JP2004356600A - 半導体発光素子 - Google Patents
半導体発光素子 Download PDFInfo
- Publication number
- JP2004356600A JP2004356600A JP2003158886A JP2003158886A JP2004356600A JP 2004356600 A JP2004356600 A JP 2004356600A JP 2003158886 A JP2003158886 A JP 2003158886A JP 2003158886 A JP2003158886 A JP 2003158886A JP 2004356600 A JP2004356600 A JP 2004356600A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- light emitting
- type
- led
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Led Devices (AREA)
Abstract
【解決手段】この半導体発光素子は、n型GaAs基板1と、この基板1上に、n型(Al0.7Ga0.3)0.5In0.5Pクラッド層3と、活性層4と、Zn拡散抑止層であるアンドープ層10と、p型クラッド層5と、p型コンタクト層6と、金属酸化物窓層7とをそれぞれ積層したものである。アンドープ層10は、活性層中へのZn拡散を押さえ込めるため、Znの拡散による発光出力の低下及び信頼性の低下を防止できる。p型コンタクト層を所定の膜厚とすることで高輝度、低動作電圧を確保する。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、半導体発光素子に関し、特に、半導体発光素子の急速な劣化を防止し、中間バンドギャップを設けなくても順方向動作電圧を低くすることができるとともに、高輝度、低価格、高信頼性であり、再現性に優れる半導体発光素子に関する。
【0002】
【従来の技術】
従来、半導体発光素子である発光ダイオード(以下、LEDともいう)はGaPの緑色、AlGaAsの赤色がほとんどであった。しかし、最近GaN系やAlGaInP系の結晶層をMOVPE(Metal Organic Vapor Phase Epitaxy :有機金属気相成長)法で成長できるようになったことから、橙色、黄色、緑色、青色の高輝度LEDが製作できるようになってきた。
【0003】
MOVPE法で形成したエピタキシャルウエハにより、これまでにできなかった短波長の発光や、高輝度が得られるLEDの製作が可能となった。しかし高輝度を得るためには、電流分散を良くするために窓層の膜厚を厚くする必要があり、そのためにLED用エピタキシャルウエハのコストが高くなり、LEDを安価に製作することが難しかった。
【0004】
コストを下げるためには、窓層の膜厚が薄く、かつ電流分散性が良好であることが望まれる。つまり、窓層自体の抵抗率をさらに低くすることが好ましい。抵抗の低いエピタキシャル層を得るには、移動度を大幅に変えるか、高キャリア濃度にする方法がある。
【0005】
これらの問題を解決する方法として、例えば、AlGaInP4元系LEDの場合には、窓層としてできるだけ抵抗の低い値が得られる材料として、GaPやAlGaAsを用いることも行われている。しかし、これらの抵抗率の低い材料を用いてもp型で高キャリア濃度のエピタキシャル層を成長させることは難しく、電流分散効果を良くするためには窓層の膜厚を8μm以上まで厚くする必要がある。また、他の半導体でそのような特性を有するものがあればそれで代用することができる。しかし、そのような特性を有する半導体は見当たらない。
【0006】
例えば、GaN系LEDでは、その他の方法として金属薄膜を透光性導電膜として用いている。しかし、金属薄膜は光を通すためには非常に薄くする必要がある。一方、十分な電流分散を得ようとすると膜厚が必要となって透光性が悪くなるという不都合がある。また、金属薄膜は、一般的に真空蒸着法で形成され、その真空排気時間が長いことも問題となっている。
【0007】
かかる問題を解決するものとして、金属酸化物の透明導電膜であるITO(Indium Tin Oxide)膜が知られている。このITO膜を電流分散膜として用いると、これまで電流分散膜として用いたエピタキシャル層を不要にできることから、安価に高輝度のLEDを生産できる。
【0008】
このLEDは、上記した構成で積層された電極付LED用エピタキシャルウエハをp型電極が中心になるようにチップサイズ300μm角の切断加工することによりLEDベアチップに形成される。このLEDベアチップをTO−18ステム上にダイボンディングし、LEDベアチップとTO−18ステムとをワイヤボンディングして電気的に接続しているが、LEDベアチップにおいて、半導体層と金属酸化膜である透明導電膜との間に接触抵抗が発生してしまい、順方向動作電圧が高くなるという問題がある。
【0009】
かかる問題を解決するものとして、最上の半導体層のキャリア濃度を極めて高くすることにより、トンネル電流に基づいてLEDを駆動させるという方法が知られている(例えば、非特許文献1参照。)。
【0010】
また、最上の半導体層としてCを添加物としたGaAs層を用い、C添加物の原料として四臭化炭素(CBr4)を用いて、高輝度,低動作電圧,高信頼性のLEDを製作するという方法が知られている(例えば、特許文献1参照。)。
【0011】
【非特許文献1】
ELECTRONICS LETTERS、7Th December 1995(2210〜2212頁)
【0012】
【特許文献1】
特開平11−307810号公報(第1図)
【0013】
【発明が解決しようとする課題】
しかし、従来のLEDによると、半導体コンタクト層としてGaAsを使用し、添加物としてZnを使用すると、半導体発光素子の寿命が短く急速に劣化してしまい、信頼性が悪くなるという問題がある。
【0014】
例えば、GaAs層とクラッド層のバンド不連続を緩和するために、GaAs層とクラッド層との間に中間バンドギャップ層を入れるという方法が知られている。しかし、この方法でも、順方向電圧をある程度低くすることはできるが、透明導電膜と接している層がGaAs層であることから、当然のことながら、半導体発光素子の寿命が短く急速に劣化することを改善することはできない。また、GaAs層とクラッド層との間に中間バンドギャップ層を設ける分コストアップとなる。
【0015】
また、C添加物の原料にCBr4を用いると、1回目の成長では充分な特性を達成できるが、連続して成長を行うと、2回目以降は発光出力が約50%と極めて低くなり、再現性に劣るという問題がある。この問題を特定するため、発明者は2回目以降に成長したエピタキシャルウエハのSIMS分析を行ったところ、エピタキシャルウエハ中に高濃度のCおよびOが存在することが明らかとなった。このことから、原料としてCBr4を用いたことで1回目の成長にて高濃度のCおよびOが成長炉内に残存し、そのCおよびOが2回目以降の成長時にエピタキシャルウエハ中に混入することによって発光出力が低下すると考えられる。
【0016】
従って、本発明の目的は、半導体発光素子の急速な劣化を防止し、中間バンドギャップ層を設けなくても順方向動作電圧を低くすることができるとともに、高輝度、低価格、高信頼性であり、再現性に優れるLEDを提供することにある。
【0017】
【課題を解決するための手段】
本発明は、上記目的を達するために、第一導電型の基板と、前記基板上に積層された第一導電型クラッド層と第二導電型クラッド層との間に活性層が設けられた発光部と、前記発光部の上に形成され、高添加濃度のZnを含む第二導電型コンタクト層と、前記発光部の上に積層された金属酸化物窓層と、前記金属酸化物窓層の表面側に形成された第1の電極と、前記基板の裏面の全面または部分的に形成された第2の電極と、前記活性層と前記第二導電型クラッド層との間に、アンドープ層、または前記第二導電型クラッド層よりもキャリア濃度が低い第二導電型半導体層、または1×1017cm−3以下のキャリア濃度を有する第一導電型半導体層からなる拡散抑止層とを備えることを特徴とする半導体発光素子を提供する。
【0018】
この構成によれば、第二導電型コンタクト層のキャリア濃度を高くすれば、第二導電型コンタクト層と第二導電型クラッド層間に電気が流れるようになるため、抵抗が小さくなり、また、トンネル効果が大きくなるため、金属酸化物窓層と第二導電型コンタクト層および第二導電型コンタクト層と第二導電型クラッド層との間の抵抗が小さくなり、順方向動作電圧が低下する。また、活性層と第二導電型クラッド層との間にZn拡散を抑止するZnトラップ層の役目を果たすアンドープ層若しくは低キャリア濃度の第一導電型及び低キャリア濃度の第二導電型層を挿入することにより、活性層中へのZn拡散が抑え込めるため、Znの拡散による発光出力の低下及び特性の劣化、すなわち信頼性の低下を防止でき、第二導電型コンタクト層を所定の膜厚とすることで高輝度、低動作電圧を確保する。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の第1の実施形態に係るAlGaInP系赤色LEDの断面を示す。このLEDは、発光波長630nm付近の赤色を発光する。このLEDは、第一導電型としてのn型GaAs基板1と、この基板1上にn型(Seドープ)GaAsバッファ層(膜厚400nm、キャリア濃度1×1018cm−3)2と、n型(Seドープ)(Al0.7Ga0.3)0.5In0.5Pクラッド層(膜厚300nm、キャリア濃度1×1018cm−3)3と、アンドープ(Al0.1Ga0.9)0.5In0.5P活性層(膜厚600nm)4と、Zn拡散抑止層である(Al0.7Ga0.3)0.5In0.5Pアンドープ層(膜厚300nm)10と、第二導電型としてのp型(Znドープ)(Al0.7Ga0.3)0.5In0.5Pクラッド層(膜厚300nm,キャリア濃度5×1017cm−3)5と、p型(Znドープ)GaAsコンタクト層(膜厚50nm,キャリア濃度1×1019cm−3)6と、金属酸化物窓層7と、p型である上面円形電極8と、n型である裏面電極9とをそれぞれ積層したものである。なお、活性層4は、多重量子井戸を用いたものでもよい。
【0020】
p型コンタクト層6のキャリア濃度は、1×1019cm−3以上のものを使用する。キャリア濃度が低いとトンネル電流が流れにくくなることや、p型クラッド層5とのバンド不連続による順方向動作電圧の上昇が起こるためである。
【0021】
図2は、本発明の実施形態におけるp型コンタクト層6の膜厚と発光出力との関係を示す。p型コンタクト層6の膜厚は、1〜100nm程度、より好ましくは、2〜30nmの膜厚とする。GaAsは、活性層4のバンドギャップよりも小さいバンドギャップを有するため、発光した光に対して吸収層となってしまい、LEDとしての発光出力を低下させてしまうため、薄い方が望ましい。しかし、p型コンタクト層6の膜厚をあまり薄くし過ぎると、トンネル電流が流れなくなり、順方向電圧が高くなる。このため、p型コンタクト層6には、最適値がある。
【0022】
p型コンタクト層6のV/III比は、50以下にするのが好ましく、より好ましくは、V/III比は10以下とする。これは、順方向動作電圧を低くするためである。p型コンタクト層6のV/III比を高くして成長させると、結晶性がよくなり、同じキャリア濃度でもトンネル電流が流れにくくなる。また、p型クラッド層5とのバンド不連続による順方向動作電圧の上昇が起こりやすくなる。このため、p型コンタクト層6の結晶性は、あまりよくない方が良い。またp型コンタクト層6のV/III比を低くすると、Cが自動的に添加される量(オートドーピング)が増加する。このためp型コンタクト層6のV/III比は、高キャリア濃度化し、さらに結晶の質が低下する。
【0023】
金属酸化物窓層7の膜厚は、50nm以上が好ましく、より好ましくは200nm以上である。金属酸化物窓層7の膜厚が薄いと電流分散効果が薄れ、発光出力が低くなるためである。また、金属酸化物窓層7の比抵抗は、1×10− 5Ωmが好ましく、より好ましくは7×10−6Ωm以下である。金属酸化物窓層7の比抵抗が高いとトンネル電流が流れなくなったり、流れにくくなるため、順方向動作電圧が高くなり、電流分散効果も薄れ、発光出力が低くなるからである。
【0024】
図3は、本発明の実施形態におけるアンドープ層10の膜厚と発光出力との関係、図4は、本発明の実施形態におけるアンドープ層10の膜厚と順方向動作電圧との関係、図5は、本発明の実施形態におけるアンドープ層10の膜厚と相対出力との関係をそれぞれ示す。アンドープ層10の厚さは、100nm以上が好ましく、より好ましくは、300〜3000nmとする。図3および図5に示すように、アンドープ層10の厚さは厚ければ厚いほど、発光出力及び相対出力(信頼性)は向上する。但し、ある一定の厚さ以上になれば、アンドープ層10の効果は小さくなり、発光出力及び信頼性の向上は、飽和状態になる。また、図4に示すように、アンドープ層10の厚さが厚くなっていくことにより、順方向動作電圧が高くなる。さらに、コストも高くなるためである。
【0025】
次に、このAlGaInP系赤色LEDの製造方法の一例について説明する。n型バッファ層2、n型およびp型クラッド層3,5、活性層4、p型コンタクト層6、アンドープ層10は、MOVPE法によりエピタキシャル成長させる。
【0026】
MOVPE法による成長は、成長温度700℃、成長圧力50Torr、各層の成長速度は0.3〜1.0nm/s、V/III比は300〜600で行う。MOVPE法による成長において用いる原料として、例えばトリメチルガリウム(TMG)またはトリエチルガリウム(TEG)、トリメチルアルミニウム(TMA)、トリメチルインジウム(TMI)等の有機金属や、アルシン(AsH3)、ホスフィン(PH3)等の水素化物ガスを用いる。
【0027】
n型GaAsバッファ層2のようなn型層の添加物原料としては、例えば、セレン化水素(H2Se)を用いる。
【0028】
p型コンタクト層6のようなp型層の添加物原料としては、例えば、ジメチル亜鉛(DMZ)、またはジエチル亜鉛(DEZ)を用いる。その他n型層添加物原料としては、シラン(SiH4)を用いることもできる。
【0029】
p型コンタクト層6の成長温度は、600℃以下が好ましく、より好ましくは、600〜450℃である。p型コンタクト層6を高温で成長させると、結晶性がよくなり、同じキャリア濃度でもトンネル電流が流れにくくなる。また、p型クラッド層5とのバンド不連続による順方向動作電圧の上昇が起こりやすくなるため、p型コンタクト層6の結晶性は、あまりよくない方が良い。
【0030】
このエピタキシャルウエハに、金属酸化物窓層7を真空蒸着法により、約230nmの厚さに形成する。この時の成膜温度(基板表面温度)は、300℃である。
【0031】
エピタキシャルウエハ上面は、直径125μmの円形の上面円形電極8を、マトリックス状に蒸着して形成する。上面円形電極は、ニッケル、金を、それぞれ20nm,1000nmの順に蒸着する。
【0032】
エピタキシャルウエハ底面には、全面にn型である裏面電極9を形成する。裏面電極9は、金・ゲルマニウム、ニッケル、金を、それぞれ60nm,10nm,500nmの順に蒸着し、その後、電極の合金化であるアロイを、窒素ガス雰囲気中400℃で5分行う。
【0033】
その後、上記のようにして構成された電極付きLED用エピタキシャルウエハを上面円形電極8が中心になるように切断し、チップサイズ300μm角の発光ダイオードベアチップを製作する。さらに発光ダイオードベアチップをTO−18ステム上にマウント(ダイボンディング)し、その後マウントされた発光ダイオードベアチップに、ワイヤボンディングを行い、LEDを製作する。
【0034】
次に、上記の第1の実施形態の効果を説明する。上記のように製作されたLEDの特性を評価した。p型コンタクト層6を用い、さらに活性層4とp型クラッド層5との間にアンドープ層10を挿入したLEDの発光出力は、20mA通電時で2.12mWであった。また順方向動作電圧は、1.93Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の発光出力(以下「相対出力」という。)は98%であった(出力評価時の電流値は20mA)。このときの金属酸化物窓層の比抵抗は、6.2×10−6Ωmであった。
【0035】
次に、本発明の第2の実施形態に係るAlGaInP系赤色LEDについて説明する。このAlGaInP系赤色LEDは、第1の実施形態に係るLEDにおいて、(Al0.7Ga0.3)0.5In0.5Pアンドープ層(膜厚300nm)10にZnを少量添加し、キャリア濃度1×1017cm−3のp型(Znドープ)(Al0.7Ga0.3)0.5In0.5P層(膜厚300nm)とする以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施の形態と同様である。
【0036】
次に、上記の第2の実施形態の効果を説明する。このLEDの発光出力は、20mA通電時で2.02mWであった。また順方向動作電圧は、1.91Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の相対出力は95%であった(出力評価時の電流値は20mA)。
【0037】
次に、本発明の第3の実施形態に係るAlGaInP系赤色LEDについて説明する。このAlGaInP系赤色LEDは、第1の実施形態に係るLEDにおいて、(Al0.7Ga0.3)0.5In0.5Pアンドープ層(膜厚300nm)10にSeを少量添加し、キャリア濃度1×1017cm−3のn型(Seドープ)(Al0.7Ga0.3)0.5In0.5P層(膜厚300nm)とする以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施形態と同様である。
【0038】
次に、上記の第3の実施形態の効果を説明する。このLEDの発光出力は、20mA通電時で2.02mWであった。また順方向動作電圧は、1.92Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の相対出力は96%であった(出力評価時の電流値は20mA)。
【0039】
次に、図6は、本発明の第4の実施形態に係るAlGaInP系赤色LEDの断面を示す。このLEDは、発光波長630nm付近の赤色を発光する。このLEDは、図1に示す第1の実施形態のLEDにおいて、p型(Znドープ)(Al0.7Ga0.3)0.5In0.5Pクラッド層(膜厚300nm,キャリア濃度5×1017cm−3)5とp型(Znドープ)GaAsコンタクト層(膜厚50nm,キャリア濃度1×1019cm−3)6との間に、p型(Znドープ)GaP電流分散層(膜厚500nm,キャリア濃度1×1018cm−3)11を形成する以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施形態と同様である。p型(Znドープ)GaP電流分散層11は、(AlXGa1−X)YIn1−YP(0≦X≦1,0≦Y≦1)またはAlXGa1−XAs(0≦X≦1)で作られても良い。
【0040】
なお、p型(Znドープ)GaP電流分散層(膜厚500nm,キャリア濃度1×1018cm−3)11を、p型(Al0.7Ga0.3)0.5In0.5P層およびp型Al0.85Ga0.15As層に変えたものを同時に製作し、LED特性を評価する。
【0041】
次に、上記の第4の実施形態の効果を説明する。このLEDの特性を表1に示す。このときの金属酸化物窓層の比抵抗は、6.3×10−6Ωmであった。発光特性および信頼性特性評価は、第1の実施形態と同じであった。
【表1】
次に、図7は、本発明の第5の実施形態に係るAlGaInP系赤色LEDの断面を示す。このLEDは、発光波長630nm付近の赤色を発光する。このLEDは、図6に示す第4の実施形態のLEDにおいて、p型(Znドープ)GaAsコンタクト層(膜厚50nm,キャリア濃度1×1019cm−3)6とp型(Znドープ)(Al0.7Ga0.3)0.5In0.5Pクラッド層(膜厚300nm,キャリア濃度5×1017cm−3)5との間にp型(Znドープ)GaP電流分散層(膜厚150nm,キャリア濃度5×1018cm−3)11A、抵抗層としてのアンドープGaP層(膜厚200nm)12、p型(Znドープ)GaP電流分散層(膜厚150nm,キャリア濃度5×1018cm−3)11B、を形成する以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施の形態と同様である。
【0042】
なお、p型GaP電流分散層11A、11BおよびアンドープGaP層(膜厚200nm)12を、p型(Al0.7Ga0.3)0.5In0.5P層およびp型Al0.85Ga0.15As層に変えたものを同時に製作し、LED特性を評価する。
【0043】
次に、第5の実施形態の効果を説明する。このLEDの特性を表2示す。このときの金属酸化物窓層の比抵抗は、6.1×10−6Ωmであった。発光特性および信頼性特性評価は、第1の実施の形態と同じであった。
【表2】
次に、本発明の第6の実施形態に係るAlGaInP系赤色LEDについて説明する。このLEDは、第1の実施形態に係るLEDにおいて、p型コンタクト層6が、添加物としてZnとMg(2種類同時添加)、ZnとBe(2種類同時添加)を用いる以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施形態と同様である。
【0044】
次に、上記の第6の実施形態の効果を説明する。このLEDの特性を表3に示す。このときの金属酸化物窓層の比抵抗は、6.2×10−6Ωmであった。発光特性および信頼性特性評価は、第1の実施形態と同じであった。なお、添加物として、ZnとCのオートドーピングまたは上記のものとの組合わせでもよい。このとき、Znのキャリア濃度は、1×1019cm−3以上であることが望ましい。
【表3】
以上のように、金属酸化物窓層7とp型クラッド層5との間にZnとMg、またはZnとBeを添加したp型コンタクト層6を設け、活性層4とp型クラッド層5との間にアンドープ層10を挿入することにより、低動作電圧であり、かつ良好な発光出力を併せ持つLEDを製作することができる。またアンドープ層10以外に、アンドープGaP層12(抵抗層)を挿入することで、駆動電圧の変動に対しても、強いLEDを製作することができる。
【0045】
図8は、従来例に対応した比較例1のAlGaInP系赤色LEDの断面を示す。このLEDは、発光波長630nm付近の赤色を発光する。このLEDは、図1に示す第1の実施形態のLEDと比較して、アンドープ(Al0.1Ga0.9)0.5In0.5P活性層(膜厚600nm)4とp型(Znドープ)(Al0.7Ga0.3)0.5In0.5Pクラッド層(膜厚300nm、キャリア濃度5×1017cm−3)5の間にあるZn拡散抑止層である(Al0.7Ga0.3)0.5In0.5Pアンドープ層10がない点以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層膜厚、電極形成方法およびLED製作方法については、第1の実施形態と同様である。但し、p型(Znドープ)GaAsコンタクト層6の成長温度は700℃、V/III比は300で行った。
【0046】
次に、上記のように製造された比較例1のLEDの効果について説明する。p型コンタクト層6を用いたLEDの発光出力は、20mA通電時で1.4mWであった。また順方向動作電圧は、2.63Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の相対出力は59%であった(出力評価時の電流値は20mA)。
【0047】
順方向動作電圧は、第1から第6の実施の形態と比較すると、比較例1の方が高い。その原因は、p型(Znドープ)GaAsコンタクト層6の成長温度が高いこと、V/III比が高いことにより、比較例1のp型コンタクト層6の結晶性がよく、欠陥が少ないために、電流が流れにくくなったものである。つまり、p型コンタクト層6と金属酸化物窓層7の界面での抵抗が高く、トンネル電流が流れにくくなったことによるものである。
【0048】
また発光出力は、第1から第6の実施形態と比較すると、比較例1の方が低く、特性劣化、つまり信頼性が低下する。これは、p型コンタクト層6のZnが活性層に拡散して欠陥を作り、非発光再結合が多くなるためである。Cドープp型コンタクト層6(C添加物原料:CBr4)を用いたLEDの発光出力は、20mA通電時で1.92mWであった。また順方向動作電圧は、2.21Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の相対出力は98%であった(出力評価時の電流値は20mA)。しかしp型コンタクト層6として、Cドープのp型コンタクト層(C添加物原料:CBr4)を用いたLEDを再度製作して評価したところ、発光出力は、20mA通電時で1.02mWであった。また順方向動作電圧は、2.18Vであった。
【0049】
その後、LED(樹脂でモールドされていない)を、何度製作しても、発光出力は0.7〜1.2mW程度であり、良好な発光特性を有するLEDを製作できなかった。発光出力が高くならない原因をSIMS分析により調べたところ、発光層を含むエピタキシャル層中に、C(炭素)とO(酸素)が、多量に混入していることが明らかとなった。つまり、Cの添加物原料としてCBr4を用いることにより、成長後に成長炉内にCとOが多量に残存してしまうことが解った。このため、2回目以降の成長で製作したLEDの発光出力の低い原因がCBr4によるものであることが確認された。
【0050】
次に従来例に対応した比較例2に係る従来のAlGaInP系赤色LEDについて図8を用いて説明する。このLEDは、発光波長630nm付近の赤色を発光する。このLEDは、図1に示す第1の実施形態のLEDにおいて、Zn拡散抑止層である(Al0.7Ga0.3)0.5In0.5Pアンドープ層(膜厚300nm)10を取り去った以外、エピタキシャル成長方法、エピタキシャル層膜厚、エピタキシャル構造、ITO成膜方法、金属酸化物窓層の膜厚、電極形成方法およびLED製作方法については、第1の実施形態と同様である。ただし、p型コンタクト層6の成長のみ、成長温度600℃、V/III比を50で行った。
【0051】
次に、上記のように製造された比較例2の効果について説明する。p型コンタクト層6を用いたLEDの発光出力は、20mA通電時で1.4mWであった。また順方向動作電圧は、1.91Vであった。さらにLED(樹脂でモールドされていない)の信頼性試験を、55℃、50mA通電で行ったところ、24時間通電後の相対出力は41%であった(出力評価時の電流値は20mA)。このときの金属酸化物窓層7の比抵抗は、6.4×10−6Ωmであった。比較例1よりも順方向動作電圧が約0.5V低下したのは、p型コンタクト層6のキャリア濃度は同じであっても成長温度を低くして、かつV/III比を50にしたことで、p型コンタクト層6の結晶性が悪化し、電気が流れやすくなったことと、Cがオートドーピングされたためである。また、発光出力が低く、特性劣化、つまり信頼性が低下してしまうのは、p型コンタクト層6のZnが活性層に拡散して欠陥を作り、非発光再結合が多くなったためである。
【0052】
以上から、比較例1において、p型コンタクト層6の結晶性がよく、欠陥が少なくなり、電流が流れ難くなるため、順方向動作電圧が高くなる。p型コンタクト層6と金属酸化物窓層7の界面での抵抗が高く、トンネル電流が流れにくくなったことによるものである。
この点、第1から第6の実施形態において、p型コンタクト層6の結晶性が悪く、欠陥が多くなり、電流が流れやすくなるため、順方向動作電圧が低くなる。
【0053】
また、比較例2において、発光出力が低く、特性劣化、つまり信頼性が低下してしまうのは、p型コンタクト層6のZnが活性層に拡散して欠陥を作り、非発光再結合が多くなったためである。
この点、第1から第6の実施形態において、p型コンタクト層6のZnが活性層に拡散するのを抑止する半導体層を備えることとするため、発光出力が低下することなく、また、特性劣化、つまり信頼性を低下させることがない。
【0054】
なお、第1〜第6の実施形態では、p型電極の形状は、円形であるが、異形状、例えば四角、菱形、多角形等に変更してもよい。この変更によっても、各電極は円形の電極と同様の効果を奏することができる。
また、活性層4とp型クラッド層5との間にアンドープ層10が設けられているが、他のアンドープ層を設けてもよい。
また、p型コンタクト層6とp型クラッド層5との間に電流分散層11を設ける場合、電流分散層の一部にアンドープ層を形成するものでもよい。このとき、アンドープ層は、(AlXGa1−X)YIn1−YP(0≦X≦1,0≦Y≦1)またはAlXGa1−XAs(0≦X≦1)である材料で作ってもよい。
また、n型GaAs基板1とn型クラッド層3との間に光反射層であるDBR層を形成してもよい。
また、n型バッファ層2を形成しなくても良い。
【0055】
【発明の効果】
以上説明したとおり、本発明によれば、活性層と第二導電型クラッド層との間に拡散抑止層を形成するとともに、高添加濃度のZnを含む第二導電型コンタクト層を備えることとしたため、半導体発光素子の急速な劣化を防止し、中間バンドギャップ層を設けなくても順方向動作電圧を低くできるとともに、高輝度、低価格、高信頼性であり、再現性に優れる半導体発光素子を容易に製作することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るAlGaInP系赤色LEDの断面図である。
【図2】本発明の実施形態におけるGaAsコンタクト層の膜厚とLEDの発光出力との関係を示す図である。
【図3】本発明の実施形態におけるアンドープ層の膜厚と発光出力との関係を示す図である。
【図4】本発明の実施形態におけるアンドープ層の膜厚と順方向動作電圧との関係を示す図である。
【図5】本発明の実施形態におけるアンドープ層の膜厚と相対出力との関係を示す図である。
【図6】本発明の第4の実施形態に係るAlGaInP系赤色LEDの断面図である。
【図7】本発明の第5の実施形態に係るAlGaInP系赤色LEDの断面図である。
【図8】従来例に対応したAlGaInP系赤色LEDの断面図である。
【符号の説明】
1 n型GaAs基板
2 n型バッファ層
3 n型クラッド層
4 活性層
5 p型クラッド層
6 p型コンタクト層
7 金属酸化物窓層
8 上面円形電極
9 裏面電極
10 アンドープ層
11 電流分散層
12 アンドープGaP層(抵抗層)
Claims (8)
- 第一導電型の基板と、
前記基板上に積層された第一導電型クラッド層と第二導電型クラッド層との間に活性層が設けられた発光部と、
前記発光部の上に形成され、高添加濃度のZnを含む第二導電型コンタクト層と、
前記発光部の上に積層された金属酸化物窓層と、
前記金属酸化物窓層の表面側に形成された第1の電極と、
前記基板の裏面の全面または部分的に形成された第2の電極と、
前記活性層と前記第二導電型クラッド層との間に、アンドープ層、または前記第二導電型クラッド層よりもキャリア濃度が低い第二導電型半導体層、または1×1017cm−3以下のキャリア濃度を有する第一導電型半導体層からなる拡散抑止層とを備えることを特徴とする半導体発光素子。 - 前記拡散抑止層は、(AlXGa1−X)YIn1−YP(0≦X≦1,0≦Y≦1)で構成されることを特徴とする請求項1記載の半導体発光素子。
- 前記拡散抑止層は、厚さが100nm以上であることを特徴とする請求項1記載の半導体素子。
- 前記第二導電型コンタクト層は、キャリア濃度が1×1019cm−3以上であることを特徴とする請求項1記載の半導体発光素子。
- 前記第二導電型コンタクト層は、ドーパント材料が、ZnとBe、ZnとMg、ZnとCのオートドーピング、またはそれらの組み合わせであり、少なくともZnのキャリア濃度が1×1019cm−3以上であることを特徴とする請求項1記載の半導体発光素子。
- 前記第二導電型コンタクト層は、600℃以下の成長温度条件下で形成されることを特徴とする請求項1記載の半導体発光素子。
- 前記第二導電型コンタクト層は、V/III比が50以下であることを特徴とする請求項1記載の半導体発光素子。
- 前記第二導電型コンタクト層は、厚さが1〜100nmであることを特徴とする請求項1記載の半導体発光素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003158886A JP3763303B2 (ja) | 2003-03-31 | 2003-06-04 | 半導体発光素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003097029 | 2003-03-31 | ||
JP2003158886A JP3763303B2 (ja) | 2003-03-31 | 2003-06-04 | 半導体発光素子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004356600A true JP2004356600A (ja) | 2004-12-16 |
JP3763303B2 JP3763303B2 (ja) | 2006-04-05 |
Family
ID=34066862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003158886A Expired - Fee Related JP3763303B2 (ja) | 2003-03-31 | 2003-06-04 | 半導体発光素子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3763303B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261219A (ja) * | 2005-03-15 | 2006-09-28 | Hitachi Cable Ltd | 半導体発光素子 |
EP1739758A2 (de) * | 2005-06-28 | 2007-01-03 | Osram Opto Semiconductors GmbH | Strahlungsemittierender optoelektronischer Halbleiterchip mit einer Diffusionsbarriere |
CN100461477C (zh) * | 2005-09-30 | 2009-02-11 | 日立电线株式会社 | 具有透明导电膜的半导体发光元件 |
US7569866B2 (en) | 2005-09-30 | 2009-08-04 | Hitachi Cable, Ltd. | Semiconductor light-emitting device |
CN112038456A (zh) * | 2015-02-10 | 2020-12-04 | 晶元光电股份有限公司 | 发光元件 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05335619A (ja) * | 1992-05-28 | 1993-12-17 | Matsushita Electron Corp | 発光ダイオードおよびその製造方法 |
JPH0786695A (ja) * | 1993-09-16 | 1995-03-31 | Toshiba Corp | 半導体レーザ装置 |
JPH07106698A (ja) * | 1993-09-29 | 1995-04-21 | Sony Corp | 半導体発光素子 |
JPH08293623A (ja) * | 1995-04-21 | 1996-11-05 | Rohm Co Ltd | 発光ダイオードの製法 |
JPH08321633A (ja) * | 1995-05-26 | 1996-12-03 | Sharp Corp | 半導体発光素子およびその製造方法 |
JPH11307810A (ja) * | 1998-04-23 | 1999-11-05 | Toshiba Corp | 半導体発光素子 |
JP2000312028A (ja) * | 1999-04-28 | 2000-11-07 | Hitachi Cable Ltd | 発光素子用エピタキシャルウエハおよび発光素子 |
JP2001044489A (ja) * | 1999-07-26 | 2001-02-16 | Nec Corp | 半導体結晶の成長方法および半導体素子 |
JP2002314127A (ja) * | 2001-04-11 | 2002-10-25 | Hitachi Cable Ltd | 半導体発光ダイオードおよび半導体発光ダイオード用エピタキシャルウェハ |
-
2003
- 2003-06-04 JP JP2003158886A patent/JP3763303B2/ja not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05335619A (ja) * | 1992-05-28 | 1993-12-17 | Matsushita Electron Corp | 発光ダイオードおよびその製造方法 |
JPH0786695A (ja) * | 1993-09-16 | 1995-03-31 | Toshiba Corp | 半導体レーザ装置 |
JPH07106698A (ja) * | 1993-09-29 | 1995-04-21 | Sony Corp | 半導体発光素子 |
JPH08293623A (ja) * | 1995-04-21 | 1996-11-05 | Rohm Co Ltd | 発光ダイオードの製法 |
JPH08321633A (ja) * | 1995-05-26 | 1996-12-03 | Sharp Corp | 半導体発光素子およびその製造方法 |
JPH11307810A (ja) * | 1998-04-23 | 1999-11-05 | Toshiba Corp | 半導体発光素子 |
JP2000312028A (ja) * | 1999-04-28 | 2000-11-07 | Hitachi Cable Ltd | 発光素子用エピタキシャルウエハおよび発光素子 |
JP2001044489A (ja) * | 1999-07-26 | 2001-02-16 | Nec Corp | 半導体結晶の成長方法および半導体素子 |
JP2002314127A (ja) * | 2001-04-11 | 2002-10-25 | Hitachi Cable Ltd | 半導体発光ダイオードおよび半導体発光ダイオード用エピタキシャルウェハ |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006261219A (ja) * | 2005-03-15 | 2006-09-28 | Hitachi Cable Ltd | 半導体発光素子 |
EP1739758A2 (de) * | 2005-06-28 | 2007-01-03 | Osram Opto Semiconductors GmbH | Strahlungsemittierender optoelektronischer Halbleiterchip mit einer Diffusionsbarriere |
EP1739758A3 (de) * | 2005-06-28 | 2008-09-03 | OSRAM Opto Semiconductors GmbH | Strahlungsemittierender optoelektronischer Halbleiterchip mit einer Diffusionsbarriere |
US7470934B2 (en) | 2005-06-28 | 2008-12-30 | Osram Opto Semiconductors Gmbh | Radiation-emitting optoelectronic semiconductor chip with a diffusion barrier |
CN100461477C (zh) * | 2005-09-30 | 2009-02-11 | 日立电线株式会社 | 具有透明导电膜的半导体发光元件 |
US7569866B2 (en) | 2005-09-30 | 2009-08-04 | Hitachi Cable, Ltd. | Semiconductor light-emitting device |
US7608859B2 (en) | 2005-09-30 | 2009-10-27 | Hitachi Cable, Ltd. | Semiconductor light-emitting device with transparent conductive film |
CN112038456A (zh) * | 2015-02-10 | 2020-12-04 | 晶元光电股份有限公司 | 发光元件 |
Also Published As
Publication number | Publication date |
---|---|
JP3763303B2 (ja) | 2006-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367393B2 (ja) | 透明導電膜を備えた半導体発光素子 | |
JP3551101B2 (ja) | 窒化物半導体素子 | |
JP4320653B2 (ja) | 半導体発光素子 | |
JP3635757B2 (ja) | AlGaInP発光ダイオード | |
US7449722B2 (en) | Semiconductor light emitting element | |
US20070122994A1 (en) | Nitride semiconductor light emitting element | |
JP2000307149A (ja) | 窒化物半導体素子 | |
US20080099773A1 (en) | Light emitting diode | |
US20070075327A1 (en) | Semiconductor light-emitting device | |
JP4310708B2 (ja) | 半導体発光素子 | |
US7230281B2 (en) | Semiconductor light emitting device | |
JP4320654B2 (ja) | 半導体発光素子 | |
TW201841227A (zh) | 半導體元件 | |
JP2007096162A (ja) | 半導体発光素子 | |
JP3504976B2 (ja) | 半導体発光素子 | |
JP3763303B2 (ja) | 半導体発光素子 | |
JP3788444B2 (ja) | 発光ダイオード及びその製造方法 | |
JP2007096157A (ja) | 半導体発光素子 | |
JP2003008058A (ja) | AlGaInPエピタキシャルウエーハ及びそれを製造する方法並びにそれを用いた半導体発光素子 | |
JP4123235B2 (ja) | 半導体発光素子の製造方法 | |
JP2005235797A (ja) | 半導体発光素子 | |
JP2002164569A (ja) | 発光素子用エピタキシャルウェハ及び発光素子 | |
JP3807393B2 (ja) | 半導体発光素子 | |
JPH11307812A (ja) | 窒化物半導体発光素子 | |
JP2005235801A (ja) | 半導体発光素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110127 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120127 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130127 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140127 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |