JP2004318711A - マイクロコンピュータ - Google Patents

マイクロコンピュータ Download PDF

Info

Publication number
JP2004318711A
JP2004318711A JP2003114520A JP2003114520A JP2004318711A JP 2004318711 A JP2004318711 A JP 2004318711A JP 2003114520 A JP2003114520 A JP 2003114520A JP 2003114520 A JP2003114520 A JP 2003114520A JP 2004318711 A JP2004318711 A JP 2004318711A
Authority
JP
Japan
Prior art keywords
clock
circuit
oscillation
start time
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003114520A
Other languages
English (en)
Inventor
Sachiko Yasuoka
幸子 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Renesas Design Corp
Original Assignee
Renesas Technology Corp
Renesas Design Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Renesas Design Corp filed Critical Renesas Technology Corp
Priority to JP2003114520A priority Critical patent/JP2004318711A/ja
Publication of JP2004318711A publication Critical patent/JP2004318711A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microcomputers (AREA)

Abstract

【課題】高精度かつ簡易な発振開始時間測定機能を備えたマイクロコンピュータを提供する。
【解決手段】クロック選択レジスタ5にて選択された被測定クロックf(XCIN)は、測定開始レジスタ7の出力信号がHとなる測定開始時刻において、発振を開始する。フリーランカウンタ2は、外部からの基準クロックに基づいて計数動作を行ない、測定開始時刻でのカウント値naをラッチ回路A3に格納する。被測定クロックは、発振検知回路1のシュミット回路11bの上位および下位の閾値電圧によってパルス信号に変換される。フリップフロップFF0,FF1は、HおよびLのパルス信号をトリガとして発振検知信号を出力する。フリーランカウンタ2は、発振検知信号に応じて測定開始時刻でのカウント値nbをラッチ回路B4に格納する。CPU30は、カウント値na,nbと基準クロック周波数とから発振開始時間を算出する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、マイクロコンピュータに関し、より特定的には、発振開始時間測定機能を備えたマイクロコンピュータに関する。
【0002】
【従来の技術】
マイクロコンピュータ(以下、マイコンとも称する)に駆動クロックを供給するクロック発振回路においては、発振を開始したクロックの発振成長が不十分なときに起こり得るマイコンの誤動作を防止する目的から、クロックの発振が安定したことを検出するための発振レベル検出回路が多数提案されている(例えば、特許文献1,2および3参照)。
【0003】
ここで、電源投入時などマイコンの駆動クロックの発振を開始させようとした時点から実際にクロックが安定的に発振を開始するまでの期間は、発振開始時間と定義され、マイコンの正常動作を保証する観点から、マイコンの性能を表わす1つの指標とされる。
【0004】
マイコンの発振開始時間の測定については、一般的に、図8に示す方法が採用されている。
【0005】
図8は、従来の発振開始時間の測定方法を説明するためのタイミング図である。
【0006】
図8を参照して、クロック発振回路から出力されるクロック(以下、被測定クロックとも称する)において、発振が安定したときの振幅の最大値をVとしたときに、振幅が0.8Vとなる時刻TSを発振開始時刻とみなす。測定者は、デジタルオシロスコープにおいて、被測定クロックの発振の振幅をモニタし、振幅値0.8Vをトリガとして設定する。
【0007】
さらに、測定者が発振動作を開始させようとした測定開始時刻T0からデジタルオシロスコープが0.8Vのトリガで停止する時刻TSまでの時間を計算機能で算出し、得られた時間を発振開始時間tとする。
【0008】
【特許文献1】
特開平5−333963号公報(第3−4頁、第1図)
【0009】
【特許文献2】
特開2000−47750号公報(第3頁、第1図)
【0010】
【特許文献3】
特開2000−194435号公報(第3頁、第1図)
【0011】
【発明が解決しようとする課題】
しかしながら、図8に示す従来の測定方法では、デジタルオシロスコープの性能および機種によって得られた発振開始時間のデータが異なってしまい、測定精度に問題が生じていた。
【0012】
さらに、測定者の設定やプローブが異なることによっても、測定データに差異がみられるという不具合が起きていた。
【0013】
そのため、従来では、測定精度を確保するために、測定ごとに必ず比較データを用意することとし、リファレンスとなるサンプルも同時に測定することとしていた。このため、測定に時間および手間がかかってしまうという問題があった。
【0014】
それゆえ、この発明の目的は、高精度かつ簡易な発振開始時間測定機能を備えたマイクロコンピュータを提供することである。
【0015】
【課題を解決するための手段】
この発明のある局面に従えば、クロック発振回路から供給されるクロックに同期して駆動するマイクロコンピュータであって、クロックの発振開始時間を測定する発振開始時間測定回路を備える。発振開始時間測定回路は、クロックを被測定クロックとし、クロック発振回路が発振動作を開始する測定開始時刻から被測定クロックの振幅が所定の閾値電圧に達して発振を開始する時刻までの時間を測定して、発振開始時間を導出する。
【0016】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
【0017】
[実施の形態1]
図1は、この発明の実施の形態1に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【0018】
図1を参照して、マイコンは、マイコンを駆動させるためのクロックf(XIN),f(XCIN)をそれぞれ出力する2入力NAND回路10a,10bと、2入力NAND回路10a,10bの出力タイミングを制御するための3入力OR回路9a,9bと、2入力NAND回路10a,10bから出力されるクロックを被測定クロックとして取込み、発振開始時間を測定する発振開始時間測定回路と、CPU(中央演算処理装置)30と、入出力ポート40とを含む。
【0019】
発振開始時間測定回路は、さらに、被測定クロックの発振状態を検知するための発振検知回路1と、カウント値から発振開始時間を算出するためのフリーランカウンタ2と、フリーランカウンタ2のカウント値を格納するためのラッチ回路A3およびラッチ回路B4と、被測定クロックを選択するためのクロック選択レジスタ5と、マイコンを発振開始時間測定のためのテストモードに設定するテストモード設定回路6と、測定開始時刻を設定するための測定開始レジスタ7と、フリーランカウンタ2に外部からの基準クロックを与えるための外部入力端子8とを有する。
【0020】
2入力NAND回路10aは、第1の入力端子が入力端子XINに接続され、第2の入力端子が3入力OR回路9aの出力端子に接続され、出力端子が出力端子XOUTに接続される。入力端子XINと出力端子XOUTとの間には、マイコンチップ外部に配された図示しない発振子または帰還抵抗が結合される。2入力NAND回路10aは、発振バッファとして、これらの発振子または帰還抵抗と一体となってクロック発振回路を構成する。2入力NAND回路10aは、後述するように、発振開始時間を測定するテストモードにおいて、測定開始時刻に発振を開始し、クロックf(XIN)を出力する。
【0021】
3入力OR回路9aは、第1の入力端子にテストモード設定回路6からテストモード信号が論理が反転されて入力され、第2の入力端子にクロック選択レジスタ5からクロック選択信号XINSELが入力され、第3の入力端子に測定開始レジスタ7から出力信号が入力される。
【0022】
ここで、テストモード信号は、H(論理ハイ)レベルとL(論理ロー)レベルとの2つの論理からなる信号であり、テストモードエントリ時においてHレベルに活性化される。
【0023】
クロック選択信号XINSELは、HレベルとLレベルとの2つの論理からなる信号である。本実施の形態では、クロック選択信号XINSELがHレベルとなったことに応答してクロックf(XCIN)が被測定クロックとして選択され、Lレベルとなったことに応答してクロックf(XIN)が被測定クロックとして選択されるものとする。
【0024】
また、測定開始レジスタ7の出力信号も同様に、HレベルとLレベルとの2つの論理からなり、測定開始時刻においてHレベルに活性化される。
【0025】
したがって、3入力OR回路9aは、テストモードエントリ時において、Hレベルのテストモード信号およびクロックf(XIN)を選択するLレベルのクロック選択信号XINSELを第1および第2の入力端子にそれぞれ受け、かつ測定開始時刻を示すHレベルの測定開始レジスタ7の出力信号を第3の入力端子に受けると、これらの論理和の演算結果として、Hレベルの信号を出力する。後段の2入力NAND回路10aは、Hレベルの出力信号が入力される測定開始時刻のタイミングにおいて発振動作を開始し、クロックf(XIN)を出力する。
【0026】
2入力NAND回路10bは、第1の入力端子が入力端子XCINに接続され、第2の入力端子が3入力OR回路9bの出力端子に接続され、出力端子が出力端子XCOUTに接続される。入力端子XCINと出力端子XCOUTとの間には、マイコンチップ外部に配された図示しない発振子または帰還抵抗が結合される。2入力NAND回路10bは、2入力NAND回路10aと同様に、発振バッファとして、発振子または帰還抵抗と一体となってクロック発振回路を構成する。2入力NAND回路10bは、発振開始時間を測定するテストモードにおいて、後述するように、測定開始時刻に被測定クロックf(XCIN)を出力する。
【0027】
3入力OR回路9aは、第1の入力端子にテストモード設定回路6からのテストモード設定信号が論理が反転されて入力され、第2の入力端子にクロック選択レジスタ5からのクロック選択信号XINSELが論理が反転されて入力され、第3の入力端子に測定開始レジスタ7からの出力信号が入力される。
【0028】
3入力OR回路9aは、テストモードエントリ時において、Hレベルのテストモード信号およびクロックf(XCIN)を選択するHレベルのクロック選択信号XINSELを第1および第2の入力端子にそれぞれ受け、さらに、測定開始時刻を示すHレベルの測定開始レジスタ7の出力信号を第3の入力端子に受けると、これらの論理和の演算結果として、Hレベルの信号を出力する。後段の2入力NAND回路10bは、Hレベルの出力信号が入力される測定開始時刻のタイミングにおいて発振動作を開始し、被測定クロックf(XIN)を出力する。
【0029】
ここで、被測定クロックとして選択されるクロックf(XCIN)とクロックf(XIN)とは、クロック速度の異なるクロックである。本実施の形態では、クロックf(XIN)をクロックf(XCIN)よりも高速とする。通常動作モードにおいて、2入力NAND回路10a,10bからそれぞれ出力されるクロックf(XIN),f(XCIN)は、駆動クロックとしてCPU30を含む内部回路に供給される。マイコンの動作内容に応じてこれらを選択的に供給することにより、マイコンを所望の動作速度で駆動させることができる。
【0030】
一方、テストモードにおいて、クロックf(XCIN),f(XIN)は、駆動クロックとして図示しない内部回路に供給されるとともに、図1に示すように、発振開始時間測定回路内部の発振検知回路1に入力される。発振開始時間測定回路において、いずれか一方のクロックが被測定クロックとして選択され、発振状態が検知される。
【0031】
発振検知回路1は、シュミット回路11a,11bと、被測定クロックを選択するためのスイッチ回路SW1と、直列接続された2段のフリップフロップFF0,FF1と、インバータ12とを含む。
【0032】
シュミット回路11a,11bは、入力端子が2入力NAND回路10a,10bの出力端子にそれぞれ接続され、2入力NAND回路10a,10bから出力されるクロックf(XIN),f(XCIN)を受ける。
【0033】
シュミット回路11a,11bは、ノイズを含んだパルスを波形整形して、立上りの鋭いパルスに変換する働きを持つことから、発振開始直後の不安定な被測定クロックは、HレベルとLレベルとの間を遷移するパルスに変換される。
【0034】
シュミット回路11a,11bは、さらに、上位閾値電圧VT+と下位閾値電圧VT−との2つの閾値電圧とを有するというヒステリシスを持つ。したがって、シュミット回路11a,11bからそれぞれ出力されるクロックf(XCIN),f(XIN)には、クロックの電位が上位閾値電圧VT+を超えるまでは反転せず、クロックの電位が下位閾値電圧VT−より低下して初めて元の状態に戻るという波形が生じる。
【0035】
シュミット回路11a,11bの出力端子とフリップフロップFF0との間には、スイッチ回路SW1が結合される。被測定クロックの選択は、クロック選択レジスタ5の出力するクロック選択信号XINSELを制御信号として、スイッチ回路SW1がシュミット回路11a,11bの出力端子のいずれかとフリップフロップFF0のトリガ入力端子T0とを選択的に結合することにより行なわれる。以下においては、Hレベルのクロック選択信号XINSELによってクロックf(XCIN)が被測定クロックとして選択された場合を例として説明する。
【0036】
フリップフロップFF0は、トリガ入力端子T0がスイッチ回路SW1を介して、シュミット回路11bの出力端子に接続される。これにより、被測定クロックf(XCIN)は、トリガパルス信号T0としてトリガ入力端子T0に入力される。
【0037】
フリップフロップFF0は、さらに、入力端子D0が測定開始レジスタ7に接続され、出力端子Q0がフリップフロップFF1の入力端子D1に接続される。
【0038】
したがって、フリップフロップFF0は、測定開始レジスタ7から測定開始を示すHレベルに活性化された信号を入力端子D0に受けると、トリガ入力端子T0に入力されるパルス信号T0をトリガとして、出力端子Q0からHレベルの出力信号Q0を出力する。
【0039】
フリップフロップFF1は、トリガ入力端子T1がインバータ12を介してスイッチ回路SW1に接続される。したがって、被測定クロックf(XCIN)は、論理が反転され、トリガパルス信号T1としてトリガ入力端子T1に入力される。
【0040】
フリップフロップFF1は、さらに、入力端子D1がフリップフロップFF0の出力端子Q0に接続され、出力端子Q1が後述するスイッチ回路SWbの制御信号入力端子に接続される。
【0041】
したがって、フリップフロップFF1は、フリップフロップFF0からHレベルの出力信号Q0を入力端子D1に受けると、トリガパルス信号T1をトリガとして、出力端子Q1からHレベルの出力信号Q1を出力する。なお、トリガパルス信号T1は、フリップフロップFF0に入力されるトリガパルス信号T0とは、論理が反転された相補の関係にあることから、フリップフロップFF1は、トリガパルス信号T0がLレベルとなるタイミングに同期して、出力信号Q1を出力することとなる。
【0042】
結果として、測定開始時刻において、測定開始レジスタ7の出力信号がHレベルに活性化されたことに応答して被測定クロックf(XCIN)がHレベルとなるタイミングで、フリップフロップFF0から出力信号Q0が出力される。さらに、出力信号Q0は、フリップフロップFF1に入力され、被測定クロックf(XCIN)がLレベルとなるタイミングで、フリップフリップFF1から出力信号Q1として出力されることとなる。
【0043】
フリーランカウンタ2は、外部入力端子8から入力される基準クロックをカウントソースとしてカウント動作を行なう。この基準クロックは、被測定クロックよりも高速である。なお、測定精度は、基準クロックの周波数に依存することから、必要な分解能を満足するクロックを入力する必要がある。
【0044】
フリーランカウンタ2の2つの出力端子とラッチ回路A3およびラッチ回路B4との間には、それぞれ、スイッチ回路SWa,SWbが結合される。スイッチ回路SWaは、測定開始レジスタ7の出力信号に応答して、オン/オフ動作を行ない、フリーランカウンタ2とラッチ回路A3とを電気的に結合/分離する。スイッチ回路SWbは、発振検知回路1内部のフリップフロップFF1の出力信号Q1に応答して、オン/オフ動作を行ない、フリーランカウンタ2とラッチ回路B4とを電気的に結合/分離する。
【0045】
したがって、スイッチ回路SWaは、測定開始レジスタ7の出力信号が測定開始を示す活性状態(Hレベル)に遷移すると、これに応答して、フリーランカウンタ2とラッチ回路A3とを結合する。これによって、フリーランカウンタ2のカウント値naは、ラッチ回路A3に格納される。
【0046】
一方、スイッチ回路SWbは、フリップフロップFF1の出力信号Q1がHレベルに活性化されたことに応答して、フリーランカウンタ2とラッチ回路B4とを結合する。これによって、フリーランカウンタ2のカウント値nbは、ラッチ回路B4に格納される。
【0047】
ラッチ回路A3,B4に格納されたカウント値na,nbは、図1に示すように、CPU30に転送される。CPU30では、後述するように、これらのカウント値na,nbおよび外部入力端子8から入力される基準クロックをもとに、発振開始時間を算出し、算出結果を入出力ポート40を介してマイコンの外部へと出力する。
【0048】
図2は、図1の発振開始時間測定回路における測定方法を説明するためのタイミング図である。
【0049】
最初に、図1のクロック選択レジスタ5の選択信号XINSELに応じて、被測定クロックが選択される。以下においては、図1と同様に、Hレベルの選択信号XINSELに応答して、クロックf(XCIN)が被測定クロックとして選択された場合を例として説明する。
【0050】
図2を参照して、測定開始レジスタ7の出力信号がHレベルに活性された時点を測定開始時刻として、被測定クロックf(XCIN)は発振を開始する。被測定クロックf(XCIN)は、図2に示すように、発振開始直後において、波形および振幅が一定でない不安定な状態を示す。さらに時間が経過するにつれ、被測定クロックf(XCIN)は、波形および振幅が一定となる安定状態へと移行する。
【0051】
フリーランカウンタ2では、発振開始と同時に、すなわち、測定開始レジスタ7の出力信号がHレベルとなったタイミングにおいて、スイッチ回路SWaがオンし、フリーランカウンタ2とラッチ回路A3とが結合される。これによって、測定開始時刻におけるカウント値naがラッチ回路A3に保持される。
【0052】
さらに、被測定クロックf(XCIN)は、発振検知回路1内部のシュミット回路11bに入力されると、上位閾値電圧VT+と下位閾値電圧VT−とに基づいて波形整形されたパルス信号に変換されて出力される。被測定クロックf(XCIN)は、フリップフロップFF0のトリガ入力端子T0にトリガパルス信号T0として入力される。
【0053】
トリガ入力端子T0に入力されるトリガパルス信号T0は、図2に示すように、被測定クロックf(XCIN)の振幅が十分に成長するまでは、Lレベルに固定されている。被測定クロックf(XCIN)の振幅が徐々に成長して第1の閾値電圧(シュミット回路11bの上位閾値電圧VT+に相当)を超えた時点において、Hレベルに遷移する。
【0054】
トリガパルス信号T0は、さらに、インバータ12を介して反転され、トリガパルス信号T1として、フリップフロップFF1のトリガ入力端子T1に入力される。したがって、トリガパルス信号T1は、図2に示すように、被測定クロックf(XCIN)が不安定な状態のときにはHレベルに固定され、振幅が上位閾値電圧VT+を超えた時点においてLレベルに遷移する。
【0055】
続いて、被測定クロックf(XCIN)の振幅が第2の閾値電圧(シュミット回路11bの下位閾値電圧VT−に相当)よりも低下すると、トリガパルス信号T0は、反転されてLレベルとなる。同時に、トリガパルス信号T1は、Hレベルに反転される。
【0056】
そして、以降の被測定クロックf(XCIN)の発振が安定となる期間においては、トリガパルス信号T0,T1は、このように第1の閾値電圧および第2の閾値電圧によって、HレベルとLレベルとの間を遷移する波形を示す。
【0057】
発振検知回路1では、図2の波形を示すトリガパルス信号T0,T1がフリップフロップFF1,FF2に入力されると、トリガパルス信号T0がHレベルに立上るタイミングで、出力信号Q0,Q1がそれぞれ出力される。フリップフロップFF0は、測定開始時刻に測定開始レジスタ7から入力されたHレベルの信号を、トリガパルス信号T0がHとなるタイミングにおいて、Hレベルの出力信号Q0として出力する。さらに、フリップフロップFF1は、入力されたHレベルの出力信号Q0を、トリガパルス信号T1がHとなるタイミングにおいて、Hレベルの出力信号Q1として出力する。
【0058】
したがって、出力信号Q0,Q1は、図2に示すように、トリガパルス信号T0,T1がHレベルとなるタイミングで、それぞれHレベルとなる。
【0059】
フリップフロップF1の出力信号Q1は、さらに、スイッチ回路SWbの制御信号入力端子に入力される。スイッチ回路Swbは、出力信号Q1がHレベルとなるタイミングにおいてオンされる。これによって、フリーランカウンタ2とラッチ回路B4とは結合され、出力信号Q0がHレベルとなる時刻でのカウント値nbがラッチ回路B4に格納される。
【0060】
フリーランカウンタ2では、図2に示すように、基準クロックをカウントソースとして降順的にカウント動作を行なっており、測定開始時刻でのカウント値naと出力信号Q1がHレベルとなる時刻でのカウント値nbとがそれぞれラッチ回路A3,ラッチ回路B4に格納される。
【0061】
したがって、このカウント値na,nbと基準クロックの周波数とをCPU30において演算することにより、発振開始時間tを求めることができる。
【0062】
図3は、図1の発振開始時間測定回路における測定動作を説明するためのフロー図である。
【0063】
測定にあたっては、最初に、クロック選択レジスタ5において、被測定クロックを選択する(ステップS01)。本実施の形態では、先述のように、Hレベルの選択信号XINSELに応じてクロックf(XCIN)が被測定クロックとして選択され(ステップS02)、Lレベルの選択信号XINSELに応じてクロックf(XIN)が被測定クロックとして選択されるものとする(ステップS03)。
【0064】
次に、測定開始レジスタ7の出力信号がHレベルに活性化された時点を測定開始時刻として、測定を開始する(ステップS04)。
【0065】
被測定クロックは、測定開始時刻より発振動作を開始する(ステップS06)。これと同時に、フリーランカウンタ2では、Hレベルの測定開始レジスタの出力信号に応答して、カウント値naがラッチ回路A3に格納される(ステップS07)。さらに、発振検知回路1では、測定開始レジスタ7からのHレベルの出力信号によってオン状態となり(ステップS05)、被測定クロックの発振状態を検知する(ステップS08)。被測定クロックの発振状態の検知は、先述のように、被測定クロックの振幅において、シュミット回路11a,11bの有する2つの閾値電圧を越えたことが確認されると、発振が安定したことを示す発振検知信号として、出力信号Q1がHレベルに活性化される。
【0066】
ステップS08において、発振が検知されると、フリーランカウンタ2では、出力信号Q1がHレベルとなったことに応じて、カウント値nbがラッチ回路B4に格納される(ステップS09)。最後に、格納されているカウント値na,nbおよび基準クロックの周波数から発振開始時間を求めることができる。
【0067】
以上のように、この発明の実施の形態1に従えば、発振検知回路1において、第1および第2の閾値電圧に基づいて被測定クロックの振幅が周期的であることを確認することによって、発振が安定したことを検知し、発振検知信号としてHレベルの出力信号Q1を出力する構成とすることから、振幅に含まれるノイズ等による誤検知を防止でき、精度良く発振開始時間を測定することができる。
【0068】
また、マイコンに測定回路をワンチップ化することにより、外部に測定装置を必要としないことから、従来の測定回路にみられる測定環境による測定精度のばらつきを抑えることができ、高精度を保持することができる。
【0069】
さらに、測定精度を保証するための比較データの測定を要しないことから、測定を容易とするとともに、従来の測定時間を大幅に短縮することが可能となる。
【0070】
さらに、同一のサンプルであれば、測定者が異なっても同一の測定結果を得ることができることから、出荷検査の段階においても測定を実施することが可能となり、システム設計の確度を高めることができる。
【0071】
[実施の形態2]
図4は、この発明の実施の形態2に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【0072】
図4を参照して、マイコンは、マイコンを駆動させるためのクロックf(XIN),f(XCIN)をそれぞれ出力する2入力NAND回路10a,10bと、2入力NAND回路10a,10bの出力タイミングを制御するための3入力OR回路9a,9bと、2入力NAND回路10a,10bから出力されるクロックを被測定クロックとして取込み、発振開始時間を測定する発振開始時間測定回路と、CPU30と、入出力ポート40とを含む。
【0073】
発振開始時間測定回路は、発振検知回路1と、フリーランカウンタ2と、ラッチ回路A3と、ラッチ回路B4と、クロック選択レジスタ5と、テストモード設定回路6と、測定開始レジスタ7と、外部入力端子8とを有する。
【0074】
本実施の形態のマイコンは、図1の実施の形態1のマイコンに対して、基本的な構成を同一とし、発振開始時間測定回路内部の発振検知回路1の構成のみが異なる。したがって、共通する部分についての詳細な説明は省略する。
【0075】
本実施の形態の発振検知回路1は、シュミット回路11a,11bと、シュミット回路11a,11bが出力するクロックf(XIN),f(XCIN)のうちの一方を被測定クロックとして選択するスイッチ回路SW1と、選択された被測定クロックをカウントするカウンタA13と、カウンタA13のカウント動作の初期値Nを格納するレジスタA14と、カウンタA13とレジスタA14とを結合するためのスイッチ回路SW2とを含む。
【0076】
シュミット回路11a,11bは、入力端子が2入力NAND回路10a,10bの出力端子にそれぞれ接続され、出力端子がスイッチ回路SW1を介してカウンタA13の入力端子に接続される。
【0077】
スイッチ回路SW1は、クロック選択レジスタ5からのクロック選択信号XINSELに応答して、シュミット回路11a,11bの出力端子のいずれか一方とカウンタA13の入力端子とを選択的に結合する。以下においては、実施の形態1と同様に、Hレベルのクロック選択信号XINSELに応答して、クロックf(XCIN)が被測定クロックとして選択された場合を例として説明する。
【0078】
カウンタA13は、スイッチ回路SW1を介して被測定クロックf(XCIN)が入力されると、被測定クロックf(XCIN)のカウント動作を行なう。カウンタA13は、所定の周波数の基準クロックをカウントソースとする。
【0079】
カウンタA13の出力端子は、フリーランカウンタ2とラッチ回路B4との間に結合されるスイッチ回路SWbの制御信号入力端子に接続される。したがって、スイッチ回路SWbは、カウンタA13の出力信号に応答して、フリーランカウンタ2とラッチ回路B4とを結合する。これによって、ラッチ回路B4には、フリーランカウンタ2のカウント値nbが格納される。
【0080】
カウンタA13は、スイッチ回路SW2を介してレジスタA14に結合される。レジスタA14は、予め設定されたカウンタA13の初期値N(Nは自然数)を格納しており、測定開始レジスタ7の出力信号の活性化に応じてスイッチ回路SW2がオンされると、初期値NをカウンタA13にリロードする。
【0081】
次に、本実施の形態の発振開始時間測定回路における測定方法について説明する。
【0082】
図5は、図4の発振開始時間測定回路における測定方法を測定するためのタイミング図である。
【0083】
なお、測定に先立って、被測定クロックが選択される。実施の形態1と同様に、Hレベルのクロック選択レジスタ5の選択信号XINSELによって、被測定クロックf(XCIN)が選択されたものとする。
【0084】
図5を参照して、測定開始レジスタ7の出力信号がHレベルとなる測定開始時刻において、被測定クロックf(XCIN)は発振を開始する。
【0085】
このとき、実施の形態1と同様に、測定開始レジスタ7の出力信号に応じてスイッチ回路SWaがオンされると、フリーランカウンタ2とラッチ回路A3とが結合されて、カウント値naがラッチ回路A3に格納される。
【0086】
また、測定開始レジスタ7の出力信号の活性化に応じてスイッチ回路SW2がオンされると、レジスタA14に設定された初期値Nは、カウンタA13にリロードされる。なお、本実施の形態では、N=3に設定するものとする。
【0087】
次に、発振開始直後の不安定な被測定クロックf(XCIN)は、シュミット回路11bにおいて、パルス信号に整形される。被測定クロックf(XCIN)は、振幅が第1の閾値電圧(シュミット回路11の上位閾値電圧VT+に相当)を越えると、LレベルからHレベルへと立上り、さらに、第2の閾値電圧(シュミット回路11の下位閾値電圧VT−に相当)より低下すると、Lレベルに立下がるパルス信号となる。
【0088】
カウンタA13は、被測定クロックf(XCIN)の振幅が第1の閾値電圧を越えた時点からカウント動作を開始する。パルス信号は、初期値NよりN−1,N−2...と降順的にカウントされる。
【0089】
やがて、カウント値が最小値0以下となってアンダーフローすると、カウンタA13は、出力信号によってスイッチ回路SWbをオンする。これによって、アンダーフローした時点におけるフリーランカウンタ2のカウント値nbがラッチ回路B4に格納される。本実施の形態では、図5に示すように、3個のパルス信号がカウントされると、カウンタA13は、アンダーフローする。
【0090】
ここで、測定開始時刻からカウンタA13がアンダーフローするまでの時間Tについては、CPU30において、ラッチ回路A3およびラッチ回路B4に格納されるカウント値na,nbとフリーランカウンタ2に入力される基準クロックの周波数とから求めることができる。
【0091】
また、カウンタA13がカウント動作を開始した時刻(被測定クロックf(XCIN)が第1の閾値電圧を越えた時刻に相当)からアンダーフローするまでのカウント時間t0については、カウンタA13の基準クロックの周波数fと初期値Nとから、t0=N/f[s]として得られる。
【0092】
したがって、発振開始時間tは、時間Tからカウント時間t0を差し引いた時間に等しいことから、発振開始時間tを求めることができる。
【0093】
図6は、図4の発振開始時間測定回路における測定動作を説明するためのフロー図である。
【0094】
測定にあたっては、最初に、クロック選択レジスタ5において、被測定クロックを選択する(ステップS01)。本実施の形態では、実施の形態1と同様に、Hレベルの選択信号XINSELに応じてクロックf(XCIN)が被測定クロックとして選択され(ステップS02)、Lレベルの選択信号XINSELに応じてクロックf(XIN)が被測定クロックとして選択されるものとする(ステップS03)。
【0095】
次に、測定開始レジスタ7の出力信号がHレベルに活性化された時点を測定開始時刻として、測定を開始する(ステップS04)。
【0096】
被測定クロックは、測定開始時刻より発振動作を開始する(ステップS06)。これと同時に、フリーランカウンタ2では、Hレベルの測定開始レジスタの出力信号に応答して、カウント値naがラッチ回路A3に格納される(ステップS07)。さらに、発振検知回路1では、Hレベルの測定開始レジスタの出力信号に応答して、レジスタA14から初期値NがカウンタA13にリロードされる(ステップS10)。
【0097】
さらに、発振検知回路1では、シュミット回路11a,11bにおいて被測定クロックの発振状態が検知される。カウンタA13は、被測定クロックの振幅において、対応するシュミット回路11a,11bの有する上位閾値電圧VT+を越えたことが確認された時点から、カウント動作を開始する(ステップS10)。
【0098】
カウンタA13は、被測定クロックに対応するシュミット回路11a,11bから出力されるパルス信号を初期値Nより降順的にカウントする。カウント値が0に達し(ステップS11)、アンダーフローした時点において、フリーランカウンタ2のカウント値nbをラッチ回路B4に格納する(ステップS09)。
【0099】
発振開始時間は、先述のように、フリーランカウンタ2のカウント値na,Bnbと基準クロックとから算出した測定開始時刻からカウンタA13がアンダーフローするまでの時間Tと、カウンタA13におけるカウント時間t0とから求めることができる。
【0100】
以上のように、この発明の実施の形態2に従えば、発振検知回路1において、被測定クロックの振幅に複数回周期性が確認されたときに発振を検知する構成とすることによって、被測定クロックに含まれるノイズ等の誤検知を確実に回避し、より高精度に発振開始時間を測定することができる。
【0101】
また、実施の形態1と同様に、測定回路をマイコンにワンチップ化したことによって、外部に測定装置を不要とすることから、測定環境に影響されることなく、高い測定精度を実現することができる。さらに、出荷検査においても発振開始時間の測定をすることができ、システム設計の確度を高めることが可能となる。
【0102】
[実施の形態3]
図7は、この発明の実施の形態3に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【0103】
図7を参照して、本実施の形態のマイコンは、マイコンを駆動させるためのクロックf(XIN),f(XCIN)をそれぞれ出力する2入力NAND回路10a,10bと、2入力NAND回路10a,10bの出力タイミングを制御するための3入力OR回路9a,9bと、2入力NAND回路10a,10bから出力されるクロックを被測定クロックとして取込み、発振開始時間を測定する発振開始時間測定回路と、CPU30と、入出力ポート40とを含む。
【0104】
発振開始時間測定回路は、発振検知回路1と、フリーランカウンタ2と、ラッチ回路A3と、ラッチ回路B4と、クロック選択レジスタ5と、テストモード設定回路6と、測定開始レジスタ7と、外部入力端子8とを備える。
【0105】
本実施の形態のマイコンは、図1の実施の形態1のマイコンに対して、基本的な構成を同一とし、発振開始時間測定回路において、フリーランカウンタ2と外部入力端子8との間に結合されるスイッチ回路SW3が付加された点において相違する。したがって、共通する部分についての詳細な説明は省略する。なお、実施の形態1と同様に、クロックf(XIN)は、クロックf(XCIN)よりも高速のクロックであるものとする。
【0106】
スイッチ回路SW3は、フリーランカウンタ2と外部入力端子8および2入力NAND回路10aの出力端子との間に結合され、クロック選択レジスタ5からのクロック選択信号XINSELに応じて、外部入力端子8に入力される基準クロックおよびマイコン内部で生成されたクロックf(XIN)のうちいずれか一方を選択的にフリーランカウンタ2に供給する。詳細には、スイッチ回路SW3は、Hレベルのクロック選択信号XINSELに応答して、フリーランカウンタ2と2入力NAND回路10aの出力端子とを電気的に結合し、Lレベルのクロック選択信号XINSELに応答して、フリーランカウンタ2と外部入力端子8とを電気的に結合する。
【0107】
したがって、フリーランカウンタ2は、クロック選択信号XINSELがHレベルのときには、内部のクロックf(XIN)をカウントソースとしてカウント動作を行ない、クロック選択信号XINSELがLレベルのときには、外部からの基準クロックをカウントソースとしてカウント動作を行なうこととなる。
【0108】
ここで、テストモードエントリ時において、クロックf(XCIN)が被測定クロックとして選択された場合について説明する。
【0109】
3入力OR回路9bには、測定開始時刻において、Hレベルのテストモード信号とHレベルのクロック選択信号XINSELとHレベルの測定開始レジスタ7の出力信号とが入力される。3入力OR回路9bは、測定開始レジスタ7の出力信号がHレベルに活性化されたことに応じて、Hレベルの出力信号を出力する。
【0110】
2入力AND回路10bは、3入力OR回路9bのHレベルの出力信号が入力される測定開始時刻のタイミングにおいて、発振を開始し、被測定クロックf(XCIN)を出力する。
【0111】
被測定クロックf(XCIN)は、マイコンの内部回路に駆動クロックとして供給されるとともに、発振開始時間測定回路の発振検知回路1に入力される。被測定クロックf(XCIN)は、発振検知回路1内部のシュミット回路11bに入力されると、上位閾値電圧VT+と下位閾値電圧VT−とに基づいて波形整形されたパルス信号に変換されて出力される。パルス信号に変換された被測定クロックf(XCIN)は、スイッチ回路SW1を介してフリップフロップFF0のトリガ入力端子T0にトリガパルス信号T0として入力される。
【0112】
以上の被測定クロックの選択と同時に、クロック選択レジスタ5から出力されるHレベルのクロック選択信号XINSELは、スイッチ回路SW3の制御信号入力端子に入力される。スイッチ回路SW3は、Hレベルのクロック選択信号XINSELに応じて2入力NAND回路10aの出力端子とフリーランカウンタ2とを電気的に結合し、クロックf(XIN)をフリーランカウンタ2に供給する。
【0113】
フリーランカウンタ2では、クロックf(XIN)をカウントソースとして降順的にカウント動作を行なう。測定開始時刻でのカウント値naとフリップフロップFF1の出力信号Q1がHレベルとなる時刻でのカウント値nbとは、それぞれラッチ回路A3,ラッチ回路B4に格納される。
【0114】
したがって、このカウント値na,nbと基準クロックの周波数とをCPU30において演算することにより、発振開始時間tを求めることができる。
【0115】
以上の結果より、クロックf(XCIN)が被測定クロックとして選択されるときには、非選択のクロックf(XIN)がカウントソースとしてフリーランカウンタ2に供給されることとなる。フリーランカウンタ2に供給されるクロックf(XIN)は、被測定クロックf(XCIN)よりも高速のクロックであることから、フリーランカウンタ2のカウントソースとして使用可能である。したがって、この場合は、外部からの基準クロックの入力を必要とせず、マイコン単体で発振開始時間を測定することができる。
【0116】
一方、テストモードエントリ時において、クロックf(XIN)が被測定クロックとして選択された場合には、3入力OR回路9aに、Hレベルのテストモード信号とLレベルのクロック選択信号XINSELとHレベルの測定開始レジスタ7の出力信号とが入力される。3入力OR回路9aの出力端子には、測定開始レジスタ7の出力信号が活性化されてことに応じて、Hレベルの信号が出力される。
【0117】
さらに、2入力AND回路10aでは、3入力OR回路9aからのHレベルの信号が入力される発振開始時刻のタイミングにおいて、被測定クロックf(XIN)が発振を開始して、発振検知回路1に入力される。被測定クロックf(XIN)は、発振検知回路1内部のシュミット回路11aに入力されると、上位閾値電圧VT+と下位閾値電圧VT−とに基づいて波形整形されたパルス信号に変換されて出力される。パルス信号に変換された被測定クロックf(XIN)は、スイッチ回路SW1を介してフリップフロップFF0のトリガ入力端子T0にトリガパルス信号T0として入力される。
【0118】
以上の被測定クロックの選択と同時に、スイッチ回路SW3では、Lレベルの選択信号XINSELによって外部入力端子8とフリーランカウンタ2とが結合される。これによって、フリーランカウンタ2には、外部から基準クロックがカウンタソースとして入力される。したがって、フリーランカウンタ2では、基準クロックをカウントソースとして降順的にカウント動作を行ない、測定開始時刻でのカウント値naとフリップフロップFF1の出力信号Q1がHレベルとなる時刻でのカウント値nbとをそれぞれラッチ回路A3,ラッチ回路B4に格納する。
【0119】
最後に、このカウント値na,nbと基準クロックの周波数とをCPU30において演算することにより、発振開始時間tを求めることができる。
【0120】
以上のように、被測定クロックとして高速のクロックf(XIN)が選択されたときには、フリーランカウンタ2には、より高速の基準クロックが外部から供給されることとなる。したがって、被測定クロックf(XIN)の発振開始時間の測定においては、外部入力端子8が必要となる。
【0121】
以上のように、この発明の実施の形態3に従えば、発振開始時間の測定において、マイコンの有する複数のクロックのうち選択した被測定クロック以外の非選択クロックであって、被測定クロックよりも高速のクロックをフリーランカウンタのカウントソースとして使用することにより、外部からの基準クロックの入力を必要とせず、マイコン単体での測定が可能となる。
【0122】
したがって、発振開始時間の測定を出荷検査においても容易に行なうことができることから、精度の高い発振開始時間のデータを客先に提供することが可能となり、システム設計の確度を一層高めることができる。
【0123】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0124】
【発明の効果】
以上のように、この発明に従えば、マイクロコンピュータに発振開始時間測定回路をワンチップ化した構成とすることにより、測定環境の変化による測定精度のばらつきを回避でき、高い測定精度を保持することができる。
【0125】
また、同一のサンプルであれば、測定者が異なっても同一の測定データを得ることができることから、精度の高い測定データを供給することができ、システム設計の確度を高めることができる。
【0126】
さらに、測定精度を保証するための比較データの測定が不要となることから、発振開始時間の測定をより簡易なものとすることができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【図2】図1の発振開始時間測定回路における測定方法を説明するためのタイミング図である。
【図3】図1の発振開始時間測定回路における測定動作を説明するためのフロー図である。
【図4】この発明の実施の形態2に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【図5】図4の発振開始時間測定回路における測定方法を測定するためのタイミング図である。
【図6】図4の発振開始時間測定回路における測定動作を説明するためのフロー図である。
【図7】この発明の実施の形態3に従うマイクロコンピュータに内蔵される発振開始時間測定回路を抽出して説明するための回路構成図である。
【図8】従来の発振開始時間の測定方法を説明するためのタイミング図である。
【符号の説明】
1 発振検知回路、2 フリーランカウンタ、3 ラッチ回路A、4 ラッチ回路B、5 クロック選択レジスタ、6 テストモード設定回路、7 測定開始レジスタ、8 外部入力端子、9a,9b 3入力OR回路、10a,10b 2入力NAND回路、11a,11b シュミット回路、12 インバータ、13 カウンタA、14 レジスタA、30 CPU、40 入出力ポート、XIN,XCIN 入力端子、XOUT,XCOUT 出力端子、FF0,FF1 フリップフロップ、SWa,SWb,SW1,SW2,SW3 スイッチ回路。

Claims (6)

  1. クロック発振回路から供給されるクロックに同期して駆動するマイクロコンピュータであって、
    前記クロックの発振開始時間を測定する発振開始時間測定回路を備え、
    前記発振開始時間測定回路は、
    前記クロックを被測定クロックとし、前記クロック発振回路が発振動作を開始する測定開始時刻から前記被測定クロックの振幅が所定の閾値電圧に達して発振を開始する時刻までの時間を測定して、前記発振開始時間を導出する、マイクロコンピュータ。
  2. 前記発振開始時間測定回路は、
    前記被測定クロックの振幅が前記閾値電圧を達したときに、前記被測定クロックの発振が開始したことを検知して発振検知信号を出力する発振検知回路と、
    所定の周波数の基準クロックをカウントソースとして計数動作を行なう計数回路と、
    前記測定開始時刻および前記発振検知信号出力時において、前記計数回路の対応する第1および第2の計数値を格納するラッチ回路と、
    前記第1および第2の計数値と前記基準クロックの周波数とに基づいて、前記発振開始時間を導出する演算部とを含む、請求項1に記載のマイクロコンピュータ。
  3. 前記発振検知回路は、
    上位の前記閾値電圧と下位の前記閾値電圧とを備え、
    前記被測定クロックの振幅が前記上位の閾値電圧を越え、かつ前記下位の閾値電圧よりも低下したことを所定の回数確認したときにおいて、前記被測定クロックの発振が開始したことを検知して前記発振検知信号を出力する、請求項2に記載のマイクロコンピュータ。
  4. 前記発振検知回路は、
    前記被測定クロックの振幅を前記上位および下位の閾値電圧に基づいて波形整形するシュミット回路をさらに備え、
    前記シュミット回路の出力波形に基づいて前記被測定クロックの発振が開始したことを検知して前記発振検知信号を出力し、
    前記計数回路は、
    前記発振検出信号に応じて前記第2の計数値を前記ラッチ回路に格納する、請求項3に記載のマイクロコンピュータ。
  5. 前記発振検知回路は、前記被測定クロックの振幅を前記上位および下位の閾値電圧に基づいて波形整形するシュミット回路と、前記シュミット回路の出力波形を計数する第2の計数回路とをさらに備え、
    前記第2の計数回路における計数値が前記所定の回数の値と一致したときにおいて、前記発振検知信号を出力し、
    前記計数回路は、
    前記発振検出信号に応じて前記第2の計数値を前記ラッチ回路に格納する、請求項3に記載のマイクロコンピュータ。
  6. 前記クロック発振回路から供給される複数のクロックのうちの1つを選択して前記被測定クロックとする手段と、
    前記複数のクロックのうち、前記被測定クロック以外のクロックであり、かつ、前記被測定クロックよりも高速のクロックを選択して前記基準クロックとする手段とをさらに備える、請求項2に記載のマイクロコンピュータ。
JP2003114520A 2003-04-18 2003-04-18 マイクロコンピュータ Withdrawn JP2004318711A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114520A JP2004318711A (ja) 2003-04-18 2003-04-18 マイクロコンピュータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114520A JP2004318711A (ja) 2003-04-18 2003-04-18 マイクロコンピュータ

Publications (1)

Publication Number Publication Date
JP2004318711A true JP2004318711A (ja) 2004-11-11

Family

ID=33474086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114520A Withdrawn JP2004318711A (ja) 2003-04-18 2003-04-18 マイクロコンピュータ

Country Status (1)

Country Link
JP (1) JP2004318711A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188220A (ja) * 2006-01-12 2007-07-26 Renesas Technology Corp 半導体装置
JP2008131798A (ja) * 2006-11-22 2008-06-05 Brother Ind Ltd 電源装置及び画像形成装置
JP2011123546A (ja) * 2009-12-08 2011-06-23 Seiko Epson Corp 集積回路装置、電子機器及び調整電圧の制御方法
EP2631662A1 (en) * 2010-10-19 2013-08-28 Fujitsu Limited Integrated circuit and testing method
US9880211B2 (en) 2015-03-09 2018-01-30 Fujitsu Limited Semiconductor integrated circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188220A (ja) * 2006-01-12 2007-07-26 Renesas Technology Corp 半導体装置
JP4634307B2 (ja) * 2006-01-12 2011-02-16 ルネサスエレクトロニクス株式会社 半導体装置
JP2008131798A (ja) * 2006-11-22 2008-06-05 Brother Ind Ltd 電源装置及び画像形成装置
JP4524685B2 (ja) * 2006-11-22 2010-08-18 ブラザー工業株式会社 電源装置及び画像形成装置
JP2011123546A (ja) * 2009-12-08 2011-06-23 Seiko Epson Corp 集積回路装置、電子機器及び調整電圧の制御方法
EP2631662A1 (en) * 2010-10-19 2013-08-28 Fujitsu Limited Integrated circuit and testing method
EP2631662A4 (en) * 2010-10-19 2014-08-13 Fujitsu Ltd INTEGRATED CIRCUIT AND TESTING METHOD
US9880211B2 (en) 2015-03-09 2018-01-30 Fujitsu Limited Semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
JPWO2006038468A1 (ja) 位相差測定回路
US8553503B2 (en) On-die signal timing measurement
EP1262755A1 (en) Temperature sensing circuit and calibration method
JP3625400B2 (ja) 可変遅延素子のテスト回路
US8008967B2 (en) Power supply voltage adjusting device
US9568889B1 (en) Time to digital converter with high resolution
JP2004318711A (ja) マイクロコンピュータ
CN114221640A (zh) 一种晶振输出稳定判断及控制电路
US20120197570A1 (en) Measurement of Parameters Within an Integrated Circuit Chip Using a Nano-Probe
JP2002196087A (ja) 時間測定回路
US11333693B2 (en) Frequency measurement apparatus, microcontroller, and electronic apparatus
US7310026B2 (en) Semiconductor integrated circuit with function to detect state of stable oscillation
KR890004449B1 (ko) 측정회로 장치
US11099600B2 (en) Semiconductor integrated circuit and method for controlling semiconductor integrated circuit
US8907732B2 (en) Oscillation frequency regulating circuit and method
JPH1040121A (ja) 車両用マイクロコンピュータのクロック異常検出装置
US9362894B1 (en) Clock generator circuit
JP2001060851A (ja) 周期補正分周回路及びこれを用いた周期補正型発振回路
JP3132611B2 (ja) トリガ回路
KR100393421B1 (ko) 동기식 에이에프 변환기의 카운터 시스템
JPH10255489A (ja) マイクロコンピュータ
JP2003075479A (ja) クロック源、時間測定装置、試験装置、発振器
JP3196183B2 (ja) 時間測定装置
TW202220385A (zh) 運作時脈產生裝置與參考時脈閘控電路
CN117783811A (zh) 检测装置、检测方法及检测系统

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704