JP2004170145A - 容量式力学量センサ - Google Patents

容量式力学量センサ Download PDF

Info

Publication number
JP2004170145A
JP2004170145A JP2002334070A JP2002334070A JP2004170145A JP 2004170145 A JP2004170145 A JP 2004170145A JP 2002334070 A JP2002334070 A JP 2002334070A JP 2002334070 A JP2002334070 A JP 2002334070A JP 2004170145 A JP2004170145 A JP 2004170145A
Authority
JP
Japan
Prior art keywords
dynamic quantity
quantity sensor
movable electrode
electrode
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002334070A
Other languages
English (en)
Inventor
Tetsuo Yoshioka
テツヲ 吉岡
Yukihiro Takeuchi
竹内  幸裕
Kazuhiko Kano
加納  一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002334070A priority Critical patent/JP2004170145A/ja
Priority to US10/703,460 priority patent/US6909158B2/en
Priority to DE10353325A priority patent/DE10353325A1/de
Publication of JP2004170145A publication Critical patent/JP2004170145A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】計測対象の周波数領域で感度の周波数依存性が小さく、かつ高い感度の容量式力学量センサを提供する。
【解決手段】半導体基板に支持され力学量の印加に応じて変位する重錘部15と、重錘部15に一体形成された可動電極16と、可動電極16と対向する片持ち支持された固定電極17,18とを備え、可動電極16と固定電極17,18の対向面で静電容量を形成し、力学量の印加に応じて可動電極16が対向面に対して垂直方向に変位し、可動電極16と固定電極17,18との間の距離変化に伴う静電容量の変化を測定して印加力学量を検出する容量式力学量センサ11において、可動電極16と固定電極17,18の対向面が略方形であり、当該略方形の対向面における2辺の長さの比L/hを、0.1以上、10以下とする。
【選択図】 図3

Description

【0001】
【発明の属する技術分野】
本発明は、対向する可動電極と固定電極とで静電容量を形成し、可動電極の変位に伴う静電容量変化によって印加力学量を検出する容量式力学量センサに関する。
【0002】
【従来の技術】
静電容量変化によって印加力学量を検出する代表的な容量式力学量センサが、例えば、特開平11−326365号公報(特許文献1)に開示されている。
【0003】
図6(a),(b)に、特許文献1に開示された容量式力学量センサを示す。図6(a)は、容量式力学量センサ11の平面模式図であり、図6(b)は、図6(a)中におけるA−A断面の断面模式図である。尚、図6(a)でハッチングされた部位は断面ではなく、実際は平面である。
【0004】
図6(a),(b)に示す容量式力学量センサ11は、SOI(Silicon On Insulator)基板に半導体製造技術を利用した周知のマイクロマシン加工を施すことにより形成される。
【0005】
図6(a)に示すように、可動部12は、アンカー部13と、アンカー部13に支持された矩形枠状のバネ部14と、バネ部14と連結された重錘部15と、重錘部15の両側に櫛歯形状に形成された可動電極16とから構成されている。一方、可動電極16の一方側に対向して櫛歯形状の第1の固定電極17が形成されていると共に、可動電極16の他方側に対向して第2の固定電極18が形成されている。
【0006】
上記可動部12及び各固定電極17,18には、重量軽減のための矩形状の貫通孔31が複数形成されている。また、固定電極17の検出面において可動電極16の検出面と対向する部位には、静電気による付着防止用の突起32が形成されている。また、可動部12のバネ部14の内面にも、静電気による付着防止用の突起33が形成されている。
【0007】
SOI基板のパッド部25〜27には、可動電極16および固定電極17,18から電気信号を取出すための電極パッド28〜30が形成されている。パッド部25〜27は、第2の半導体層20からなる周辺部と電気的に分離することにより目的の電気信号を取出す必要があるため、二重の溝34で物理的及び電気的に分離されている。溝34を二重にして土手部35を形成することで、導電性ゴミによるパッド部24〜27と周辺部の短絡の危険性を低減している。
【0008】
図6(b)に示すように、容量式力学量センサ11は、第1の半導体層19と第2の半導体層20との間に絶縁層21(支持部に相当)を有するSOI基板によって構成されており、第1の半導体層19及び絶縁層21は、可動部12及び各固定電極17,18が形成される領域において第2の半導体層20が露出するように除去されている。このようにして、容量式力学量センサ11では、可動部12の両端が絶縁層21上に支持されていると共に、各固定電極17,18が絶縁層21上に片持ち支持された形態となっている。
【0009】
【特許文献1】特開平11−326365号公報
【0010】
【発明が解決しようとする課題】
図6(a),(b)に示す容量式力学量センサ11は、加速度センサであり、可動電極16と固定電極17,18の対向面に垂直な図6(a)に示す加速度を、可動電極16と固定電極17,18間に発生する静電容量変化により計測する。
【0011】
図7に、従来の容量式力学量センサ11において、可動部12が振動した時の周波数ωと静電容量変化ΔCの関係を模式的に示す。センサ感度である静電容量変化ΔCは、可動部12の共振周波数ωにおいて、ピーク形状となる。
【0012】
図6(a),(b)の容量式力学量センサ11を用いて加速度を計測する場合、センサ感度の周波数依存性が小さいほうが、電気回路による補正が簡単になり、好ましい。従って、図7の破線のように、可動部12の共振周波数がωのように計測対象の周波数領域に入ってくる場合には、可動部12のバネ定数kを大きく、もしくは質量mを小さくなるように設計変更する。これによって、図の実線のように、可動部12の共振周波数はωのように計測周波数領域より十分大きくなり、計測対象の周波数領域では周波数依存性が無視できるようなる。しかしながら上記のような設計変更に伴い、センサの感度は、計測対象の周波数領域で図の実線のように低下してしまう。
【0013】
そこで本発明は、計測対象の周波数領域で感度の周波数依存性が小さく、かつ高い感度の容量式力学量センサを提供することを目的としている。
【0014】
【課題を解決するための手段】
請求項1に記載の発明は、半導体基板に支持され力学量の印加に応じて変位する重錘部と、当該重錘部に一体形成された可動電極と、当該可動電極と対向する片持ち支持された固定電極とを備え、前記可動電極と固定電極の対向面で静電容量を形成し、力学量の印加に応じて可動電極が前記対向面に対して垂直方向に変位し、可動電極と固定電極との間の距離変化に伴う静電容量の変化を測定して印加力学量を検出する容量式力学量センサにおいて、前記可動電極と固定電極の対向面が略方形であり、当該略方形の対向面における2辺の長さの比が、0.1以上、10以下であることを特徴としている。
【0015】
容量式力学量センサは、力学量の印加に応じて可動電極が変位し、可動電極と固定電極との間の距離変化に伴う静電容量の変化を測定して印加力学量を検出する。従って、容量式力学量センサのセンサ感度は、可動電極の変位に伴う静電容量変化、または可動電極の静止時の初期静電容量に対する変位時の静電容量変化の比として表される。
【0016】
上記構造の容量式力学量センサにおいては、可動電極と固定電極間に存在する気体の粘性により、スクイーズフィルムダンピングが働く。この電極間に生じるダンピングを利用することで、共振による変位の増幅を抑制して、計測対象の周波数領域に共振周波数があっても、周波数依存性の小さな容量式力学量センサとすることができる。このようにダンピングにより周波数依存性を低減した容量式力学量センサは、一般的に、共振周波数を計測対象の周波数領域外に移動して周波数依存性を低減したものと較べて、計測対象の周波数領域において感度の高い容量式力学量センサとすることができる。
【0017】
本発明の容量式力学量センサにおいては、可動電極と固定電極の対向面が略方形で、対向面における2辺の長さの比を0.1以上、10以下とすることで、対向面の面積を変えずに、前記ダンピングのダンピング係数を極大にすることができる。言い換えれば、可動電極と固定電極の対向面の面積が一定で、静止時の初期静電容量を増加させることなく、ダンピング係数を極大化して、前記のようにダンピングにより周波数依存性を低減した容量式力学センサとすることができる。従って、本発明の容量式力学量センサは、計測対象の周波数領域で感度の周波数依存性が小さく、かつ高い感度の容量式力学量センサとすることができる。
【0018】
請求項2に記載のように、前記半導体基板はシリコン(Si)基板であり、前記2辺の長さの比は、0.7以上、1.3以下であることが好ましい。
【0019】
前記のダンピング係数は、略方形の対向面における2辺の長さの比が1、すなわち対向面が正方形のとき極大値をとる。本発明の容量式力学量センサでは、半導体基板をシリコン(Si)基板とし、当該Si基板にエッチングによるマイクロマシン加工を施すことで、前記2辺の長さの比を、0.7以上、1.3以下の範囲内で、正方形に近づけることができる。これによってダンピング係数を極大値に近づけ、本発明の容量式力学量センサを、高い感度で周波数依存性を最適に低減した容量式力学量センサとすることができる。
【0020】
請求項3に記載の発明は、前記シリコン基板が、内部に絶縁層を有するSOI(Silicon On Insulator)基板であり、前記2辺の長さの比が、0.9以上、1.1以下であることを特徴としている。
【0021】
本発明の容量式力学量センサでは、シリコン基板を内部に絶縁層を有するSOI基板とすることで、内部の絶縁層をエッチングの基準にして、前記2辺の長さの比を、0.1以上、1.1以下の範囲内で、正方形に近づけることができる。これによってダンピング係数をさらに極大値に近づけ、本発明の容量式力学量センサを、高い感度で周波数依存性を最適に低減した容量式力学量センサとすることができる。
【0022】
請求項4に記載の発明は、前記対向面が、複数形成されてなることを特徴としている。
【0023】
これにより、前記固定電極との対向面が略方形となる可動電極を、複数に分けてバランスよく重錘部に配置して、重錘部と可動電極からなる可動部の振動を、バランスのよいものとすることができる。これによって、本発明の容量式力学量センサの耐久性を向上することができる。
【0024】
請求項5に記載の発明は、前記重錘部と可動電極からなる可動部の質量をm、当該可動部のバネ定数をk、当該可動部のダンピング係数をcとしたとき、Q=(mk)1/2/cで表されるQが、1.2以下であることを特徴としている。
【0025】
容量式力学量センサの感度(従って可動電極の振動に伴う振幅)に周波数依存性がある場合、振幅の周波数依存性がほぼ30%以内であれば、電気回路により容易に周波数依存性を補正することができる。
【0026】
本発明の容量式力学量センサにおいては、共振周波数における振幅の振動数ゼロにおける静的振幅に対する倍率を示す前記Qを1.2以下とすることにより、前記振幅の周波数依存性をほぼ30%以内にすることができる。従って、電気回路により周波数依存性を容易に補正することができ、安価な容量式力学量センサとすることができる。
【0027】
【発明の実施の形態】
以下、本発明の実施の形態を、図に基づいて説明する。
【0028】
図1に示す容量式力学量センサの可動部が振動した時の周波数ωと静電容量変化ΔCとの関係模式図を用いて、本発明の容量式力学量センサの基本的な考え方を説明する。
【0029】
容量式力学量センサは、力学量の印加に応じて可動電極が変位し、可動電極と固定電極との間の距離変化に伴う静電容量の変化を測定して印加力学量を検出する。従って、容量式力学量センサのセンサ感度は、可動電極の変位に伴う静電容量変化ΔC、または可動電極の静止時の初期静電容量Cに対する変位時の静電容量変化の比ΔC/Cとして表される。
【0030】
従来の容量式力学量センサにおいては、図7で説明したように、可動部の共振周波数ωが計測周波数領域に入ってくる場合には、共振周波数をωに移動して、センサ感度の周波数依存性を低減していた。本発明の容量式力学量センサにおいては、図1に示すように可動部の共振周波数ωを移動するのでなく、計測対象となる周波数領域内もしくは近傍にセンサの共振周波数を設定し、可動部のダンピングを利用してセンサ感度の周波数依存性を低減する。
【0031】
この可動部のダンピングについて、図6(a),(b)に示す容量式力学量センサ11を用いて説明する。図6(a),(b)の容量式力学量センサ11においては、可動電極16と固定電極17,18間に存在する気体の粘性により、スクイーズフィルムダンピングが働く。この電極間に生じるダンピングを利用することで、共振による変位の増幅を抑制して、計測対象の周波数領域に共振周波数があっても、周波数依存性の小さな容量式力学量センサとすることができる。
【0032】
次に、数式を用いてより詳細に説明する。
【0033】
ダンピングを利用した容量式力学量センサは、以下の各式に従う。
【0034】
【数1】
Figure 2004170145
【0035】
【数2】
Figure 2004170145
【0036】
【数3】
Figure 2004170145
【0037】
【数4】
Figure 2004170145
【0038】
【数5】
Figure 2004170145
【0039】
【数6】
Figure 2004170145
【0040】
ここで、ΔC:静電容量変化、ε:誘電率、L:固定電極と可動電極の対向面の長さ、h:固定電極と可動電極の対向面の高さ、d:電極間距離、x:電極間中心からの変位、m:質量、c:可動部のダンピング係数、k:可動部のバネ定数、F:加振力振幅、ω:振動周波数、β:遅れ角、ω:共振周波数、Q:共振倍率(Q値)、δst:静的振幅、α:加速度である。
【0041】
数式1は、容量式力学量センサの感度である静電容量変化ΔCと、電極間中心からの変位xとの関係を表す式である。数式2は、容量式力学量センサの可動部の運動方程式である。この運動方程式の解は、数式3のように表される。数式4は共振周波数の定義式であり、数式5は共振倍率Qの定義式である。
【0042】
振動周波数ωが共振周波数ωの場合には、数式3が
【0043】
【数7】
Figure 2004170145
【0044】
のようになることから、Qは、振動周波数ωが共振周波数ωの場合において、静的振幅δstに対する振幅の倍率を表す量である。
【0045】
数式6は、検出目的の加速度αと静的振幅δstとの関係を表す式である。この容量式力学量センサでは、静電容量変化ΔCを測定によって求め、数式1と数式3から静的振幅δstを算出し、数式6によって加速度αが求められる。
【0046】
図2は、数式3の振幅
【0047】
【数8】
Figure 2004170145
【0048】
と周波数比ω/ωの関係を図式化したものである。また、共振周波数における数式5の関係が、図中に示されている。
【0049】
図2からわかるように、共振倍率Qを小さくすることで、振幅δ(従って変位xと静電容量変化ΔC)の周波数依存性を小さくすることができる。共振倍率Qはダンピング係数cと数式5の関係にあるので、スクイーズフィルムダンピングによるダンピング係数cを大きくすれば、共振倍率Qが小さくなり、ひいてはセンサ感度である静電容量変化ΔCの周波数依存性を小さくすることができる。
【0050】
このようにダンピングにより周波数依存性を低減した容量式力学量センサは、一般的に、共振周波数を計測対象の周波数領域外に移動して周波数依存性を低減したものと較べて、計測周波数領域において感度の高いセンサとすることができる。例えば、バネ定数kを小さくして質量mを大きくすれば、数式4によって共振周波数が低減し、計測対象となる周波数領域近傍にセンサの共振周波数を設定することができる。一方、バネ定数kを小さくして質量mを大きくすれば、数式6によってセンサ感度は向上する。
【0051】
本発明のダンピングを利用した容量式力学量センサは、基本構造は図6(a),(b)に示した容量式力学量センサ11と同様であるが、可動電極と固定電極の対向面が略方形であり、当該対向面における2辺の長さの比が、0.1以上、10以下である。
【0052】
図3に、対向面の面積を変えずに、対向面における2辺の長さの比を変えた場合におけるスクイーズフィルムダンピングのダンピング係数の計算例を示す。図3の計算は、対向面の面積を0.25mm、電極間距離を4μmとして計算した結果である。
【0053】
図3に示すように、ダンピング係数cは、可動電極と固定電極の対向面における2辺の長さの比L/hが0.1以上、10以下のとき極大となり、L/hが1の正方形の場合に極大値をとる。尚、対向面における2辺の長さの比L/hが0.1以上、10以下のとき極大となる結果は、対向面の面積や電極間距離を変えて計算しても同様に得られる。従って、この容量式力学センサは、可動電極と固定電極の対向面の面積が一定のため、静止時の初期静電容量Cの増加がなく、かつダンピング係数を極大化して、ダンピングにより周波数依存性を低減した容量式力学センサとすることができる。従って、本発明の容量式力学量センサは、計測対象の周波数領域で感度の周波数依存性が小さく、かつ高い感度の容量式力学量センサとすることができる。
【0054】
図4は、上記のようなダンピングを利用した容量式力学センサにおいて、周波数比ω/ωと振幅比δ/δstの関係を示す図である。図4は、数式8を図式化したものである。
【0055】
容量式力学量センサの感度(従って可動電極の振動に伴う振幅)に周波数依存性がある場合、振幅の周波数依存性がほぼ30%以内であれば、電気回路により容易に周波数依存性を補正することができる。
【0056】
図4から、共振周波数における振幅の振動数ゼロにおける静的振幅δstに対する倍率であるQが1.2以下であれば、共振周波数を計測周波数領域に入れた状態で、振幅の周波数依存性をほぼ30%以内にすることができる。従って、Qが1.2以下の容量式力学センサであれば、電気回路により周波数依存性を容易に補正することができ、安価な容量式力学量センサとすることができる。
【0057】
尚、図3に示す対向面における2辺の長さの比L/hが0.1以上、10以下のときの極大を利用した容量式力学量センサで、Qを1.2以下とするには、可動電極と固定電極の対向面の面積を増大し、ダンピング係数を大きくする。対向面の面積を増大すると、初期静電容量Cが増加するが,静電容量変化ΔCも増加する。従って、静電容量変化の比ΔC/Cを測定する容量式力学量センサであっても、対向面の面積を増大による感度の低下はない。
【0058】
また、対向面における2辺の長さの比L/hが0.1以上、10以下のときの極大を利用した容量式力学量センサで、対向面の所定の面積を確保する場合、一つの対向面で所定の面積を確保するよりも、複数に分けて所定の面積を確保したほうが好ましい。図6(a)に示す容量式力学量センサ11を見てわかるように、対向面が略方形でダンピングの大きな可動電極16は、複数に分けてバランスよく重錘部に配置することができ、重錘部15と可動電極16からなる可動部12の振動を、バランスのよいものとすることができる。従って、2辺の長さの比L/hが0.1以上、10以下の対向面を持つ個々の可動電極を複数個重錘部に配置することで、可動部のバランスの良い振動を実現することができ、容量式力学量センサの耐久性を高めることができる。
【0059】
次に、本発明の容量式力学量センサの製造方法を簡単に説明する。
【0060】
図5(a)〜(d)は、SOI基板を用いた容量式力学量センサ100の製造方法を模式的に示す工程別断面図である。尚、図5(a)〜(d)において、図6(b)の容量式力学量センサ11と同様の部分については、同じ符号を付けた。
【0061】
図5(a)に示すSOI基板は、第1の半導体層19、酸化膜からなる絶縁層21、と第2の半導体層20からなる。半導体層19,20はいずれもシリコン(Si)である。
【0062】
最初に、基板表面に第1の酸化膜40を形成し、第2の半導体層20の電位をとるためのコンタクトホール41を形成する。
【0063】
次に、図5(b)に示すように、アルミニウム(Al)電極42を形成する。このAl電極42は、最終的に、図6(a)における電極パッド28〜30に対応する。
【0064】
次に、図5(c)に示すように、第2の酸化膜43を形成した後、それをマスクにして、内部の絶縁層21に達する溝44を形成する。これによって、図では第2の半導体層20が3つの領域20a,20b,20cに分離される。これら3つに分離された領域20a,20b,20cは、最終的に、領域20a,20bが図6(a)における固定電極17,18に対応し、領域20cが図6(a)における可動電極16や重錘部15に対応する。
【0065】
次に、裏面エッチングのマスクとなる第3の酸化膜45を基板裏面に成膜し、所定の開口部46を形成する。
【0066】
次に、開口部46が形成された第3の酸化膜45をマスクにして、基板裏面から内部の絶縁層21に達するまでエッチングする。
【0067】
最後に、酸化膜除去工程を用いて、表面に形成した第1〜第3の酸化膜40,43,45を除去すると共に、内部の絶縁層21における領域20cの直下部分を除去して、図の断面において領域20cと領域20a,20bが切り離される。
【0068】
このようにして、図5(d)に示す容量式力学量センサ100が製造される。
【0069】
以上、図5(a)〜(d)においてはSOI基板を用いて容量式力学量センサ100を製造する方法を説明したが、絶縁層21のない通常のシリコン(Si)基板を用いても、同様にして容量式力学量センサを製造することができる。但し、この場合には裏面からのエッチングのストップ精度がよくないので、領域20cを形成したときの高さばらつきは、±30%程度になる。
【0070】
図3のダンピング係数の計算結果からわかるように、ダンピング係数は対向面における2辺の長さの比が1の正方形のとき極大値をとるため、理想的には対向面が正方形であることが望ましい。しかしながら、シリコン(Si)基板を用いた容量式力学量センサにおいては前記のように±30%程度の加工誤差が出るため、対向面における2辺の長さの比が、0.7以上、1.3以下の範囲内で、正方形に近づけることができる。これによってダンピング係数を極大値に近づけ、製造される容量式力学量センサを、高い感度で周波数依存性を最適に低減した容量式力学量センサとすることができる。
【0071】
一方、図5(a)〜(d)のSOI基板を用いた容量式力学量センサ100の場合には、内部の絶縁層21が第1の半導体層19のエッチングにおけるストッパとなり、絶縁層21がその後の酸化膜除去工程におけるエッチングの基準となる。これによって、領域20cを形成したときの高さばらつきを、±10%程度に抑えることができる。
【0072】
このようにして、SOI基板を用いた容量式力学量センサ100においては、加工誤差を±10%程度にできるため、対向面における2辺の長さの比が、0.9以上、1.1以下の範囲内で、正方形に近づけることができる。これによってダンピング係数をさらに極大値に近づけ、製造される容量式力学量センサを、高い感度で周波数依存性を最適に低減した容量式力学量センサとすることができる。
【図面の簡単な説明】
【図1】本発明の容量式力学量センサにおける、周波数ωと静電容量変化ΔCとの関係を示す模式図である。
【図2】本発明の容量式力学量センサにおける、振幅δと周波数比ω/ωの関係を示す図である。
【図3】対向面の面積を変えずに、対向面における2辺の長さの比L/h変えた場合のダンピング係数の計算例である。
【図4】本発明の容量式力学量センサにおける、周波数比ω/ωと振幅比δ/δstの関係を示す図である。
【図5】(a)〜(d)は、SOI基板を用いた本発明の容量式力学量センサの製造方法を模式的に示す、工程別断面図である。
【図6】(a)は、代表的な容量式力学量センサの平面模式図であり、(b)は、(a)中におけるA−A断面の断面模式図である。
【図7】従来の容量式力学量センサにおける、周波数ωと静電容量変化ΔCとの関係を示す模式図である。
【符号の説明】
11,100 容量式力学センサ
12 可動部
13 アンカー部
14 バネ部
15 重錘部
16 可動電極
17 第1の固定電極
18 第2の固定電極
19 第1の半導体層
20 第2の半導体層
21 絶縁層

Claims (5)

  1. 半導体基板に支持され力学量の印加に応じて変位する重錘部と、当該重錘部に一体形成された可動電極と、当該可動電極と対向する片持ち支持された固定電極とを備え、
    前記可動電極と固定電極の対向面で静電容量を形成し、力学量の印加に応じて可動電極が前記対向面に対して垂直方向に変位し、可動電極と固定電極との間の距離変化に伴う静電容量の変化を測定して印加力学量を検出する容量式力学量センサにおいて、
    前記可動電極と固定電極の対向面が略方形であり、当該略方形の対向面における2辺の長さの比が、0.1以上、10以下であることを特徴とする容量式力学量センサ。
  2. 前記半導体基板がシリコン基板であり、前記2辺の長さの比が、0.7以上、1.3以下であることを特徴とする請求項1に記載の容量式力学量センサ。
  3. 前記シリコン基板が、内部に絶縁層を有するSOI基板であり、前記2辺の長さの比が、0.9以上、1.1以下であることを特徴とする請求項2に記載の容量式力学量センサ。
  4. 前記対向面が、複数形成されてなることを特徴とする請求項1乃至3のいずれか1項に記載の容量式力学量センサ。
  5. 前記重錘部と可動電極からなる可動部の質量をm、当該可動部のバネ定数をk、当該可動部のダンピング係数をcとしたとき、
    Q=(mk)1/2/c
    で表されるQが、1.2以下であることを特徴とする請求項1乃至4のいずれか1項に記載の容量式力学量センサ。
JP2002334070A 2002-11-18 2002-11-18 容量式力学量センサ Pending JP2004170145A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002334070A JP2004170145A (ja) 2002-11-18 2002-11-18 容量式力学量センサ
US10/703,460 US6909158B2 (en) 2002-11-18 2003-11-10 Capacitance type dynamical quantity sensor
DE10353325A DE10353325A1 (de) 2002-11-18 2003-11-14 Kapazitiver Sensor für dynamische Grössen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334070A JP2004170145A (ja) 2002-11-18 2002-11-18 容量式力学量センサ

Publications (1)

Publication Number Publication Date
JP2004170145A true JP2004170145A (ja) 2004-06-17

Family

ID=32212049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334070A Pending JP2004170145A (ja) 2002-11-18 2002-11-18 容量式力学量センサ

Country Status (3)

Country Link
US (1) US6909158B2 (ja)
JP (1) JP2004170145A (ja)
DE (1) DE10353325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170383A (ja) * 2007-01-15 2008-07-24 Dainippon Printing Co Ltd 一軸半導体加速度センサ

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047284A (ja) * 2004-07-06 2006-02-16 Denso Corp 半導体力学量センサおよびその製造方法
WO2006105314A1 (en) * 2005-03-29 2006-10-05 Analog Devices, Inc. Capacitive sensor with damping
US8371167B2 (en) * 2008-07-29 2013-02-12 Pixart Imaging Inc. In-plane sensor, out-of-plane sensor, and method for making same
JP5678442B2 (ja) * 2009-03-26 2015-03-04 セイコーエプソン株式会社 物理量センサー、および電子機器
JP2010249805A (ja) * 2009-03-26 2010-11-04 Seiko Epson Corp Memsセンサー、memsセンサーの製造方法、および電子機器
DE102010006584B4 (de) * 2010-02-02 2012-09-27 Northrop Grumman Litef Gmbh Corioliskreisel mit Korrektureinheiten und Verfahren zur Reduktion des Quadraturbias
JP5790297B2 (ja) * 2011-08-17 2015-10-07 セイコーエプソン株式会社 物理量センサー及び電子機器
US8896074B2 (en) 2012-01-26 2014-11-25 The Charles Stark Draper Laboratory, Inc. MEMS vibration isolation system and method
JP6344552B2 (ja) 2014-04-18 2018-06-20 セイコーエプソン株式会社 機能素子、電子機器、および移動体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126812A (en) * 1990-02-14 1992-06-30 The Charles Stark Draper Laboratory, Inc. Monolithic micromechanical accelerometer
JP3307328B2 (ja) * 1998-05-11 2002-07-24 株式会社デンソー 半導体力学量センサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008170383A (ja) * 2007-01-15 2008-07-24 Dainippon Printing Co Ltd 一軸半導体加速度センサ

Also Published As

Publication number Publication date
DE10353325A1 (de) 2004-05-27
US20040094814A1 (en) 2004-05-20
US6909158B2 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
US5495761A (en) Integrated accelerometer with a sensitive axis parallel to the substrate
JP4063057B2 (ja) 容量式加速度センサ
JP3941694B2 (ja) 加速度センサ
KR101228164B1 (ko) 적어도 2개의 갭 사이즈와 액티브 커패시터 영역 외부에배치된 트레블 스톱을 갖는 z축 가속도계
JP3114570B2 (ja) 静電容量型圧力センサ
US7617729B2 (en) Accelerometer
US5447067A (en) Acceleration sensor and method for manufacturing same
US20030101817A1 (en) Semiconductor dynamic quantity sensor
JP4000936B2 (ja) 容量式力学量センサを有する検出装置
JP2004053329A5 (ja)
US9128114B2 (en) Capacitive sensor device and a method of sensing accelerations
JP2004170145A (ja) 容量式力学量センサ
CN111186810B (zh) 微机械结构元件
JP4362877B2 (ja) 角速度センサ
JP2586406B2 (ja) 静電容量型加速度センサ
CN111071982B (zh) 微机械惯性传感器
US7004029B2 (en) Semiconductor dynamic quantity sensor
JP4403607B2 (ja) 半導体力学量センサ
US9612254B2 (en) Microelectromechanical systems devices with improved lateral sensitivity
WO2011161917A1 (ja) 加速度センサ
JP2001516887A (ja) センサ素子
JP2019049434A (ja) 加速度センサ
JP4394212B2 (ja) 加速度センサ
JP2009270944A (ja) 静電容量型加速度センサ
JP2001121499A (ja) マイクロマシン構造体および製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070828