 (en) 2012-05-29 2014-02-11 Magnolia Broadband Inc. Using antenna pooling to enhance a MIMO receiver augmented by RF beamforming
US8971452B2 (en) 2012-05-29 2015-03-03 Magnolia Broadband Inc. Using 3G/4G baseband signals for tuning beamformers in hybrid MIMO RDN systems
US8619927B2 (en) 2012-05-29 2013-12-31 Magnolia Broadband Inc. System and method for discrete gain control in hybrid MIMO/RF beamforming
US8644413B2 (en) 2012-05-29 2014-02-04 Magnolia Broadband Inc. Implementing blind tuning in hybrid MIMO RF beamforming systems
US8885757B2 (en) 2012-05-29 2014-11-11 Magnolia Broadband Inc. Calibration of MIMO systems with radio distribution networks
US9154204B2 (en) 2012-06-11 2015-10-06 Magnolia Broadband Inc. Implementing transmit RDN architectures in uplink MIMO systems
US9345026B2 (en) 2012-07-09 2016-05-17 Qualcomm Incorporated Methods and apparatus for requested reverse direction protocol
US9343808B2 (en) 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US9155110B2 (en) 2013-03-27 2015-10-06 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US20140226740A1 (en) 2013-02-13 2014-08-14 Magnolia Broadband Inc. Multi-beam co-channel wi-fi access point
US8989103B2 (en) 2013-02-13 2015-03-24 Magnolia Broadband Inc. Method and system for selective attenuation of preamble reception in co-located WI FI access points
CN103228056B (zh) * 2013-04-24 2019-03-01 中兴通讯股份有限公司 一种信道接入的处理方法和装置
US9100968B2 (en) 2013-05-09 2015-08-04 Magnolia Broadband Inc. Method and system for digital cancellation scheme with multi-beam
US9425882B2 (en) 2013-06-28 2016-08-23 Magnolia Broadband Inc. Wi-Fi radio distribution network stations and method of operating Wi-Fi RDN stations
US8995416B2 (en) * 2013-07-10 2015-03-31 Magnolia Broadband Inc. System and method for simultaneous co-channel access of neighboring access points
US10021710B2 (en) * 2013-08-12 2018-07-10 Samsung Electronics Co., Ltd. System and method for supporting coexistence of multiple radio
US9497781B2 (en) 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
US9088898B2 (en) 2013-09-12 2015-07-21 Magnolia Broadband Inc. System and method for cooperative scheduling for co-located access points
US9060362B2 (en) * 2013-09-12 2015-06-16 Magnolia Broadband Inc. Method and system for accessing an occupied Wi-Fi channel by a client using a nulling scheme
US20150117366A1 (en) * 2013-10-29 2015-04-30 Qualcomm Incorporated Systems and methods for improved communication efficiency in high efficiency wireless networks
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US8942134B1 (en) 2013-11-20 2015-01-27 Magnolia Broadband Inc. System and method for selective registration in a multi-beam system
US8929322B1 (en) 2013-11-20 2015-01-06 Magnolia Broadband Inc. System and method for side lobe suppression using controlled signal cancellation
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9014066B1 (en) 2013-11-26 2015-04-21 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9042276B1 (en) 2013-12-05 2015-05-26 Magnolia Broadband Inc. Multiple co-located multi-user-MIMO access points
WO2015101974A1 (en) * 2013-12-30 2015-07-09 Mariana Goldhamer Protection in shared frequency bands of lte networks
US9172446B2 (en) 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
US9100154B1 (en) 2014-03-19 2015-08-04 Magnolia Broadband Inc. Method and system for explicit AP-to-AP sounding in an 802.11 network
US9271176B2 (en) 2014-03-28 2016-02-23 Magnolia Broadband Inc. System and method for backhaul based sounding feedback
US9526111B2 (en) 2014-07-17 2016-12-20 Qualcomm Incorporated Clear-to-send signaling to limit WiFi interference in unlicensed spectrum
WO2016021994A1 (ko) 2014-08-07 2016-02-11 주식회사 윌러스표준기술연구소 무선 통신 방법 및 무선 통신 단말
KR102163485B1 (ko) * 2014-10-22 2020-10-07 주식회사 윌러스표준기술연구소 무선 통신 방법 및 무선 통신 단말
US10015174B2 (en) 2016-03-16 2018-07-03 Qualcomm Incorporated Using communication characteristics of a station to verify identity information
DE112019007443T5 (de) 2019-06-13 2022-03-03 Halliburton Energy Services, Inc. Reaktiver bohrlochperforator zur reduzierung von druckabfall
US10856331B1 (en) * 2019-09-10 2020-12-01 Cypress Semiconductor Corporation Devices, systems, and methods for mitigating aggressive medium reservations
US11382133B2 (en) * 2020-11-09 2022-07-05 GM Global Technology Operations LLC Method and apparatus for intelligent wireless protocol optimization

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554677A (en) * 1983-12-22 1985-11-19 Motorola, Inc. Queued community repeater controller
JPS62107542A (ja) * 1985-11-05 1987-05-18 Nec Corp 無線通信方式
US5557745A (en) * 1990-09-04 1996-09-17 Digital Equipment Corporation Method for supporting foreign protocols across backbone network by combining and transmitting list of destinations that support second protocol in first and second areas to the third area
WO1995001020A1 (en) * 1993-06-25 1995-01-05 Xircom, Incorporated Virtual carrier detection for wireless local area network with distributed control
FI98426C (fi) * 1994-05-03 1997-06-10 Nokia Mobile Phones Ltd Järjestelmä pakettidatan siirtämiseksi digitaalisen aikajakomonikäyttöön TDMA perustuvan solukkojärjestelmän ilmarajapinnassa
JP3262966B2 (ja) * 1994-06-20 2002-03-04 キヤノン株式会社 通信装置及びその制御方法
JP3041200B2 (ja) * 1994-07-21 2000-05-15 シャープ株式会社 データ通信装置およびその方法
FI97095C (fi) 1994-10-31 1996-10-10 Nokia Mobile Phones Ltd TDMA-signaalien kehysajastuksen ohjaus
JP2715938B2 (ja) * 1994-11-08 1998-02-18 日本電気株式会社 無線通信ネットワークの端末装置
US5953344A (en) 1996-04-30 1999-09-14 Lucent Technologies Inc. Method and apparatus enabling enhanced throughput efficiency by use of dynamically adjustable mini-slots in access protocols for shared transmission media
FI103467B (fi) * 1996-07-25 1999-06-30 Nokia Telecommunications Oy Solun laajentaminen aikajakoisessa solukkojärjestelmässä
GB9725659D0 (en) * 1997-12-03 1998-02-04 Nokia Mobile Phones Ltd The LPRF system with frequency hopping extensions
US7054296B1 (en) * 1999-08-04 2006-05-30 Parkervision, Inc. Wireless local area network (WLAN) technology and applications including techniques of universal frequency translation
JP4374725B2 (ja) * 1999-09-22 2009-12-02 パナソニック株式会社 通信方法及び通信局
EP1119137B1 (en) * 2000-01-20 2006-08-16 Lucent Technologies Inc. Interoperability for bluetooth/IEEE 802.11
US6963549B1 (en) * 2000-01-26 2005-11-08 Ntt Multimedia Communications Laboratories, Inc. Technique for reserving bandwidth for communications over a wireless system
US6754176B1 (en) * 2000-03-01 2004-06-22 Sharewave, Inc. Scheme for managing overlapping wireless computer networks
US6556582B1 (en) * 2000-05-15 2003-04-29 Bbnt Solutions Llc Systems and methods for collision avoidance in mobile multi-hop packet radio networks
US7054329B2 (en) * 2000-07-07 2006-05-30 Koninklijke Philips Electronics, N.V. Collision avoidance in IEEE 802.11 contention free period (CFP) with overlapping basic service sets (BSSs)
US20030054827A1 (en) * 2000-09-11 2003-03-20 Schmidl Timothy M. Wireless communication channel selection using passive interference avoidance techniques
US6895255B1 (en) * 2000-10-20 2005-05-17 Symbol Technologies, Inc. Dual mode wireless data communications
US7058074B2 (en) * 2000-11-01 2006-06-06 Texas Instruments Incorporated Unified channel access for supporting quality of service (QoS) in a local area network
WO2002037754A2 (en) * 2000-11-03 2002-05-10 At & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
US6850542B2 (en) * 2000-11-14 2005-02-01 Broadcom Corporation Linked network switch configuration
US7251232B1 (en) * 2000-11-22 2007-07-31 Cisco Technology, Inc. Point-controlled contention arbitration in multiple access wireless LANs
US6965942B1 (en) * 2001-01-12 2005-11-15 3Com Corporation Method and system for improving throughput over wireless local area networks with a dynamic contention window
US6990116B1 (en) * 2001-01-12 2006-01-24 3Com Corporation Method and system for improving throughput over wireless local area networks with mode switching
US20020167963A1 (en) * 2001-03-27 2002-11-14 Mario Joa-Ng Method and apparatus for spread spectrum medium access protocol with collision avoidance using controlled time of arrival
US20020172186A1 (en) * 2001-04-09 2002-11-21 Peter Larsson Instantaneous joint transmit power control and link adaptation for RTS/CTS based channel access
US7164671B2 (en) * 2001-12-27 2007-01-16 Koninklijke Philips Electronics N.V. Overlapping network allocation vector (ONAV) for avoiding collision in the IEEE 802.11 WLAN operating under HCF
US7016948B1 (en) * 2001-12-21 2006-03-21 Mcafee, Inc. Method and apparatus for detailed protocol analysis of frames captured in an IEEE 802.11 (b) wireless LAN
US7471667B2 (en) * 2002-01-09 2008-12-30 Nxp B.V. Coexistence of modulation schemes in a WLAN
US6882635B2 (en) * 2002-02-05 2005-04-19 Qualcomm Incorporated Coexistence between interfering communication systems

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006516847A (ja) * 2003-01-09 2006-07-06 トムソン ライセンシング Wlanにおける帯域プロビジョニング方法及び装置
JP4734227B2 (ja) * 2003-01-09 2011-07-27 トムソン ライセンシング Wlanにおける帯域プロビジョニング方法及び装置
JP2005341557A (ja) * 2004-04-30 2005-12-08 Sharp Corp 無線lanシステム
JP2007536865A (ja) * 2004-05-07 2007-12-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信ネットワークにおける媒体の分散的予約方法
JP4768729B2 (ja) * 2004-05-07 2011-09-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 無線通信ネットワークにおける媒体の分散的予約方法
JP2009500945A (ja) * 2005-07-05 2009-01-08 クゥアルコム・インコーポレイテッド 無線ネットワークにおけるネットワーキング拡張範囲およびレガシーデバイスのためのmacレベル保護
JP2009515417A (ja) * 2005-11-07 2009-04-09 サムスン エレクトロニクス カンパニー リミテッド 無線lanでステーション間の媒体接近に対する公正性を保証する方法及び装置
JP2009516466A (ja) * 2005-11-17 2009-04-16 サムスン エレクトロニクス カンパニー リミテッド 無線lanで衝突を防止するための媒体接近方法及び装置
US8144653B2 (en) 2005-11-17 2012-03-27 Samsung Electronics Co., Ltd. Medium access apparatus and method for preventing a plurality of stations in a wireless local area network from colliding with one another
JP2009522910A (ja) * 2006-01-05 2009-06-11 サムスン エレクトロニクス カンパニー リミテッド 無線lanで隠れノードに制御フレームを伝達する方法及び装置
USRE47579E1 (en) 2006-01-05 2019-08-20 Sisvel International S.A. Method and apparatus for transmitting control frame to hidden node in wireless LAN
JP2010512716A (ja) * 2006-12-14 2010-04-22 インテル コーポレイション サービスの優先制御を行う無線ローカルエリアネットワーク、無線通信装置及び方法
US9066267B2 (en) 2008-08-29 2015-06-23 Intel Corporation Device, method and system of establishing a protected time during an allocated time
JP2014017866A (ja) * 2008-08-29 2014-01-30 Intel Corp 直接の信頼できるリンクアクセス方法及び装置
US9414400B2 (en) 2012-03-09 2016-08-09 Alcatel Lucent Method of scheduling radio resource in wireless local area network
JP2015513862A (ja) * 2012-03-09 2015-05-14 アルカテル−ルーセント 無線ローカルエリアネットワークにおいて無線リソースのスケジューリングを行う方法
US9894652B2 (en) 2012-10-18 2018-02-13 Lg Electronics Inc. Method and apparatus for channel access in wireless LAN system
JP2016500223A (ja) * 2012-10-18 2016-01-07 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてチャネルアクセス方法及び装置
JP2016533058A (ja) * 2013-06-25 2016-10-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド コンフリクトを検出し、解決するためのシステム及び方法
US9681467B2 (en) 2013-06-25 2017-06-13 Futurewei Technologies, Inc. System and method for detecting and resolving conflicts
JP2015026935A (ja) * 2013-07-25 2015-02-05 日本電信電話株式会社 無線通信システムおよび無線通信方法
JP2017531366A (ja) * 2014-08-22 2017-10-19 クゥアルコム・インコーポレイテッドQualcomm Incorporated 無認可無線周波数スペクトル帯域を介してチャネル占有識別子を送信および受信するための技法
US10356807B2 (en) 2014-08-22 2019-07-16 Qualcomm Incorporated Techniques for transmitting and receiving channel occupancy identifiers over an unlicensed radio frequency spectrum band
US10716129B2 (en) 2014-08-22 2020-07-14 Qualcomm Incorporated Techniques for transmitting and receiving channel occupancy identifiers over an unlicensed radio frequency spectrum band
JP2018521569A (ja) * 2015-06-05 2018-08-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) ワイヤレス通信ネットワークにおいて送信を扱うためのステーション、アクセスポイント、及びそれらにおける方法
US10524285B2 (en) 2015-06-05 2019-12-31 Telefonaktiebolaget Lm Ericsson (Publ) Station and methods therein for handling transmissions in a wireless communications network
WO2017039377A1 (ko) * 2015-09-02 2017-03-09 주식회사 윌러스표준기술연구소 네트워크 얼로케이션 벡터를 이용하는 무선 통신 방법 및 무선 통신 단말
US10588128B2 (en) 2015-09-02 2020-03-10 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal, which use network allocation vector
US11259298B2 (en) 2015-09-02 2022-02-22 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal, which use network allocation vector
US11523390B2 (en) 2015-09-02 2022-12-06 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal, which use network allocation vector
US11743873B2 (en) 2015-09-02 2023-08-29 Wilus Institute Of Standards And Technology Inc. Wireless communication method and wireless communication terminal, which use network allocation vector

Also Published As

Publication number Publication date
CA2439697A1 (en) 2002-09-12
EP1382135A4 (en) 2010-02-10
US7133381B2 (en) 2006-11-07
WO2002071650A1 (en) 2002-09-12
US20020184389A1 (en) 2002-12-05
US20090187661A1 (en) 2009-07-23
EP1382135B1 (en) 2013-10-16
US8069248B2 (en) 2011-11-29
CA2439697C (en) 2007-11-13
US20020181426A1 (en) 2002-12-05
US7046650B2 (en) 2006-05-16
EP1382135A1 (en) 2004-01-21
US20020181425A1 (en) 2002-12-05
US7523205B1 (en) 2009-04-21
JP3987800B2 (ja) 2007-10-10

Similar Documents

Publication Publication Date Title
JP3987800B2 (ja) 802.11用干渉抑圧方法
US7305004B2 (en) Interference suppression methods for 802.11
US7046690B2 (en) Interference suppression methods for 802.11
US20220132611A1 (en) Multi-link communications of a wireless network
US7463645B2 (en) Medium reservation with channel selectivity
JP4374725B2 (ja) 通信方法及び通信局
KR200404707Y1 (ko) 메시 네트워크에서 ack 전송 시에 레이턴시를 단축하기위한 메시 네트워크용 노드
JP4939157B2 (ja) 無線分散型ネットワークにおけるメディアアクセス制御方法及び装置
US7787437B2 (en) Wireless communication system, apparatus, method and computer program product including timed beacon transmission control
US7944874B2 (en) Method and apparatus for transmitting control frame to hidden node in wireless LAN
JP2004525586A (ja) Hcf方式で動作するieee802.00準拠の無線lanで衝突を回避するためのオーバーラップネットワークアロケーションベクトル(onav)
CN114071512B (zh) 管理基本服务集颜色的方法、接入点和站点
Fullmer et al. Complete single-channel solutions to hidden terminal problems in wireless LANs
WO2015106417A1 (zh) 预留信道的方法及通信设备
EP2070262B1 (en) Wireless network
Ye et al. A jamming‐based MAC protocol to improve the performance of wireless multihop ad‐hoc networks
JP2002064503A (ja) 無線パケット中継方法
KR20080099602A (ko) 무선 네트워크의 전송 보호 방법
US8203945B2 (en) Method, program, and system for transferring data between a number of terminals that communicate via a common communication channel in a wireless network, and a wireless terminal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100720

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110720

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120720

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130720

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees