JP2004273470A - 多元系金属酸化薄膜成膜装置及び成膜方法 - Google Patents

多元系金属酸化薄膜成膜装置及び成膜方法 Download PDF

Info

Publication number
JP2004273470A
JP2004273470A JP2000332906A JP2000332906A JP2004273470A JP 2004273470 A JP2004273470 A JP 2004273470A JP 2000332906 A JP2000332906 A JP 2000332906A JP 2000332906 A JP2000332906 A JP 2000332906A JP 2004273470 A JP2004273470 A JP 2004273470A
Authority
JP
Japan
Prior art keywords
processing chamber
substrate
film forming
mounting table
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000332906A
Other languages
English (en)
Inventor
Hiroshi Jinriki
博 神力
Okugun Ryu
憶軍 劉
Kenji Matsumoto
賢治 松本
Takashi Magara
敬 眞柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2000332906A priority Critical patent/JP2004273470A/ja
Priority to PCT/JP2001/009529 priority patent/WO2002037548A1/ja
Publication of JP2004273470A publication Critical patent/JP2004273470A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

【課題】組成比が高精度に維持された多元系金属酸化薄膜を基板表面に形成する。
【解決手段】処理室内に配置された基板表面に有機金属化合物を含むガスを導入して、基板表面に有機金属化合物を構成している金属化合物からなる薄膜を形成する多元系金属酸化膜成膜装置において、処理室内に被処理体としての基板を載置する載置台と共に上下動可能に設けられたバッフル板を有し、載置台とバッフル板により処理室を上部処理室と下部処理室とに上下に2分割する。下部処理室に排気口と基板搬入・搬出口を設置し、上部処理室が所定の均一な温度及び圧力に保たれ、多元系金属酸化膜の成膜に必要な極めて等方的な均熱・均圧処理空間を上部処理室内に形成する。基板は上部処理室内で成膜処理され、その結果、組成比が高精度で保たれた膜質の良い多元系金属酸化膜を基板表面に生成できる。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板等に強・高誘電体膜などのような多元系金属酸化膜を形成する成膜装置及び成膜方法に関する。
【0002】
【従来技術】
強誘電体メモリFeRAMは高速書き込み・読み出し、低消費電力、高集積性、耐書き換え特性に優れた特徴を有する不揮発性メモリー、つまり電源を切っても記憶を保持するメモリであり、既存のEEPROMやフラッシュメモリに比べ、書き換え速度は10 以上高速で、消費電力も小さく、かつ、書き換え耐性も10倍以上優れている。また、RAMとしては、DRAMと同程度の高速性、高集積性を有し、不揮発性を兼ね備えるためROMやバッテリーとの併用の必要性がなくなる。そのため、強誘電体メモリーは既存の半導体メモリの大部分を置き換え可能な理想のメモリとして注目されている。また、ロジックLSIやシステムLSIへ搭載するメモリーとしてのニーズが強い。中でも、低消費電力、高速動作という特性を生かしたICカード用チップへの応用に近年大きな期待が集まっている。
【0003】
強誘電体メモリーの強誘電体膜の材料としてはセラミック系の酸化物薄膜が用いられる。中でもチタン酸ジルコン酸鉛PbZrxTi1−xO(以降PZTと略称)は高い分極密度を有し比較的小さな抗電界を持つことから、Si−LSIとの融合がいち早く実現した。
【0004】
ここで、PZT薄膜を用いた強誘電体メモリー素子のセル構造について説明する。
【0005】
微細化が進むにつれ、セル面積の縮小は汎用メモリーばかりではなく、システムLSI向けのセルでも必要となる。特にICカードのようにチップ面積に制限のあるものでは、より大容量のメモリーを搭載するためにはセル面積縮小が必要となる。DRAMにおけるセル構造の変遷と同様な傾向を示すように、強誘電体メモリーはプラグ接続を用いた立体セル構造を採用することが必須である。
【0006】
その立体セル構造の一つであるスタックキャパシタ(STC: Stacked Type Capacitor)メモリ断面模式は、図7に示すように、強誘電体キャパシタが、例えばIr/IrO2kからなる上部電極701、PZTからなる強誘電体膜702、Pt/TiNからなる下部電極703によって構成され、その下部電極703とアクセストランジスタ710の拡散層705は例えばポリシリコンからなるコンタクトプラグ704を介して接続され、アクセストランジスタ710の例えばAlからなるワード線706の上に配置されている。層間絶縁膜708がワード線706を覆って形成され、その上に、下部電極703とポリシリコンプラグのシリサイド化反応を防ぐために、反応防止層709としてTiN/Ti を堆積する。ビット線707の配線層711がその上で形成され、ビット線707は、強誘電体キャパシタの後方から形成するCUB構造を用いる。712は層間絶縁膜である。
【0007】
上記構造のメモリー素子を製造するプロセスは以下の通りである。
【0008】
まず、拡散層705、ワード線706などを含むアクセストランジスタ710を形成後、層間絶縁膜708を形成し、拡散層705へのコンタクト孔704を開け、このコンタクト孔704にポリシリコンを埋め込む。ここではCMP法による平坦化を用いる。下部電極703とポリシリコンプラグ704のシリサイド化反応を防ぐための反応防止層709を堆積する。下部電極703、強誘電膜702を堆積し、SOGハードマスクを用いた高温ドライエッチングにより、強誘電体膜702及び下部電極703をパターニングする。SOGを除去した後、反応防止層709をエッチングする。その後、層間絶縁膜712を堆積し、上部電極701を規定する孔を開口して上部電極701を堆積し、ドライブラインとしてパターニングを行う。最後に、第2のキャパシタ層間絶縁膜712を堆積し、アクセストランジスタ710の拡散層705とドライブラインへのコンタクト孔713を開け、ビット線707を形成してメモリセルを完成する。
【0009】
一般に、このような強誘電体薄膜の成膜方法の一つとして、MOCVD法(有機金属化合物化学気相成長法)がある。しかし強誘電体膜のような構成する金属元素だけでも3種類を有する多元系金属酸化薄膜では、MOCVD成膜法を用いる場合、精密な材料組成比制御が重要となる。その理由は強誘電体膜の結晶構造や電気特性は膜の材料組成比に大きく依存するためである。例えばPZTの場合、Pb/(Zr+Ti)≒1.0、Zr/Ti≒1.0の組成付近では、図8(a)に示すように、適度な分極量と適度な抗電界を示し、良好なヒステリシス特性が得られている。逆に、組成比にずれが生じる場合、図8(b)のように、ヒステリシス特性が劣化し、強誘電体特性が完全に失われる。
【0010】
また、従来、多元系金属酸化薄膜の一つである高誘電体チタン酸バリウムストロンチウム(BST)の成膜装置では、特開平8−325736号公報に示すように、図9に示す基板Wが外界と隔離した雰囲気の温度制御された反応室911内に収容され、基板温度が制御された状態で、反応ガスが基板Wに向けて噴射され所定の膜が形成される。基板載置台923に上下動機構915が設けられ、この上下動によって、基板Wが載置台923の周辺に設けられたスカート部912Aによってシールされた反応室911内まで上昇し、処理され、処理を終えた基板Wが下部搬送室955の近傍まで下降し、搬出される。反応室911の下部に排気孔922が設けられている。これによって、高誘電体の成膜を安定した温度条件下で行い、汚染されない品質の良い成膜を行うことができる。
【0011】
ところで、従来、考慮されなかった多元系金属酸化薄膜の電気特性を左右する多元系金属酸化薄膜の組成比は、処理温度のみではなく、処理圧力にも大きく依存しているとの知見が本発明者によって得られている。従来装置の反応室では、圧力を均一に保つための設計考慮がなされていないため、図9に示すような排気機構の配置では、反応室の下部に排気口が設けられるため、排気口の大きさを十分にとれず、ひいては十分に反応室全体を均一に真空にすることができない。また、排気口が直接反応室下部に設けられるため、真空引きすることにより、反応室内の圧力を均一に維持することができない。そのため、従来の装置では十分に成膜時の材料組成比を維持することができない。
【0012】
【発明が解決しようとする課題】
本発明の目的は、材料の組成比が多元系金属酸化薄膜結晶化に必要な熱処理温度条件や、成膜チャンバーの圧力条件に依存するとの知見から、成膜プロセス中における多種類の原料ガスの組成比を精密に制御することができる成膜装置及び成膜方法を提供することにある。
【0013】
【課題を解決するための手段】
本発明の一観点によると、成膜処理室内に配置された基板表面に、複数種のガスを導入して、複数元素からなる薄膜を成膜する装置であって、前記基板を載置可能に構成された載置台と、この載置台に設けられたバッフル板とからなる載置台ユニットと、前記成膜処理室内を所定の真空度に維持する排気機構を取り付け可能に構成された排気口と、前記基板を前記成膜処理室内に搬入出可能に構成された搬入出口と、を構成要素として含み、前記載置台ユニットが、成膜処理時に前記成膜処理位置に位置した際、前記成膜処理室を、上部処理室、及び下部処理室とに分割し、下部処理室が上部処理室より大きな容積を有し、かつ、前記排気口及び前記搬入出口が、前記下部処理室に配置される構成である。また、上部処理室に、温度制御されたガス導入機構、基板載置台、及び処理室壁を設ける。
【0014】
また、成膜処理時は、バッフル板により処理室を空間的に上下に2分割し、上部処理室より大きな容積を有する下部処理室に大きな排気用開口部を配置し、処理室全体を均一に排気し、かつ、下部処理室にある搬入・搬出部のゲートバルブの開閉により、上部処理室の雰囲気に影響を与えることなく、上部処理室内のすべての場所において極めて均等な圧力領域を形成すると同時に、それぞれの加熱手段によって上部処理室のどの場所においても均熱、つまり等方的均熱状態が維持される。即ち、上部処理室の雰囲気が、極めて等方的な均熱・均圧環境に保たれている。
【0015】
本発明の他の観点によると、上部処理室壁に異なる厚みを持ち、かつ表面形状に曲面を有する反応生成物付着防止手段が備えられ、該反応生成物付着防止手段が取り付け簡単な構造によって前記処理室壁に取り付けられる。また、載置台の表面にも反応生成物付着防止手段が備えられる。
【0016】
このように、反応生成物付着防止手段が備えられているため、上部処理室壁へ、または被処理体載置台への反応生成物付着を回避することができる。また、反応ガスに触れる反応生成物付着防止手段の表面形状がなめらかであるため、反応ガスの流れに乱れを起こすことなく均一に基板表面に成膜することができる。なお、付着防止手段が取り付け簡単な構造により処理室壁、または被処理体載置台に取り付けられるため、交換に必要な時間が短縮され、装置の稼働率をアップさせることができる。
【0017】
また、本発明の成膜方法によれば、成膜処理室内に配置された基板表面に、複数種のガスを導入して、複数元素からなる化合物を含む薄膜を成膜する方法であって、前記基板を載置する載置台とバッフル板からなる載置台ユニットが、少なくとも成膜処理位置に移動機構により位置した際、前記成膜処理室を上部処理室及び下部処理室とに空間的に分割し、前記上部処理室の任意の位置において、温度を200℃〜300℃、圧力を1.33×10−2Pa〜1333Paの範囲内で均一に保つ工程、つまり等方的な均熱・均圧に保つ工程と、高酸化剤分圧にて酸化剤及び反応ガスを前記上部処理室内に導入し、前記基板に所定の膜を形成する工程と、成膜処理終了後、前記載置台ユニットが搬入出位置に位置し、前記基板が搬出され、前記処理室内を排気機構により残留反応ガスを排出する工程と、を有する。
【0018】
このように、多種類の原料ガスの組成比が維持されつつ、酸素欠損の少ない多元系金属酸化薄膜を形成することができる。
【0019】
【発明の実施の形態】
以下、本発明に係わる成膜装置及び成膜方法の一実施の形態を、PZT膜の形成を例に取り、添付図面に基づいて詳述する。
【0020】
まず、本発明に用いられるMOCVD装置の概要について説明すると、図1に示すように、反応処理室1内に、基板載置台2を備え、さらに、これに対向してシャワーヘッド3を備えている。基板載置台2にはヒータ4が内蔵され、このヒータ4により基板載置台2上に載置された基板Wを加熱する。この基板Wは、例えば、半導体ウェハからなり、表面に複数のトランジスタや配線層などの集積回路がすでに形成されている。
【0021】
反応処理室1内には、Pb原料供給部5、Zr原料供給部6、Ti原料供給部7より供給された各MO原料ガスがマスフローコントローラー5a,6a,7aを介して供給され、また酸化剤ガス供給部8よりNOやOなどの酸化ガスがマスフローコントローラー8aを介して供給されるように構成されている。
【0022】
また、反応処理室1は、コールドトラップ10、圧力制御手段11を介して真空ポンプ12が連通されている。即ち、反応処理室1内は、圧力制御手段11に制御された中で、真空ポンプ12により減圧状態が得られるように構成されている。その減圧状態は、例えば、1.33×10−2Pa〜1333Pa程度の範囲に制御される。なお、コールドトラップ10により、反応処理室1内より排出される低温で液化する物質が除去される。
【0023】
次に、反応処理室1の内部構造について更に詳しく説明すると、図2は反応処理室1の縦断面図で、かつ載置台ユニットが成膜位置にある場合を示す図である。図2に示すように、例えばアルミニウムにより実質的に円筒状に形成された処理室1は、気密容器である。載置台ユニットは載置台2とバッフル板21より構成され、また載置台2には載置台表面反応生成物付着防止板33が含まれる。成膜処理時に、バッフル板21が成膜位置に位置することにより、処理室1は上部処理室1aと下部処理室1bに2分割され、上部処理室1aの内半径は下部処理室1bのそれよりも小さい。上部処理室1a内では、ベース部材43上に設置された基板載置台2に基板Wが載置されるようになっている。バッフル板21と載置台2とを同時に上下動させるベローズ機構22が設けられている。ベローズ機構22の直下に当たる処理室底部にはシール部材44が設けられ、これによって、上部処理室1a及び下部処理室1bの外側空間46がプロセス処理時密閉した真空雰囲気となり、一方、下部処理室1bの内側空間45は外部雰囲気、すなわち大気と連通することになる。上部処理室1aの天井部には、基板載置台2に対向して処理ガス供給機構であるシャワーヘッド3が配置され、このシャワーヘッド3により、処理ガスが基板載置台側に流入し、供給される。本実施例においては、有機金属化合物原料ガスと酸化ガスが、それぞれ個別の経路から供給されるポストミックス型のシャワーヘッドが用いられる。下部処理室壁25bに排気口23を介し、処理室1を真空引きする排気システムが接続しており、一方、下部処理室1bに基板搬入・搬出用のゲートバルブ24が備えられている。
【0024】
先述したように、強誘電体膜の成膜は、膜の組成比や電気的特性などを保つために極めて等方的な温度と圧力の環境下で行われなければならない。また、材料である原料ガスの気相の温度範囲や、反応温度が非常に狭いという特徴があるので、処理室内の雰囲気温度や、基板の温度を厳しく制御する必要がある。そのため、本発明は、基板載置台2、処理室壁25a,25b、シャワーヘッド3にそれぞれ内蔵されるヒータと、後述するバッフル板21及び排気機構と共に、上部処理室1aに極めて等方的な均熱空間を作り出す。
【0025】
具体的に説明すると、まず、図2に示すように、基板載置台2の内部に基板を加熱するため複数の加熱手段、例えば2ゾーン(4a,4b)加熱ヒータ4が内蔵されている。一般に、基板載置台2の周辺部は、中心部より熱拡散の面積が大きく、そのため、載置台2の周辺部の温度分布は中心部よりやや低めの傾向がある。本発明では、基板載置台内部に加熱ヒータ4a,4bはカーボン製の抵抗発熱体2枚が埋め込まれている。その2枚の抵抗発熱体をゾーン制御することにより、載置台中心部より周辺部の大きな熱逸散を補い、載置台全面にわたり、より均一な温度制御、例えば約530℃の温度に維持することができる。その結果、その上面に載置される基板Wを成膜に必要な温度、例えば約450℃に加熱し得るようになっている。
【0026】
上部処理室壁25aに熱電対27が埋め込まれており、上部処理室壁25aに内蔵されているヒータ26は、例えばAlを材料とし、熱電対27の監視によって、処理室壁25aを約200℃の温度に維持する。この温度では、原料の最も低い蒸気圧温度より高く、原料ガスが液化し処理室壁に付着することも避けられる。
【0027】
同様に、Alを材料とするシャワーヘッド3にも、図示しない内蔵ヒータにより、常時約180℃の温度に保たれている。
【0028】
その結果、上部処理室1aの雰囲気の温度を、処理室の立体的中心を基準とし、処理室壁25aに向ってのすべての方向及び場所において、均一つまり等方的に制御することができる。一方、反応ガスを輸送する配管は常に約180℃の温度に保たれているため、反応ガスが所定の温度に保たれながら、上部処理室1a内へ導入され、所定の温度条件下で成膜プロセスを行われる。
【0029】
通常、基板上にPZT膜として成膜されるガスの量が、導入されるガスの量の1割に満たないと言われている。残り9割以上の成膜しなかった反応ガスが、酸化剤ガスと反応したり、液化又は固化したりして、処理室壁や、載置台周辺、または下部処理室など低温の部分に付着する。これが気相成長対象基板の搬入出時に、または気相成長反応時に剥離して舞い上がり、気相成長対象の基板に付着すると、半導体基板を汚染する汚染源となり、歩留まりを悪化させる。そのため、本発明は、あらかじめ処理室側壁に反応生成物付着を防止するリング状のデポ防止板を設置し、定期的にこの防止板を取り外し、クリーニングを行う。
【0030】
具体的な構造としては、図2に示すように、上部処理室1aの側壁に、アルミニウムを基材とし、表面にAl酸化膜コーティング加工された滑らかな曲面を持つL字型のデポ防止板30が設けられている。また、デポ防止板30の外郭が滑らかな曲面を有するため、シャワーヘッド3から導入されるガスの流れが処理室内で乱れを生じることなく、滑らかな流線に沿って流れることができ、ひいては均一な成膜に寄与することができる。
【0031】
同様に、例えばAlNを材料とする基板載置台2には、その表面に反応生成物の載置台2への付着を防ぐため、熱伝導率の良いSiCによりコーティングされた反応生成物付着防止板33が設けられている。その結果、反応生成物の載置台2への付着により、載置台全面にわたり熱伝導率が変化することを防止できる。
【0032】
また、デポ防止板30の交換時間を短縮するため、本発明ではデポ防止板が取り付け容易な構造になっている。具体的な構造は図3に示すように、リング状デポ防止板30は、外側への伸張力によって、反応室壁25aに張りつけてある。従って、デポ防止板30の交換は、図示しない反応室上部カバーを開け、シャワーヘッド部3を外し、デポ防止板30を外すことによって簡単に行うことができる。
【0033】
また、同じ図3に示すように、異なるリング厚みSの持つデポ防止板30が用意されている。実施されるプロセスによって、幅Sの厚いものを用いたり、あるいは薄いものを用いたりすることができる。例えば厚い物を用いる場合は、上部処理室1aの体積を減少することができ、原料ガスの利用効率を上昇させることができる。
【0034】
また、シャワーヘッド3から導入される反応ガスの反応室1への逆流を防止するため、図2に示すように、パージガスを流す通路34を備えている。パージガス、例えばNを用い、処理プロセスが行われる以外の時間に図2に示すような方向でパージする。同時に、下部処理室壁25bにヒータ32が備えられており、これにより、処理室壁25bを一定の温度に保ち、反応ガスの付着、更に液化、固化することを防げる。その結果、より確実に反応ガスを排気口から排出することができる。
【0035】
また、図2に示すように、載置台2には反応生成物付着防止板33が設けられ、その下部には、石英製の反応ガス逆流防止板28が設けられている。石英製にした理由は、ヒータ直下の場所では非常に高温であり、熱に耐えられる石英が適しているからである。載置台2の下部外気と触れる空間には、給電用のリード線など多くの部材があるほか、大気と触れる狭い空間も存在する。この部分の温度管理が十分にされていない場合、反応ガスが侵入すると、部材に付着して液化、または固体化し、処理室の汚染の元になる。そこで、逆流防止板28を設置することにより、反応ガスが載置台2の下部に当たる場所へ拡散することを阻止でき、その下部に設置される多くの部材への反応生成物の付着を防止することができる。
【0036】
図4に示すように、載置台2の周辺部の所定位置には、複数のリフタ孔37が上下方向に貫通させて設けられている。このリフタ孔37内に上下方向に昇降可能に基板リフタピン36が収容されていて、基板Wの搬入・搬出時に図示しない昇降機構によりリフタピン36を昇降させることにより、基板Wを持ち上げたり、あるいは下げたりするようになっている。このような基板のリフタピン36は、通常、基板周縁部に対応させて3本設けられる。
【0037】
また、図2に示すように基板載置台2の下面の空間45内に、ヒータ4の発熱抵抗体部に接続される絶縁された給電用のリード線38が設けられ、このリード線38は、給電線挿通孔を通って外へ引き出され、開閉スイッチ39を介して給電部40に接続される。なお、基板を加熱する加熱手段として上記した抵抗発熱体に代え、ハロゲンランプ等の加熱ランプを用いて加熱するようにしてもよい。
【0038】
さらに、下部処理室1b内の側面には、真空排気系に接続する排気口23が設けられている。真空引きシステムを処理室1の側面に設置する目的は、大きな開口面積で開口部が取れるためである。従って、コンダクタンス、すなわち気体流動に対する流動抵抗の逆数、が大きくなり、処理室1で真空引きを行う際に、圧力損失が少なく、気化状態の原料ガスの流れも円滑になる。従って、上部処理室1aにおいては、均一な圧力環境を形成することができる。
【0039】
また、通常、PZT膜の成膜では、原料ガス流量1、酸化剤ガス流量1の比率で行われる。しかし、酸素欠損のない良質の膜を形成するために、原料ガス流量1に対し、比率で酸化剤流量2、または3を流す必要がある。大きな開口部が取れる排気システムでは、コンダクタンスを上げやすく、つまり、酸化剤の供給元圧力を高くすることができ、高酸化剤分圧での成膜を達成できる。この手法は、金属酸化膜形成プロセスでは極めて効果的であることが本発明者等の実験によって検証されている。
【0040】
また、気流の流れが等方的になるように、上部処理室より大きな内径を有し、かつ上部処理室の大きさに対し十分な大きさを有する下部処理室に、真空引きシステムの開口部が設置される。そのため、真空引きをする際に、基板が載置される上部処理室の圧力変動が最小限に抑えられ、その結果、上部処理室において、極めて等方的な均圧環境を形成することが出来る。
【0041】
下部処理室容積の大きさの上限は特にないが、あまり大きくしても装置の大型化とコストアップを招く一方、効果は飽和してくるので、上部処理室に対する容積比が4〜5倍の範囲が妥当である。
【0042】
図2に示すように、真空引きシステムの対向側の下部処理室壁25bに、基板の搬入・搬出用の開口部24を備え、処理室壁を介してゲートバルブ41に接続している。基板を搬入・搬出用の開口部24が下部処理室1bに設けられる目的は、上部処理室1aは基板搬入・搬出の際、ゲートバルブ41の開閉により生じた雰囲気の乱れの影響を受けることなく、常に温度、圧力における極めて等方的な成膜環境を保つことができるからである。
【0043】
図4は図2のIV−IV矢視図である。これらの二つの図面に示すように、基板搬入・搬出用開口部24のある下部処理室内壁25bに、図2及び図4に示すような突起部42(42a,42b)が設けられている。これは、図示しない搬送アームの基板搬送距離を短くするためである。また、排気時の障害物にならないように、その大きさが限定的である。
【0044】
ここで、図5(a)は成膜処理時の載置台及びバッフル板の位置、図5(b)は成膜終了後基板が搬出され、排気を行う際の載置台2の位置及びバッフル板21の位置をそれぞれ示している。図2に示すように、基板載置台2が設置されるベース上に、バッフル板支持ブロック28を介して、基板載置台2上面から下方約10mmの場所にバッフル板21が支持されている。ベローズ機構22の上下動により、バッフル板21は基板載置台2と一体に上部処理室1aの任意位置に上下動することができる。
【0045】
成膜時は図5(a)に示すようなバッフル板21は、上部位置に上昇し、この場合、バッフル板21の位置が基板表面と同一高さにあるか、または基板表面より幾分低い位置にあり、成膜に必要な等方的な均熱・均圧環境を作り出す。バッフル板21が基板表面と同一高さにある場合、載置台ユニットの反応生成物付着防止板33とバッフル板21は、上部処理室壁25aに広がる平面で構成されており、これにより、上部処理室1aが下部処理室1bからの排気不均一性の影響を受け難く、反応ガスが基板表面からバッフル板21の表面にスムーズに流れ、下部処理室1bの方向には上部処理室1aの壁に近い側から排出されるので、均一性も改善できる。さらに、この場合は、反応生成物が載置台12の周辺へ付着せず、スムーズに排気と共に排気口23から排出される。一方、プロセスによっては、バッフル板21が載置台2よりやや低い位置にある場合もある。
【0046】
成膜終了後、バッフル板21は図5(b)に示すような搬送位置まで下降し、基板Wが搬出され、排気が行われる。この際、バッフル板21が図示の下部位置にあるため、排気ガスの流れの障害になることなく、パージガスを流しながら、急速に残留反応ガスを送り出すことができる。
【0047】
図6はバッフル板21の平面図である。図6に示すように、バッフル板21上に円周に沿って所要数の反応ガスを均等に排気するための穴29が設けられている。穴29の形状としては、円形開口あるいは、スリットを用いてもよい。本実施例では、図示の放射状に配置されたスリット29を用いる。また、バッフル板21には複数のスリットを、上部処理室壁25a側に近く設置してもよい。これにより、反応副生成物は載置台2の周辺から下部処理室1bに排気されることがないので、反応副生成物の付着はバッフル板21上と、上部処理室壁25aになり、基板載置台2の周辺部分には付着が少なく、かつ、ガスの流が均一化する効果がある。スリットの開口の数、サイズ及び間隔は、ガス排気される際のポンプ比に関する効果を有し、図5(a)に示す成膜時の上部位置にある場合、基板Wが置かれる上部処理室1aの環境の圧力が極めて均一で、等方的になるように設定する。
【0048】
また、バッフル板21を設置することにより、上部処理室1a内で発生した反応生成物が、バッフル板21より下の下部処理室1bへ拡散するのを防ぐことが出来る。従って、上部処理室1a内で発生した反応生成物が、下部処理室壁25bなどへ付着するのを大幅に減少することができる。
【0049】
次に、以上のように構成された本発明の成膜装置を用いて実施する成膜処理について説明する。
【0050】
まず、図2に示す真空状態に維持された処理室1内に、上下動ベローズ機構22により、基板載置台2を搬出入口24付近まで下降させる。図示しない基板搬送アームによって基板搬出入口24を介して未処理の半導体基板Wを搬入し、基板Wを搬送アームで支持しながら、基板載置台2の上面に移送する。基板支持ピン36を上昇し、基板Wを搬送アームから突き上げる。搬送アームが後退した後、支持ピン36が下降し、基板Wを載置台2に載置する。
【0051】
その後、上下動ベローズ機構22により基板載置台2とバッフル板21を処理位置まで上昇させ、上部処理室1aを形成する。
【0052】
そして、抵抗発熱体4より基板Wを所定のプロセス温度、例えば約450℃前後に維持する。その後、上部反応室1a内を真空引きして所定のプロセス圧力に維持しつつ、原料ガスと酸化剤ガスをシャワーヘッド部3から供給して成膜を開始する。その時、処理室壁25a,25bに内蔵されるヒータなどの加熱により、上部処理室1aは極めて等方的な温度環境に保たれている。また、排気システムや、バッフル板などの働きにより、上部処理室1aが同時に極めて等方的な圧力環境に保たれる。
【0053】
この成膜処理では、原料ガスとしては、液状のPb(DPM)2,Zr(OtBu),及びTi(OiPr)4の各材料をそれぞれ気化させて、これらを所定の流量ずつ流して混合させることにより混合ガスを形成し、これを用いる。酸化剤は上記Pb,Zr及びTiの原料ガスより2〜3倍ほど大流量で流し、処理空間内に供給されることになる。
【0054】
PZT、またはBSTのような多元系金属酸化薄膜を形成するプロセスは、発明者らの提案により、同一チャンバー内で、高真空雰囲気にて結晶核形成と低真空雰囲気にて成膜の2段階に分けて行う。
【0055】
第1段階プロセスでは、高真空結晶核形成プロセス時、つまりPZT薄膜の場合は基板上にPbOという結晶核、BST薄膜の場合は基板上にTiOという結晶核を形成処理時、基板Wとシャワーヘッド3の距離が比較的長い。
【0056】
第2段階プロセスでは、低真空成膜プロセス時、つまり第1段階で形成された結晶核を元にPZT、またはBST薄膜を成長させる処理時、基板Wとシャワーヘッド3の距離が比較的短いことが特徴である。本発明の装置を用いれば、上部処理室1aを所定の真空度に維持したまま、上下動するベローズ機構22の働きにより、基板載置台2とシャワーヘッド3の距離を自由に変えることが出来る。
【0057】
即ち、高真空結晶核形成プロセスの時には、ベローズ機構22が載置台2を駆動し、基板Wとシャワーヘッド3との間の距離を大きくする。この距離は例えば20〜150mm程度である。高真空下では、原料ガス、酸化剤ガスが十分に拡散するので、膜厚の面内均一性が良くなる。また、高真空下では、上部処理室1a内における圧力の分布にそれほど偏りが生じないので、シャワーヘッド3と基板Wとの距離を変化させても、原料利用効率はほとんど同じとなる。
【0058】
低真空プロセス時には、基板Wとシャワーヘッド3の距離を上記した高真空プロセス時よりも小さくする。この距離は、例えば5〜30mm程度である。低真空では、原料ガス、酸化剤ガスは流れ(粘性流)によって基板に到着する。そのため、シャワーヘッド3と基板Wとの距離が遠い程原料ガス、酸化剤ガスの利用効率が悪くなる。逆に、シャワーヘッド3と基板Wとの距離を近づける程、原料ガス、酸化剤ガスの利用効率が良くなるので、成膜速度を向上させることができる。
【0059】
また、低真空では、シャワーヘッド3を上記のように構成することにより、シャワーヘッド3から噴出されたガスが層流を形成して流れるようになっており、基板Wとシャワーヘッド3の距離を近くしても成膜の膜厚の面内均一性がほとんど崩れることはない。
【0060】
そして、処理を終えた基板Wは載置台2に載せられたままバッフル板21と共に、再び上下動ベローズ機構22により、搬入・搬出口24まで下降し、処理室1の外へと搬出される。この後、処理室1の排気が行われるが、バッフル板21が下部処理室1bにあるため、処理室全体の急速な残留ガス排気が可能となる。
【0061】
なお、以上の実施例では、液体原料として、Pb原料、Zr原料、Ti原料を用いる場合を例に説明したが、これに限定されず、他の有機金属材料、例えばBa原料、St原料、Ti原料を用いてチタン酸バリウムストロンチウム高誘電体膜を堆積する場合にも本発明を適用することができる。また、酸化剤ガスとしてはOに限定されず、NO,NO,Oを用いても良い。
【0062】
また、被処理体としては半導体基板に限定されず、例えばLCD基板、ガラス基板などにも本発明が適用できる。
【0063】
【発明の効果】
以上に説明したように、本発明の成膜装置及び成膜方法によれば、次のような優れた作用効果を発揮することができる。
【0064】
第1の発明によれば、載置台及びこれと一体に設けられたバッフル板が、基板の載置位置から、基板のプロセス処理位置に移動した際に、排気口及び基板の搬入口が共に、下部処理室に位置する構成としたために、排気口を十分な大きさとすることが可能となり、プロセスに必要な圧力、温度を均一に保たれ、高精度で組成比を保たれた膜質の良い多元系金属酸化膜が生成する好都合な装置を提供することが出来る。
【0065】
また、第2の発明によれば、反応生成物防着板を設けることにより、反応生成物の処理室壁への付着を防止することができる。更に、反応生成物付着防止板が着脱容易な取り付け方法により処理室壁に取り付けられ、交換に必要な時間が短縮され、装置の稼働率を向上させることができる。
【0066】
さらに、第3の発明によれば、原料ガスが3種類以上の原料ガスを用いる金属酸化膜形成方法として、極めて等方的な均熱・均圧かつ高酸素分圧の成膜環境下で行うことが良質の多元系金属酸化膜にとって非常に有効である。
【図面の簡単な説明】
【図1】本発明に係わる成膜装置のシステム構成を示す構成図。
【図2】本発明に係わる成膜装置の縦断面図。
【図3】本発明の成膜装置に用いるデポ防止板の一部破断縦断面図。
【図4】本発明に係わる成膜装置の反応室の図2におけるIV−IV矢視断面図。
【図5】成膜時(図5(a))及び基板搬出時(図5(b))における本発明の成膜装置の載置台の位置を示す概略図。
【図6】本発明の成膜装置に用いるバッフル板の平面図。
【図7】強誘電体メモリーセルの断面構造図。
【図8】PZTキャパシタのヒステリシス特性を示すグラフ。
【図9】従来の成膜装置の縦断面図。
【符号の説明】
1処理室
1a 上部処理室
1b 下部処理室
2載置台
3処理ガス導入手段(シャワーヘッド)
5,6,7 処理ガス供給部
5a,6a,7a,8a マスフローコントローラー
8 酸化剤ガス供給部
9 気化器
10,11,12 真空引きシステム
21 バッフル板
22 上下動ベローズ機構
23 排気口
24 基板搬入・搬出口
30 デポ防止板
33 反応生成物付着防止板

Claims (14)

  1. 成膜処理室内に配置された基板の表面に、複数種のガスを導入して、複数元素からなる薄膜を成膜する多元系金属酸化薄膜成膜装置であって、
    前記基板を載置可能に構成された載置台と、該載置台と一体に設けられ、共に移動可能な排気バッフル板とからなる載置台ユニットと、
    前記成膜処理室内を真空排気する排気機構を取り付け可能に構成された排気口と、
    前記基板を前記成膜処理室内に搬入出可能に構成された搬入出口と、
    前記載置台ユニットが、成膜処理を行う前記成膜処理位置に位置した際、前記成膜処理室を前記載置台及び前記バッフル板により上部処理室及び下部処理室に空間的に分割し、かつ、前記排気口及び前記搬入出口が、前記下部処理室に配置されることを特徴とする多元系金属酸化薄膜成膜処理装置。
  2. 前記下部処理室の容積が前記上部処理室の容積より大きいことを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  3. 前記バッフル板が前記上部処理室内の任意の上下位置に位置することを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  4. 前記成膜処理位置が前記基板表面と実質的に同一平面、または前記基板表面より低い位置にあることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  5. 前記バッフル板の開口部が前記バッフル板より上の任意位置に位置することを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  6. 前記バッフル板の開口部が前記上部処理室内の側壁近傍に接近して位置することを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  7. 前記上部処理室内に温度制御されたガス導入機構を備えることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  8. 前記処理室壁に処理室壁温度を制御する温度制御手段を設けることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  9. 前記上部処理室の壁に温度測定手段を備えることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  10. 前記基板載置台の内部に加熱手段を設けることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  11. 前記上部処理室壁の内側に異なる厚みを持ちかつ曲面表面形状を有する反応生成物付着防止手段を備え、該反応生成物付着防止手段が取り付け簡単な構造によって前記上部処理室壁に取り付けられることを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  12. 前記載置台がその表面に反応生成物付着防止機構を有することを特徴とする請求項1の多元系金属酸化薄膜成膜処理装置。
  13. 成膜処理室内に配置された基板表面に、複数種のガスを導入して、複数元素からなる薄膜を成膜する多元系金属酸化薄膜方法であって、
    前記基板を載置可能に構成された載置台と、この載置台と一体に設けられ、共に移動可能な排気バッフル板とからなる載置台ユニットと、
    前記成膜処理室内を真空排気する排気機構を取り付け可能に構成された排気口と、
    前記基板を前記成膜処理室内に搬入出可能に構成された搬入出口と、
    前記載置台ユニットが、成膜処理を行う前記成膜処理位置に位置した際、前記成膜処理室を前記載置台及び前記バッフル板により上部処理室及び下部処理室に空間的に分割し、かつ、前記排気口及び前記搬入出口が、前記下部処理室に配置され、
    前記上部処理室の内に配置された前記基板上の排気をより均一に排気し、かつ前記上部処理室の任意の位置において、圧力を1.33×10−2Pa〜1333Pa、温度を200℃〜300℃の範囲内で均一に保つ工程と、
    酸化剤及び反応ガスを前記上部処理室内に導入し、前記基板に所定の膜を形成する工程と、
    成膜処理終了後、前記載置台ユニットが搬入出位置に位置し、前記基板を搬出し、前記処理室内から排気機構により残留反応ガスを排出する工程と
    からなることを特徴とする多元系金属酸化薄膜成膜方法。
  14. 前記酸化剤が高酸化剤分圧にて前記上部処理室内に導入されることを特徴とする請求項13の多元系金属酸化薄膜成膜方法。
JP2000332906A 2000-10-31 2000-10-31 多元系金属酸化薄膜成膜装置及び成膜方法 Pending JP2004273470A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000332906A JP2004273470A (ja) 2000-10-31 2000-10-31 多元系金属酸化薄膜成膜装置及び成膜方法
PCT/JP2001/009529 WO2002037548A1 (fr) 2000-10-31 2001-10-31 Procede et dispositif permettant la formation d'un film mince d'oxyde de metal a composants multiples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332906A JP2004273470A (ja) 2000-10-31 2000-10-31 多元系金属酸化薄膜成膜装置及び成膜方法

Publications (1)

Publication Number Publication Date
JP2004273470A true JP2004273470A (ja) 2004-09-30

Family

ID=18809051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332906A Pending JP2004273470A (ja) 2000-10-31 2000-10-31 多元系金属酸化薄膜成膜装置及び成膜方法

Country Status (2)

Country Link
JP (1) JP2004273470A (ja)
WO (1) WO2002037548A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7629183B2 (en) 2005-06-16 2009-12-08 Tokyo Electron Limited Method for manufacturing semiconductor device and computer storage medium
JP2012094875A (ja) * 2005-04-01 2012-05-17 Lam Research Corporation 半導体用途での正確な温度測定
JP2014504023A (ja) * 2010-12-30 2014-02-13 ビーコ・インストゥルメンツ・インコーポレイテッド キャリア拡張部を用いるウェハ処理

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220051912A1 (en) * 2020-08-12 2022-02-17 Taiwan Semiconductor Manufacturing Company Limited Gas flow control during semiconductor fabrication

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947732A (ja) * 1982-09-10 1984-03-17 Hitachi Ltd 半導体製造装置
JP3563819B2 (ja) * 1995-03-28 2004-09-08 アネルバ株式会社 窒化チタン薄膜の作製方法及びその方法に使用される薄膜作製装置
JPH08339895A (ja) * 1995-06-12 1996-12-24 Tokyo Electron Ltd プラズマ処理装置
KR100326269B1 (ko) * 1998-12-24 2002-05-09 박종섭 반도체소자의고유전체캐패시터제조방법
JP4450883B2 (ja) * 1999-03-30 2010-04-14 東京エレクトロン株式会社 プラズマ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094875A (ja) * 2005-04-01 2012-05-17 Lam Research Corporation 半導体用途での正確な温度測定
US7629183B2 (en) 2005-06-16 2009-12-08 Tokyo Electron Limited Method for manufacturing semiconductor device and computer storage medium
JP2014504023A (ja) * 2010-12-30 2014-02-13 ビーコ・インストゥルメンツ・インコーポレイテッド キャリア拡張部を用いるウェハ処理

Also Published As

Publication number Publication date
WO2002037548A1 (fr) 2002-05-10

Similar Documents

Publication Publication Date Title
JP3670628B2 (ja) 成膜方法、成膜装置、および半導体装置の製造方法
US7582544B2 (en) ALD film forming method
TWI669410B (zh) 成膜方法及成膜裝置
JP5097554B2 (ja) 半導体装置の製造方法、基板処理方法および基板処理装置
TWI555059B (zh) A substrate processing apparatus, a manufacturing method of a semiconductor device, and a recording medium
US20050054198A1 (en) Apparatus of chemical vapor deposition
US10546761B2 (en) Substrate processing apparatus
US20060110533A1 (en) Methods and apparatus for forming a titanium nitride layer
JP2003519913A (ja) コンデンサ構造のための低熱収支金属酸化物堆積
JP2002222806A (ja) 基板処理装置
JP4717179B2 (ja) ガス供給装置及び処理装置
JPWO2006137287A1 (ja) 半導体装置の製造方法および基板処理装置
WO2007102333A1 (ja) ルテニウム膜の成膜方法およびコンピュータ読取可能な記憶媒体
JP3258885B2 (ja) 成膜処理装置
JP2006286716A (ja) 半導体デバイスの製造方法
JP2002035572A (ja) 真空処理装置と多室型真空処理装置
JP2004273470A (ja) 多元系金属酸化薄膜成膜装置及び成膜方法
US6841489B2 (en) Method of manufacturing a semiconductor device and method of forming a film
US10784110B2 (en) Tungsten film forming method, film forming system and film forming apparatus
KR20010085328A (ko) 금속산화물유전체막의 기상성장방법 및 금속산화물유전체재료의 기상성장을 위한 장치
JP3111994B2 (ja) 金属酸化物誘電体材料の気相成長装置
US20230377953A1 (en) Substrate processing method and substrate processing apparatus
JPH11354751A (ja) 半導体装置,半導体装置の製造方法および半導体製造装置
JP2004530294A (ja) 薄膜形成方法および薄膜形成装置
JPH08325736A (ja) 薄膜気相成長装置