JP2004361115A - 半導体力学量センサ - Google Patents

半導体力学量センサ Download PDF

Info

Publication number
JP2004361115A
JP2004361115A JP2003156725A JP2003156725A JP2004361115A JP 2004361115 A JP2004361115 A JP 2004361115A JP 2003156725 A JP2003156725 A JP 2003156725A JP 2003156725 A JP2003156725 A JP 2003156725A JP 2004361115 A JP2004361115 A JP 2004361115A
Authority
JP
Japan
Prior art keywords
movable electrode
semiconductor
insulating layer
silicon substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156725A
Other languages
English (en)
Inventor
Mineichi Sakai
峰一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003156725A priority Critical patent/JP2004361115A/ja
Priority to DE102004026593A priority patent/DE102004026593A1/de
Priority to US10/856,858 priority patent/US7004029B2/en
Publication of JP2004361115A publication Critical patent/JP2004361115A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】容量式の半導体力学量センサにおいて、体格の増加を極力抑制しつつ検出感度を向上させる。
【解決手段】半導体からなる固定電極としての第1シリコン基板11の一面上に、半導体からなるとともに第1シリコン基板11の厚さ方向に沿って変位可能な可動電極20が隔てられて対向して配置されており、加速度が印加されたときの可動電極20の変位に伴う可動電極20と第1シリコン基板11の一面との間の容量変化に基づいて、印加加速度を検出するようにした半導体加速度センサにおいて、可動電極20と第1シリコン基板11の一面との間には、可動電極20と第1シリコン基板11とを隔てる方向に沿って、空間部30と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層13とが並んで介在している。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板に離間して対向する可動電極および固定電極を形成し、これら両電極間の容量変化に基づいて印加力学量を検出するようにした半導体力学量センサ、いわゆる容量式の半導体力学量センサに関する。
【0002】
【従来の技術】
この種の半導体力学量センサは、一般に、半導体基板を加工することにより、互いに隔てられて対向する可動電極および固定電極を形成し、加速度や角速度等の力学量が印加されたときの可動電極の変位に伴う可動電極と固定電極との間の容量変化に基づいて、印加力学量を検出するようにしたものである。
【0003】
例えば、従来より、半導体からなる固定電極としての支持基板の一面上に、半導体からなるとともに支持基板の厚さ方向へ変位可能な可動電極を隔てて対向配置し、加速度印加時の可動電極と支持基板の一面との間の容量変化に基づいて印加加速度を検出するようにした半導体加速度センサが提案されている(例えば、特許文献1参照)。なお、この特許文献1では、可動電極は矩形であってその四隅がバネ部である可撓部により連結された卍形状をなしている。
【0004】
また、この種の半導体力学量センサとしては、櫛歯状の可動電極と櫛歯状の固定電極とをかみ合わされた形で対向させ、半導体基板の水平方向への加速度の印加を検出するようにした半導体加速度センサも提案されている(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開平9−113534号公報
【0006】
【特許文献2】
特開平10−178184号公報
【0007】
【発明が解決しようとする課題】
しかしながら、この種の容量式の半導体力学量センサにおいては、検出感度の向上が要望されており、そのためには、可動電極と固定電極との間の容量すなわち検出容量を増大させることが必要である。
【0008】
この検出容量を増大させるためには、電極サイズを大きくして当該電極間の対向面積を増大させればよいが、このような対向面積の増加は、センサの体格増大を招くという問題が生じる。
【0009】
そこで、本発明は上記問題に鑑み、容量式の半導体力学量センサにおいて、体格の増加を極力抑制しつつ検出感度を向上させることを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明では、半導体基板(10)を加工することにより、互いに隔てられて対向する可動電極(20)および固定電極(11)が形成されており、力学量が印加されたときの可動電極の変位に伴う可動電極と固定電極との間の容量変化に基づいて、印加力学量を検出するようにした半導体力学量センサにおいて、可動電極と固定電極との間には、これら両電極を隔てる方向に沿って、空間部(30)と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層(13)とが並んで介在していることを特徴とする。
【0011】
従来では、可動電極と固定電極との間は空間部のみであったのに対し、本発明では、空間部(30)に加えて、空気よりも比誘電率の大きい絶縁層(13)が介在している。
【0012】
そのため、可動電極(20)と固定電極(11)との間の容量部すなわち検出容量部の誘電率は、従来よりも大きくなり、その結果、両電極の対向面積を大きくすることなく、検出容量を大きくすることができる。
【0013】
よって、本発明によれば、容量式の半導体力学量センサにおいて、体格の増加を極力抑制しつつ検出感度を向上させることができる。
【0014】
ここで、請求項2に記載の発明のように、絶縁層(13)は、可動電極(20)および固定電極(11)における互いの対向面のうち少なくとも一方の面に設けられたものにできる。
【0015】
さらには、請求項3に記載の発明のように、絶縁層(13)は、可動電極(20)および固定電極(11)における互いの対向面の両面に設けられたものにできる。
【0016】
また、請求項4に記載の発明では、絶縁層(13)は、種類の異なる複数の絶縁膜(13a、13b)により形成されているものにできる。
【0017】
請求項5に記載の発明では、半導体からなる固定電極としての支持基板(11)の一面上に、半導体からなるとともに支持基板の厚さ方向に沿って変位可能な可動電極(20)が隔てられて対向して配置されており、力学量が印加されたときの可動電極の変位に伴う可動電極と支持基板の一面との間の容量変化に基づいて、印加力学量を検出するようにした半導体力学量センサにおいて、可動電極と支持基板の一面との間には、可動電極と支持基板とを隔てる方向に沿って、空間部(30)と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層(13)とが並んで介在していることを特徴とする。
【0018】
従来では、可動電極と固定電極である支持基板の一面との間は空間部のみであったのに対し、本発明では、空間部(30)に加えて、空気よりも比誘電率の大きい絶縁層(13)が介在している。
【0019】
そのため、可動電極(20)と支持基板(11)の一面との間の容量部すなわち検出容量部の誘電率は、従来よりも大きくなり、その結果、可動電極と支持基板との対向面積を大きくすることなく、検出容量を大きくすることができる。
【0020】
よって、本発明によれば、容量式の半導体力学量センサにおいて、体格の増加を極力抑制しつつ検出感度を向上させることができる。
【0021】
ここで、請求項6に記載の発明のように、絶縁層(13)は、可動電極(20)および支持基板(11)における互いの対向面のうち少なくとも一方の面に設けられたものにできる。
【0022】
さらに、請求項7に記載の発明のように、絶縁層(13)は、可動電極(20)および支持基板(11)における互いの対向面の両面に設けられたものにできる。
【0023】
また、請求項8に記載の発明のように、絶縁層(13)は、種類の異なる複数の絶縁膜(13a、13b)により形成されたものにできる。
【0024】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0025】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。図1は、本発明の実施形態に係る半導体力学量センサとしての容量式加速度センサS1の概略平面図であり、図2は本加速度センサS1の図1中のA−A線に沿った概略断面図であり、図3は本加速度センサS1の図1中のB−B線に沿った概略断面図である。
【0026】
この加速度センサS1は、例えば、エアバッグ、ABS、VSC等の作動制御を行うための自動車用加速度センサやジャイロセンサ等に適用できる。
【0027】
加速度センサS1は、半導体基板に周知のマイクロマシン加工を施すことにより形成される。
【0028】
加速度センサS1を構成する半導体基板は、図2、図3に示すように、第1の半導体層としての第1シリコン基板11と第2の半導体層としての第2シリコン基板12との間に、絶縁層としてのシリコン酸化膜13を有する矩形状のSOI基板10である。そして、SOI基板10のうち第1シリコン基板11が支持基板として構成されている。
【0029】
第2シリコン基板12には、溝14を形成することにより、可動電極20が形成されている。この可動電極20は、本例では厚さ方向に貫通する複数個の貫通穴21を有する形板状をなすもので、支持基板である第1シリコン基板11に対して、当該第1シリコン基板11の厚さ方向に沿って変位可能に支持されている。
【0030】
具体的に、図2、図3に示すように、可動電極20は、第2シリコン基板12におけるシリコン酸化膜13側の部分が除去されており、シリコン酸化膜13の上に浮いた形となっている。なお、この第2シリコン基板12におけるシリコン酸化膜13側の部分が除去されている部分は、図1中に破線の矩形で示す領域15内に位置する部分である。
【0031】
そして、図1、図3に示すように、可動電極20は、SOI基板10の中央部を横断するように配置されており、可動電極20の両端は、バネ部22を介してアンカー部23a及び23bに一体に連結された構成となっている。ここで、アンカー部23a、23bは、シリコン酸化膜13を介して第1シリコン基板11に支持され固定されている部分である。
【0032】
また、バネ部22は、平行な2本の梁がその両端で連結された矩形枠状をなしており、可動電極20を、第1シリコン基板11の厚さ方向に沿って弾性的に変位させるバネ機能を有する。具体的には、バネ部22は、図2、図3中の矢印Z方向の成分を含む加速度を受けたときに可動電極20を矢印Z方向へ変位させるとともに、加速度の消失に応じて元の状態に復元させるようになっている。
【0033】
このように、可動電極20は、支持基板である第1シリコン基板11の一面上において当該一面と所定間隔t(図2参照))を隔てて対向して形成されており、加速度の印加に応じて、バネ部22の変位方向すなわち上記矢印Z方向へ変位可能となっている。
【0034】
そして、加速度印加時には、可動電極20の変位に伴う可動電極20と第1シリコン基板11の一面との間隔tが変化するようになっている。以下、矢印Z方向を変位方向Zと言うこととする。
【0035】
ここで、本加速度センサS1においては、可動電極20と対向する第1シリコン基板11は、固定電極としても構成されている。そして、図2、図3に示すように、本実施形態では、互いに所定間隔tを隔てて対向する可動電極20と第1シリコン基板(固定電極)11の一面との間には、可動電極20と第1シリコン基板11とを隔てる方向(つまり変位方向Z)に沿って、空間部30と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層13とが並んで介在している。
【0036】
上述したように、本例では、絶縁層13は第1シリコン基板11の対向面に設けられたシリコン酸化膜(SiO)13であり、熱酸化やスパッタ、蒸着等により形成されるものである。なお、空間部30は大気中では空気の層であるが、真空雰囲気では真空の空間であり、他の気体雰囲気ではその雰囲気を構成する気体の層である。
【0037】
また、図1、図3に示すように、一方のアンカー部23bと一体に連結された状態で、可動電極用配線部25が形成されており、この配線部25上の所定位置には、ワイヤボンディング用の可動電極パッド25aが形成されている。
【0038】
また、図1に示すように、固定電極である第1シリコン基板11と電気的に接続されたワイヤボンディング用の固定電極パッド11aが形成されている。この固定電極パッド11aの断面構成を図1中のC−C断面として、図4に示しておく。
【0039】
また、図1に示すように、第2シリコン基板12における可動電極24の周辺部には、当該周辺部を一定電位に保持するための基準電位パッド12aが形成されている。そして上記の各電極パッド11a、12a、25aは、例えばアルミニウム等により形成されている。
【0040】
また、本加速度センサS1は、例えば第1シリコン基板11の裏面すなわちシリコン酸化膜13とは反対側の面側において接着剤等を介して図示しないパッケージに固定されており、このパッケージには、加速度センサS1を制御する回路手段が設けられている。
【0041】
そして、この回路手段と上記の各電極パッド11a、12a、25aとは、金もしくはアルミニウムのワイヤボンディング等により形成されたワイヤ(図示せず)により電気的に接続される。
【0042】
このような加速度センサS1は、例えば次のようにして製造することができる。SOI基板10の第2シリコン基板12にフォトリソグラフ技術を用いて貫通穴21を含む可動電極20、バネ部22、アンカー部23a、23b等に対応した形状のマスクを形成した後、CFやSF等のガスを用いたドライエッチング等にてトレンチエッチングを行い、図1に示すパターンの溝14を形成する。
【0043】
このトレンチエッチングにおいて、図1中の領域15内に位置するエッチングパターンに比べて、当該領域15の外部に位置するエッチングパターンでは、残し部をより幅広形状とする。なお、可動電極20においては、貫通穴21によって幅の狭い残し部が実現される。
【0044】
それにより、図1中の領域15内に位置する第2シリコン基板12の部分では、サイドエッチングによって第2シリコン基板12の下部が除去され、シリコン酸化膜13から浮いた形となり、当該領域15の外部では、第2シリコン基板12の下部は残る。
【0045】
そのため、第2シリコン基板12において、酸化膜13から浮いた部分と酸化膜13に接して支持された部分とが形成され、その結果、上記溝14を介して区画された可動電極20、バネ部22、アンカー部22a、22b等が形成される。さらに、アルミのスパッタや蒸着等を行うことで、上記各電極パッド11a、12a、25aを形成し、加速度センサS1ができあがる。
【0046】
このような加速度センサS1においては、可動電極20と固定電極である第1シリコン基板11との間に検出容量が形成されている。そして、加速度を受けると、バネ部22のバネ機能により、可動電極20全体が一体的に変位方向Zに沿って変位し、この変位に応じて上記検出容量が変化する。そして、この容量の変化に基づいて加速度が検出されるようになっている。
【0047】
ところで、本実施形態では、可動電極20と固定電極であり支持基板である第1シリコン基板11の一面との間には、可動電極20と第1シリコン基板11とを隔てる方向に沿って、空間部30と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層13とが並んで介在していることを主たる特徴としている。
【0048】
従来では、可動電極と固定電極である支持基板の一面との間は空間部のみであったのに対し、本例では、可動電極20と固定電極である第1シリコン基板11との間には、空間部30に加えて、空気よりも比誘電率の大きい絶縁層としてシリコン酸化膜13が介在している。なお、空気の比誘電率は1であり、シリコン酸化膜13の比誘電率は3.84である。
【0049】
そのため、可動電極20と第1シリコン基板11の一面との間の容量部すなわち検出容量部の誘電率は、従来よりも大きくなり、その結果、可動電極20と第1シリコン基板11との対向面積を大きくすることなく、検出容量を大きくすることができる。
【0050】
よって、本実施形態によれば、容量式の半導体加速度センサS1において、センサの体格の増加を極力抑制しつつ、検出感度を向上させることができる。
【0051】
絶縁層としてシリコン酸化膜13を用いた本例の加速度センサS1について、具体的な検出感度の向上効果を述べる。ここでは、空間部30は空気層であるとする。
【0052】
図5(a)は本例の加速度センサS1の場合であって、可動電極20と固定電極(第1シリコン基板)11の間の誘電体がシリコン酸化膜13と空気層(空間部)30であるもの、図5(b)は、従来の場合であって、可動電極20と固定電極11の間の誘電体が空気層のみであるものを示している。
【0053】
ここで、真空の誘電率をε0、空気層30の比誘電率(つまり空気の比誘電率)をεr1、シリコン酸化膜13の比誘電率(つまりSiO2の比誘電率)をεr2、両電極20、11を隔てる方向に沿った空気層30、シリコン酸化膜13の厚さをそれぞれ、t1、t2とする。なお、図5(b)では、(t1+t2)は両電極20、11間の空気層30の厚さとなる。
【0054】
そして、図5(a)、(b)における両電極20、11の間の単位面積あたりの容量をそれぞれ、Ca、Cbとすると、これら容量Ca、Cbはそれぞれ、次の数式1、2に表される。
【0055】
【数1】
Figure 2004361115
【0056】
【数2】
Figure 2004361115
【0057】
ここで、空気の比誘電率εr1=1であることから、各容量Ca、Cbは、それぞれ次の数式3、4に示されるようになる。
【0058】
【数3】
Figure 2004361115
【0059】
【数4】
Figure 2004361115
【0060】
そして、これら数式3および数式4から、従来の空気層30のみの場合の容量Cbに対する本例の容量Caの比Ca/Cbは、次の数式5のように表される。
【0061】
【数5】
Figure 2004361115
【0062】
この数式5に示す関係に基づいて、空気層30の厚さt1とシリコン酸化膜13の厚さt2との比t2/t1と、容量との関係を求めた結果は、図6に示される。
【0063】
図6では、横軸に(酸化膜厚/空気層厚)すなわち比t2/t1をとり、縦軸に容量増加分をとってある。また、横軸が0のときの縦軸の値は、両電極20、11間の誘電体がすべて空気層30の場合すなわち上記図5(b)に示す従来の容量Cbであり、この容量Cbを1に規格化して容量増加分を示している。
【0064】
図6に示すように、両電極20、11間の誘電体の中でシリコン酸化膜13の厚さの比率が大きくなるにつれて容量が増大していくことがわかる。例えば、容量を2倍以上にするには、酸化膜厚/空気層厚を2.05とする、つまり、シリコン酸化膜13の厚さt2を空気層30の厚さt1の2.05倍以上にすればよいことがわかる。
【0065】
また、空気層30の厚さt1およびシリコン酸化膜13の厚さt2が決まっている場合、次のようにダイナミックレンジを考慮して作動を行うようにする。図7は、可動電極20の変位モデルを示す図である。
【0066】
図7では、本例の加速度センサS1において、加速度Gが印加されたときに可動電極20が変位量(t1−d)の分、変位した場合を示す。つまり、図7において、変位後の空気層30の厚さがdとなっている。また、両電極20、11間の差電圧をVとしている。
【0067】
このとき、両電極20、11間の静電気力をFed、バネ部22のバネ低位数をk、バネ部22のバネ力をFspとすると、静電気力Fed、バネ力Fspはそれぞれ、次の数式6、数式7に示される。
【0068】
【数6】
Figure 2004361115
【0069】
【数7】
Figure 2004361115
【0070】
そして、可動電極20の変位が釣り合った状態すなわち平衡状態では、Fed=Fspであり、この関係と上記数式6および数式7から、次の数式8に示される関係が導き出される。
【0071】
【数8】
Figure 2004361115
【0072】
一方、図8に示すように、印加加速度Gが大きくなるにつれて、変位後の空気層30の厚さdが狭まり、ある大きさの印加加速度Gで、可動電極20とシリコン酸化膜13が接し、厚さdが0となる。
【0073】
この厚さdが0となるときの加速度Gが最大ダイナミックレンジの加速度Gmaxである。図8に示すように、両電極20、11間の差電圧Vが小さくなるにつれて、この最大ダイナミックレンジの加速度Gmaxは大きくなっていく。そして、加速度センサS1の作動は、最大ダイナミックレンジの加速度Gmax以下で行う。
【0074】
図9は、上記数式8に示す関係を、変位後の空気層30の厚さdと両電極20、11間の差電圧Vとの関係として模式的に表した図である。
【0075】
図9に示すように、差電圧Vを印加して、両電極20、11の間隔が狭まってくると、プルイン電圧前後の電圧の変化率が、正から負に変化する。よって、図9中のプルイン電圧に対応した厚さd’の状態が最大ダイナミックレンジの状態となる。
【0076】
このことは、上記数式8をdによって一次微分した式∂V/∂dが0になるときが最大ダイナミックレンジの状態となることである。この∂V/∂d=0の関係は、次の数式9に示される。
【0077】
【数9】
Figure 2004361115
【0078】
そして、この数式9から、次の数式10に示す関係が導き出される。
【0079】
【数10】
Figure 2004361115
【0080】
この数式10に示すように、本例の加速度センサS1においては、空気層30の厚さt1とシリコン酸化膜13の厚さt2が決まれば、ダイナミックレンジの範囲が決まる。
【0081】
つまり、変位後の空気層30の厚さdが、上記数式10の右辺よりも小さくなると、両電極20、11がくっついてしまうので、変位後の空気層30の厚さdが、上記数式10の右辺以上となる範囲で加速度センサS1を作動させるようにする。
【0082】
なお、上記例では、絶縁層13としてシリコン酸化膜13を用いたが、それ以外にも比誘電率が9.0であるシリコン窒化膜(SiN膜)や、SiON膜(比誘電率:3.84〜9.0)等、空気よりも比誘電率の大きい電気的な絶縁膜を採用することができる。
【0083】
次に、図10、図11、図12に本実施形態の変形例としての加速度センサの概略断面構成を示しておく。なお、これら図10〜図12は、上記図2に示す断面に対応した断面の構成を示しており、基本的には周知の半導体製造技術を用いて製造可能なものである。
【0084】
図10に示す第1の変形例は、第1シリコン基板11、シリコン酸化膜13、第3シリコン基板16、酸化膜13、第2シリコン基板12が積層された2層の埋め込み酸化膜13を有するSOI基板10を用いたものである。
【0085】
そして、絶縁層であるシリコン酸化膜13は、可動電極20および固定電極であり支持基板である第1シリコン基板11における互いの対向面の両面に設けられている。
【0086】
この場合も、例えば、上記図1に示す加速度センサS1と同様に、第2シリコン基板12側からトレンチエッチングを行って溝14を形成し、可動電極20の下の第3シリコン基板16部分をサイドエッチングで除去することにより、製造可能である。
【0087】
図11に示す第2の変形例は、上記図1に示す加速度センサS1と同様のSOI基板10を用いたもので、絶縁層であるシリコン酸化膜13は、可動電極20における対向面に設けられている。
【0088】
この場合、例えば、SOI基板10に対して、第2シリコン基板12側からのトレンチエッチング、酸化膜13の犠牲層エッチング、第2シリコン基板12のサイドエッチング、酸化、表面のシリコン酸化膜エッチングを順次行うことで製造することができる。
【0089】
図12に示す第3の変形例は、絶縁層13を、種類の異なる複数の絶縁膜により形成したものであり、図示例では、絶縁層13は第1シリコン基板11側に設けられたシリコン酸化膜13aとシリコン窒化膜13bの2層構成のものである。
【0090】
なお、絶縁層13を複数の絶縁膜により構成する場合、もちろん3層以上、3種類以上の絶縁膜であってもよいが、各種の絶縁膜は、ともに空気よりも比誘電率の大きいものを用いることが必要である。
【0091】
この第3の変形例は、例えば、埋め込み絶縁膜がシリコン酸化膜13aとシリコン窒化膜13bの2層からなるSOI基板10を用い、例えば、上記図1に示す加速度センサS1と同様に、第2シリコン基板12側からトレンチエッチングを行って溝14を形成し、可動電極20の下の第2シリコン基板12部分をサイドエッチングで除去することにより、製造可能である。
【0092】
(他の実施形態)
なお、本発明は、上記実施形態に示したような、半導体からなる固定電極としての支持基板の一面上に、半導体からなるとともに支持基板の厚さ方向へ変位可能な可動電極を隔てて対向配置したもの以外にも、例えば、上記特許文献2に示したような、櫛歯状の可動電極と固定電極とを有するものにも適用することができる。
【0093】
このような櫛歯状の可動電極と固定電極との場合、櫛歯の側面で電極同士が対向するが、この櫛歯の側面に絶縁層を形成する方法としては、例えば、トレンチエッチングにより櫛歯状の各電極を形成した後、側面酸化を行うようにすればよい。
【0094】
また、本発明は、容量式の半導体力学量センサとして、加速度センサ以外にも、例えば角速度センサや圧力センサ等に対しても適用可能である。
【図面の簡単な説明】
【図1】本発明の実施形態に係る半導体加速度センサの概略平面図である。
【図2】図1中のA−A概略断面図である。
【図3】図1中のB−B概略断面図である。
【図4】図1中のC−C概略断面図である。
【図5】(a)は実施形態における容量モデルを示す図、(b)は従来の容量モデルを示す図である。
【図6】(酸化膜厚/空気層厚)と容量増加分との関係を示す図である。
【図7】加速度印加時における可動電極の変位モデルを示す図である。
【図8】印加加速度Gと変位後の空気層の厚さdとの関係を示す図である。
【図9】変位後の空気層の厚さdと両電極間の差電圧Vとの関係を模式的に表した図である。
【図10】上記実施形態の第1の変形例を示す概略断面図である。
【図11】上記実施形態の第2の変形例を示す概略断面図である。
【図12】上記実施形態の第3の変形例を示す概略断面図である。
【符号の説明】
10…SOI基板、11…第1シリコン基板、
13、13a…シリコン酸化膜、13b…シリコン窒化膜、
20…可動電極、30…空間部。

Claims (8)

  1. 半導体基板(10)を加工することにより、互いに隔てられて対向する可動電極(20)および固定電極(11)が形成されており、
    力学量が印加されたときの前記可動電極の変位に伴う前記可動電極と前記固定電極との間の容量変化に基づいて、印加力学量を検出するようにした半導体力学量センサにおいて、
    前記可動電極と前記固定電極との間には、これら両電極を隔てる方向に沿って、空間部(30)と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層(13)とが並んで介在していることを特徴とする半導体力学量センサ。
  2. 前記絶縁層(13)は、前記可動電極(20)および前記固定電極(11)における互いの対向面のうち少なくとも一方の面に設けられていることを特徴とする請求項1に記載の半導体力学量センサ。
  3. 前記絶縁層(13)は、前記可動電極(20)および前記固定電極(11)における互いの対向面の両面に設けられていることを特徴とする請求項2に記載の半導体力学量センサ。
  4. 前記絶縁層(13)は、種類の異なる複数の絶縁膜(13a、13b)により形成されていることを特徴とする請求項1ないし3のいずれか一つに記載の半導体力学量センサ。
  5. 半導体からなる固定電極としての支持基板(11)の一面上に、半導体からなるとともに前記支持基板の厚さ方向に沿って変位可能な可動電極(20)が隔てられて対向して配置されており、
    力学量が印加されたときの前記可動電極の変位に伴う前記可動電極と前記支持基板の一面との間の容量変化に基づいて、印加力学量を検出するようにした半導体力学量センサにおいて、
    前記可動電極と前記支持基板の一面との間には、前記可動電極と前記支持基板とを隔てる方向に沿って、空間部(30)と電気絶縁性を有し空気よりも比誘電率の大きい絶縁層(13)とが並んで介在していることを特徴とする半導体力学量センサ。
  6. 前記絶縁層(13)は、前記可動電極(20)および前記支持基板(11)における互いの対向面のうち少なくとも一方の面に設けられていることを特徴とする請求項5に記載の半導体力学量センサ。
  7. 前記絶縁層(13)は、前記可動電極(20)および前記支持基板(11)における互いの対向面の両面に設けられていることを特徴とする請求項6に記載の半導体力学量センサ。
  8. 前記絶縁層(13)は、種類の異なる複数の絶縁膜(13a、13b)により形成されていることを特徴とする請求項5ないし7のいずれか一つに記載の半導体力学量センサ。
JP2003156725A 2003-06-02 2003-06-02 半導体力学量センサ Pending JP2004361115A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003156725A JP2004361115A (ja) 2003-06-02 2003-06-02 半導体力学量センサ
DE102004026593A DE102004026593A1 (de) 2003-06-02 2004-06-01 Halbleitersensor für dynamische Größen
US10/856,858 US7004029B2 (en) 2003-06-02 2004-06-01 Semiconductor dynamic quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156725A JP2004361115A (ja) 2003-06-02 2003-06-02 半導体力学量センサ

Publications (1)

Publication Number Publication Date
JP2004361115A true JP2004361115A (ja) 2004-12-24

Family

ID=33447926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156725A Pending JP2004361115A (ja) 2003-06-02 2003-06-02 半導体力学量センサ

Country Status (3)

Country Link
US (1) US7004029B2 (ja)
JP (1) JP2004361115A (ja)
DE (1) DE102004026593A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992421A1 (en) 2007-05-16 2008-11-19 Hitachi, Ltd. Semiconductor device
WO2014057623A1 (ja) * 2012-10-12 2014-04-17 パナソニック株式会社 加速度センサ
JP2014077742A (ja) * 2012-10-12 2014-05-01 Panasonic Corp 加速度センサ
JP2014238280A (ja) * 2013-06-06 2014-12-18 パナソニックIpマネジメント株式会社 加速度センサ
US10215566B2 (en) 2015-09-15 2019-02-26 Seiko Epson Corporation Oscillator, electronic device, and moving object

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7302847B2 (en) * 2004-08-17 2007-12-04 Nippon Soken, Inc. Physical quantity sensor having movable portion
JP5135683B2 (ja) * 2005-02-28 2013-02-06 ソニー株式会社 振動型ジャイロセンサ及び振動素子の製造方法
US7180019B1 (en) * 2006-06-26 2007-02-20 Temic Automotive Of North America, Inc. Capacitive accelerometer or acceleration switch
JP4557034B2 (ja) * 2008-04-01 2010-10-06 株式会社デンソー 半導体力学量センサおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459723B1 (en) * 1990-05-30 1996-01-17 Hitachi, Ltd. Semiconductor acceleration sensor and vehicle control system using the same
JP2728807B2 (ja) * 1991-07-24 1998-03-18 株式会社日立製作所 静電容量式加速度センサ
US5461916A (en) 1992-08-21 1995-10-31 Nippondenso Co., Ltd. Mechanical force sensing semiconductor device
JP2586406B2 (ja) * 1994-10-27 1997-02-26 日本電気株式会社 静電容量型加速度センサ
JP3433401B2 (ja) * 1995-05-18 2003-08-04 アイシン精機株式会社 静電容量型加速度センサ
JPH09113534A (ja) 1995-10-23 1997-05-02 Yoshinobu Matsumoto 加速度センサー
JPH10178184A (ja) 1996-12-17 1998-06-30 Mitsubishi Materials Corp 半導体慣性センサ及びその製造方法
WO2003038448A1 (en) * 2001-10-26 2003-05-08 Potter Michael D An accelerometer and methods thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1992421A1 (en) 2007-05-16 2008-11-19 Hitachi, Ltd. Semiconductor device
JP2008288813A (ja) * 2007-05-16 2008-11-27 Hitachi Ltd 半導体装置
US7923795B2 (en) 2007-05-16 2011-04-12 Hitachi, Ltd. Ultrasonic transducer device
WO2014057623A1 (ja) * 2012-10-12 2014-04-17 パナソニック株式会社 加速度センサ
JP2014077742A (ja) * 2012-10-12 2014-05-01 Panasonic Corp 加速度センサ
JP2014238280A (ja) * 2013-06-06 2014-12-18 パナソニックIpマネジメント株式会社 加速度センサ
US10215566B2 (en) 2015-09-15 2019-02-26 Seiko Epson Corporation Oscillator, electronic device, and moving object

Also Published As

Publication number Publication date
US7004029B2 (en) 2006-02-28
DE102004026593A1 (de) 2004-12-23
US20040237652A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US5495761A (en) Integrated accelerometer with a sensitive axis parallel to the substrate
US6848310B2 (en) Capacitive dynamic quantity sensor, method for manufacturing capacitive dynamic quantity sensor, and detector including capacitive dynamic quantity sensor
US6876093B2 (en) Capacitance type dynamic quantity sensor device
US7059190B2 (en) Semiconductor dynamic sensor having variable capacitor formed on laminated substrate
JP2006084327A (ja) 容量式力学量センサ装置
US9274153B2 (en) Electrostatic capacitance sensor
JP2003240798A (ja) 容量式力学量センサ
JP2004361115A (ja) 半導体力学量センサ
US6430999B2 (en) Semiconductor physical quantity sensor including frame-shaped beam surrounded by groove
JP2006349478A (ja) 静電容量型力学量センサおよびその製造方法
JP2004170145A (ja) 容量式力学量センサ
JP2008175825A (ja) 半導体力学量センサ
JP2004347499A (ja) 半導体力学量センサ
JP2006170704A (ja) 容量型加速度検出装置
JP6354603B2 (ja) 加速度センサおよび加速度センサの実装構造
JP4410478B2 (ja) 半導体力学量センサ
JPH06163934A (ja) 半導体加速度センサ及びその製造方法
JP4893491B2 (ja) 力学量検出センサ、加速度センサ、ヨーレートセンサ及び力学量検出センサの生産方法
JP2004226362A (ja) 容量式加速度センサ
JP4444005B2 (ja) 半導体力学量センサ
JP2004004119A (ja) 半導体力学量センサ
JP4515069B2 (ja) 半導体力学量センサ
JP5899975B2 (ja) 加速度センサ装置
JP3928612B2 (ja) 半導体力学量センサ
JP3178143B2 (ja) 静電容量式加速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009