JP2004323823A - 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
JP2004323823A
JP2004323823A JP2003343520A JP2003343520A JP2004323823A JP 2004323823 A JP2004323823 A JP 2004323823A JP 2003343520 A JP2003343520 A JP 2003343520A JP 2003343520 A JP2003343520 A JP 2003343520A JP 2004323823 A JP2004323823 A JP 2004323823A
Authority
JP
Japan
Prior art keywords
organic
group
polymer
integer
electroluminescent element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003343520A
Other languages
English (en)
Inventor
Hiroyuki Yasuda
博幸 安田
Shinji Shiraki
真司 白木
To Ryo
涛 梁
Minoru Makita
穣 槙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2003343520A priority Critical patent/JP2004323823A/ja
Priority to US10/811,903 priority patent/US20040202892A1/en
Priority to TW093108886A priority patent/TW200427818A/zh
Priority to EP04008454A priority patent/EP1469057A3/en
Priority to KR1020040023715A priority patent/KR101030400B1/ko
Publication of JP2004323823A publication Critical patent/JP2004323823A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

【課題】 湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を得ることのできる有機エレクトロルミネッセンス素子形成用重合体材料および有機エレクトロルミネッセンス素子用重合体組成物、および発光輝度が高く、連続駆動においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を提供すること。
【解決手段】 有機エレクトロルミネッセンス素子形成用重合体材料は、特定の構造単位を主鎖に有する共役系重合体よりなり、エレクトロルミネッセンス素子を構成するために用いられることを特徴とし、有機エレクトロルミネッセンス素子用重合体組成物は、上記の有機エレクトロルミネッセンス素子形成用重合体材料よりなる重合体成分と、三重項発光材料であるイリジウム錯体よりなる錯体成分とからなることを特徴とする。
【選択図】 図1

Description

本発明は、有機エレクトロルミネッセンス素子を構成するために用いられる重合体材料および有機エレクトロルミネッセンス素子用重合体組成物、並びに有機エレクトロルミネッセンス素子に関する。
有機エレクトロルミネッセンス素子(以下、「有機EL素子」ともいう。)は、直流電圧によって駆動することが可能であること、自己発光素子であるため視野角が広くて視認性が高いこと、応答速度が速いことなどの優れた特性を有することから、次世代の表示素子として期待されており、その研究が活発に行われている。
このような有機EL素子としては、陽極と陰極との間に有機材料よりなる発光層が形成された単層構造のもの、陽極と発光層との間に正孔輸送層を有する構造のもの、陰極と発光層との間に電子輸送層を有するものなどの多層構造のものが知られており、これらの有機EL素子は、いずれも、陰極から注入された電子と陽極から注入された正孔とが、発光層において再結合することによって発光するものである。
かかる有機EL素子において、発光層、電子もしくは正孔などの電荷を輸送する電荷輸送層などの機能性有機材料層を形成する方法としては、有機材料を真空蒸着によって形成する乾式法、並びに、有機材料が溶解されてなる溶液を塗布して乾燥することによって形成する湿式法が知られている。これらのうち、乾式法は、工程が煩雑で大量生産に適用することが困難であり、また、面積の大きい層を形成するには限界がある。これに対して、湿式法においては、工程が比較的に簡単で大量生産に対応することが可能であり、また、湿式法の一種である、例えばインクジェット法によれば面積の大きい機能性有機材料層を容易に形成することができることから、これらの点で、乾式法に比較して有利である。
一方、有機EL素子の発光層を構成する機能性有機材料層は、高い発光輝度が得られるものであることが要求されており、最近においては有機EL素子の発光に、励起状態である三重項状態の分子などのエネルギーを利用することが試みられており、具体的に、このような構成の有機EL素子によれば、従来から有機EL素子の外部量子効率の限界値と考えられていた5%を超え、8%の外部量子効率が得られることが報告されている(例えば、非特許文献1参照。)。
しかしながら、この有機EL素子は低分子量の材料で構成されており、また、例えば蒸着法などの乾式法によって形成されてなるものであることから、物理的耐久性および熱的耐久性が小さい、という問題がある。
また、三重項状態の分子などのエネルギーを利用した有機EL素子として、例えばイリジウム金属錯体とポリビニルカルバゾールとオキサジアゾールとからなる組成物を用い、湿式法によって発光層が形成されてなるものが提案されている(例えば、特許文献1参照。)。
しかしながら、この有機EL素子は、発光層中に低分子量のオキサジアゾールが含有されることとなるが、この低分子量のオキサジアゾールは、連続駆動した場合に発生するジュール熱に対する安定性が小さく、従って連続駆動において安定的な発光を得ることができない、という問題がある。
「アプライドフィジックスレターズ(Applied Physics Letters)」,1999年,第75巻,p.4 特開2001−257076号公報
本発明は、以上のような事情に基づいてなされたものであって、その目的は、湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動においても安定的な発光が得られる有機エレクトロルミネッセンス素子を得ることができる有機エレクトロルミネッセンス素子形成用重合体材料および有機エレクトロルミネッセンス素子用重合体組成物を提供することにある。
本発明の他の目的は、発光輝度が高く、連続駆動においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を提供することにある。
本発明の有機エレクトロルミネッセンス素子形成用重合体材料は、下記一般式(1)で表される構造単位と、下記一般式(2)で表される構造単位とを主鎖に有する共役系重合体よりなり、エレクトロルミネッセンス素子を構成するために用いられることを特徴とする。
Figure 2004323823
〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数である。〕
Figure 2004323823
〔式中、R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。pは0〜3の整数であり、qは0〜3の整数である。〕
本発明の有機エレクトロルミネッセンス素子用重合体材料は、共役系重合体が下記一般式(a)で表される構造単位よりなるものとすることができる。
Figure 2004323823
〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数であり、pは0〜3の整数であり、qは0〜3の整数であり、また、aおよびbは繰り返し数である。〕
本発明の有機エレクトロルミネッセンス素子用重合体材料は、共役系重合体が下記一般式(b)で表される構造単位よりなるものとすることができる。
Figure 2004323823
〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数であり、pは0〜3の整数であり、qは0〜3の整数である。〕
以上において、共役系重合体は、ゲルパーミエーションクロマトグラフ法によるポリスチレン換算重量平均分子量が5,000〜1,000,000であることが好ましい。
本発明の有機エレクトロルミネッセンス素子用重合体組成物は、上記の有機エレクトロルミネッセンス素子形成用重合体材料よりなる重合体成分と、三重項発光材料であるイリジウム錯体化合物よりなる錯体成分とからなることを特徴とする。
本発明の有機エレクトロルミネッセンス素子は、上記の有機エレクトロルミネッセンス素子用重合体組成物により形成された、発光層または電荷輸送層としての機能を有する機能性有機材料層を備えることを特徴とする。
以上のような有機エレクトロルミネッセンス素子形成用重合体材料によれば、当該重合体材料が特定の構造単位の組合せによる特定の共役系重合体であることにより、特に三重項発光材料であるイリジウム錯体化合物よりなる錯体成分と組み合せることにより、湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動においても安定的な発光が得られる有機エレクトロルミネッセンス素子を得ることができる。
本発明の有機エレクトロルミネッセンス素子によれば、発光輝度が高く、連続駆動においても安定的な発光が得られる。
以下、本発明の実施の形態について詳細に説明する。
<有機EL素子形成用重合体材料>
本発明の有機エレクトロルミネッセンス素子形成用重合体材料(以下、単に「重合体材料」ともいう。)は、有機EL素子を構成するために用いられるものであり、上記一般式(1)で表される構造単位(以下、「カルバゾール構造単位」ともいう。)と、上記一般式(2)で表される構造単位(以下、「フルオレン構造単位」ともいう。)とを主鎖に有する共役系重合体(以下、「特定の共役系重合体」ともいう。)よりなるものである。
ここに、特定の共役系重合体は、カルバゾール構造単位と、フルオレン構造単位とのランダム共重合体、ブロック共重合体および交互共重合体のいずれであってもよい。
カルバゾール構造単位を表す一般式(1)において、R1 は、アルキル基または置換されていてもいなくてもよい芳香族基を示し、特にエチル基であることが好ましい。
2 およびR3 は、それぞれ独立に1価の有機基を示し、互いに同一のものであっても異なるものであってもよいが、同一のものであることが好ましい。
2 およびR3 に係る1価の有機基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、フェニル基などが挙げられる。
mおよびnは、それぞれ独立に0〜3の整数を示し、特に、mおよびnともに0であることが好ましい。mまたはnが0であるときは、置換基がなくて水素原子が結合していることを意味する。
カルバゾール構造単位の好ましい具体例としては、R1 がエチル基、mおよびnがともに0である構造単位を挙げることができる。
フルオレン構造単位を表す一般式(2)において、R4 はアルキル基を示し、特にヘキシル基またはオクチル基であることが好ましい。
5 およびR6 は、それぞれ独立に1価の有機基を示し、互いに同一のものであっても異なるものであってもよいが、同一のものであることが好ましい。
5 およびR6 で示される1価の有機基としては、例えば炭素数1〜22のアルキル基、炭素数2〜20のヘテロアリール基、炭素数6〜20のアリール基、炭素数1〜20のアルコキシル基などが挙げられ、特に、t−ブチル基、ジフェニルアミノ基、トリル基、メトキシ基、シアノ基が好ましい。
pおよびqは、それぞれ独立に0〜3の整数を示し、特にpおよびqともに0であることが好ましい。pまたはqが0であるときは、置換基がなくて水素原子が結合していることを意味する。
フルオレン構造単位の好ましい具体例としては、R4 がヘキシル基またはオクチル基、pおよびqがともに0である構造単位を挙げることができる。
特定の共役系重合体の好ましい具体例としては、上記の一般式(a)および一般式(b)で表されるものを挙げることができる。そして、共役系重合体が一般式(b)で表されるものである場合に、そのカルバゾール構造単位数aとフルオレン構造単位数bは、特に限定されるものではないが、その比a:bが2:8〜8:2であることが好ましい。
特定の共役系重合体は、ゲルパーミエーションクロマトグラフ法によるポリスチレン換算重量平均分子量が5,000〜1,000,000、特に10,000〜500,000であることが好ましい。この重量平均分子量が5,000未満である場合には、耐熱性、薄膜状態における安定性、および機械的強度が不十分となるおそれがあるため好ましくない。一方、この重量平均分子量が1,000,000を超える場合には、得られる重合体組成物の溶液粘度が著しく高いものになりやすく、有機EL素子の製造においてハンドリング性が低下するおそれがあるため好ましくない。
また、特定の共役系重合体の分子量分布は、5以下であることが好ましい。
このような特定の共役系重合体は、例えば、Organometallics,1261(1984)において開示されている方法(以下、「スズキ法」ともいう。)およびProgress in Polymer Science, vol. 17, 1153(1992)において開示されている方法(以下、「ヤマモト法」ともいう。)などによって生成することができる。
ここに、スズキ法によって生成される特定の共役系重合体は一般式(b)で表される交互共重合体となり、ヤマモト法によって得られる特定の共役系重合体は一般式(a)で表されるランダム共重合体となる。
スズキ法によれば、2個の特定の官能基を有すると共に、カルバゾールに由来する骨格構造を有する単量体(以下、「カルバゾール骨格単量体」ともいう。)と、2個の特定の官能基を有すると共に、フルオレンに由来する骨格構造を有する単量体(以下、「フルオレン骨格単量体」ともいう。)とを、反応溶媒中において塩基化合物およびパラジウム触媒の存在下において反応させることにより、特定の共役系重合体が生成される。
ここに、「特定の官能基」とは、反応性ハロゲン化物官能基およびホウ素誘導体官能基を示す。
スズキ法に供するカルバゾール骨格単量体およびフルオレン骨格単量体の組み合わせとしては、下記の(1)〜(3)の3通りが挙げられる。
(1)カルバゾール骨格単量体として、2個の反応性ハロゲン化物官能基を有する化合物を用い、一方、フルオレン骨格単量体として、2個のホウ素誘導体官能基を有する化合物を用いる。
(2)カルバゾール骨格単量体として、2個のホウ素誘導体官能基を有する化合物を用い、一方、フルオレン骨格単量体として、2個の反応性ハロゲン化物官能基を有する化合物を用いる。
(3)カルバゾール骨格単量体として、反応性ハロゲン化物官能基およびホウ素誘導体官能基を有する化合物を用い、一方、フルオレン骨格単量体として、反応性ハロゲン化物官能基およびホウ素誘導体官能基を有する化合物を用いる。
カルバゾール骨格単量体においては、2個の特定の官能基は、それぞれ位置番号3および6の炭素原子に結合されていることが好ましい。
フルオレン骨格単量体においては、2個の特定の官能基は、それぞれ位置番号2および7の炭素原子に結合されていることが好ましい。
反応性ハロゲン化物官能基としては、−Cl基、−Br基、−I基、トリフレート(CF3 SO3 - )に由来する基、トシラートに由来する基またはメシラートに由来する基が挙げられる。
これらの中では、−Br基または−I基が好ましい。
ホウ素誘導体官能基としては、式−B(OH2 )で表されるボロン酸基、ボロン酸エステル基、ボラン基が挙げられる。
ボロン酸エステル基としては、式−B(OR7 )(OR8 )で表される基、または式−B(OR9 O)で表される基が好ましい。
ボラン基としては、式−BR1011で表される基が好ましい。
ここに、ボロン酸エステル基に係るR7 は、炭素数が1〜6のアルキル基であり、置換されていてもいなくてもよい。
8 は、水素原子または炭素数が1〜6のアルキル基であり、置換されていてもいなくてもよい。
9 は、式中の(OR9 O)が5員環または6員環のエステル環となるような2価の炭化水素基であり、具体的には、炭素数が2または3のアルキレン基、オルトフェニレン基またはメタフェニレン基であることが好ましい。なお、これらアルキレン基およびフェニレン基は置換されていてもいなくてもよい。
このような構成のボロン酸エステル基として好ましい基には、例えば炭素数が1〜6のアルコール、ピナコール等のエタンジオール、プロパンジオールまたは1,2−ジヒドロキシベンゼン等のオルト芳香族ジオールと、対応するボロン酸とのエステル化による生成物に由来の基が含まれる。
ボラン基に係るR10およびR11は、それぞれ独立に炭素数が1〜6のアルキル基であり、置換されていなくてもよく、環を形成してもしなくてもよい。
スズキ法に供するカルバゾール骨格単量体およびフルオレン骨格単量体の好ましい具体例としては、カルバゾール骨格単量体としては下記の式(A)で表される化合物を、フルオレン骨格単量体としては下記の式(B)で表される化合物を挙げることができる。

Figure 2004323823
反応溶媒としては、水、不活性有機溶剤、水と不活性有機溶剤との混合物を用いることができ、これらの中では、水と不活性有機溶剤との混合物を用いることが好ましい。
不活性有機溶剤としては、例えばジメトキシエタン、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルおよびtert−ブチルメチルエーテル等のエーテル類、ヘキサン、ヘプタン、シクロヘキサン、トルエンおよびキシレン等の炭化水素類、メタノール、エタノール、1−プロパノール、2−プロパノール、tert−ブチルアルコールおよびエチレングリコール等のアルコール類、エチルメチルケトンおよびイソブチルメチルケトン等のケトン類、ジメチルホルムアミド、ジメチルアセトアミドおよびN−メチルピロリドン等のアミド類、およびそれらの混合物などが挙げられる。これらの不活性有機溶剤は、単独でまたは2種以上を組み合わせて用いることができる。
これらの中では、ジメトキシエタン、テトラヒドロフラン、シクロヘキサン、トルエン、キシレン、エタノール、1−プロパノール、2−プロパノール、1−ブチルアルコール、tert−ブチルアルコール、およびそれらの混合物を用いることが好ましい。
反応溶媒の好ましい具体例としては、水とトルエンとの混合物、水とトルエンとテトラヒドロフランとの混合物、水とトルエンとエタノールとの混合物を好適に用いることができる。
反応溶媒の使用量は、反応に供する単量体の種類などによっても異なるが、通常、反応に供する単量体の合計の濃度が9〜30質量%となる割合である。
塩基化合物としては、例えばアルカリ金属ヒドロキシド、アルカリ土類金属ヒドロキシド、アルカリ金属カーボネート、アルカリ土類金属カーボネート、アルカリ金属アセテート、アルカリ土類金属アセテート、アルカリ金属ハイドロジェンカーボネート、アルカリ土類金属ハイドロジェンカーボネート、アルカリ金属アルコキシド、アルカリ土類金属アルコキシド、一級アミン、二級アミン、および三級アミンなどを用いることができる。
これらの中では、水酸化ナトリウムおよび水酸化カリウム等のアルカリ金属ヒドロキシド、炭酸リチウム、炭酸ナトリウムおよび炭酸カリウム等のアルカリ金属カーボネート、アルカリ金属ハイドロジェンカーボネートを用いることが好ましい。
塩基化合物の使用量は、反応に供する単量体に係るホウ素誘導体官能基の合計のモル数に対して、好ましくは100〜500mol%、特に好ましくは150〜400mol%、更に好ましくは180〜250mol%である。
パラジウム触媒としては、パラジウム(0)錯体、パラジウム(II)塩を用いることができるが、パラジウム(0)錯体を用いることが好ましい。
これらの中では、トリフェニルホスフィンパラジウム(Pd(PPh3 4 )を用いることが好ましい。
パラジウム触媒の使用量は、通常、反応に供する単量体の合計のモル数に対して、0.01〜5mol%、好ましくは0.05〜3mol%、特に好ましくは0.1〜1.5mol%である。
反応温度は、0〜200℃、好ましくは30〜170℃、特に好ましくは50〜150℃、更に特に好ましくは60〜120℃である。
また、反応時間は、1〜200時間、好ましくは5〜150時間、特に好ましくは24〜100時間である。
一方、ヤマモト法によれば、2個の反応性ハロゲン化物官能基を有すると共にフルオレンに由来する骨格構造を有する単量体化合物(以下、「ハロゲン化フルオレン化合物」という。)と、2個の反応性ハロゲン化物官能基を有すると共にカルバゾールに由来する骨格構造を有する単量体化合物(以下、「ハロゲン化カルバゾール化合物」という。)とをニッケル触媒の存在下にカップリング反応させることにより、特定の共役系重合体が生成される。
反応性ハロゲン化物官能基としては、−Br基、−Cl基、−I基などを挙げることができ、これらの中では、−Br基が好ましく用いられる。
ハロゲン化カルバゾール化合物としては、カルバゾールの窒素原子に結合している水素原子が、炭素数1〜22のアルキル基、置換基を有するまたは有さない1〜3環の芳香族基(例えば、フェニル基、ナフチル基、アントリル基およびキシリレン基等)に置換されてなる化合物などが挙げられる。
これらの中では、N−エチルジブロモカルバゾール、N−フェニルブロモカルバゾールが好ましい。
ハロゲン化フルオレン化合物の具体例としては、例えばジ(2−エチルヘキシル)ジブロモフルオレン、ジヘキシルジブロモフルオレン、ジオクチルジブロモフルオレン、ジ(メトキシカルボニルエチル)ジブロモフルオレンなどを挙げることができる。
これらの中では、ジヘキシルジブロモフルオレン、ジオクチルジブロモフルオレンが好ましい。
ニッケル触媒としては、例えば0価のニッケル、ビス(1,5−シクロオクタジエニル)ニッケル(0)、テトラキス(トリフェニルホスファイト)ニッケル(0)、テトラキス(トリフェニルホスフィン)ニッケル(0)などが挙げられ、特にビス(1,5−シクロオクタジエニル)ニッケル(0)を用いることが好ましい。
ニッケル触媒の使用量は、通常、反応に供する単量体の合計のモル数に対して、50〜500mol%、好ましくは70〜400mol%、特に好ましくは100〜200mol%である。
反応温度は、50〜120℃、好ましくは60〜100℃、特に好ましくは70〜90℃である。
また、反応時間は、1〜100時間、好ましくは3〜80時間、特に好ましくは6〜70時間である。
スズキ法およびヤマモト法の各々における重合処理によって得られた反応生成物に対しては、例えば分取ゲルパーミエーションクロマトグラフ法などによって低分子量成分を除去する後処理を行うことが好ましく、このような後処理を行うことにより、発光効率が一層高い有機エレクトロルミネッセンス素子を得ることができる。
このような特定の共役系重合体よりなる重合体材料は、例えば燐光発光性を有する発光性材料と共に用いることにより、発光層や電荷輸送層などの機能性有機材料層を形成する材料として、有機EL素子を構成するために用いられる。
<有機EL素子用重合体組成物>
本発明の有機EL素子用重合体組成物は、前述の特定の共重合体よりなる重合体成分と、三重項発光材料である錯体成分とからなるものである。
錯体成分を構成するイリジウム錯体化合物としては、イリジウムと、フェニルピリジン、フェニルピリミジン、ビピリジル、1−フェニルピラゾール、2−フェニルキノリン、2−フェニルベンゾチアゾール、2−フェニル−2−オキサゾリン、2,4−ジフェニル−1,3,4−オキサジアゾール、5−フェニル−2−(4−ピリジル)−1,3−オキサジアゾール、2−(2−ピリジル−チオフェン)−2−フェニル−4H−3,1−ベンズオキサジン−4またはこれらの誘導体などの窒素原子含有芳香族化合物との錯体化合物を用いることができる。
このようなイリジウム錯体化合物の具体例としては、下記一般式(3)〜下記一般式(5)で表される化合物を挙げることができる。
Figure 2004323823

Figure 2004323823
Figure 2004323823
〔上記一般式(3)〜一般式(5)において、R12およびR13は、それぞれフッ素原子、アルキル基またはアリール基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。xは0〜4の整数であり、yは0〜4の整数である。〕
以上において、置換基R12またはR13に係るアルキル基の具体例としては、メチル基、エチル基、イソプロピル基、t−ブチル基、n−ブチル基、イソブチル基、ヘキシル基、オクチル基などを挙げることができる。
アリール基の具体例としては、フェニル基、トリル基、キシリル基、ビフェニル基、ナフチル基などを挙げることができる。
以上のうち、特に一般式(3)で表されるイリジウム錯体化合物(以下、「特定のイリジウム錯体化合物」という。)を用いることが好ましい。
この特定のイリジウム錯体化合物は、通常、下記一般式(6)で表される化合物と、下記一般式(7)で表される化合物とを極性溶媒の存在下に反応させることにより合成されるが、その場合に生ずる下記一般式(8)で表される特定の不純物化合物の含有量が1000ppm以下であることが重要である。
Figure 2004323823
Figure 2004323823
〔一般式(6)、一般式(7)および一般式(8)において、R12およびR13は一般式(3)と同じである。〕
上記の特定の不純物化合物の含有量が1000ppm以下である特定のイリジウム錯体化合物は、上記の合成反応による反応生成物を精製することにより、得ることができる。
特定のイリジウム錯体化合物において、上記の特定の不純物化合物の含有量が1000ppmを超える場合には、当該特定のイリジウム錯体化合物の有する発光性能が阻害されるため、発光輝度が高い有機エレクトロルミネッセンス素子を得ることが困難となる。
本発明の有機EL素子用重合体組成物における錯体成分の含有割合は、重合体成分100質量部に対して0.1〜30質量部であることが好ましく、より好ましくは0.5〜10質量部である。この含有割合が0.1質量部未満である場合には、十分な発光を得ることが困難となることがある。一方、この割合が30質量部を超える場合には、錯体成分の含有割合が過剰であるために、発光の明るさが却って減少する濃度消光の現象が生じることがあるため、好ましくない。
本発明の有機EL用重合体組成物には、必要に応じて、例えば電子輸送性低分子化合物などの任意の添加物を加えることができる。
電子輸送性低分子化合物としては、オキサジアゾール誘導体を用いることが好ましく、その具体例としては、2−β−ナフチル−5−(4−ビニルフェニル)−1,3,4−オキサジアゾール、2−α−ナフチル−5−(4−ビニルフェニル)−1,3,4−オキサジアゾール、2−フェニル−5−(4−ビニルフェニル)−オキサジアゾール、2−フェニル−5−(4−ビニル−p−ビフェニル)−1,3,4−オキサジアゾール、2−(p−ビフェニル)−5−(4−ビニルフェニル)−オキサジアゾール、2−t−ブトキシフェニル−5−(4−(4−ビニルフェニル)−p−ビフェニル)−1,3,4−オキサジアゾールまたはこれらのオキサジアゾール誘導体に適宜の置換基を導入したものなどを挙げることができる。これらの中では、2−β−ナフチル−5−(4−ビニルフェニル)−1,3,4−オキサジアゾール、2−(p−ビフェニル)−5−(4−ビニルフェニル)−1,3,4−オキサジアゾールが好ましい。
電子輸送性低分子化合物の含有割合は、重合体成分と錯体成分との合計100質量部に対して10〜40質量部であることが好ましい。
本発明の有機EL素子用重合体組成物においては、通常、上記の特定の共役系重合体よりなる重合体成分と、錯体成分とを適宜の有機溶剤に溶解させることによって組成物溶液を調製し、この組成物溶液を、機能性有機材料層を形成すべき基体の表面に塗布し、得られた塗膜に対して有機溶剤の除去処理を行うことにより、有機エレクトロルミネッセンス素子における機能性有機材料層を形成することができる。
このようにして得られる機能性有機材料層は、発光層として機能する層とされることができ、あるいは、電荷輸送層(正孔輸送層または電子輸送層)として機能する層とされることができる。
組成物溶液を調製するための有機溶剤としては、用いられる重合体成分および錯体成分を溶解し得るものであれば特に限定されず、その具体例としては、クロロホルム、クロロベンゼン、テトラクロロエタン等のハロゲン化炭化水素、ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤、乳酸エチル、プロピレングリコールメチルエーテルアセテート、エチルエトキシプロピオネート、メチルアミルケトンなどが挙げられる。これらの有機溶剤は、単独でまたは2種以上を組み合わせて用いることができる。
これらの中では、均一な厚みを有する薄膜が得られる点で、適当な蒸発速度を有するもの、具体的には沸点が70〜200℃程度の有機溶剤を用いることが好ましい。
有機溶剤の使用割合は、重合体成分および錯体成分の種類によって異なるが、通常、組成物溶液中の重合体成分および錯体成分の合計の濃度が0.5〜10質量%となる割合である。
また、組成物溶液を塗布する手段としては、例えばスピンコート法、ディッピング法、ロールコート法、インクジェット法、印刷法などを利用することができる。
形成される機能性有機材料層の厚みは、特に限定されるものではないが、通常、10〜1000nm、好ましくは30〜200nmの範囲で選択される。
このような有機EL素子用重合体組成物によれば、発光効率が高く、連続駆動中においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を得ることができ、しかも、機能性有機材料層を、インクジェット法などの湿式法により容易に形成することができる。
<有機EL素子>
図1は、本発明の有機EL素子の構成の一例を示す説明用断面図である。
この有機EL素子においては、透明基板1上に、正孔を供給する電極である陽極2が設けられ、この陽極2上には、正孔注入輸送層3が設けられ、この正孔注入輸送層3上には、発光層4が設けられ、この発光層4上には、電子注入層5が設けられ、この電子注入層5上には、電子を供給する電極である陰極6が設けられている。そして、陽極2および陰極6は、直流電源7に電気的に接続されている。
上記の有機EL素子において、透明基板1としては、ガラス基板、透明性樹脂基板または石英ガラス基板等を用いることができる。
陽極2を構成する材料としては、好ましくは、仕事関数の大きい例えば4eV以上の透明性材料が用いられる。ここで、仕事関数とは、固体から真空中に電子を取り出すのに要する最小限の仕事の大きさをいう。陽極2としては、例えば、ITO(Indium Tin Oxide)膜、酸化スズ(SnO2 )膜、酸化銅(CuO)膜、酸化亜鉛(ZnO)膜等を用いることができる。
また、陽極2の厚みは、材料の種類によって異なるが、通常、10〜1,000nm、好ましくは50〜200nmである。
正孔注入輸送層3は、正孔を効率よく発光層4に供給するために設けられたものであって、陽極2から正孔(ホール)を受け取って、発光層4に輸送する機能を有するものである。
この正孔注入輸送層3を構成する材料としては、例えばポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネートなどの電荷注入輸送材料を好適に用いることができる。
また、正孔注入輸送層3の厚みは、例えば10〜200nmである。
発光層4は、電子とホールとを結合させ、その結合エネルギーを光として放射する機能を有するものであり、この発光層4は、本発明の有機EL素子用重合性組成物によって形成されている。
発光層4の厚みは、特に限定されるものではないが、通常、2〜5,000nmの範囲で選択される。
電子注入層5は、陰極6から電子を受け取って発光層4まで輸送する機能を有するものである。この電子注入層5を構成する材料としては、バソフェナントロリン系材料とセシウムとの共蒸着系(BPCs)を用いることが好ましく、その他の材料としては、フッ化リチウム、フッ化マグネシウム、酸化ストロンチウム、アントラキノジメタン誘導体、ジフェニルキノン誘導体、オキサジアゾール誘導体、ペリレンテトラカルボン酸誘導体等も用いることができる。
また、電子注入層5の厚みは、例えば0.1〜100nmである。
陰極6を構成する材料としては、仕事関数の小さい例えば4eV以下のものが用いられる。陰極6の具体例としては、アルミニウム、カルシウム、マグネシウム、インジウム等よりなる金属膜、またはこれらの金属の合金膜等を用いることができる。
また、陰極6の厚みは、材料の種類によって異なるが、通常、10〜1,000nm、好ましくは50〜200nmである。
本発明において、上記の有機EL素子は、例えば以下のようにして製造される。
先ず、透明基板1上に、陽極2を形成する。
陽極2を形成する方法としては、真空蒸着法またはスパッタ法などを利用することができる。また、ガラス基板などの透明基板の表面に例えばITO膜が形成されてなる市販の材料を用いることもできる。
このようにして形成された陽極2上に、正孔注入輸送層3を形成する。
正孔注入輸送層3を形成する方法としては、具体的に、電荷注入輸送材料を適宜の有機溶剤に溶解することによって正孔注入輸送層形成液を調製し、この正孔注入輸送層形成液を、陽極2の表面に塗布し、得られた塗布膜に対して有機溶剤の除去処理を行うことによって正孔注入輸送層3を形成する手法を用いることができる。
次いで、本発明の有機EL素子用重合体組成物を発光層形成液として用い、この発光層形成液を正孔注入輸送層3上に塗布し、得られた塗布膜を熱処理することにより、発光層4を形成する。
発光層形成液を塗布する方法としては、スピンコート法、ディップ法、インクジェット法、印刷法などを利用することができる。
そして、このようにして形成された発光層4上に、電子注入層5を形成し、この電子注入層5上に、陰極6を形成することにより、図1に示す構成を有する有機EL素子が得られる。
以上において、電子注入層5を形成する方法としては、真空蒸着法などの乾式法、電子注入材料を適宜の溶剤に溶解した後、この溶液を、スピンコート法、ディップ法、インクジェット法、印刷法等により塗布して乾燥させる湿式法を利用することができる。
また、陰極6を形成する方法としては、真空蒸着法、スパッタ法などの乾式法を利用することができる。
上記の有機EL素子においては、直流電源7により、陽極2と陰極6との間に直流電圧が印加されると、発光層4が発光し、この光は、正孔注入輸送層3、陽極2および透明基板1を介して外部に放射される。
このような構成の有機EL素子によれば、発光層4が本発明の有機EL素子用重合体組成物によって形成されているため、高い発光輝度が得られ、しかも、連続駆動中においても安定的な発光が得られる。
以下、本発明の具体的な実施例について説明するが、本発明はこれらに限定されるものではない。
<合成例1>(カルバゾール化合物(1)の合成)
N−エチルカルバゾール50g(256mmol)を酢酸800mlに溶解した系を、水浴によって冷却しながら、酢酸150mlに臭素100g(626mmol)を溶解した溶液を1時間かけて滴下し、その後、6時間撹拌した。次いで、得られた反応溶液を大量の水中に投入して生成した沈殿を濾別し、この沈殿を大量の水中に拡散させて再び濾過することによって得られた沈殿を、50℃で減圧乾燥して完全に乾燥させることにより、収率97.2%で白色固体としてN−エチルジブロモカルバゾール(以下、「カルバゾール化合物(1)」ともいう。)87.8g(248mmol)を得た。
<合成例2>(フルオレン化合物(1)の合成)
窒素雰囲気下において、テトラヒドロフラン60mlにフルオレン20g(0.12mmol)を溶解した系をアセトン−ドライアイスバスを用いて−78℃に冷却した後、この系に濃度1.6Mのn−ブチルリチウム80ml(0.128mol)を滴下して1時間攪拌し、更に、ヘキシルブロマイド18ml(0.128mol)を滴下すると共に、アセトン−ドライアイスバスに代えて水浴によって冷却しながら、オレンジ色のスラリーが赤色溶液となり、更に黄褐色溶液になるまで攪拌した。次いで、得られた黄褐色溶液を、アセトン−ドライアイスバスを用いて−78℃に冷却した後、この溶液に、濃度1.6Mのn−ブチルリチウム90ml(0.144mol)を滴下して1時間攪拌し、その後、ヘキシルブロマイド24ml(0.171mol)を滴下すると共に、アセトン−ドライアイスバスに代えて水浴によって冷却しながら8時間攪拌した。得られた反応溶液を1.5リットルの水中に投入して有機層を取り出し、また、水層をクロロホルムによって3回抽出処理することによって得られたクロロホルム溶液を有機層に加えた。このクロロホルム溶液が混合された有機層液を飽和食塩水で洗浄し、更に無水硫酸マグネシウムで洗浄した後、溶媒を減圧留去して黄褐色のオイルを得、これを減圧下で加熱することにより、未反応のヘキシルブロマイドや副生成物のエーテルが除去された純粋なジヘキシルフルオレンを得た。
得られたジヘキシルフルオレン (0.12mol)と、塩化鉄(III) 200mg(1.23mmol)とをクロロホルム500mlに加え、この系を、遮光した状態で氷浴によって冷却し、その後、この系に臭素38.4g(0.24mol)を20分間かけて滴下した後、系を放置してその温度を室温にまで上昇させながら4時間攪拌した。次いで、得られた反応溶媒を、水、チオ硫酸ナトリウム水溶液、水、飽和食塩水をこの順で用いて洗浄し、無水硫酸マグネシウムによって乾燥した後、溶媒を減圧留去することにより、収率87.0%で黄褐色オイルとしてジヘキシルジブロモフルオレン(以下、「フルオレン化合物(1)」ともいう。)51.4g(0.1mol)を得た。オイルは時間とともに固化した。
<合成例3>(フルオレン化合物(2)の合成)
ジヘキシルジブロモフルオレン10g(20.3mmol)を窒素雰囲気下においてテトラヒドロフラン50mlに溶解した溶液をアセトン−ドライアイスバスを用いて−78℃に冷却し、その後、この系に濃度1.6Mのn−ブチルリチウム30ml(48mmol)を滴下して1時間攪拌した。次いで、この系に、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン13ml(62.45mmol)を滴下した後、バスを外して系を室温にまで上昇させながら8時間攪拌した。得られた反応溶液に濃度2Mの塩酸100mlを加えて30分間撹拌した後、300mlの水中に注ぎ、更にエーテルによって3回抽出処理し、その後、エーテル溶液を無水硫酸マグネシウムで乾燥した後、エーテルを減圧留去することにより、上記式(B)で表されるボロン酸エステル基を含有するフルオレン化合物(2)を得た。
<重合例1>(ヤマモト法)
窒素雰囲気下において、ビス(1,5−シクロオクタジエニル)ニッケル1g(3.64mmol)と、2,2’−ビピリジル568mg(3.64mmol)とにテトラヒドロフラン25mlを加え、この系に、1,5−シクロオクタジエン0.49ml(4mmol)を加えて還流することによってニッケル溶液を得た。
次いで、窒素雰囲気下において、上記のカルバゾール化合物(1)1.8mmolおよび上記のフルオレン化合物(2)1.8mmolをテトラヒドロフラン40mlに溶解することによってジブロモ体溶液を得た。
このジブロモ体溶液を60℃に加熱してニッケル溶液に対してキャニュレーションにより迅速に滴下し、得られた混合溶液を6時間還流した後に金属を濾別し、用いたろ紙をクロロホルムによって抽出処理して抽出液をろ液に加えた後、このろ液の溶媒を減圧留去することによって得られた残渣を少量のテトラヒドロフランに溶解した溶液を、大量のメタノール中に投入することにより、粗ポリマーの沈殿を得た。
得られた粗ポリマーについてNMR測定を行った結果を図2および図3に示す。図3に示されているように、カルバゾール化合物(1)およびフルオレン化合物(2)においてハロゲン元素を水素化した化合物のスペクトルがブロードニングしたスペクトルであった。
得られた粗ポリマーをクロロホルムに溶解し、エチレンジアミン四酢酸(EDTA)水溶液をアンモニア水溶液でpH7に調整した溶液で3回、エチレンジアミン四酢酸水溶液で1回、希塩酸水溶液で1回、最後に超純水で1回洗浄した後、溶媒を減圧留去することによって得られた残渣を少量のテトラヒドロフランに溶解し、その溶液を、大量のメタノールに投入することにより、沈殿物として重合体(1)を得た。
得られた重合体(1)についてNMR測定を行ったところ、当該重合体(1)が、一般式(1)においてR1 がエチル基、mおよびnがともに0であるカルバゾール構造単位と、一般式(2)においてR4 がヘキシル基、pおよびqがともに0であるフルオレン構造単位とを有し、カルバゾール構造単位数とフルオレン構造単位数の比が1:1であるランダム共重合体であることが確認された。
得られた重合体(1)についてゲルパーミエーションクロマトグラフ法による分子量測定を行ったところ、重量平均分子量はポリスチレン換算で30000であり、また、比Mw/Mnは8であった。
<重合例2>(スズキ法)
窒素雰囲気下において、カルバゾール化合物(1)2mmolと、フルオレン化合物(2)2mmolとに、テトラヒドロフラン25mlとエタノール10mlとを加え、この系に、濃度1Mの炭酸カリウム水溶液20mlを加えて還流し、得られた溶液に、トルエン/テトラヒドロフラン混合溶液5mlにテトラキス(トリフェニルホスフィンパラジウム)50mgを溶解した溶液を滴下して24時間還流した。得られた反応溶液を冷却した後、濾過し、残渣を希塩酸中で2時間還流した溶液を濾過し、得られた固体を少量のトルエンに溶解させた。この溶液を、大量のメタノールに投入することにより、沈殿物として重合体(2)を得た。
得られた重合体(2)についてNMR測定を行ったところ、当該重合体(2)が、一般式(1)においてR1 がエチル基、mおよびnがともに0であるカルバゾール構造単位と、一般式(2)においてR4 がヘキシル基、pおよびqがともに0であるフルオレン構造単位とを有し、カルバゾール構造単位数とフルオレン構造単位数の比が1:1である交互共重合体であることが確認された。
得られた重合体(2)についてゲルパーミエーションクロマトグラフ法による分子量測定を行ったところ、重量平均分子量はポリスチレン換算で55000であり、また、比Mw/Mnは5.7であった。
<重合例3>
重合例2において得られた重合体(2)をトルエンに溶解させ、このトルエン溶液にアセトンを、トルエンとアセトンの比率がトルエン:アセトン=1:1となるように加え、これにより析出した不溶成分を濾別した。そして、濾過液を大量のアセトンに投入することにより、沈殿物として重合体(3)を得た。
得られた重合体(3)についてゲルパーミエーションクロマトグラフ法による分子量測定を行ったところ、重量平均分子量はポリスチレン換算で5700であり、また、比Mw/Mnは1.2であった。
<重合例4>
重合例3において濾別された不溶成分をトルエンに溶解させ、このトルエン溶液にアセトンを、トルエンとアセトンの比率がトルエン:アセトン=1.1:1となるように加え、これにより析出した不溶成分を濾別した。そして、濾過液を大量のアセトンに投入することにより、沈殿物として重合体(4)を得た。
得られた重合体(4)についてゲルパーミエーションクロマトグラフ法による分子量測定を行ったところ、重量平均分子量はポリスチレン換算で34000であり、また、比Mw/Mnは2.6であった。
<重合例5>
重合例4において濾別された不溶成分をトルエンに溶解させ、このトルエン溶液にアセトンを、トルエンとアセトンの比率がトルエン:アセトン=1.5:1となるように加え、これにより析出した不溶成分を濾別した。そして、濾過液を大量のアセトンに投入することにより、沈殿物として重合体(5)を得た。
得られた重合体(5)についてゲルパーミエーションクロマトグラフ法による分子量測定を行ったところ、重量平均分子量はポリスチレン換算で81000であり、また、比Mw/Mnは2.2であった。
<実施例1>
(有機EL素子用重合体組成物溶液の調製)
重合体(1)10gと、この重合体(1)に対して4mol%のIr(ppy)3 (一般式(3)において、xおよびyが0である化合物)とを混合した系に、シクロヘキサノンを固形分濃度が3質量%になるように添加し、この溶液をポアサイズが2.52μmのフィルターで濾過することにより、有機EL素子用重合性組成物が有機溶剤中に溶解されてなる組成物溶液(1)を調製した。
(有機EL素子の作製)
透明基板上にITO膜が形成されてなるITO基板を用意し、このITO基板を、中性洗剤、超純水、イソプロピルアルコール、超純水、アセトンをこの順に用いて超音波洗浄した後、更に紫外線−オゾン(UV/O3 )洗浄した。
洗浄を行ったITO基板上に、ポリ(3,4−エチレンジオキシチオフェン)−ポリスチレンスルホネート(PEDOT/PSS)溶液をスピンコート法によって塗布し、その後、得られた厚さ65nmの塗布膜を窒素雰囲気下において250℃で30分間乾燥することにより、正孔注入層を形成した。
次いで、得られた正孔注入層の表面に、組成物溶液(1)をスピンコート法によって塗布し、得られた厚さ75nmの塗布膜を窒素雰囲気下において150℃で10分間乾燥することにより、発光層を形成した。
次いで、ITO基板上に正孔注入層および発光層がこの順に積層されてなる積層体を真空装置内に固定し、その後、当該真空装置内を1×10-4Pa以下にまで減圧し、バソフェナントロリンおよびセシウム(Cs)をモル比で3:1となる割合で共蒸着することにより、電子注入層を形成した。
そして、電子注入層の表面に、アルミニウムを蒸着して厚みが1000Åのアルミニウム膜を形成し、その後、ガラス材料によって封止することにより、有機EL素子(1)を製造した。
(有機EL素子の評価)
得られた有機EL素子(1)に対し、ITO膜を陽極とし、アルミニウム膜を陰極として直流電圧を電圧値が次第に大きくなるよう印加することによって電界をかけたところ、電圧8.5Vから発光が開始され、また、最大発光輝度が1100cd/m2 であることが確認された。
更に、有機EL素子(1)に直流電圧10Vを印加して駆動させたときの発光輝度(以下、「加熱前輝度」ともいう。)を測定し、その後、当該有機EL素子(1)を150℃で1時間加熱処理した後に、再び直流電圧10Vを印加して駆動させたときの発光輝度(以下、「加熱後輝度」ともいう。)を測定したところ、この加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<実施例2>
実施例1において、有機EL素子用重合体組成物溶液を調製する工程における重合体(1)に代えて、当該重合体(1)を分取ゲルパーミエーションクロマトグラフ法によって低分子量成分を取り除き、重量平均分子量がポリスチレン換算で50000であり、比Mw/Mnが2.5である分子量調整重合体を用いたこと以外は実施例1と同様にして組成物溶液(2)を得た。そして、有機EL素子を作製する工程における組成物溶液(1)に代えて組成物溶液(2)を用いたこと以外は実施例1と同様にして有機EL素子(2)を作製した。
得られた有機EL素子(2)を、実施例1と同様の手法によって評価したところ、電圧7.5Vから発光が開始され、また、最大輝度が1450cd/m2 であることが確認された。
更に、有機EL素子(2)における加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<実施例3>
実施例1において、有機EL素子用重合体組成物溶液を調製する工程における重合体(1)に代えて重合体(2)を用いたこと以外は実施例1と同様にして組成物溶液(3)を得、有機EL素子を作製する工程における組成物溶液(1)に代えて組成物溶液(3)を用いたこと以外は実施例1と同様にして有機EL素子(3)を作製した。
得られた有機EL素子(3)を、実施例1と同様の手法によって評価したところ、電圧7.0Vから発光が開始され、また、最大輝度が1840cd/m2 であることが確認された。
更に、有機EL素子(3)における加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<実施例4>
実施例1において、有機EL素子用重合体組成物溶液を調製する工程における重合体(1)に代えて重合体(3)を用いたこと以外は実施例1と同様にして組成物溶液(4)を得、有機EL素子を作製する工程における組成物溶液(1)に代えて組成物溶液(4)を用いたこと以外は実施例1と同様にして有機EL素子(4)を作製した。
得られた有機EL素子(4)を、実施例1と同様の手法によって評価したところ、電圧5.7Vから発光が開始され、また、最大輝度が980cd/m2 であることが確認された。
更に、有機EL素子(4)における加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<実施例5>
実施例1において、有機EL素子用重合体組成物溶液を調製する工程における重合体(1)に代えて重合体(4)を用いたこと以外は実施例1と同様にして組成物溶液(5)を得、有機EL素子を作製する工程における組成物溶液(1)に代えて組成物溶液(5)を用いたこと以外は実施例1と同様にして有機EL素子(5)を作製した。
得られた有機EL素子(5)を、実施例1と同様の手法によって評価したところ、電圧6.8Vから発光が開始され、また、最大輝度が1530cd/m2 であることが確認された。
更に、有機EL素子(5)における加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<実施例6>
実施例1において、有機EL素子用重合体組成物溶液を調製する工程における重合体(1)に代えて重合体(5)を用いたこと以外は実施例1と同様にして組成物溶液(6)を得、有機EL素子を作製する工程における組成物溶液(1)に代えて組成物溶液(6)を用いたこと以外は実施例1と同様にして有機EL素子(6)を作製した。
得られた有機EL素子(6)を、実施例1と同様の手法によって評価したところ、電圧7.2Vから発光が開始され、また、最大輝度が2100cd/m2 であることが確認された。
更に、有機EL素子(6)における加熱後輝度が、加熱前輝度と同様の大きさであることが確認された。
<比較例1>
実施例1において、有機EL素子を作製する工程における組成物溶液(1)に代えてポリビニルカルバゾールに対して20mol%の2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリンを混合し、更にIr(ppy)3 をポリビニルカルバゾールと2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリンの合計に対して1mol%になるように混合し、シクロヘキサノンを固形分濃度が3質量%になるように添加することによって得られた比較用組成物溶液(1)を用いたこと以外は実施例1と同様にして比較用有機EL素子(1)を作製した。
得られた比較用有機EL素子(1)を、実施例1と同様の手法によって評価したところ、電圧9Vから発光が開始され、また、最大輝度が600cd/m2 であることが確認された。
更に、比較用有機EL素子(1)における加熱後輝度が、加熱前輝度の60%の大きさであることが確認された。
以上の結果から、特定のカルバゾール構造単位と、特定のフルオレン構造単位とを有する共役系共重合体よりなる重合体成分と、三重項発光材料であるイリジウム錯体化合物よりなる錯体成分とからなる組成物を、発光層を構成する材料として用いることにより、湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を得ることができることが確認された。
また、実施例1〜実施例6に係る有機EL素子(1)〜有機EL素子(6)の各々においては、発光波長515nmのIr(ppy)3 に由来のスペクトルが得られたことから、組成物溶液(1)〜組成物溶液(6)の各々を構成する重合体成分に係るホストポリマーからは発光が得られずにホストポリマーからIr(ppy)3 にエネルギー移動が起こっていることが確認された。
本発明の有機材料は、特定のカルバゾール構造単位と、特定のフルオレン構造単位とを有する共役系共重合体よりなるものであることから、湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動中においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を得ることができる。
本発明の有機エレクトロルミネッセンス素子用重合体組成物は、上記の有機材料を構成する共役系重合体を重合体成分として有し、この重合体成分と、三重項発光材料であるイリジウム錯体化合物よりなる錯体成分とからなるものであることから、湿式法によって薄膜を容易に形成することができ、しかも発光輝度が高く、連続駆動においても安定的な発光を得ることができる有機エレクトロルミネッセンス素子を得ることができる。
本発明の有機エレクトロルミネッセンス素子は、上記有機エレクトロルミネッセンス素子用重合体組成物により形成された機能性有機材料層を備えてなるものであることから、発光輝度が高く、連続駆動においても安定的な発光を得ることができる。
本発明の有機エレクトロルミネッセンス素子の一例における構成を示す説明用断面図である。 重合例(1)に係るNMR測定によって得られた13C−NMRのスペクトルのチャートを示す図である。 重合例(1)に係るNMR測定によって得られた 1H−NMRのスペクトルのチャートを示す図である。
符号の説明
1 透明基板
2 陽極
3 正孔注入輸送層
4 発光層
5 電子注入層
6 陰極
7 直流電源

Claims (6)

  1. 下記一般式(1)で表される構造単位と、下記一般式(2)で表される構造単位とを主鎖に有する共役系重合体よりなり、エレクトロルミネッセンス素子を構成するために用いられることを特徴とする有機エレクトロルミネッセンス素子形成用重合体材料。
    Figure 2004323823
    〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数である。〕
    Figure 2004323823
    〔式中、R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。pは0〜3の整数であり、qは0〜3の整数である。〕
  2. 共役系重合体が下記一般式(a)で表される構造単位を含有してなることを特徴とする有機エレクトロルミネッセンス素子形成用重合体材料。
    Figure 2004323823
    〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数であり、pは0〜3の整数であり、qは0〜3の整数であり、また、aおよびbは繰り返し数である。〕
  3. 共役系重合体が下記一般式(b)で表される構造単位を含有してなることを特徴とする有機エレクトロルミネッセンス素子形成用重合体材料。
    Figure 2004323823
    〔式中、R1 はアルキル基または芳香族基を示し、芳香族基は、置換されていてもいなくてもよい。R2 およびR3 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。R4 はアルキル基を示し、R5 およびR6 はそれぞれ1価の有機基よりなる置換基を示し、互いに同一のものであっても異なるものであってもよい。mは0〜3の整数であり、nは0〜3の整数であり、pは0〜3の整数であり、qは0〜3の整数である。〕
  4. 共役系重合体は、ゲルパーミエーションクロマトグラフ法によるポリスチレン換算重量平均分子量が5,000〜1,000,000である請求項1〜請求項3のいずれかに記載の有機エレクトロルミネッセンス素子形成用重合体材料。
  5. 請求項1〜請求項4のいずれかに記載の有機エレクトロルミネッセンス素子形成用重合体材料よりなる重合体成分と、三重項発光材料であるイリジウム錯体化合物よりなる錯体成分とからなることを特徴とする有機エレクトロルミネッセンス素子用重合体組成物。
  6. 請求項5に記載の有機エレクトロルミネッセンス素子用重合体組成物により形成された、発光層または電荷輸送層としての機能を有する機能性有機材料層を備えることを特徴とする有機エレクトロルミネッセンス素子。
JP2003343520A 2003-04-08 2003-10-01 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子 Withdrawn JP2004323823A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003343520A JP2004323823A (ja) 2003-04-08 2003-10-01 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子
US10/811,903 US20040202892A1 (en) 2003-04-08 2004-03-30 Polymer, polymer for forming organic electroluminescence device, polymer composition for organic electroluminescence device and organic electroluminescence device
TW093108886A TW200427818A (en) 2003-04-08 2004-03-31 Polymer, polymer for forming organic electroluminescence device, polymer composition for organic electroluminescence device and organic electroluminecence device
EP04008454A EP1469057A3 (en) 2003-04-08 2004-04-07 Polymer, polymer for forming organic electroluminescence device, polymer composition for organic electroluminescence device and organic electroluminescence device
KR1020040023715A KR101030400B1 (ko) 2003-04-08 2004-04-07 중합체, 유기 전계 발광 소자 형성용 중합체 및 유기 전계발광 소자용 중합체 조성물, 및 유기 전계 발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003103545 2003-04-08
JP2003343520A JP2004323823A (ja) 2003-04-08 2003-10-01 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子

Publications (1)

Publication Number Publication Date
JP2004323823A true JP2004323823A (ja) 2004-11-18

Family

ID=33512963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003343520A Withdrawn JP2004323823A (ja) 2003-04-08 2003-10-01 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子

Country Status (1)

Country Link
JP (1) JP2004323823A (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026231A1 (ja) * 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited 高分子錯体化合物およびそれを用いた高分子発光素子
JP2005206826A (ja) * 2003-12-25 2005-08-04 Sumitomo Chemical Co Ltd 高分子化合物の製造方法
WO2006070896A1 (ja) * 2004-12-28 2006-07-06 Sumitomo Chemical Company, Limited 高分子化合物およびそれを用いた素子
JP2006307086A (ja) * 2005-04-28 2006-11-09 Kanto Chem Co Inc ポリカルバゾール誘導体
JP2006352069A (ja) * 2005-05-17 2006-12-28 Jsr Corp 有機エレクトロルミネッセンス素子用材料およびその製造方法、有機エレクトロルミネッセンス素子用材料組成物並びに有機エレクトロルミネッセンス素子
WO2007020952A1 (ja) * 2005-08-12 2007-02-22 Sumitomo Chemical Company, Limited 高分子材料およびそれを用いた素子
JP2007211064A (ja) * 2006-02-08 2007-08-23 Jsr Corp 有機エレクトロルミネッセンス素子用材料およびその製造方法、並びに有機エレクトロルミネッセンス素子
JP2008031337A (ja) * 2006-07-31 2008-02-14 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2008074917A (ja) * 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2008231419A (ja) * 2007-02-21 2008-10-02 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、並びにこれを用いた有機エレクトロニクス素子及び有機エレクトロルミネセンス素子
JP2009029725A (ja) * 2007-07-25 2009-02-12 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途
JP2012021156A (ja) * 2010-07-16 2012-02-02 Samsung Mobile Display Co Ltd デンドリマー及びこれを用いた有機発光素子
JP2012522067A (ja) * 2009-04-08 2012-09-20 コリア リサーチ インスティチュート オブ ケミカル テクノロジー カルバゾール含有伝導性高分子およびこれを用いた有機光起電力装置
JP2014185193A (ja) * 2011-08-03 2014-10-02 Lg Chem Ltd 共重合体、これを用いた有機太陽電池およびその製造方法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026231A1 (ja) * 2003-09-12 2005-03-24 Sumitomo Chemical Company, Limited 高分子錯体化合物およびそれを用いた高分子発光素子
GB2424894A (en) * 2003-09-12 2006-10-11 Sumitomo Chemical Co Polymer complex compound and polymeric luminescent element employing the same
GB2424894B (en) * 2003-09-12 2008-04-16 Sumitomo Chemical Co Polymer complex compound and polymer light emitting device using the same
JP2005206826A (ja) * 2003-12-25 2005-08-04 Sumitomo Chemical Co Ltd 高分子化合物の製造方法
WO2006070896A1 (ja) * 2004-12-28 2006-07-06 Sumitomo Chemical Company, Limited 高分子化合物およびそれを用いた素子
GB2436775B (en) * 2004-12-28 2009-10-14 Sumitomo Chemical Co Polymer compound and device using the same
GB2436775A (en) * 2004-12-28 2007-10-03 Sumitomo Chemical Co Polymer compound and device using same
JP2006307086A (ja) * 2005-04-28 2006-11-09 Kanto Chem Co Inc ポリカルバゾール誘導体
JP2006352069A (ja) * 2005-05-17 2006-12-28 Jsr Corp 有機エレクトロルミネッセンス素子用材料およびその製造方法、有機エレクトロルミネッセンス素子用材料組成物並びに有機エレクトロルミネッセンス素子
WO2007020952A1 (ja) * 2005-08-12 2007-02-22 Sumitomo Chemical Company, Limited 高分子材料およびそれを用いた素子
KR101294988B1 (ko) 2005-08-12 2013-08-08 스미또모 가가꾸 가부시키가이샤 고분자 재료 및 이것을 사용한 소자
US8274074B2 (en) 2005-08-12 2012-09-25 Sumitomo Chemical Company, Limited Polymer material and device using the same
JP2007211064A (ja) * 2006-02-08 2007-08-23 Jsr Corp 有機エレクトロルミネッセンス素子用材料およびその製造方法、並びに有機エレクトロルミネッセンス素子
JP2008031337A (ja) * 2006-07-31 2008-02-14 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2008074917A (ja) * 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2008231419A (ja) * 2007-02-21 2008-10-02 Hitachi Chem Co Ltd 有機エレクトロニクス用材料、並びにこれを用いた有機エレクトロニクス素子及び有機エレクトロルミネセンス素子
JP2009029725A (ja) * 2007-07-25 2009-02-12 Toyo Ink Mfg Co Ltd カルバゾリル基を有する化合物およびその用途
JP2012522067A (ja) * 2009-04-08 2012-09-20 コリア リサーチ インスティチュート オブ ケミカル テクノロジー カルバゾール含有伝導性高分子およびこれを用いた有機光起電力装置
JP2012021156A (ja) * 2010-07-16 2012-02-02 Samsung Mobile Display Co Ltd デンドリマー及びこれを用いた有機発光素子
JP2014185193A (ja) * 2011-08-03 2014-10-02 Lg Chem Ltd 共重合体、これを用いた有機太陽電池およびその製造方法
JP2014185192A (ja) * 2011-08-03 2014-10-02 Lg Chem Ltd 共重合体、これを用いた有機太陽電池およびその製造方法
JP2014185191A (ja) * 2011-08-03 2014-10-02 Lg Chem Ltd 共重合体、これを用いた有機太陽電池およびその製造方法

Similar Documents

Publication Publication Date Title
KR101230709B1 (ko) 인광 발광성 중합체 및 그의 제조 방법, 유기 전계발광소자, 및 금속 착체 함유 화합물 및 그의 제조 방법
JP4929732B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその製造方法、有機エレクトロルミネッセンス素子用材料組成物並びに有機エレクトロルミネッセンス素子
JP6551238B2 (ja) ポリマー又はオリゴマー、正孔輸送材料組成物、及び、これらを用いた有機エレクトロニクス素子
JP5496084B2 (ja) 電荷輸送性高分子化合物およびこれを用いた有機エレクトロルミネッセンス素子
EP1589595A2 (en) Charge transporting polymer and production process thereof, and polymer composition for organic electroluminescence device and organic electroluminescence device
JP2019501997A (ja) 発光組成物
KR101030400B1 (ko) 중합체, 유기 전계 발광 소자 형성용 중합체 및 유기 전계발광 소자용 중합체 조성물, 및 유기 전계 발광 소자
JP2005060571A (ja) エレクトロルミネスセンスポリマー、有機el素子及びディスプレイ装置
JP2004323823A (ja) 有機エレクトロルミネッセンス素子形成用重合体材料および重合体組成物並びに有機エレクトロルミネッセンス素子
JP4961540B2 (ja) 有機エレクトロルミネッセンス素子用化合物、組成物および有機エレクトロルミネッセンス素子
WO2004003105A1 (ja) 燐光発光剤およびその製造方法、発光性組成物並びに有機エレクトロルミネッセンス素子およびその製造方法
Shao et al. Synthesis and characterization of yellow-emitting electrophosphorescent polymers based on a fluorinated poly (arylene ether phosphine oxide) scaffold
JP5003002B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその製造方法、並びに有機エレクトロルミネッセンス素子
JP4655590B2 (ja) 発光剤およびその製造方法、発光性組成物並びに有機エレクトロルミネッセンス素子
JP2005171053A (ja) 重合体、有機エレクトロルミネッセンス素子形成用重合体および有機エレクトロルミネッセンス素子用重合体組成物、並びに有機エレクトロルミネッセンス素子
JP7427317B2 (ja) 新規な高分子およびこれを用いた有機発光素子
JP4802472B2 (ja) アリーレンエーテル重合体、有機エレクトロルミネッセンス素子用重合体組成物並びに有機エレクトロルミネッセンス素子
JP2005314505A (ja) 燐光発光性重合体および有機エレクトロルミネッセンス素子
JP5181437B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその製造方法、並びに有機エレクトロルミネッセンス素子
JP2006249229A (ja) 化学構造が変化した後に発光する発光単位を有するポリマー、及びこれを用いた有機エレクトロルミネセンス素子
JP4462016B2 (ja) ジフェニルメタン重合体およびその製造方法、有機エレクトロルミネッセンス素子用重合体組成物並びに有機エレクトロルミネッセンス素子
JP2006063036A (ja) スピロフルオレン化合物およびその製造方法、スピロフルオレン重合体およびその製造方法並びに有機エレクトロルミネッセンス素子
EP1582550A1 (en) Polymer for organic el element, composition for organic el element, and organic el element
JP5135690B2 (ja) 有機エレクトロルミネッセンス素子用材料およびその製造方法、並びに有機エレクトロルミネッセンス素子
JP2006069999A (ja) フルオレン化合物およびその製造方法、フルオレン重合体およびその製造方法並びに有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205