JP2004353047A - 硬質複合焼結体および硬質構造体並びに製造方法 - Google Patents
硬質複合焼結体および硬質構造体並びに製造方法 Download PDFInfo
- Publication number
- JP2004353047A JP2004353047A JP2003153330A JP2003153330A JP2004353047A JP 2004353047 A JP2004353047 A JP 2004353047A JP 2003153330 A JP2003153330 A JP 2003153330A JP 2003153330 A JP2003153330 A JP 2003153330A JP 2004353047 A JP2004353047 A JP 2004353047A
- Authority
- JP
- Japan
- Prior art keywords
- hard
- sintered body
- diamond particles
- group
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Powder Metallurgy (AREA)
Abstract
【解決手段】炭化タングステン、窒化チタンまたは炭窒化チタンのいずれかからなる第1硬質相2:50〜95体積%と、ダイヤモンド粒子3:5〜50体積%と、第1硬質相2以外の周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる少なくとも一種の第2硬質相4:0〜15体積%と、を鉄族金属からなる結合相5にて結合し、かつISO4505の合金の多孔度にて規定される遊離炭素量がC02以下である硬質焼結体6からなる長尺状の芯材7の外周面を、芯材7とは異なる組成からなる硬質焼結体からなる表皮材8によって被覆してなる硬質複合焼結体1を作製する。
【選択図】 図1
Description
【発明の属する技術分野】
本発明は、長尺状の芯材とその外周を被覆した表皮材で構成される硬質複合焼結体および複合構造体並びにその製造方法に関する。
【0002】
【従来の技術】
近年、繊維等長尺状の芯材の外周を他の部材にて被覆することにより、構造体の硬度や強度に加えて靭性を改善する技術が研究されており、例えば、特許文献1では、サーメット(例えばWC−Co)、ダイヤモンド焼結体、cBN焼結体等の高硬度焼結体からなる芯材の外周に、芯材とは異なる組成の高靭性焼結体を被覆した硬質複合焼結体を具備する複合構造体を作製することによって、硬度を低下させることなく、構造体の破壊抵抗を増大して靭性を高められることが記載されている。
【0003】
一方、特許文献2、3では、表面にTiN等のコーティングを施したダイヤモンド粒子を超硬合金原料中に添加することによって、焼成時に熱分解するダイヤモンド粒子の分解を抑制し、かつダイヤモンド粒子が脱落することなく均質に分散した焼結体が得られることが記載されている。
【0004】
【特許文献1】
米国特許6063502号公報
【0005】
【特許文献2】
特開平9−194978号公報
【0006】
【特許文献3】
特開平12−54056号公報
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1のような複合構造体では、芯材として硬度および靭性に優れたダイヤモンド粒子を分散した超硬合金を用いると、複合構造体を作製する際に多量の有機バインダを添加して共押出成形を行うために、ダイヤモンド粒子が焼成雰囲気によって分解してカーボンとして析出したり、大きなボイドが発生する可能性があり、硬質複合焼結体の組織内に構造欠陥となりうる不均質部分が生じて強度が低下してしまうという問題があり、また、焼成中に多量の有機バインダが分解揮散した部分が空隙となってしまい、焼成中にこの空隙を消失させて構造体を緻密化する際に大きな焼成収縮が生じる結果、焼成後の硬質複合焼結体においては芯材と表皮部材との間に大きな残留応力が発生したり、場合によっては両者間に剥離が生じやすくなり、硬質複合焼結体の強度が低下してしまうという問題があった。
【0008】
また、特許文献2、3のように、TiNで被覆したダイヤモンド粒子を原料として添加して硬質複合焼結体を作製すると、上記複合構造部材の多量の有機バインダを分解・揮散させるカーボン多過雰囲気中では焼成時に生じるダイヤモンド粒子の分解を抑制することが困難であり、焼結体中にダイヤモンド粒子が分解したグラファイトとして多量に析出してしまうという問題があった。
【0009】
本発明は上記課題に対してなされたもので、その目的は、多量の有機バインダを用いて作製する硬質複合焼結体において、硬質合金中にダイヤモンド粒子を分散した焼結体を芯材として用いる場合においても、ダイヤモンド粒子が焼成中に分解してグラファイト化してしまうことを抑制して、耐摩耗性はもちろんのこと強度・靭性にも優れた硬質複合焼結体を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記課題に対して検討した結果、多量の有機バインダを用いて作製する硬質複合焼結体の芯材として硬質合金原料粉末中に、周期律表4a、5a、6a族金属の群より選ばれる少なくとも一種の金属を被覆したダイヤモンド粒子を添加、混合することにより、焼成中の多量の有機バインダ成分が揮散する高炭素雰囲気であってもダイヤモンド粒子が分解してグラファイト化することを抑制して、芯材をダイヤモンド粒子5〜50体積%含有し、かつ遊離炭素をC02以下とすることができ、優れた耐摩耗性を有し、かつ超硬合金と同等の強度・靭性を有する硬質複合焼結体が得られることを知見した。
【0011】
すなわち、本発明の硬質焼結体は、炭化タングステン、窒化チタンまたは炭窒化チタンのいずれかからなる第1硬質相50〜95体積%と、ダイヤモンド粒子5〜50体積%と、前記第1硬質相以外の周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる少なくとも一種の第2硬質相0〜15体積%とを鉄族金属からなる結合相にて結合し、かつISO4505の合金の多孔度にて規定される遊離炭素量がC02以下である硬質焼結体からなる長尺状の芯材の外周面を、該芯材とは異なる組成の硬質焼結体からなる表皮材によって被覆してなることを特徴とするものである。
【0012】
ここで、前記ダイヤモンド粒子の60%以上の外周表面が前記第2硬質相によって包含されていることによって、ダイヤモンド粒子と硬質焼結体マトリックスとの密着が強固になりダイヤモンド粒子の脱落を抑えるという効果がある。
【0013】
また、前記ダイヤモンド粒子を包含する第2硬質相の濃度がダイヤモンド粒子の外周表面から前記結合相に向かって次第に減少していることにより、ダイヤモンド粒子の硬質焼結体への結合力はさらに高まり、ダイヤモンド粒子の脱落をさらに抑えることができる。
【0014】
なお、上記硬質複合焼結体を具備する硬質複合構造体は、硬度、強度および靭性に優れており、例えば、掘削工具、切削工具、耐摩部材、摺動部材、耐熱部材等の構造部材として応用することが可能である。
【0015】
さらに、本発明の複合硬質焼結体の製造方法は、(a)周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物の群から選ばれる少なくとも1種の粉末と、鉄族金属粉末と、周期律表4a、5a、6a族金属の群より選ばれる少なくとも一種の金属を被覆したダイヤモンド粒子と、有機バインダとからなる混合物を長尺状に成形して芯材用成形体を作製する工程と、(b)前記(a)工程の成形体とは異なる組成からなる表皮材用成形体を成形して前記(a)工程の芯材用成形体の外周を被覆するように配した複合成形体を作製する工程と、(c)前記複合成形体中を焼成する工程とを具備することを特徴とするものであり、上記工程において、ダイヤモンド粒子を被覆する金属を(c)工程の焼成中に炭化することにより焼結体中にダイヤモンド粒子を強固に分散維持させることが可能となる。この際、ダイヤモンド原料粉末を被覆し、所望により第2硬質相を形成する4a、5a、6a金属は硬質複合焼結体中の結合金属がダイヤモンド粒子中に拡散してダイヤモンド粒子がグラファイトかするのを防ぐ効果があり、また、焼成中にダイヤモンド粒子がグラファイト化した炭素を上記金属が反応して消費し炭化物とすることによって分散したダイヤモンド粒子を健全な状態に保ち、焼結体中のダイヤモンド粒子の含有割合を高めることができるとともに、焼結体中に強度低下の要因となる残留炭素の析出を抑制することが可能である。
【0016】
なお、上記複合焼結体中のダイヤモンド粒子をグラファイト化させることなく、かつ硬質焼結中から脱落させず強固に結合させるためには、原料中の前記ダイヤモンド粒子の外周表面を被覆した前記金属の被覆厚みが0.1〜3μmであることが望ましい。
【0017】
また、前記(c)工程において、前記ダイヤモンド原料粉末を被覆する前記金属を焼成中に炭化させることが、焼成中に多量の有機バインダが分解揮散した空隙を金属の炭化による体積膨張によって消失させて焼結体を緻密化させ、焼結体の芯材と表皮部材との間の大きな残留応力の発生や剥離による強度低下を抑制する点で望ましい。
【0018】
さらに、前記(a)工程における前記有機バインダを前記混合物全体に対して30〜70体積%の割合で添加することが、均質な構造の複合成形体および硬質複合焼結体を作製する点で望ましい。
【0019】
また、前記(a)工程において、前記周期律表4a、5a、6a族金属粉末を1〜20質量%の割合で別途さらに添加し、前記(c)工程において、前記ダイヤモンド粉末が焼成時に分解して生じた分解成分と前記金属粉末が反応して炭化し体積膨張するように焼成することにより、硬質焼結体中には熱的に安定な圧縮残留応力が生じて硬質複合焼結体が強靭化するとともに、分散ダイヤモンド粒子が脱落しにくくなり、ロウづけや溶接施工が簡単となり、本材料の適用分野を広げることができる。
【0020】
【発明の実施の形態】
本発明の硬質複合焼結体について、その一実施例である図1の概略断面図およびその一部分の拡大図を基に説明する。
【0021】
図1によれば、硬質複合焼結体1は、炭化タングステン、窒化チタンまたは炭窒化チタンのいずれかからなる第1硬質相2:50〜95体積%と、ダイヤモンド粒子3:5〜50体積%と、第1硬質相2以外の周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる少なくとも一種の第2硬質相4:0〜15体積%と、を鉄族金属からなる結合相5にて結合し、かつISO4505の合金の多孔度にて規定される遊離炭素量がC02以下である硬質焼結体からなる長尺状の芯材7の外周面を、芯材7とは異なる組成からなる硬質焼結体(表皮材8)によって被覆してなるものである。
【0022】
これによって、芯材7の硬質焼結体中のダイヤモンド粒子3が脱落することなく分散し、硬質複合焼結体1の耐摩耗性を著しく向上させるという効果がある。
【0023】
すなわち、ダイヤモンド粒子3の含有量を5〜50体積%としたのは5体積%より少ないとダイヤモンド粒子3を含有させたことによる特性向上の効果が現れにくく硬度が低下し、ダイヤモンド粒子3の含有量が50体積%より多いと芯材7の緻密化が困難となり強度低下が著しくなるためである。ダイヤモンド粒子3の含有量の特に好ましい範囲は10〜40体積%、特に10〜35体積%である。なお、本発明によれば、複合焼結体1の表皮材8中にも上述したダイヤモンド粒子3を分散させることができる。
【0024】
また、本発明によれば、図1(b)に示す図1(a)のP部についての拡大図に示すように、ダイヤモンド粒子3の60%以上の外周表面が第2硬質相4によって包含されていることによって、ダイヤモンド粒子3が焼結体1との密着が強固になりダイヤモンド粒子3の脱落を抑えるという効果がある。なお、ダイヤモンド粒子3の外周表面はすべて第2硬質相4にて包含されることが望ましいが、本発明によれば、必ずしも外周表面すべてにわたって包含されなくても外周表面の60%以上、特に80%以上の部分が包含されているものであれば充分にダイヤモンド粒子3の結合力を高めることができる。
【0025】
ここで、第2硬質相4のダイヤモンド粒子2への包含の有無は、複合焼結体の断面における走査型電子顕微鏡(EPMA)写真において反射電子像(BEI)によるコントラスト、または電子プローブマイクロ分析法(EPMA)による組成マッピングにて定量化することができ、包含しているとはダイヤモンド粒子2の外周表面の80%以上が周期律表4a、5a、6a族金属の群から選ばれる少なくとも1種以上の金属元素の炭化物および炭窒化物と接した状態を指す。なお、本発明によれば、第2硬質相4は第1硬質相2以外の周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる少なくとも一種、いわゆるB1型固溶体からなる。
【0026】
また、ダイヤモンド粒子3を包含する第2硬質相4の濃度がダイヤモンド粒子3の外周表面から結合相5に向かって次第に減少していることにより、ダイヤモンド粒子3の焼結体1への結合力はさらに高まり、ダイヤモンド粒子3の脱落をさらに抑えることができる。この濃度分布は走査型電子顕微鏡(EPMA)にて測定可能である。
【0027】
ここで、本発明においては、硬度、強度、靭性のバランスの点で芯材の平均直径D1と表皮材8の平均厚みD2との比D2/D1が0.05〜0.5であることが望ましい。なお、本発明において芯材7が円以外の形状からなる場合には、平均直径D1は各芯材7の面積から平均面積を算出し、芯材7を円とみなして見積もることができる。また、表皮材8の平均厚みD2は各芯材7間の最短距離を平均した値にて算出できる。
【0028】
製造方法
次に、本発明の複合焼結体を製造する方法について図2の模式図をもとに説明する。
【0029】
(a)工程
まず、芯材として平均粒径0.3〜3μmの周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物の群から選ばれる少なくとも1種の粉末を40〜90体積%と、平均粒径10μm以下の鉄族金属粉末を5〜15体積%と、平均粒径0.3〜30μmの被覆されたダイヤモンド粒子を5〜50体積%とを混合し、これにパラフィンワックス、ポリスチレン、ポリエチレン、エチレン−エチルアクリレ−ト、エチレン−ビニルアセテート、ポリブチルメタクリレート、ポリエチレングリコール、ジブチルフタレート等の有機バインダを添加して混錬して、プレス成形、押出成形または鋳込成形等の成形方法により円柱状の芯材用成形体12を作製する。
【0030】
ここで、後述する共押出成形によって均質な複合成形体を得るためには、前記有機バインダの添加量を30〜70体積%、特に40〜60体積%とすることが望ましい。
【0031】
(b)工程
一方、前記芯材とは異なる組成の表皮材をなす原料粉末を混合し、前述したバインダとともに混錬してプレス成形、押出成形または鋳込み成形等の成形方法により半割円筒形状の2本の表皮部材用成形体13を作製し、この表皮材用成形体13を芯材用成形体12の外周を覆うように配置した複合成形体11を作製する(図2(A)参照)。
【0032】
そして、上記複合成形体11を押出成形機14を用いて芯材用成形体12と表皮部材用成形体13を共押出成形することにより芯材用成形体12の周囲に表皮部材用成形体13が被覆された、細い径に伸延された複合繊維成形体15を作製する(図2(B)参照)。また、マルチフィラメント構造の集束複合繊維体16を作製するには、上記共押出した長尺上の複合繊維成形体15を複数本収束して再度共押出成形すれば良い(図2(C)参照)。
【0033】
さらに上記伸延された長尺状の複合繊維成形体15を所望により再度共押出成形して、断面が円形、三角形、四角形をなす長尺状に成形することもできる。また、図3に示すように、上記長尺状の複合繊維成形体15を整列させてシート17とし、このシート17複数枚を長尺状の複合繊維成形体15同士が並行、直行または45°等の所定の角度をなすように積層された積層体18a〜18cとすることもでき、さらに、公知のラピッドプロトダイビング法等の成形方法によって任意の形状に積層体を成形することも可能である。さらには、上記整列したシートまたはこのシートを断面方向にスライスした硬質複合焼結体のシートを従来の超硬合金等の硬質合金(塊状体)の表面に貼り合わせ、または接合することも可能である。
【0034】
(c)工程
上記複合繊維成形体15、集束繊維成形体16、シート17、積層体18のいずれかを300〜700℃で10〜200時間昇温または保持する脱バインダ処理した後、真空中、または不活性雰囲気中、所定温度、時間で焼成することにより本発明の硬質複合焼結体1または硬質複合構造体を作製することができる。
【0035】
また、本発明によれば、芯材7中に添加した第1硬質相2または第2硬質相4の金属成分と同じ金属粉末を添加させた場合、焼結時に前記有機バインダの残渣として残存する残留炭素とを反応して炭化物を生成させることにより、余分な残留炭素の残存を低減することができるとともに、芯材7の焼結に伴う収縮を抑制して芯材7と表皮材8との間に生じる残留応力を低減し、かつ剥離を防止することができる。
【0036】
さらに、本発明によれば、硬質複合焼結体1中にダイヤモンド粒子3を安定して強固に結合させるためには、例えば通電加圧焼結であれば焼結温度は加圧焼結時の鉄族金属が芯材7と表皮材8のとの間でしみ出し、拡散して、芯材7と表皮材8の組成が制御できなくなることを防止する点で1300〜1450℃、特に1300〜1400℃であることが望ましい。
【0037】
また、焼結体1の緻密化およびダイヤモンド粒子3の分解制御の点で、前記焼結温度での保持時間は20秒以上10分以内、特に1〜5分であることが望ましい。さらに、焼結体1の緻密化の点で加圧力は10〜100MPaであることが望ましく、加圧力が100MPaを超える圧力とするためには特殊な焼結装置が必要となり製造コストが増大する。
【0038】
【実施例】
(実施例)
平均粒径1.5μmのWC粉末、平均粒径1μmのCo粉末、平均粒径2μmのTiC粉末および平均粒径1μmの金属W粉末とをそれぞれ表1に示す割合で秤量してアトライターを用いて粉砕混合し、マトリックスとなる硬質部材原料粉末を用意した。
【0039】
一方、ダイヤモンド粒子に公知のイオンプレーティング法によって表1に示す膜厚、膜種の材種を被覆したダイヤモンド粒子を表1に示す割合で添加し混合した。それに有機バインダとしてセルロース、ポリエチレングリコールを、溶剤としてポリビニルアルコールを総量で原料粉体と同体積分加えて混錬して、円柱形状に押出成形して芯材用成形体を作製した。
【0040】
一方、表1の試料No.10の組成からなる混合粉末を用いて半割円筒形状の表皮部材用成形体2つを押出成形にて作製し、前記表1の各芯材用成形体の外周を覆うように配置して複合成形体を作製した。
【0041】
そして、上記複合成形体を押出成形して芯材と表皮材が共に押出されて伸延された複合成形体を作製した後、この伸延された複合成形体100本を収束して再度押出成形機内に挿入して再度共押出成形し、マルチフィラメントタイプの集束繊維成形体を作製した。
【0042】
【表1】
【0043】
次に、上記マルチフィラメントタイプの集束繊維成形体を50mmの長さにカットし、並列に整列させてシート状とし、このシート6枚を隣接するシート内の硬質複合繊維焼結体同士が45°の角度となるように積層して直方体形状の積層成形体を作製した。
【0044】
その後、前記積層体に対して300〜700℃まで100時間で昇温することによって脱バインダ処理を行った後、黒鉛型に装填し、1.3Pa(0.01Torr)以下の真空中で加圧力20MPaの加圧条件下で、直流電流を流して焼結した。昇温速度は100℃/分で1350℃まで昇温し、その温度で3分間保持した後、50℃/分の速度で冷却した。このようにして得られた焼結体は、割れもなく良好な外観を呈していた。これら焼結体の黒皮(表面変質部)を除去後、アルキメデス法で比重を測定したところ、試料No.1〜5のいずれの焼結体も緻密で98%以上の理論密度を有していた。なお、試料No.6〜9の密度は95%程度であった。
【0045】
得られた硬質複合焼結体から3×4×12mmのサンプルを切り出し、軸中心に20m/minで回転している直径が20mmの円盤状状SiC砥石に、硬質複合焼結体3×4mmの面を20Nの圧力で10分間押しつけた時の摩耗量を測定する耐摩試験を行った。評価方法としては、標準試料としてNo.10のサンプルの摩耗量を100とした時のNo.1〜9の焼結体の摩耗量を比摩耗量として算出し、耐摩耗性として表記した。
【0046】
次にこの研磨面を鏡面仕上げし、走査型電子顕微鏡(SEM)で観察して硬質複合焼結体中のダイヤモンド粒子の外周表面に包含層が存在するか、および包含層の包含率・平均厚みを画像解析法にて測定するとともに、ISO4505に準じて遊離炭素の含有量を特定した。なお、本発明においては、焼結体断面についての1000倍の走査型電子顕微鏡写真にて遊離炭素の析出が認められなかった試料については遊離炭素の評価をC00として判定した。また、包含相が存在する試料についてはその近傍について波長分散型X線マイクロアナリシスの線分析を行い、包含層領域付近の組成傾斜の有無を測定した。なお、各試料について芯材の平均直径D1と表皮材の厚みD2との比(D2/D1)は0.1であった。さらにJISR1607に準じたIF法により破壊靭性値を測定した。
【0047】
また、上記サンプルを3mm×4mm×スパン10mmの長さに加工してJISR1601に準じた三点曲げ抗折力試験を行った。これら結果を表2に示す。
【0048】
【表2】
【0049】
表2の結果に示すように、本発明に従い、周期律表4a、5a、6a族金属を外周表面に被覆したダイヤモンド粒子を原料とし、硬質焼結体内部にダイヤモンド粒子を含有するとともに、遊離炭素がC02以下である試料No.1〜5については、耐摩耗性、破壊靭性および強度共に優れていることが確認できた。
【0050】
本発明を用いた試料は分散ダイヤモンド粒子がB1型固溶体相で包含されている構造であり、その為、硬質焼結体マトリックスとの結合強度が高まり、破壊靭性および強度を維持したまま耐摩耗性を著しく向上することができた。特に、包含相が傾斜組成を取る試料No.1、2、4、5はさらに優れた結合力を得ることができ、耐摩耗性が向上している。
【0051】
これに対して、何も被覆しないか、または周期律表4a、5a、6a族金属以外の化合物を外周表面に被覆したダイヤモンド粉末を原料として用いた試料No.6〜9については、硬質焼結体中に分散するダイヤモンド粒子の外周にグラファイト相が析出しており、破壊靭性および強度が低いものであった。さらに試料No.8および9については特にグラファイト相が多く摩耗試験の際、ダイヤモンド粒子が脱落し、標準試料である芯材中にダイヤモンド粒子を含有しない超硬合金の試料No.10よりも劣る結果となった。
【0052】
【発明の効果】
以上詳述したとおり、本発明の硬質複合焼結体によれば、多量の有機バインダを用いて作製する複合焼結体の芯材として硬質合金原料粉末中に、周期律表4a、5a、6a族金属の群より選ばれる少なくとも一種の金属を被覆したダイヤモンド粒子を添加、混合することにより、焼成中にダイヤモンド粒子が分解してグラファイト化することを抑制して、芯材をダイヤモンド粒子5〜50体積%含有し、かつ遊離炭素がC02以下である焼結体とすることができ、優れた耐摩耗性を有し、かつ超硬合金と同等の強度・靭性を有する硬質複合焼結体が得られる。
【図面の簡単な説明】
【図1】本発明の硬質複合焼結体の一例を示す、(a)概略断面図、(b)(a)のP部拡大図である。
【図2】本発明の硬質複合焼結体の製造工程を示す概略図である。
【図3】本発明の硬質複合焼結体の配置例を示す概略図である。
【符号の説明】
1 硬質複合焼結体
2 第1硬質相
3 ダイヤモンド粒子
4 第2硬質相
5 結合相
7 芯材
8 表皮材
11 成形体
12 芯材用成形体
13 表皮部材用成形体
14 押出成形機
15 複合成形体
16 マルチフィラメント構造の複合成形体
17 シート成形体
18 積層成形体
Claims (10)
- 炭化タングステン、窒化チタンまたは炭窒化チタンのいずれかからなる第1硬質相50〜95体積%と、ダイヤモンド粒子5〜50体積%と、前記第1硬質相以外の周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物からなる群より選ばれる少なくとも一種の第2硬質相0〜15体積%とを鉄族金属からなる結合相にて結合し、かつISO4505の合金の多孔度にて規定される遊離炭素量がC02以下である硬質焼結体からなる長尺状の芯材の外周面を、該芯材とは異なる組成の硬質焼結体からなる表皮材によって被覆してなることを特徴とする硬質複合焼結体。
- 前記ダイヤモンド粒子の60%以上の外周表面が前記第2硬質相によって包含されていることを特徴とする請求項1記載の硬質複合焼結体。
- 前記ダイヤモンド粒子を包含する第2硬質相の被覆厚みが0.1〜5μmであることを特徴とする請求項1または2記載の硬質複合焼結体。
- 前記ダイヤモンド粒子を包含する第2硬質相の濃度がダイヤモンド粒子の外周表面から前記結合相に向かって次第に減少していることを特徴とする請求項2または3記載の硬質複合焼結体。
- 請求項1乃至4のいずれか記載の複合焼結体を具備する複合構造体。
- (a)周期律表4a、5a、6a族金属の炭化物、窒化物および炭窒化物の群から選ばれる少なくとも1種の粉末と、鉄族金属粉末と、周期律表4a、5a、6a族金属の群より選ばれる少なくとも一種の金属を被覆したダイヤモンド粒子と、有機バインダとからなる混合物を長尺状に成形して芯材用成形体を作製する工程と、
(b)前記(a)工程の成形体とは異なる組成からなる表皮材用成形体を成形して前記(a)工程の芯材用成形体の外周を被覆するように配した複合成形体を作製する工程と、
(c)前記複合成形体中を焼成する工程とを具備することを特徴とする複合焼結体の製造方法。 - 前記ダイヤモンド粒子の外周表面を被覆した周期律表4a、5a、6a族金属の群より選ばれる少なくとも一種の金属の被覆厚みが0.1〜3μmであることを特徴とする請求項6記載の複合焼結体の製造方法。
- 前記(c)工程において、前記ダイヤモンド粒子を被覆する前記金属を焼成中に炭化させることを特徴とする請求項6または7記載の硬質複合焼結体の製造方法。
- 前記(a)工程における前記有機バインダを前記混合物全体に対して30〜70体積%の割合で添加することを特徴とする請求項6乃至8のいずれか記載の硬質複合焼結体の製造方法。
- 前記(a)工程において、前記周期律表4a、5a、6a族金属粉末を1〜20質量%の割合でさらに添加し、前記(c)工程において、前記ダイヤモンド粉末が焼成時に分解する分解成分と前記金属粉末が反応して炭化し体積膨張するように焼成することを特徴とする請求項6乃至9のいずれか記載の硬質複合焼結体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003153330A JP4351470B2 (ja) | 2003-05-29 | 2003-05-29 | 硬質複合焼結体および硬質複合構造体並びに製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003153330A JP4351470B2 (ja) | 2003-05-29 | 2003-05-29 | 硬質複合焼結体および硬質複合構造体並びに製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004353047A true JP2004353047A (ja) | 2004-12-16 |
JP4351470B2 JP4351470B2 (ja) | 2009-10-28 |
Family
ID=34048314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003153330A Expired - Fee Related JP4351470B2 (ja) | 2003-05-29 | 2003-05-29 | 硬質複合焼結体および硬質複合構造体並びに製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4351470B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014172157A (ja) * | 2013-03-12 | 2014-09-22 | Mitsubishi Materials Corp | 表面被覆切削工具 |
-
2003
- 2003-05-29 JP JP2003153330A patent/JP4351470B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014172157A (ja) * | 2013-03-12 | 2014-09-22 | Mitsubishi Materials Corp | 表面被覆切削工具 |
Also Published As
Publication number | Publication date |
---|---|
JP4351470B2 (ja) | 2009-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7250123B2 (en) | Composite construction and manufacturing method thereof | |
US8697259B2 (en) | Boron carbide composite materials | |
KR20150063457A (ko) | 경사 기능 재료로 이루어진 신규한 조성물을 갖는 금속 또는 세라믹 물품의 성형방법과 그 성형방법을 포함하는 물품 | |
US20070235701A1 (en) | Nanostructured titanium monoboride monolithic material and associated methods | |
JPWO2014208447A1 (ja) | サーメットおよびその製造方法並びに切削工具 | |
US6777074B2 (en) | Composite construction | |
JP2008069420A (ja) | 超硬合金および被覆超硬合金並びにそれらの製造方法 | |
JPH11302767A (ja) | 機械的特性に優れた超硬合金およびその製法 | |
JP4351470B2 (ja) | 硬質複合焼結体および硬質複合構造体並びに製造方法 | |
JPH05310474A (ja) | 高靭性高圧相窒化硼素焼結体 | |
JP4109471B2 (ja) | 複合構造体の製造方法 | |
JP2002194474A (ja) | 炭化タングステン系超硬基複合材料焼結体 | |
JP2002180107A (ja) | 傾斜複合材の製造方法 | |
JP3825347B2 (ja) | 複合構造体 | |
JP3762090B2 (ja) | 窒化珪素質焼結体およびそれを用いた切削工具 | |
JP2815686B2 (ja) | 耐チッピング性にすぐれた複合焼結切削工具材およびその製造法 | |
JP2008121119A (ja) | 複合構造体 | |
JP2004250735A (ja) | 複合構造体 | |
JP4328118B2 (ja) | 複合構造体の製造方法 | |
JP2003048004A (ja) | 複合材製圧延ロールおよびその製造方法 | |
JP4109507B2 (ja) | 複合構造体の製造方法 | |
JP2005281759A (ja) | 超高圧焼結構造体、超高圧複合焼結構造体およびその製造方法、並びに切削工具 | |
JP2004232001A (ja) | 複合硬質焼結体およびこれを用いた複合部材、切削工具 | |
JP2004283949A (ja) | 切削工具 | |
JP2004204258A (ja) | 複合硬質焼結体およびこれを用いた複合部材、切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090630 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090724 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120731 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130731 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |