JP2004362749A - メモリアレー内のマルチレベル感知のための装置および方法 - Google Patents

メモリアレー内のマルチレベル感知のための装置および方法 Download PDF

Info

Publication number
JP2004362749A
JP2004362749A JP2004135512A JP2004135512A JP2004362749A JP 2004362749 A JP2004362749 A JP 2004362749A JP 2004135512 A JP2004135512 A JP 2004135512A JP 2004135512 A JP2004135512 A JP 2004135512A JP 2004362749 A JP2004362749 A JP 2004362749A
Authority
JP
Japan
Prior art keywords
analog voltage
signal
cell
time delay
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004135512A
Other languages
English (en)
Inventor
Oleg Dadashev
オレグ・ダダシェフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Spansion Israel Ltd
Original Assignee
Spansion Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spansion Israel Ltd filed Critical Spansion Israel Ltd
Publication of JP2004362749A publication Critical patent/JP2004362749A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】メモリアレーにおけるマルチレベル感知のための装置および方法を提供すること。
【解決手段】メモリアレー内のアレー・セルから受信される信号を感知するための方法であって、メモリアレーの選択されたアレー・セルの電流に比例するアナログ電圧Vddrを発生するステップ、および、出力デジタル信号を発生するためにアナログ電圧Vddrを基準アナログ電圧Vcompと比較するステップを含む方法。メモリセルからの信号を時間遅延に変換することによってメモリセルを感知し、時間遅延を基準セルの時間遅延と比較することによってメモリセルを感知するための方法も提供される。関連する装置も開示される。
【選択図】図2

Description

本発明は一般に半導体メモリに関し、より詳細にはメモリセルから受信される信号のマルチレベル感知のためのデバイスに関する。
本出願は2003年4月29日に出願した米国仮特許出願第60/466,063号明細書からの優先権を主張し、その全体は基準によって本明細書に組み込まれている。
ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、不揮発性メモリ(NVM)などのメモリデバイスは当技術分野においてよく知られている。メモリデバイスは、管理、プログラミング/消去、および、データ検索動作のためのメモリセルのアレーおよび周辺支援システムを含む。
これらのデバイスは、出力電気信号を供給することによって、保存される内部のデータの指示(indication)を提供する。感知増幅器(SA)と呼ばれるデバイスは信号を検出し、その論理的な内容を決定するために使用される。
一般に、感知増幅器は、セルの出力(電圧または電流)を閾値レベル(電圧または電流)と比較することによって、セルに保存される論理値を決定する。出力が閾値の上方にある場合、セルは(1の論理値を使用して)消去されたと決定され、出力が閾値の下方にある場合、セルは(0の論理値を使用して)プログラムされたと決定される。
閾値レベルは、予測される消去されたレベルとプログラムされたレベルとの間のレベルとして典型的に設定され、これは十分高い(または、双方の予測レベルから十分に離れた)ものであり、そのため、出力の雑音が疑似的な結果をもたらさない。
従来技術の感知増幅器回路の例を図1に示す。この感知増幅器回路は「Structure and method for high speed sensing of memory array」と題されるAlexander KushnarenkoおよびOleg Dadashevへの米国特許第6,469,929号明細書に説明される感知増幅器と同様である。
図1はいかなる数の行および列にも配置される複数のメモリセルを含むメモリアレー110のための従来技術の感知システムを示す。説明の目的のために、メモリセル111が読み取られる(すなわち、感知される)ことを仮定する。メモリセル111はドレインおよびソース端子がアレービット回線BNおよびBN+1に結合され、制御端子はワード線W1に結合される。メモリセル111は、(アレービット線を選択するための)列復号器104および(ワード線を選択するための)行復号器103を使用してシステムビット線BLに選択的に結合される。システムビット線BLは、選択されたアレービット線に結合されるメモリセルの数に比例する連動寄生容量CBLを含むことがある。
メモリアレー112についても同様に、メモリセル113はドレインおよびソース端子がアレービット線BMおよびBM+1に結合され、制御端子がワード線W1に結合される。メモリセル113は(アレービット線を選択するための)列復号器105および(ワード線を選択するための)行復号器106を使用してシステムビット線BL_REFに選択的に結合される。システムビット線BLは、選択されたアレービット線に結合されるメモリセルの数に比例する連動寄生容量CREF_BLを含むことがある。
メモリアレー110のメモリセル111の状態を読み取る(すなわち、感知する)ために、アレービット線BNはシステムビット線BLに結合され、アレービット線BN+1は所定の電圧(例えば、アース)に結合され、かつ、ワード線W1は読出し電圧(例えば、3ボルト)に結合される。上記に説明した結合を提供するための復号器103および104の動作はよく知られており、したがって、本明細書においては詳細に説明されない。
前段落および以下の説明は、図1の右側の回路であるメモリアレー112のメモリセル113についても、必要な変更を加えて正しく成り立つ。
感知増幅器145がメモリセル111の論理的状態を正しく感知することを確実にするために、システムビット線BLは、メモリセル111の感知の前に、所定のレベル(例えば、約2V)に充電することができる。システムビット線BLの最適な充電は、この所定の電圧を通り越すことなく、所定の電圧への迅速な遷移を促進することができる。この充電動作は充電開始デバイスP2を使用して開始することができ、システムビット線BLを迅速かつ効率的に充電させる制御部120(図1の右側については制御部121)を使用して有利に制御することができる。
詳細には、充電動作を開始するために、アクティブ信号CHARGEは充電開始デバイスP2(図1の右側についてはP7)の電源を入れる。充電開始デバイスP2はPMOS(pチャンネル金属酸化物半導体)トランジスタを含むことができ、アクティブ信号CHARGEは論理0である。導電すると、充電開始デバイスP2は、(以下に詳細に説明する)感知増幅器145によって供給される引上げ信号を制御部120に転送する。
制御部120は、NMOS(nチャンネル金属酸化物半導体)トランジスタN1(図1の右側についてはN2)を含む静的クランプ、および、PMOSトランジスタP1(図1の右側についてはP8)を含む動的クランプを含むことができる。トランジスタN1はドレインが充電開始デバイスP2に接続され、ソースがシステムビット線BLに接続されてもよい。トランジスタN1はそのゲートでバイアス電圧VBを受信する。バイアス電圧VBは、
VTN<VB<VBLD+VTN
によって定義されるトランジスタN1のためのゲートバイアス電圧であり、ここで、VBLDはビット線BL上の所望の電圧であり、VTNはn型トランジスタの閾値電圧(例えば、0.6V)である。このようにして、トランジスタN1はビット線BLをVB−VTNに非常に迅速に充電する。この時点において、トランジスタN1は非導電性に遷移する。すなわち、(以下に説明するように)静的クランプが非アクティブにされ、動的クランプがアクティブにされる。
制御部120の動的クランプは、(トランジスタN1のドレインも同じく)ソースが充電開始デバイスP2に接続され、(トランジスタN1のソースも同じく)ドレインがビット線BLに結合されるPMOSトランジスタP1を含むことができる。動的クランプは比較器C1(図1の右側についてはC2)をさらに含み、これは、基準電圧BIASとビット線電圧BLを比較し、続いて、その比較を表す信号VGを出力する。詳細には、比較器C1は、VBLがBIASより小さい場合に低い信号VGを出力し、VBLがBIASより大きい場合(または、比較器C1が動作不能となった場合)に高い信号VGを出力する。基準電圧BIASは、システムビット線BL上の所望のビット線電圧VBLDにほぼ等しくすることができる。トランジスタP1はその制御ゲートで信号VGを受信する。
感知増幅器145は第1段130および131、および、第2段140を含むことができる。第1段130は、ドレインおよびゲートが電源電圧VDDに接続され、ソースが充電開始デバイスP2に接続されるNMOSトランジスタである引上げデバイスN4、および、ドレインおよびゲートが充電開始デバイスP2に接続され、ソースが電源電圧VDDに接続されるPMOSトランジスタである電流感知デバイスP3を含む。この配置構成において、電流感知デバイスP3は以下に詳細に説明するダイオードとして有利に機能する。
第1段131は第1段130と同一の配置構成を有する。詳細には、第1段131は、ドレインおよびゲートが電源電圧VDDに接続され、ソースが充電開始デバイスP7に接続されるNMOSトランジスタである引上げデバイスN3、および、ドレインおよびゲートが充電開始デバイスP7に接続され、ソースが電源電圧VDDに接続されるPMOSトランジスタである電流感知デバイスP6を含む。
充電開始デバイスP2(図1の右側についてはP7)がアクティブにされた後、引上げトランジスタN4(N3)および電流感知デバイスP3(P6)は強く導電する。充電動作の間、システムビット線BLは、引上げトランジスタN4(N3)を介してVDD−VTNの引上げ電圧を受信する。続いて、電流感知デバイスP3(P6)を介して、システムビット線BL上の電圧はVDD−VTPに上昇し、VTPはPMOSトランジスタの閾値電圧である。電圧VDD−VTPは所望のシステムビット線電圧VBLDに実質的に等しいことに注意されたい。この時点において、システムビット線BL上のこの上昇した電圧は引上げトランジスタN4(N3)の電源を切る。電流感知デバイスP3(P6)がダイオードとして接続されるため、電流IBL(IBL_REF)のみが検出される。したがって、感知されたメモリセルの状態によっては、所定の電流が電流感知デバイスP3(P6)を介して流れることができる。
第1段130および131それぞれの電流感知デバイスP3およびP6は第2段140に設けられた電流の鏡を有する。詳細には、電流感知デバイスP3を通る電流IBLがPMOSトランジスタP4を通過する電流I1に反映されるのに対して、電流感知デバイスP6を通過する電流IBL_REFはPMOSトランジスタP5を通過する電流I2に反映される。電流感知デバイスP3を通過する電流とPMOSトランジスタP4を通過する電流の比が第1段130の利得を規定するのに対して、電流感知デバイスP6を通過する電流とPMOSトランジスタP6を通過する電流の比は第1段131の利得を規定する。ラッチ回路141(例えば、増幅器ブロック)は電流I1およびI2を増幅し、比較することができる。
VDD電源電圧が以下のように規定される最低電圧VDD_MINより高くならない限り、感知増幅器145は適切に動作できない。
Figure 2004362749
式(1)において、VDIODE_MAXはPMOSトランジスタP3またはPMOSトランジスタP6にかかる電圧降下であり、VBL_MINは不揮発性メモリ技術に対する最低許容可能ビット線電圧であり、VP1/P8はPMOSトランジスタP1(またはPMOSトランジスタP8)のドレイン対ソースの電圧降下であり、VP2/P7はPMOSトランジスタP2(または、PMOSトランジスタP7)に関するドレイン対ソース電圧降下に等しい。
例えば、VDIODE_MAXが1.0ボルトに等しく、VBL_MINが1.8ボルトに等しく、VP1/P8およびVP2/P7が0.05ボルトに等しい場合、最低電源電圧VDD_MINは2.9ボルト(1.8V+1V+0.05V+0.05V)となる。このような場合、メモリデバイス100は、2.9ボルトより低いVDD電源電圧を使用する応用例においては使用できない。
加えて、感知増幅器第1段130および131はVDD電源電圧における雑音に敏感である。読取り動作中に、VDD電源電圧がVDD_OVERSHOOTの上昇した電圧まで上昇する場合、PMOSトランジスタP3およびP6のドレインにおける電圧VSA1およびVSA2は、VDD_OVERSHOOTからダイオードの電圧降下を差し引いたものに等しくなる。続いて、VDD電源電圧がVDD_UNDERSHOOTの低下した電圧まで下がった場合、トランジスタP3およびP6は電源を切ることができる。この時、感知増幅器第1段130および131は、セル電流IBLおよびIBL_REFが電圧VSA1およびVSA2を放電するまで、動作することができない。セル電流IBLが小さい場合、感知増幅器第1段130は、読出し動作の終了まで電源が切られたままとなり、これによって、読出し動作の失敗をもたらす。
したがって、低い電源電圧に対応でき、電源電圧の変動を許容できる感知システムを提供することが所望される。
米国仮特許出願第60/466,063号明細書 「Structure and method for high speed sensing of memory array」と題されるAlexander KushnarenkoおよびOleg Dadashevへの米国特許第6,469,929号明細書 本出願と同一の被譲渡人に譲渡されたEitanおよびDadashevの米国特許第6,128,226号明細書
本発明は、さらに以下に詳細に説明するように、メモリアレーにおけるマルチレベル感知のための装置および方法を提供することを目的とする。
本発明は、低電圧動作におけるマルチレベル感知を可能にする。マルチレベル感知はVdd雑音(高すぎ/低すぎ)に敏感でなくできる。
したがって、本発明の実施形態によれば、メモリアレー内のアレー・セルから受信される信号を感知するための方法が提供され、本方法は、メモリアレーの選択されたアレー・セルの電流に比例するアナログ電圧Vddrを発生するステップを含み、出力デジタル信号を発生するための基準アナログ電圧Vcompとアナログ電圧Vddrを比較するステップを含む。
本発明の実施形態によれば、本方法は、アレー・セルの構造および電流路と同じ構造および同じ電流路を有する基準セルを基準部に設けるステップと、メモリアレーのドレインビット線および基準部の基準ドレインビット線を駆動するためのドレインドライバを設けるステップとをさらに含み、ドレインドライバはアナログ電圧Vddrを発生する。
さらに本発明の実施形態によれば、アナログ電圧Vddrが基準電圧Vcompより高い場合、低い出力デジタル信号が出力され、アナログ電圧Vddrが基準アナログ電圧Vcompより高くない場合、高い出力デジタル信号が出力される。
本発明の実施形態によれば、本方法は、メモリアレーおよび基準部を放電するステップと、それぞれアレー・セル信号および基準信号、および、タイミング信号を発生するためにメモリアレーおよび基準部を充電するステップと、タイミング信号が所定の電圧レベルに到達すると読出し信号を発生するステップと、読出し信号が一旦発生されれば、セル信号と基準信号の差から感知信号を発生するステップとをさらに含む。
本発明の実施形態によれば、メモリセルを感知するための方法も提供され、本方法は、メモリセルからの信号を時間遅延に変換するステップと、時間遅延を基準セルの時間遅延と比較することによってメモリセルを感知するステップとを含む。時間遅延はデジタル信号遅延を含むことができる。時間遅延の立ち上がりおよび降下時刻の少なくとも1つは比較することができる。メモリセルからの信号を時間遅延に変換するステップは、メモリセルの電流に比例するアナログ電圧Vddrを発生するステップを含むことができる。アナログ電圧Vddrは、出力デジタル信号を発生するために基準アナログ電圧Vcompと比較することができる。
本発明の実施形態によれば、メモリアレー内のアレー・セルから受信される信号を感知するための装置も提供され、本装置は、メモリアレーの選択されたアレー・セルの電流に比例するアナログ電圧Vddrを発生するように構成されたドレインドライバ、および、出力デジタル信号を発生するためにアナログ電圧Vddrを基準アナログ電圧Vcompと比較するように構成された比較器を含む。
本発明の実施形態によれば、基準部には、アレー・セルの構造および電流路と同じ構造および同じ電流路を有する基準セルを設けることができ、ドレインドライバはメモリアレーのドレインビット線および基準部の基準ドレインビット線を駆動するように構成される。データ部は出力デジタル信号を受信することができる。
さらに本発明の実施形態によれば、比較器はアナログ電圧Vddrを基準アナログ電圧Vcompと比較し、以下の方法で出力デジタル信号を発生する。すなわち、アナログ電圧Vddrが基準アナログ電圧Vcompより高い場合、低い出力デジタル信号が出力され、アナログ電圧Vddrが基準アナログ電圧Vcompより高くない場合、高い出力デジタル信号が出力される。
本発明の実施形態によれば、メモリセルからの信号を時間遅延に変換するように構成されたドライバ、および、時間遅延を基準セルの時間遅延と比較するように構成された比較器を含むメモリセルを感知するための装置も提供される。
本発明は添付の図面とともに行う以下の詳細な説明からより完全に理解され、認識されよう。
図2を基準すると、本発明の実施形態によって構築され、動作可能となるメモリ感知システムが示される。図3を基準すると、本発明の実施形態によるメモリ感知システムによって読出すことができるメモリセルアレー10が示される。
アレー10のメモリセルは行および列に配置され、各メモリセルは、関連するワード線およびビット線に適切な電圧を印加することによって読出し、プログラミング、または、消去の間にアクセスされる。例えば、図3に示すように、メモリセルMCjiのゲート端子は好ましくは関連するワード線(WL)WLiに接続され、ドレイン端子およびソース端子は好ましくは関連するビット線(BL)BLjおよびBLj+1に接続される。
アレー10のメモリセルは、入力アドレス信号(Xアドレス<h:0>、Yアドレス<p:0>にそれぞれ従って、ワード線制御回路、すなわち、行復号器12およびビット船制御回路、すなわち、列復号器14を使用してアドレス指定することができる。行復号器12は割り当てられたワード線電圧をWLに供給する。列復号器14は、メモリセルの選択されたドレインビット線(DBL)およびソースビット線(SBL)をDBL入力およびSBL入力に対応するように接続する。
図2および図3に見られるように、選択された同じワード線に接続される複数のメモリセルは同時にアクセスすることができる。例えば、k+1個のメモリセルに同時にアクセスすることができる。したがって、列復号器14はk+1個のDBLおよびSBLノードDBL<k:0>、SBL<k:0>を有することができる。図3に見られるように、感知方法の1つの実施形態によれば、読出し動作中、ノードSBL<k:0>はアース(GND)に接続することができる。選択されたメモリセルのソース電圧はGNDに近くてよい。
図2に見られるように、メモリ感知システムは、アレー・セルの構造および電流路と同じ構造および電流路を有する1つまたは複数の基準メモリセル(RMC)を備える1つまたは複数の基準部16を含む。基準部は、ノードDBLからMCを介してSBLに読み出される電流路に見出される要素を模倣することができる。これは、2つの経路のRC(抵抗−容量)整合を提供することができる。
ドレインドライバ18はアレー10のドレインビット線および基準部16の基準ドレインビット線を駆動するために設けることができる。図4を基準すると、本発明の実施形態による適切なドレインドライバ18の例が示される。ドレインドライバ18はPMOS(pチャンネル金属酸化物半導体)引上げトランジスタM0を含むことができ、そのゲート端子は論理信号入力(chargeb)を受信し、そのソース端子は電圧入力Vpsを受信し、そのドレイン端子はノード20に接続される。NMOS(nチャンネル金属酸化物半導体)クランプトランジスタM1を設けることができ、そのドレイン端子はノード20を介してPMOS引上げトランジスタM0のドレイン端子に接続され、そのゲート端子は入力Vblrを受信し、そのソース端子は列復号器14のDBL入力に接続される。集積コンデンサCintはノード21に接続することができ、これはノード20およびノードddrに接続される。
ドレインドライバ18は読出し動作中に以下の2つの機能を実行することができる。
a.読出し動作中のメモリセルの必要なドレイン電圧の供給。
b.選択されたメモリセルの電流に比例するノードddrでの信号(電圧Vddr)の発生。
必要なドレイン電圧を供給するために、電圧Vpsは、開放されているPMOS引上げトランジスタM0を介してNMOSクランプトランジスタM1のドレインに入いる。ゲートにおける電圧Vblrによって制御されるNMOSトランジスタM1は、そのドレイン電圧Vpsをクランプし、列復号器14のDBL入力に低下させた電圧Vd=Vblr−VgsM1を送る。低下させた電圧は列復号器14からアレー10のメモリセルのドレイン端子に転送される。
本発明の実施形態によるドレインドライバ信号の波形を示す図5を基準して、ノードddrにおける信号の発生を説明する。時刻T1の前は、論理信号chargebは高く、したがって、PMOS引上げトランジスタM0は電源が切れている(導電しない)。時刻T1に、信号chargebは0ボルトに下がりPMOS引上げトランジスタM0の電源を入れる(すなわち、現在は導電する)。時刻T1の直後および時刻T2までの期間中、信号ddrはVpsまで上昇し、(共にDBLノード)選択されたメモリセルのドレインビット線は電圧Vdまで充電される。電流はメモリセルを介して流れ始める。Vdへの充電過程が完了された後、経路の電流はメモリセル(MC)読出し電流レベルIMCに漸近的に安定する。
その後、時刻T2において、信号chargebはその高いレベルVpsに戻り、それによって、再びPMOSトランジスタM0の電源を切る。時刻T2まで、信号ブーストは随意でアースに結合することができる。時刻T2の直後に、信号ブーストは0ボルトからVboostに上昇してよい。信号ブーストに応じて、ノードddrの電圧はその以前のレベルVpsから電圧Vps+Vbstに上昇し、ここで、
Figure 2004362749
となり、ここで、
Figure 2004362749
はノードddrの総容量である。
容量Cintが、ノードddrの他の(寄生)容量より有意に大きいため、CΣ≒CintおよびVbst≒Vboostとなる。
時刻T2の後、電圧Vddrは式
Figure 2004362749
に従って低下し、ここで、IαはノードDBLαを介した電流であり、IMCに等しい。
式(3)から分かるように、電流ICMijはコンデンサCintに関して積分したものである。電圧Vddrは選択されたMC電流IMCjiに関して線形的に変化し、コンデンサCintの容量に関して反比例に変化する。
Vddrが多少の幅だけ(例えば、約0.2〜0.3ボルトのオーダーで)Vdより高い限り、NMOSトランジスタM1は飽和状態で機能する。ノードdrrの容量は、ドレインビット線容量からは独立させることができ、Cintより数桁の大きさだけ大きくてもよい。ノードDBLおよびBLの電圧は、Vddr(t)が展開している時間中は、Vdに留まることができ、したがって、選択されたメモリセルMCjiのドレイン−ソース電圧は同じく一定に留まる。
既に述べたように、アレー10のドレインビット線を駆動するためのドレインドライバ18(すなわち、図2のドレインドライバ<0:k>)は、好ましくは基準部16のためのドレインドライバ(すなわち、図2のドレインドライバ<ref0:refm>)と同一である。したがって、信号rddr<m:0>はddr(t)と同様に展開する。
Figure 2004362749
ここで、Iβはα番目の基準メモリセルの読出し電流である。
図2に見られるように、メモリ感知システムはアレー10のため(すなわち、比較器,0:k>)および基準部16のため(すなわち、比較器<ref0:refm>)の1つまたは複数の比較器22を含むことができる。比較器22はアナログ電圧Vddrを基準アナログ電圧Vcompと比較し、表1に示す以下の規則に従って出力デジタル信号cmpを発生する。
Figure 2004362749
信号Vcompの電圧は間隔[Vd,Vps+Vbst]内に配置される。そのため、時間間隔T1からT2において、全ての信号cmp<0:k>は低い(論理レベル「0」)。信号cmpは以下の時刻Tcsαにおいて高い論理レベルに反転することができる。
Figure 2004362749
同様の式は、比較器<ref0÷refm>の出力信号を反転してもよい時刻を決定する。
Figure 2004362749
式(6)および(7)から分かるように、TcsαおよびTrcsβはメモリセル電流の逆関数である。
図6は本発明の実施形態および上記の説明による比較器信号の波形を示す。
再び図2を基準すると、比較器22の各比較器信号は、基準比較器の出力信号lat<m:0>と共に、データ部24の入力に送ることができる。データ部24は比較器信号Trise(cmp)の立ち上がり時刻を基準比較器の出力信号lat<m:0>の立ち上がり時刻Trise(latξ)(ξ=0、...、m)と比較することができる。データ部24の出力信号の例を表2に示す。
Figure 2004362749
図7を基準すると、本発明の実施形態によって構築され、動作可能となるデータ部24の1つの例が示される。信号cmpはm個のデジタルラッチ26のD入力に供給される。各デジタルラッチ26はそのEb入力において基準比較器のlat信号の1つを受信することができる。デジタルラッチ26は表3に示す以下の規則に従って機能することができる。
Figure 2004362749
Eb信号が低いレベル(論理上の「0」)にあると、デジタルラッチ26は入力信号Dを出力Qに送る。Eb信号が高いレベル(論理上の「1」)に行くと、デジタルラッチ26はその前の値が何であっても出力Qに送る。
図2に示す(0からmまでの番号が振られた)基準部16は基準メモリセル(Ref0からRefm)を含むことができる。図8を基準すると、本発明の実施形態による基準メモリセルの閾値電圧(Vtref0からVtrefm)の分布を示す。閾値電圧はVt軸に沿った間隔におけるm+1個の区画に分布することができる。例えば、感知のチャンネル数α(dbl<α>−ddr<α>−cmp<α>)に対応するいくつかのセルの閾値電圧Vtoは区画τ内にあるとすることができる。このことは、閾値電圧Vtoが直前の区画の閾値電圧より高く(すなわち、Vtref(τ−1)に対するVtref0)、次の区画の閾値電圧より低い(すなわち、Vtrefmに対するVtrefτ)ことを意味する。したがって、そのセルの電流I0は次の区画における電流より大きく(Irefmに対するIrefτ)、直前の区画における電流より小さい(Iref(τ−1)に対するIref0)。そのため、そのセルに対応する信号cmp<α>は信号lat<τ>÷lat<m>より早く、かつ、信号lat<0>÷lat<τ−1>より遅く立ち上がる。したがって、データ部の番号αの内部信号Q<m:0>は以下の式によって与えられる。
Q<(τ−1):0>=0、Q<m:τ>=1
データ復号器は(10進数の形で)規則に従って信号Q<m:0>を最終的なデータバスdt<y:0>に変換することができる。すなわち、
Figure 2004362749
データの2進数形は、10進法から2進法への変換のための従来の公式
Figure 2004362749
によって、または、表4の表の形態において得ることができる。
Figure 2004362749
基準チャンネルの数(m)と信号dt(y)のビット数の関係は以下のように、
Figure 2004362749
または、表5の表の形態において表すことができる。
Figure 2004362749
メモリ感知システムの動作電圧Vpsは、
Figure 2004362749
に等しくすることができ、ここで、
MldsはドレインドライバのトランジスタM1のドレイン/ソース電圧であり、
cdは列復号器の電圧降下であり、
MCdsはメモリセルのドレイン/ソース電圧である。
本発明の背景において既に述べたように、従来技術の最低電源電圧VDD_MINは2.9ボルトに等しく、従来技術のメモリデバイス100は、2.9ボルトより低いVDD電源電圧を使用する応用例において使用することはできない。しかし、本発明において、最低電源電圧Vps_minはVDIODE_MAXだけ従来技術のVDD_MIN(上記本発明の背景にある式(1)を基準)より低く、最低電圧VBL_MINに近づいている。VDIODE_MAXは、例えば1ボルトにほぼ等しくすることができる。このことは、本発明が、2.9ボルトより低く、最低1.9ボルトのVDD電源電圧を使用する応用例において使用することができ、34%を超える改善であることを意味する。
したがって、本発明はメモリセルからの信号(例えば、電流)を時間遅延(例えば、デジタル信号遅延)に変換し、時間遅延を基準セルの時間遅延(例えば、信号の立ち上がりまたは降下時刻)と比較することができる。ドレインドライバは、アナログ信号Vddrを発生するために(最低に近い)低い電圧で動作する。信号Vddrは好ましくはメモリセル電流に線形的に依存する。メモリセル電流は好ましくはローカルコンデンサ上に集積される。
本発明は複数の基準部のためのマルチレベル感知システムとして使用することができる。加えて、本発明は単一の基準部のためにも使用することができる。
従来技術ではメモリセルからの信号が感知増幅器に一対一対応で結合されることに注目されよう。感知増幅器の数と同じ数の信号がある。しかし、基準メモリセルは感知増幅器の全てに並列に結合される。このことは、2つの感知増幅器入力信号間の有意な不整合をもたらす。なぜなら、(アレーからの)それらの1つが単一の感知増幅器に接続されているのに対して、(基準からの)他方は感知増幅器の全てに接続されているからである。この不整合は読出しデータにエラーをもたらす。これとは対照的に、本発明において、アレー・セルおよび基準セルからの全てのアナログ信号は、上記に説明したように整合している。
図9を基準すると、図5のものとは異なる、本発明の他の実施形態によるドレインドライバ信号の波形が示される。この実施形態において、ノードVpsは、読出し経路の寄生コンデンサを充電するために電力の消耗が最大になる時刻Tpsまで、システム電圧電源Vddに接続される。時刻Tpsにおいて、ノードVpsを介した電流は有意に低く(例えば、実際にはIMCに等しい)、ノードVpsはVddより高い電圧電源に切り換えられる。この実施形態はVddrをブーストする可能な範囲を増大させるために有用とすることができる。
図10を基準すると、本発明の他の実施形態によるメモリ感知システムが示され、図11では、図10の実施形態についてのドレインドライバが示される。この実施形態において、図10に示すように、ノードSBL<k:0>はddr<k:0>信号の代わりに比較器入力に接続することができる。ドレインドライバ回路は図4のドレインドライバ回路の簡略化版である。図12は本発明の実施形態によるドレインドライバ信号の波形を示す。信号SBL<k:0>の展開は、本出願と同一の被譲渡人に譲渡されたEitanおよびDadashevの米国特許第6,128,226号明細書に説明されるものとすることができる。
当業者は、本発明が上記に特に示し、説明されたものによって限定されないことを理解されよう。むしろ、本発明の範囲は、上記に説明した特徴の組み合わせと部分的組み合わせとの双方、ならびに、前述の説明を読んで当業者に発想される、および、従来技術にはない本発明の改変および変形を含む。
いかなる数の行および列にも配置される複数のメモリセルのを含むメモリアレーのための従来技術の感知システムの簡略説明図である。 本発明の実施形態によって構築され、動作可能となるメモリ感知システムの簡略ブロック図である。 本発明の実施形態によるメモリ感知システムによって読出すことができるメモリセルアレーの簡略ブロック図である。 本発明の実施形態によって構築され、動作可能となるメモリ感知システムのドレインドライバの簡略ブロック図である。 本発明の実施形態によるドレインドライバ信号の波形のグラフによる簡略説明図である。 本発明の実施形態による図2のメモリ感知システムの比較器信号の波形のグラフによる簡略説明図である。 本発明の実施形態によって構築され、動作可能となるメモリ感知システムのデータ部の簡略ブロック図である。 本発明の実施形態によるメモリ感知システムの基準メモリセルの閾値電圧の分布のグラフによる簡略説明図である。 図5のものとは異なる、本発明の他の実施形態によるドレインドライバ信号の波形のグラフによる簡略説明図である。 本発明の他の実施形態によるメモリ感知システムの簡略ブロック図である。 本発明の実施形態によって構築され、動作可能となる図10の実施形態についてのドレインドライバの簡略ブロック図である。 図10の実施形態についてのドレインドライバ信号の波形のグラフによる簡略説明図である。
符号の説明
BL、BN ビット線
WL、W1 ワード線
DBL ドレインビット線
SBL ソースビット線
ddr 信号
Xaddr、Yaddr 入力アドレス信号
BIAS 基準電圧
CBL 寄生容量
CHARGE アクティブ信号
Cint 集積コンデンサ
chargeb 論理信号入力
C1、C2 比較器
ddr ノード
GND アース
IBL、I1、I2 電流
lat 信号
I0 電流
M0、M1 トランジスタ
MC メモリセル
N1、N2 NMOSトランジス
N4 引上げデバイス
P1、P8 PMOSトランジスタ
P2、P7 充電開始デバイス
P3 電流感知デバイス
T1、T2 時刻
VB バイアス電圧
VBLD ビット線BL上の所望の電圧
Vblr 入力
Vd 電圧
VDD 電源電圧
Vps 電圧入力
VTN n型トランジスタの閾値電圧
VG 信号
10、110 メモリアレー
12、103、106 行復号器
14、104、105 列復号器
16 基準部
18 ドレインドライバ
20 ノード
24 データ部
26 デジタルラッチ
120、121 制御部
111 メモリセル
112 メモリアレー
113 メモリセル
130、131 第1段
140 第2段
141 ラッチ回路
145 感知増幅器

Claims (17)

  1. メモリアレー内のアレー・セルから受信される信号を感知するための方法であって、
    前記メモリアレーの選択されたアレー・セルの電流に比例するアナログ電圧Vddrを発生するステップと、
    出力デジタル信号を発生するために、前記アナログ電圧Vddrを基準アナログ電圧Vcompと比較するステップとを含む方法。
  2. 前記アレー・セルの構造および電流路と同じ構造および同じ電流路を有する基準セルを基準部に設けるステップと、前記メモリアレーのドレインビット線および前記基準部の基準ドレインビット線を駆動するためのドレインドライバを設けるステップとをさらに含み、前記ドレインドライバは前記アナログ電圧Vddrを発生する請求項1に記載の方法。
  3. 前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高い場合、低い出力デジタル信号が出力され、前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高くない場合、高い出力デジタル信号が出力される請求項1に記載の方法。
  4. 前記メモリアレーおよび前記基準部を放電するステップと、
    それぞれアレー・セル信号および基準信号、および、タイミング信号を発生するために前記メモリアレーおよび前記基準部を充電するステップと、
    前記タイミング信号が所定の電圧レベルに到達すると、読出し信号を発生するステップと、
    前記読出し信号が一旦発生されれば、前記セル信号と前記基準信号の差から感知信号を発生するステップとをさらに含む請求項1に記載の方法。
  5. メモリセルを感知するための方法であって、
    メモリセルからの信号を時間遅延に変換するステップと、
    前記時間遅延を基準セルの時間遅延と比較することによって前記メモリセルを感知するステップとを含む方法。
  6. 前記時間遅延はデジタル信号遅延を含む請求項5に記載の方法。
  7. 前記時間遅延を前記基準セルの時間遅延に比較するステップは、前記時間遅延の立ち上がりおよび降下時刻の少なくとも1つを比較するステップを含む請求項5に記載の方法。
  8. 前記メモリセルからの前記信号を前記時間遅延に変換するステップは、前記メモリセルの電流に比例するアナログ電圧Vddrを発生するステップを含む請求項5に記載の方法。
  9. 前記時間遅延を前記基準セルの前記時間遅延に比較するステップは、出力デジタル信号を発生するために前記アナログ電圧Vddrを基準アナログ電圧Vcompと比較するステップを含む請求項8に記載の方法。
  10. メモリアレー内のアレー・セルから受信される信号を感知するための装置であって、
    前記メモリアレーの選択されたアレー・セルの電流に比例するアナログ電圧Vddrを発生するように構成されたドレインドライバと、
    出力デジタル信号を発生するために前記アナログ電圧Vddrを基準アナログ電圧Vcompと比較するように構成される比較器とを含む装置。
  11. 前記アレー・セルの構造および電流路と同じ構造および同じ電流路を有する基準セルを備える基準部をさらに含み、前記ドレインドライバは前記メモリアレーのドレインビット線および前記基準部の基準ドレインビット線を駆動するように構成される請求項10に記載の装置。
  12. 前記比較器は前記アナログ電圧Vddrを基準アナログ電圧Vcompと比較し、
    前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高い場合、低い出力デジタル信号が出力され、前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高くない場合、高い出力デジタル信号が出力されるという方法で前記出力デジタル信号を発生する請求項10に記載の装置。
  13. 前記出力デジタル信号を受信するデータ部をさらに含む請求項10に記載の装置。
  14. メモリセルを感知するための装置であって、
    メモリセルからの信号を時間遅延に変換するように構成されるドライバと、
    前記時間遅延を基準セルの時間遅延に比較するように構成される比較器とを含む装置。
  15. 前記時間遅延はデジタル信号遅延を含む請求項14に記載の装置。
  16. 前記比較器は前記時間遅延の立ち上がり時刻および降下時刻の少なくとも1つを比較する請求項14に記載の装置。
  17. 前記比較器は前記アナログ電圧Vddrを基準アナログ電圧Vcompと比較し、
    前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高い場合、低い出力デジタル信号が出力され、前記アナログ電圧Vddrが前記基準アナログ電圧Vcompより高くない場合、高い出力デジタル信号が出力されるという方法で前記出力デジタル信号を発生する請求項14に記載の装置。
JP2004135512A 2003-04-29 2004-04-30 メモリアレー内のマルチレベル感知のための装置および方法 Pending JP2004362749A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US46606303P 2003-04-29 2003-04-29

Publications (1)

Publication Number Publication Date
JP2004362749A true JP2004362749A (ja) 2004-12-24

Family

ID=32990980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135512A Pending JP2004362749A (ja) 2003-04-29 2004-04-30 メモリアレー内のマルチレベル感知のための装置および方法

Country Status (6)

Country Link
EP (1) EP1473732A1 (ja)
JP (1) JP2004362749A (ja)
CN (1) CN1574078A (ja)
DE (1) DE102004021076A1 (ja)
IL (1) IL161648A0 (ja)
TW (1) TW200504761A (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005018738D1 (de) * 2005-03-03 2010-02-25 St Microelectronics Srl Speichervorrichtung mit auf Zeitverschiebung basierender Referenzzellenemulation
KR100824141B1 (ko) * 2006-09-29 2008-04-21 주식회사 하이닉스반도체 반도체 메모리 소자
CN101800081B (zh) * 2009-02-11 2012-05-02 北京兆易创新科技有限公司 一种用于mlc闪存的灵敏放大器和位线快速充电电路
US9830999B2 (en) 2014-06-05 2017-11-28 Micron Technology, Inc. Comparison operations in memory
CN112737356A (zh) * 2020-12-25 2021-04-30 中车永济电机有限公司 大功率永磁直驱货运机车牵引变流器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5218569A (en) * 1991-02-08 1993-06-08 Banks Gerald J Electrically alterable non-volatile memory with n-bits per memory cell
DE69524572T2 (de) * 1995-04-28 2002-08-22 St Microelectronics Srl Leseverstärkerschaltung für Halbleiterspeicheranordnungen
US5712815A (en) * 1996-04-22 1998-01-27 Advanced Micro Devices, Inc. Multiple bits per-cell flash EEPROM capable of concurrently programming and verifying memory cells and reference cells
TW367503B (en) * 1996-11-29 1999-08-21 Sanyo Electric Co Non-volatile semiconductor device
JP3039458B2 (ja) * 1997-07-07 2000-05-08 日本電気株式会社 不揮発性半導体メモリ
US6128226A (en) * 1999-02-04 2000-10-03 Saifun Semiconductors Ltd. Method and apparatus for operating with a close to ground signal
JP3348432B2 (ja) * 1999-09-14 2002-11-20 日本電気株式会社 半導体装置および半導体記憶装置
JP3653449B2 (ja) * 2000-06-15 2005-05-25 シャープ株式会社 不揮発性半導体記憶装置
US6469929B1 (en) * 2001-08-21 2002-10-22 Tower Semiconductor Ltd. Structure and method for high speed sensing of memory arrays

Also Published As

Publication number Publication date
CN1574078A (zh) 2005-02-02
IL161648A0 (en) 2004-09-27
TW200504761A (en) 2005-02-01
DE102004021076A1 (de) 2004-11-25
EP1473732A1 (en) 2004-11-03

Similar Documents

Publication Publication Date Title
US7532529B2 (en) Apparatus and methods for multi-level sensing in a memory array
JP4702572B2 (ja) 低電力多ビットセンス増幅器
JP2732826B2 (ja) 不揮発性半導体メモリ装置とそのワードライン駆動方法
JP4344769B2 (ja) 低電圧動作のメモリ検知回路および方法
US7082069B2 (en) Memory array with fast bit line precharge
CN108399935B (zh) 存储器装置及操作存储器装置的方法
US6888756B2 (en) Low-voltage non-volatile semiconductor memory device
US7082061B2 (en) Memory array with low power bit line precharge
US5724284A (en) Multiple bits-per-cell flash shift register page buffer
US20080239834A1 (en) Sense amplifier for low voltage high speed sensing
EP0840326A2 (en) Nonvolatile semiconductor memory device
JP2006079803A (ja) 半導体記憶装置
US9087597B2 (en) Semiconductor storage
JP2005510006A (ja) マルチレベル不揮発性一体形メモリ素子用センス増幅器
CN111370044B (zh) 半导体装置
US6456527B1 (en) Nonvolatile multilevel memory and reading method thereof
KR100942870B1 (ko) 저전력 다중 비트 감지 증폭기
JP3572179B2 (ja) 不揮発性半導体記憶装置およびその書き込み方法
WO2021011923A1 (en) Flash memory arrays for computation having digital input and analog output
US7477559B2 (en) Sense amplifier for low-voltage applications
US11183230B2 (en) Sense amplifier circuit and semiconductor memory device
US7826284B2 (en) Sense amplifier circuit and method for semiconductor memories with reduced current consumption
US6392943B2 (en) Reading device and method for integrated circuit memory
TWI584301B (zh) 記憶體電路及其操作方法
JP2004362749A (ja) メモリアレー内のマルチレベル感知のための装置および方法