JP2004362954A - 電子ビームの照射条件維持方法 - Google Patents

電子ビームの照射条件維持方法 Download PDF

Info

Publication number
JP2004362954A
JP2004362954A JP2003160512A JP2003160512A JP2004362954A JP 2004362954 A JP2004362954 A JP 2004362954A JP 2003160512 A JP2003160512 A JP 2003160512A JP 2003160512 A JP2003160512 A JP 2003160512A JP 2004362954 A JP2004362954 A JP 2004362954A
Authority
JP
Japan
Prior art keywords
current
emitter
electron beam
aperture
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003160512A
Other languages
English (en)
Inventor
Yasuhiro Takano
泰洋 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2003160512A priority Critical patent/JP2004362954A/ja
Publication of JP2004362954A publication Critical patent/JP2004362954A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

【課題】試料に照射される電子ビームの集束状態を一定に維持したまま、プローブ電流を一定に制御すること。
【解決手段】対物アパーチャー18とフィラメント11aの加熱電源15には、I/V変換器61、A/D変換器62、CPU63、D/A変換器64、フィラメント電流制御回路65、主フィラメント電流設定器66、メモリ67を含む電子回路6が接続されている。エミッター11から試料2に向けて放射された電子ビームA’’のプローブ電流Iを一定に制御するに際し、電子回路6は、対物アパーチャー18に流れるアパーチャー電流Iを測定し、Iとの略比例関係に基づいてIを推定し、推定されたIがメモリ67に記憶された所定値となるように、フィラメント111に流れるフィラメント電流Iを、Iとの略比例関係に基づいて、エミッター11の適正動作温度の許容範囲内で増減制御する。
【選択図】図2

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビームの照射条件維持方法に関し、特に、熱電界放射型電子銃から放射される電子ビームの集束状態を変えることなく、プローブ電流を一定に制御する方法に関するものである。
【0002】
【従来の技術】
電子描画装置、電子露光装置、電子顕微鏡等の電子放射に用いられる電子銃は、熱電子放射型電子銃と、電界放射型電子銃と、熱電界放射型電子銃とに大別される。
【0003】
熱電子放射型電子銃は、エミッター(例えばタングステンフィラメントやホウ化ランタン(LaB6)で構成される)を真空中で加熱することによって電子を発生させる。一方、電界放射型電子銃は、針状に先端を尖らせたエミッターの先端に強電界をかけることによって、電子を発生させる。
【0004】
熱電界放射型電子銃は、上記2種類の電子銃の両方の性質を合わせ持ち、エミッターの先端を加熱しながら強電界をかけることにより、エミッターの先端に静電応力と表面張力とがバランスする状態を作り、電子を発生させる。
【0005】
熱電界放射型電子銃は、一般的には図4に示すように、主としてエミッター11、引き出し電極12、コンデンサー電極13a、接地電極14から構成される。エミッター11は、発生した電子を加速させて電子ビームとして放射するための加速電圧E(例えば−50.4kV)が接地電極14の接地電位に対して印加され、更にサプレッサー電圧H(例えば400V)が印加され、−50kVの電位にある。引き出し電極12には電界を発生させるための引き出し電圧Fが加速電位よりも高く印加され、コンデンサー電極13aには電子ビームの集束を調節するためのコンデンサー電圧Gが加速電位よりも一般には高く印加される。
【0006】
エミッター11は、例えば図5に示すように、ヘアピン状のタングステンフィラメント11aの先端に針状のタングステン線ニードル11bを溶接し、溶接されたニードル11bの根元部に塗りつけた水酸化ジルコン(ZrH)を酸素雰囲気中で加熱することで、ニードル11bの先端にZr/O/Wコンポジションを形成したものである。
【0007】
このエミッター11のフィラメント11aは、図4に示すように、加速電位に設けられた0〜3V、0〜3Aの容量を持つ加熱電源15に接続される。Zr/O/Wエミッターは、フィラメント電流Iを流すことにより、適正動作温度である1800Kに加熱される。Zr/O/Wエミッターは、高真空雰囲気下(例えば1×10−8Pa程度)で安定動作するため、サプレッサーキャップ16に覆われ、ニードル11bの先端のみがサプレッサーキャップ16からわずかに突出している。
【0008】
ここで、ニードル11bの先端と引き出し電極12の距離が約0.03インチ、サプレッサー電圧Hがエミッター11に対して約−400Vあり、フィラメント電流Iが約2.3Aである場合、電子銃から放射される電子ビームの電荷量に対応するトータルのエミッション電流I(図4中示されるIを測定)と引き出し電圧(Vex)との関係は、図6に示す通りである。図6に示したように、引き出し電圧Vexを変えると、エミッション電流Iが変わることが分かる。
【0009】
エミッター11から発生した電子は加速されて電子ビームとして放射された後、まず、引き出し電極12内に設けたビームリミッティングアパーチャー12aで不要な電子ビームが制限される。更に、電子ビームは、コンデンサー電極13aより下に設けられたブランキング電極17(図示せず)の位置にクロスオーバーを形成するように集束され、偏向コイル19、対物レンズ20(いずれも図示せず)を経て、最終的に微細な電子ビームとなり、試料(例えば電子描画装置では、シリコンウェハーにレジストを塗布した基板)の所定位置に照射され、検出、プロッタリング(露光)等が行われる。
【0010】
熱電界放射型電子銃は、熱電子型電子銃に比べて、エミッターの大きさが遥かに小さいにもかかわらず高輝度な電子ビームが得られ、又、電界放射型電子銃に比べて、安定なエミッション電流が得られるので、高分解能が要求される電子描画装置等には欠かせない。
【0011】
このように、電子描画装置等に熱電界放射型電子銃を用いる場合、当然のことながら、照射条件が一定に維持されることが要求される。照射条件が一定でないと、例えば露光装置では露光条件等の各種の条件が変わってしまい、装置としての品質、精度が保証されないからである。
【0012】
ここで、照射条件を一定に維持するためには、一定の集束状態で試料の所定位置に一定のビーム径の電子ビームが照射されること、試料に照射される電子ビームの電荷量に対応するプローブ電流が、長時間(例えば10時間程度)に渡って一定であることが必要である。
【0013】
しかし、熱電界放射型電子銃を長時間に渡って連続使用していると、高真空雰囲気下であっても、エミッター11の先端表面の状態が変化し、電子の発生量が減少し、プローブ電流が変化してしまう。
【0014】
そこで従来は、長時間プローブ電流を一定に保つために、引き出し電圧Fを変化させる方法が採用されていた(例えば特許文献1、特許文献2参照。)。
【0015】
しかし、このような方法を採用した場合、以下に説明する技術的な課題があった。
【0016】
【特許文献1】
特許第2818014号公報
【特許文献2】
特許第3014206号公報
【0017】
【発明が解決しようとする課題】
引き出し電極12から、ブランキング電極17位置のクロスオーバー形成ポイントまでの距離をZとすると、Zは図7に示すように、加速電圧(VACC)、引き出し電圧(Vext)、コンデンサー電圧(VCL)との関係で決められる。
【0018】
つまり、加速電圧E、コンデンサー電圧Gを一定にした状態で引き出し電圧Fのみを変化させると、確かに図6に示したようにエミッション電流Iは調節出来るが、Zが変化してしまうので、電子ビームの集束状態が変化し、試料上のビーム径が変化してしまう。
【0019】
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、一旦調整された電子ビームの集束状態を変えることなく、長時間に渡って、電子ビームの照射条件を一定に維持する方法を提供することにある。
【0020】
【課題を解決するための手段】
請求項1の発明は、
電子を発生させるエミッターと、前記エミッターのフィラメントにフィラメント電流を流して前記エミッターを加熱する加熱電源と、前記エミッターの先端との間に電界を発生させる引き出し電極と、前記電子を加速して電子ビームとするための加速電位を前記エミッターに対して与える接地電極とを少なくとも備える熱電界放射型電子銃と、前記電子ビームを集束するレンズと、不要な電子ビームを制限して試料への照射に必要な電子ビームを通過させるアパーチャーとを備えた電子ビーム発生装置において、前記エミッター、前記電極、前記レンズ、及び前記アパーチャーの調整によって得られる所定条件を、前記試料への照射の際に維持する電子ビームの照射条件維持方法であって、前記アパーチャーに照射される不要な電子ビームの電荷量に対応するアパーチャー電流を測定し、前記アパーチャー電流に基づいて、前記フィラメント電流を前記エミッターの適正動作温度の許容範囲内で増減制御して、前記電子ビームの集束状態を一定に維持したまま、前記試料に照射される電子ビームの電荷量に対応するプローブ電流を一定にする電子ビームの照射条件維持方法である。
【0021】
請求項1の発明により、一旦、電極やレンズ等の調整を終えた後は、引き出し電圧を変化させなくても、試料に照射される電子ビームの集束状態が変わることなく、プローブ電流が一定に制御されるので、試料への照射条件が維持され、長時間電子銃を稼動させることが出来る。
【0022】
請求項2の発明は、
前記プローブ電流は、前記アパーチャー電流との略比例関係に基づいて推定され、前記フィラメント電流は、前記推定されたプローブ電流との略比例関係に基づいて制御される電子ビームの照射条件維持方法である。
【0023】
請求項2の発明により、アパーチャー電流からプローブ電流の推定、推定されたプローブ電流からフィラメント電流の算出が高速に行われ、加熱電源への素早いフィードバックが可能となる。
【0024】
請求項3の発明は、
前記アパーチャーは、対物アパーチャーである電子ビームの照射条件維持方法である。
【0025】
請求項3の発明により、測定されるアパーチャー電流とプローブ電流の比例関係の精度が増すので、細かいプローブ電流制御を行うことが出来る。
【0026】
請求項4の発明は、
前記エミッターは、Zr/O/Wエミッターである電子ビームの照射条件維持方法である。
【0027】
請求項5の発明は、
前記Zr/O/Wエミッターの適正動作温度の許容範囲は、定常状態の±50Kである電子ビームの照射条件維持方法である。
【0028】
請求項6の発明は、
前記Zr/O/Wエミッターのフィラメント電流の許容範囲は、定常状態の±5%である電子ビームの照射条件維持方法である。
【0029】
これら発明により、超高真空環境を必要とし、安定動作を得ることが難しいZr/O/Wエミッターのプローブ電流を、エミッターが破壊、故障等することなく、一定に制御することが可能となる。
【0030】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図3は、本発明にかかる電子ビームの照射条件維持方法の一実施例を示している。
【0031】
尚、以下に説明する実施例では、前述した従来例と同一もしくは相当する部分には、同一符号を付している。
【0032】
図1は、熱電界放射型電子銃を用いた電子露光装置の構成の概要を示している。この電子露光装置は、電子ビームAを放射する電子銃1、電子ビームA’を集束してクロスオーバー点Bをブランキング電極17の位置に形成する磁界型コンデンサーレンズ13b、電子ビームA’を偏向制御するブランキング電極17、電子ビームA’のうち不要な電子ビームを制限して試料2に必要な電子ビームA’’のみを通過させる対物アパーチャー18、電子ビームA’’を走査する偏向コイル19、電子ビームA’’を試料2の所定位置Cに集束する磁界型対物レンズ20が、上から順に、電子ビームAが電子ビームA’’として試料2に到達するまでの間に設置されている。
【0033】
尚、図4に示した電子銃1の構成のうち、コンデンサー電極13aにもレンズ作用はあるため、コンデンサーレンズ13bの代わりに、コンデンサー電極13aがその役割を担ってもよいし、コンデンサーレンズ13bとコンデンサー電極13aが併用されてもよい。又、コンデンサーレンズ13bは電界型レンズであってもよい。
【0034】
電子銃1は、電子を発生させるエミッター11、電界を発生させるための引き出し電極12、電子を加速して電子ビームAとして放射するための加速電位をエミッター11に対して与える接地電極14からなる。尚、電子銃1は、図4に示したようにコンデンサー電極13aを有していてもよい。
【0035】
エミッター11には加速電圧(例えば−50kV)が印加され、引き出し電極12には加速電位よりも一般に高い引き出し電圧(例えば4kV)が印加され、接地電極14は、エミッター11の加速電位の基準グランド(大地電位)に接続される。
【0036】
エミッター11は、図5に示したのと同様、ヘアピン状のタングステンフィラメント11aの先端に針状のタングステン線ニードル11bを溶接し、溶接されたニードル11bの根元部に塗りつけた水酸化ジルコン(ZrH)を酸素雰囲気中で加熱することで、ニードル11bの先端にZr/O/Wコンポジションを形成したものである。
【0037】
このエミッター11のフィラメント11aは、加速電位に設けられた0〜3V、0〜3Aの容量を持つ加熱電源15に接続される。Zr/O/Wエミッターは、フィラメント電流I(例えば2.6A)を流すことにより、約1800Kに加熱される。この温度は、Zr/O/Wエミッターが最も効率よく動作する適正温度であり、原則としてフィラメント電流I、温度ともに一定に保持されるべきであるが、フィラメント電流Iについては±5%、温度については±50Kの範囲内の変化であれば許容され、エミッター11は破壊することなく、適正な動作が保証される。
【0038】
電子ビームAのエミッション電流は、図6に示したように引き出し電圧を調整することで変えられる。又、クロスオーバー点Bの調整は、加速電圧、引き出し電圧、コンデンサーレンズ13bの電流(電界型レンズの場合には電圧)を調整することによって行われる。
【0039】
更に、図1に示した電子露光装置は、電子ビームA’’が試料2の所定位置Cに照射された際に放射される2次電子を検出する検出手段3、検出された2次電子を増幅して映像信号とする増幅器4、映像信号を映し出すモニター5を備える。
【0040】
モニター5は、電子露光装置の使用前に、電子ビームA’’の試料2への照射条件のうち、集束状態を確認するために用いられる。ここで、正しい集束状態とは、電子ビームA’が所定位置Bにクロスオーバー点を形成して、電子ビームA’’として試料2の所定位置Cに焦点を合わせて一定のビーム径で集束される状態を指し、このために、電極やコンデンサーレンズ13bの調整を行う。
【0041】
電子露光装置の使用前には、上記集束状態を確認する他、電子ビームA’’の電荷量に対応する一定の電流(プローブ電流)が試料2に対して流れることを確認する必要がある。そのため、対物アパーチャー18を最適な位置に調整し、かつ、エミッター11や引き出し電極12に印加される電圧及び加熱電源15の電圧の調整を行う。
【0042】
このように、電子露光装置では、上述したような照射条件(一定の集束状態及び一定のプローブ電流)が満足されるよう、電子露光装置の各構成要素の調整を行う。
【0043】
この電子ビームA’’の試料2への照射条件は、長時間に渡って一定に維持されることが要求される。
【0044】
しかし、熱電界放射型電子銃を長時間に渡って連続使用していると、高真空雰囲気下であっても、エミッター11の先端表面の状態が変化し、電子の発生量が減少し、プローブ電流が変化してしまう。この時の電流変動は10時間で10%程度となることがあり、これでは電子露光装置としての目標スペックに到達しない。
【0045】
そこで、引き出し電極12の引き出し電圧を変化させれば、電子銃1から放射される電子ビームAの電荷量に対応するエミッション電流を制御することが出来るので、容易にプローブ電流をも制御することが出来るように思われる。しかしその場合、従来例で説明したように、クロスオーバー点Bの位置が変化してしまい、ビーム径の変化が起きるため、せっかく行った電極やレンズ等の調整が台無しになってしまう。特に、Zr/O/Wエミッターは、高真空雰囲気下で安定動作するため、電子銃1の稼動中に電極やレンズ等の調整をし直すことは困難である。
【0046】
そこで、本実施例では、クロスオーバー点Bの位置を変えることなく、すなわち最初に設定した集束状態を変えることなく、プローブ電流を長時間に渡って一定に制御するために、対物アパーチャー18に照射され、このアパーチャーを通過しなかった不要な電子ビームの電荷量に対応するアパーチャー電流Iを測定し、測定されたアパーチャー電流Iに基づいて、フィラメント電流Iをエミッター11の適正動作温度の許容範囲内で増減制御する電子回路6を、対物アパーチャー18及びエミッター11の加熱電源15に接続するようにした。
【0047】
この電子回路6の詳細を図2に示している。同図に示した電子回路6は、大地電位からフローティングされた対物アパーチャー18から接地電位に対して流れるアパーチャー電流Iを電圧に変換するI/V変換器61(通常オペアンプ等で構成される)と、電圧をA/D変換するA/D変換器62と、演算処理を行うCPU63と、演算処理結果をD/A変換するD/A変換器64と、エミッター11のフィラメント11aに流すフィラメント電流Iを制御するフィラメント電流制御回路65と、フィラメント電流Iのデフォルト値Iを設定する主フィラメント電流設定器66と、演算処理結果や設定値を記憶するメモリ67を含む。
【0048】
フィラメント電流制御回路65は、大容量のトランジスタ等で構成され、その場合、加熱電源15はトランジスタのエミッタとコレクタに接続され、ベースには演算処理結果に応じて可変となるような入力信号が接続される。尚、電子銃1のエミッター11の許容範囲を超えるフィラメント電流を流すと、エミッター11の破壊につながるため、過電流保護回路(サーミスタ、ポジスタ、ポリスイッチ、その他スイッチ等)を設けて、電流制限や温度制限を行うことが望ましい。
【0049】
電子回路6の具体的動作について、以下説明する。図3に示した表とグラフは、実験により、電子ビームA’’の集束状態が一定となるように電子銃1の電極に印加される電圧やレンズ、アパーチャー等の設定調整を行い、クロスオーバー点Bの位置、電子ビームA’’が照射される試料2上の所定位置C、試料2上のビーム径をそれぞれ固定とした上で、電子ビームA’’のプローブ電流I(図3中のIprobeを指す)をエミッター11が破壊せず適正な動作が保証される許容範囲内で変化させた時の、電子ビームAのトータルエミッション電流Itotal(図4に示したIと同じ)、フィラメント電流Iをそれぞれ測定したものある。
【0050】
尚、図3に示す結果は、実験により得られたものであり、試料2の電子ビーム照射位置にファラデーカップを設置し、そのファラデーカップにたまった電荷量に基づいてプローブ電流Iを測定したが、実際、電子露光装置の稼動中に試料2に流れるプローブ電流Iを直接正確に測定することは出来ない。
【0051】
図3に示すように、プローブ電流Iとトータルエミッション電流Itotalとフィラメント電流Iには、相互に略比例関係があることが分かる。つまり、プローブ電流Iを一定に維持するためには、フィラメント電流Iをエミッター11の適正動作温度の許容範囲内で制御すればよい。
【0052】
トータルエミッション電流Itotalとプローブ電流Iは、それぞれ電子ビームの出発点と終着点で測定された電流量であり、放射された電子ビームAの大部分は、引き出し電極12に設けられたビームリミッティングアパーチャー12aでおよそ1/200にまで制限され、更に、対物アパーチャー18でも制限されるから、ItotalとIそれぞれの電流の単位、桁数は大きく異なる。それでも、図3に示したような比例関係は明らかである。
【0053】
更に、ビームリミッティングアパーチャー12aを通過した電子ビームA’は、最終段階で、対物アパーチャー18で不要な電子ビームが制限されて電子ビームA’’となるが、対物アパーチャー18で制限される不要な電子ビームの量は、ビームリミッティングアパーチャー12aで制限される不要な電子ビームの量と比較して十分に少ない。
【0054】
つまり、対物アパーチャー18で制限される不要な電子ビームのアパーチャー電流Iと、対物アパーチャー18を通過した電子ビームA’’のプローブ電流Iとの間にも、当然の如く略比例関係が存在することとなる。しかも、アパーチャー電流Iとプローブ電流Iの比率は、トータルエミッション電流Itotalとプローブ電流Iの比率よりも十分に小さく、比例関係の精度及び再現性が高い。
【0055】
そこで、時間の経過に伴ってエミッター11先端に付着するガス等の要因により、変化してしまうプローブ電流Iを一定に保つため、アパーチャー電流Iを測定し、測定されたアパーチャー電流Iとプローブ電流Iとの相関関係に基づいてプローブ電流Iを推定し、推定されたプローブ電流Iが所定値となるように、プローブ電流Iと相関関係があるフィラメント電流Iを、エミッター11の適正動作温度の許容範囲内で増減制御すればよいことになる。
【0056】
まずは、電子露光装置を使用する前に、各構成要素の設定調整を行い、その調整によって得られる電子ビームの照射条件毎に、一定にすべきプローブ電流Iを設定しておく。
【0057】
ここで、図3に示した例によれば、プローブ電流Iの設定値を0.910nAとし、この値を例えば、キー入力等でCPU63からメモリ67に記憶させておく。0.910nAのプローブ電流Iを流すために必要なフィラメント電流Iは、図3に示した表から2.289Aである。この定電流Iは、予め、図2に示した主フィラメント電流設定器66で設定され、既にフィラメント電流Iが2.289Aとなるよう電子銃1が稼動している。
【0058】
電子露光装置の使用開始後、任意の時間を経過して測定されたアパーチャー電流IがI/V変換器61で電圧変換され、A/D変換器62でデジタル信号としてCPU63に入力される。CPU63は、予めメモリ67に記憶されたアパーチャー電流Iとプローブ電流Iの比例関係に基づいて、測定されたアパーチャー電流Iからプローブ電流Iを推定する。例えば、アパーチャー電流Iとプローブ電流Iが10:1の関係にあり、実際に測定されたアパーチャー電流Iが11nAであれば、プローブ電流Iは1.1nAと推定される。
【0059】
ここで、推定されたプローブ電流Iが予め設定された値と異なる場合には、CPU63は、図3に示したグラフより判断して、プローブ電流Iが設定された値になるように、プローブ電流Iと比例関係にあるフィラメント電流Iを許容される微小な範囲内で増減させるというフィードバックを加熱電源15に対して行う。
【0060】
例えば、推定されたプローブ電流Iが1.1nAであった場合、図3に示したグラフから、現状流れているフィラメント電流Iは主フィラメント電流設定器66で設定された値よりも2%多いことが分かる。つまり、フィラメント電流Iを現状より2%減らせば、フィラメント電流Iが設定値に戻ることが予想される。ここでの−2%は、2.289×(−0.02)=約−0.045Aに相当する。
【0061】
そこで、D/A変換器64は、CPU63から出された指令をアナログ信号に変換し、フィラメント電流Iの増減量ΔIを出力する。フィラメント電流制御回路65を構成するトランジスタのベース部分には、加算器等が接続され、主フィラメント電流設定器66の信号Iと、先の増減量ΔIのアナログ信号とが加算され、ベースに電流を流すことで、トランジスタの増幅率に応じたフィラメント電流Iがトランジスタのエミッタ・コレクタ間に流れる。つまり、加熱電源15のフィラメント電流Iが制御され、プローブ電流Iは間接的に一定に維持される。
【0062】
ここでは、主フィラメント電流設定器66の値Iである2.289と、ΔIである−0.045を加算した結果、2.289−0.045=2.244Aがフィラメント電流Iとして流れる。尚、主フィラメント電流設定器66と加算器の機能がCPU63に含まれ、加算器の結果をCPU63が出力するようであってもよい。
【0063】
又、プローブ電流Iとアパーチャー電流Iの間、プローブ電流Iとフィラメント電流Iの間に、各々比例関係があれば、アパーチャー電流Iとフィラメント電流にも比例関係がある。従って、プローブ電流Iの設定値をメモリ67に記憶させる代わりに、キー入力等のトリガが入力された時点(例えば、プローブ電流Iが設定値となった時)のアパーチャー電流Iをメモリ67に記憶しておき、フィラメント電流Iの許容範囲内でアパーチャー電流Iが一定になるようにフィラメント電流Iを変化させ、その結果プローブ電流Iが一定となるようにしてもよい。この場合、プローブ電流Iの推定過程が不要となる。
【0064】
電子回路6は、電子露光装置が、電子ビームA’’の試料2への照射条件一定下で稼動している間は、一定周期でアパーチャー電流Iの測定を繰り返すことにより、逐次、フィラメント電流Iの微量補正を行う。これにより、引き出し電圧を変えなくても、プローブ電流Iが一定に保たれ、しかも、電子ビームA’’の集束状態が変化しないので、電子露光装置として一定の品質、精度が維持される。
【0065】
特に、超高真空環境を必要とし、安定動作を得ることが難しいZr/O/Wエミッターの場合には、稼動中に電極やレンズの調整をする必要がなくなるため、エミッターが破壊、故障等することなく、プローブ電流を一定に制御することが可能となる。
【0066】
尚、アパーチャー電流Iの測定周期、増減量ΔIの与え方(パルス、連続)、フィラメント電流制御回路65の具体的実現手段は、上記説明した例以外にも、電子露光装置の仕様、構成等に合わせて任意に決めることが出来る。例えば、プローブ電流Iが一定時間は変化しないことが予め分かっていれば、その時間が経過した後からアパーチャー電流Iの測定を開始すればよい。
【0067】
本実施例では、最も細かくフィラメント電流Iの制御を行うため、プローブ電流Iとの相関関係が最も高い、対物アパーチャー18に流れる電流を測定したが、その他のアパーチャー(例えば図4に示したビームリミッティングアパーチャー12a)に流れる電流を測定しても、図3に示した表やグラフ同様に、プローブ電流I及びフィラメント電流Iとの相関関係は得られるので、その関係に基づいてフィラメント電流Iを制御してもよい。
【0068】
本発明の電子ビームの照射条件維持方法は、電子露光装置のみならず、熱電界放射型電子銃を備えた電子描画装置、電子顕微鏡等の電子ビーム発生装置にも等しく適用可能であり、又、熱電界放射型電子銃のエミッターであれば、その種類は問わない。
【0069】
【発明の効果】
以上、詳細に説明したように、本発明にかかる電子ビームの照射条件維持方法によれば、引き出し電圧を変えなくても、試料に照射される電子ビームのプローブ電流を一定に保つことが出来、しかも電子ビームの集束状態が変わらないので、一定条件を継続する間は、電子顕微鏡、電子描画装置、電子露光装置等のメンテナンスや光学系の調整を加えることなく、長時間使用することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる電子ビームの照射条件維持方法が適用される電子露光装置の構成図である。
【図2】図1に示した電子回路の詳細構成図である。
【図3】エミッターから放射されるトータルエミッション電流Itotalと、プローブ電流Ipと、フィラメント電流Iの関係を示す図及び表である。
【図4】従来の熱電界放射型電子銃の構成図である。
【図5】図4に示したエミッター先端の拡大図である。
【図6】引き出し電圧Vexとトータルエミッション電流Iの関係を示す図である。
【図7】引き出し電圧Vextと加速電圧VACCとコンデンサー電圧VCLとクロスオーバー距離Zの関係を示す図である。
【符号の説明】
1:電子銃
11:エミッター
11a:フィラメント
11b:ニードル
12:引き出し電極
12a:ビームリミッティングアパーチャー
13a:コンデンサー電極
13b:コンデンサーレンズ
14:接地電極
15:加熱電源
16:サプレッサーキャップ
17:ブランキング電極
18:対物アパーチャー
19:偏向コイル
20:対物レンズ
2:試料
3:検出手段
4:増幅器
5:モニター
6:電子回路
61:I/V変換器
62:A/D変換器
63:CPU
64:D/A変換器
65:フィラメント電流制御回路
66:主フィラメント電流設定器
67:メモリ

Claims (6)

  1. 電子を発生させるエミッターと、前記エミッターのフィラメントにフィラメント電流を流して前記エミッターを加熱する加熱電源と、前記エミッターの先端との間に電界を発生させる引き出し電極と、前記電子を加速して電子ビームとするための加速電位を前記エミッターに対して与える接地電極とを少なくとも備える熱電界放射型電子銃と、
    前記電子ビームを集束するレンズと、
    不要な電子ビームを制限して試料への照射に必要な電子ビームを通過させるアパーチャーとを備えた電子ビーム発生装置において、
    前記エミッター、前記電極、前記レンズ、及び前記アパーチャーの調整によって得られる所定条件を、前記試料への照射の際に維持する電子ビームの照射条件維持方法であって、
    前記アパーチャーに照射される不要な電子ビームの電荷量に対応するアパーチャー電流を測定し、
    前記アパーチャー電流に基づいて、前記フィラメント電流を前記エミッターの適正動作温度の許容範囲内で増減制御して、
    前記電子ビームの集束状態を一定に維持したまま、前記試料に照射される電子ビームの電荷量に対応するプローブ電流を一定にする
    ことを特徴とする電子ビームの照射条件維持方法。
  2. 前記プローブ電流は、前記アパーチャー電流との略比例関係に基づいて推定され、
    前記フィラメント電流は、前記推定されたプローブ電流との略比例関係に基づいて制御される
    ことを特徴とする請求項1に記載の電子ビームの照射条件維持方法。
  3. 前記アパーチャーは、対物アパーチャーである
    ことを特徴とする請求項1又は請求項2に記載の電子ビームの照射条件維持方法。
  4. 前記エミッターは、Zr/O/Wエミッターである
    ことを特徴とする請求項1から請求項3のいずれかに記載の電子ビームの照射条件維持方法。
  5. 前記Zr/O/Wエミッターの適正動作温度の許容範囲は、定常状態の±50Kである
    ことを特徴とする請求項4に記載の電子ビームの照射条件維持方法。
  6. 前記Zr/O/Wエミッターのフィラメント電流の許容範囲は、定常状態の±5%である
    ことを特徴とする請求項4又は請求項5に記載の電子ビームの照射条件維持方法。
JP2003160512A 2003-06-05 2003-06-05 電子ビームの照射条件維持方法 Pending JP2004362954A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160512A JP2004362954A (ja) 2003-06-05 2003-06-05 電子ビームの照射条件維持方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003160512A JP2004362954A (ja) 2003-06-05 2003-06-05 電子ビームの照射条件維持方法

Publications (1)

Publication Number Publication Date
JP2004362954A true JP2004362954A (ja) 2004-12-24

Family

ID=34053276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160512A Pending JP2004362954A (ja) 2003-06-05 2003-06-05 電子ビームの照射条件維持方法

Country Status (1)

Country Link
JP (1) JP2004362954A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038638A (ja) * 2003-07-16 2005-02-10 Toshiba Corp 電子銃とそれを用いた電子ビーム照射装置
JP7554100B2 (ja) 2020-11-19 2024-09-19 株式会社ニューフレアテクノロジー 電子放出源の動作制御方法、電子ビーム描画方法、及び電子ビーム描画装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162760A (ja) * 1996-11-29 1998-06-19 Shimadzu Corp 電子ビーム装置
JP2000188076A (ja) * 1998-12-21 2000-07-04 Jeol Ltd 電子線装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10162760A (ja) * 1996-11-29 1998-06-19 Shimadzu Corp 電子ビーム装置
JP2000188076A (ja) * 1998-12-21 2000-07-04 Jeol Ltd 電子線装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038638A (ja) * 2003-07-16 2005-02-10 Toshiba Corp 電子銃とそれを用いた電子ビーム照射装置
JP4601923B2 (ja) * 2003-07-16 2010-12-22 株式会社東芝 電子銃とそれを用いた電子ビーム照射装置
JP7554100B2 (ja) 2020-11-19 2024-09-19 株式会社ニューフレアテクノロジー 電子放出源の動作制御方法、電子ビーム描画方法、及び電子ビーム描画装置

Similar Documents

Publication Publication Date Title
US6828565B2 (en) Electron beam source, electron optical apparatus using such beam source and method of operating and electron beam source
KR101570362B1 (ko) 캐소드의 동작 온도 조정 방법 및 전자빔 묘화 장치
JP4448104B2 (ja) 電子銃の電子ビームパワー調整装置
JP2000011932A (ja) 電子銃
JPH10177952A (ja) 電子線を用いた転写装置
JP2005142140A (ja) マイクロフォーカスx線装置およびx線放射の強度を制御する方法
JP2001076634A (ja) 集束イオンビーム装置
JP2004362954A (ja) 電子ビームの照射条件維持方法
JP5362297B2 (ja) 荷電粒子ビーム描画装置および荷電粒子ビーム描画方法
JP2012018790A (ja) 電子銃の駆動方法、電子ビーム描画装置および電子ビーム描画方法
JP4676461B2 (ja) 電子ビーム描画装置及び電子ビームの電流密度調整方法
JP6943932B2 (ja) 電子顕微鏡の制御方法および電子顕微鏡
US10854421B2 (en) Charged particle beam system and method
JP2010219372A (ja) 電子ビーム描画装置及び電子銃のカソード寿命の判定方法
JP3469404B2 (ja) 電界放出型荷電粒子銃及び荷電粒子ビーム照射装置
JP2018098395A (ja) 荷電粒子装置、荷電粒子描画装置および荷電粒子ビーム制御方法
JP2005026241A (ja) 電子ビーム生成装置、及び電子ビーム露光装置
JP2009231036A (ja) 収差補正集束イオンビーム装置
JP4470621B2 (ja) X線発生装置
JP2004342628A (ja) 荷電粒子線装置
JPH11273601A (ja) 集束イオンビーム装置およびその光学系の設計方法
JP2001250499A (ja) 荷電粒子ビーム装置
JP4545284B2 (ja) 高圧電源回路
JP2004039457A (ja) 電子ビーム生成装置、電子ビーム露光装置、及び電子ビーム制御方法
JPS6014462B2 (ja) 電子ビ−ム装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217