JP2004266976A - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP2004266976A
JP2004266976A JP2003057060A JP2003057060A JP2004266976A JP 2004266976 A JP2004266976 A JP 2004266976A JP 2003057060 A JP2003057060 A JP 2003057060A JP 2003057060 A JP2003057060 A JP 2003057060A JP 2004266976 A JP2004266976 A JP 2004266976A
Authority
JP
Japan
Prior art keywords
power supply
transformer
snubber
voltage
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003057060A
Other languages
English (en)
Other versions
JP4319430B2 (ja
Inventor
Toshiichi Fujiyoshi
敏一 藤吉
Kenji Morimoto
健次 森本
Satoshi Hamada
聰 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2003057060A priority Critical patent/JP4319430B2/ja
Priority to US10/791,500 priority patent/US6914788B2/en
Priority to CNB200410007475XA priority patent/CN100373757C/zh
Publication of JP2004266976A publication Critical patent/JP2004266976A/ja
Application granted granted Critical
Publication of JP4319430B2 publication Critical patent/JP4319430B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3382Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement in a push-pull circuit arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】電源装置の効率を向上させると共に、小型化を図る。
【解決手段】直流電源2の両端間に直列にコンデンサ4、6が接続されている。直流電源2の両端間に直列にIGBT8、10が接続され、交互に導通する。コンデンサ4、6の相互接続点と、IGBT8、10の相互接続点との間に変圧器12が接続されている。IGBT8,10に並列にスナバコンデンサ32、38が接続され、これに直列に且つIGBT8、10が非導通時にスナバコンデンサ32、38を充電する方向性にダイオード34、40が接続されている。スナバコンデンサ32とダイオード34との相互接続点と、直流電源2との間に変圧器54の2次巻線54saが接続され、IGBT8が導通しているとき、変圧器12の2次電圧を変換して、供給する。スナバコンデンサ38とダイオード40との相互接続点と、直流電源2との間に変圧器54の2次巻線54sbが接続されIGBT10が導通しているとき、変圧器12の2次電圧を変換して供給する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、直流電源装置に関し、特にインバータを使用した直流電源装置に関する。
【0002】
【従来の技術】
インバータを使用した直流電源装置は、例えば溶接機、光源、表面処理機等の電源装置として使用されることがある。図7に、このような直流電源装置の1例を示す(特願平2002−13710号参照)。
【0003】
この直流電源装置は、例えば商用交流電源を整流及び平滑した直流電源2を有している。この直流電源装置2の正負両端間に、直列に第1及び第2の電流通過素子、例えばコンデンサ4、6が接続されている。直流電源装置2の正負両端間には、半導体スイッチング素子、例えばIGBT8、10の導電路、例えばコレクタ・エミッタ導電路も直列に接続されている。IGBT8、10のゲートには、図示しない制御手段から休止期間を挟んで交互に制御信号が供給される。IGBT8、10は、制御信号が供給されている期間、導通する。
【0004】
コンデンサ4、6の相互接続点と、IGBT8、10のコレクタ・エミッタ導電路の相互接続点との間に、変圧器12の1次巻線12Pが接続されている。変圧器12の2次巻線12Sには、整流手段、例えばダイオード14、16のアノードが接続され、それらのカソードが互いに接続され、平滑手段、例えば平滑用リアクトル18を介して負荷20の一端に接続されている。負荷20の他端は、2次巻線12Sの中間タップに接続されている。コンデンサ4、6、IGBT8、10によって、いわゆるハーフブリッジ型のインバータが構成されている。
【0005】
IGBT8、10のコレクタ・エミッタ導電路に逆並列に、第1及び第2の単方向性導通素子、例えばフリーホイールダイオード22、24が接続されている。また、IGBT8、10には、並列にスナバ回路26、28も接続されている。
【0006】
スナバ回路26は、IGBT8のコレクタ側に一端が接続されたコンデンサ32を含んでいる。コンデンサ32の他端側には、単方向性導通素子、例えばダイオード34のアノードが接続され、そのカソードがIGBT8のエミッタに接続されている。このダイオード34に並列に抵抗器36が接続されている。同様に、スナバ回路28も、コンデンサ38、ダイオード40及び抵抗器42によって構成されている。
【0007】
この直流電源装置では、IGBT8が導通したとき、コンデンサ4の正極から電流がIGBT8、変圧器12の1次巻線12P、コンデンサ4の負極に流れる。IGBT10が導通したとき、コンデンサ6の正極から変圧器12の1次巻線12P、IGBT10、コンデンサ6の負極に電流が流れる。即ち、変圧器12の1次巻線12Pには、交互に極性が変化する電流が流れる。これに伴い変圧器12の2次巻線12Sに交流電流が流れ、これがダイオード14、16で整流され、平滑用リアクトル18によって平滑され、負荷20に供給される。
【0008】
IGBT8が導通状態から非導通状態に変化したとき、コンデンサ32、ダイオード34に電流が流れて、コンデンサ32が充電される。IGBT8が導通時には、コンデンサ32に充電された電荷に基づいて、IGBT8のコレクタ・エミッタ導電路に放電電流が流れるが、この放電電流を抵抗器36が抑制している。IGBT10も同様に動作する。
【0009】
【発明が解決しようとする課題】
この直流電源装置では、IGBT8、10が導通状態から非導通状態に変化したとき、コンデンサ32、38によって、これらのエミッタ・コレクタの電圧上昇が抑えられているので、スイッチング損失を軽減させることができる。しかし、IGBT8、10が非導通状態から導通状態に変化するとき、コンデンサ32、38の電荷が抵抗器36、42において熱として消費される。その分、効率が低下すると共に、抵抗器36、42が発熱するために、抵抗器36、42を大型のものとしなければならず、そのため、この直流電源装置自体も大型になっていた。
【0010】
本発明は、効率を向上させると共に、小型化を図ることができる直流電源装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の電源装置は、直流電源を有している。この直流電源の両端間に直列回路が設けられている。この直列回路は、直列に接続された第1及び第2の電流通過素子を有している。第1及び第2の電流通過素子としては、コンデンサを使用することもできるし、或いは半導体スイッチング素子を使用することもできる。前記直流電源の両端間に直列に第1及び第2の半導体スイッチング素子が接続されている。これらスイッチング素子は交互に導通する。一方のスイッチング素子が導通して、他方のスイッチング素子が導通するまでの間に両者が導通しない休止期間を設けることもできる。第1及び第2の電流通過素子の相互接続点と、第1及び第2の半導体スイッチング素子の相互接続点との間に負荷が接続されている。負荷としては、後述するように2次側に整流手段を備えた第1の変圧器を備えたものとすることもできるし、モータ等を使用することもできる。第1の半導体スイッチング素子に並列に第1のスナバ回路が設けられている。このスナバ回路は、第1のスナバコンデンサと、これに直列に且つ第1の半導体スイッチング素子が非導通時に第1のスナバコンデンサを充電する方向性に接続された第1のスナバ単方向性導通素子とを含んでいる。同様に、第2の半導体スイッチング素子に並列に第2のスナバ回路が接続されている。第2のスナバ回路も、第2のスナバコンデンサと、これに直列に且つ第2の半導体スイッチング素子が非導通時に第2のスナバコンデンサを充電する方向性に接続された第2のスナバ単方向性導通素子とを含んでいる。直流電源と第1のスナバコンデンサとの間に第1の回生経路が設けられている。前記直流電源と第2のスナバコンデンサとの間に第2の回生経路が設けられている。第1の回生経路は、第1のスナバコンデンサと第1のスナバ単方向性導通素子との相互接続点と、前記直流電源との間に第1の電圧誘起手段が接続されている。第1の電圧誘起手段は、第1の半導体スイッチング素子が導通しているとき、前記負荷の電圧を変換して、第1の回生経路に供給する。第2の回生経路は、第2のスナバコンデンサと第2のスナバ単方向性導通素子との相互接続点と、前記直流電源との間に第2の電圧誘起手段が接続されている。第2の電圧誘起手段は、第2の半導体スイッチング素子が導通しているとき、前記負荷の電圧を変換して、第2の回生経路に供給する。
【0012】
このように構成された電源装置では、第1及び第2のスナバコンデンサに、第1及び第2の半導体スイッチング素子が非導通となるときに、電荷が充電されて、第1及び第2の半導体スイッチング素子の電圧上昇が抑圧されている。第1及び第2のスナバコンデンサの充電電荷は、第1及び第2の半導体スイッチング素子の導通時に第1及び第2の回生経路によって直流電源側に回生される。従って、第1及び第2の半導体スイッチング素子及び第1及び第2の電流通過素子によって構成されているインバータの効率を向上させることができる上に、第1及び第2のスナバコンデンサの電荷を消費させるための大型の抵抗器が不要になり、インバータを小型化することができる。しかも回生させるための電源は、第1及び第2の電圧誘起手段によって負荷の電圧を利用しているので、別途回生用の電源を設ける必要はない。
【0013】
負荷は、2次側に整流手段が設けられている第1の変圧器を有しているものとすることもできる。このように構成すると、負荷は直流によって動作するものとできるので、例えば溶接機等の直流電源として、本電源装置を使用することができる。
【0014】
第1及び第2の電圧誘起手段に直列に単方向性導通素子とリアクトルとを設けることもできる。このように構成すると、スナバコンデンサとリアクトルとによって電流振動が生じるが、単方向性導通素子によって直流電源側に回生される。
【0015】
第1及び第2の電圧誘起手段は、第2の変圧器の2次巻線とすることがある。この場合、第2の変圧器の1次巻線は、第1の変圧器の2次巻線に接続される。前記リアクトルには2次巻線の漏れインダクタンスを使用する。このように構成すると、変圧器の漏れインダクタンスを使用しているので、別途にリアクトルを設ける必要が無く、電源装置の小型化を図ることができる。
【0016】
第1及び第2の電圧誘起手段を、互いに共通の鉄心を有している第1の変圧器の2つの2次巻線とすることができる。このように構成すると、第1及び第2の電圧誘起手段を共通の鉄芯を有している変圧器で構成しているので、この電源装置を小型化することができる。
【0017】
第1及び第2の電圧誘起手段及び第1の変圧器の1次巻線と、鉄芯とを共用化することができる。このように構成すると、第1及び第2の変圧器を共有にすることができるので、この電源装置を小型化することができる。
【0018】
第1及び第2の半導体スイッチング素子に逆並列に第1及び第2の単方向性導通素子を接続することができる。
【0019】
【発明の実施の形態】
本発明の第1の実施の形態の直流電源装置は、図1に示すように、図7の直流電源装置に、新たに回生経路50を設けたものである。図7に示した直流電源装置の構成要素と同一の構成要素には、同一符号を付して、その説明を省略する。
【0020】
回生経路50では、スナバ回路26のスナバコンデンサ32とダイオード34のアノードとの接続点に、単方向性素子、例えばダイオード52のカソードが接続されている。このダイオード52のアノードは、リアクトル60、第1の電圧誘起手段、例えば変圧器54の2次巻線54saを介して直流電源2の負極に接続されている。これによって、回生経路50の第1の経路が形成されている。リアクトル60には、2次巻線54saの漏れインダクタンスを使用することができる。
【0021】
同様に、回生経路50では、スナバ回路28のダイオード40のカソードとスナバコンデンサ38との接続点に、単方向性素子、例えばダイオード58のアノードが接続されている。このダイオード58のカソードは、リアクトル62、第2の電圧誘起手段、例えば変圧器54の2次巻線54sbを介して直流電源2の正極に接続されている。これによって、回生経路50の第2の経路が形成されている。リアクトル62も、2次巻線54sbの漏れインダクタンスを使用することができる。
【0022】
変圧器54の1次巻線54pは、変圧器12の2次巻線12sに接続されている。変圧器54では、1次巻線54p、2次巻線54sa、54sbは、共通の鉄芯に巻回されている。
【0023】
第1の変圧器である変圧器12の1次巻線12Pの両端間に、抵抗器66とコンデンサ68の直列回路が接続されている。この直列回路は、IGBT8、10の寄生容量や変圧器12の漏れインダクタンスによって発生する寄生振動を抑圧するためのダンピング回路である。
【0024】
IGBT8、10は、制御手段からの制御信号が供給されている期間、導通する。この制御信号は、例えばIGBT8に供給された後、休止期間をおいた後に、IGBT10に供給され、休止期間をおいてIGBT8に供給されることを繰り返す。
【0025】
変圧器54の2次巻線54sa、54sbの電圧は、変圧器12の2次巻線12Sの電圧を変換したもので、直流電源2の電圧E1の1/2になるように、1次巻線54p、2次巻線54sa、54sbの巻数比が、設定されている。2次巻線54sa、54sbの極性は逆極性であり、IGBT8が導通時にはダイオード52が導通する方向に2次巻線54saの極性方向が定められ、IGBT10が導通時にはダイオード58が導通する方向に2次巻線54sbの極性方向が定められている。従って、ダイオード52が導通時には、ダイオード58が阻止状態になり、ダイオード58が導通時にはダイオード52が阻止状態となる。
【0026】
図2に示す時刻toよりも前には、IGBT8、10のゲートには制御信号は供給されて無く、IGBT8のコレクタ・エミッタ間には、電源2の電圧E1が印加され、スナバコンデンサ32の両端間電圧もE1であるとする。この電圧E1がIGBT8のコレクタ・エミッタ間に印加されるのは、変圧器12の漏れインダクタンスや励磁インダクタンスの影響による。なお、IGBT8、10は、180度の位相差をもって駆動されるので、コンデンサ4、6の電圧は、それぞれE1/2に保持される。
【0027】
時刻toにおいて、図2(a)に示すように、IGBT8に制御信号が供給されて、IGBT8が導通する。これによって、負荷電流がコンデンサ4の正極側からIGBT8のコレクタ・エミッタ、変圧器12の1次巻線12pを介してコンデンサ4の負極側に流れる。
【0028】
時刻t1において、変圧器54の2次巻線54saに電圧E1/2が発生すると、コンデンサ32の両端間電圧と2次巻線54saの電圧との合成値が直流電源2の電圧E1よりも高いので、直流電源2にリアクトル60、変圧器54、ダイオード52を介して放電が行われる。これは、スナバコンデンサ32とリアクトル60との振動現象により時刻t1のスナバコンデンサ32と電源2との間の電位差がE1/2であるので、スナバコンデンサ32の蓄積エネルギーは直流電源2に全て回収される。従って、抵抗器等によって放電電流が熱として消費されることが無く、この電源装置の効率が向上する。さらに、発熱に耐える大型の抵抗器を使用する必要がないので、この直流電源装置を小型化することができる。
【0029】
放電電流は、スナバコンデンサ32、リアクトル60を流れるので、放電電流は正弦波状である。そのうちの正の極性のものがダイオード52によって放電される。この放電は時刻t2に終了する。この放電電流によって変圧器54の1次巻線54pから変圧器12の2次巻線12sに電流が流れる。その結果、変圧器12の1次巻線12pの1次電流、即ちIGBT8のコレクタ電流が増加する。即ち、放電電流によって変圧器54、変圧器12を介して電流変換され、IGBT8のコレクタ電流に加算される。図2(e)にIGBT8を流れる電流。(g)にダイオード52に流れる放電電流を示す。
【0030】
時刻t3において、IGBT8への制御信号が消失して、IGBT8が非導通状態になる。このとき、スナバコンデンサ32の充電が開始され、コンデンサ32,1次巻線12pを介して充電電流が流れる。IGBT8のコレクタ・エミッタ間の電圧は、スナバコンデンサ32の充電に伴って徐々に上昇する。この状態を図2(c)に示す。このように徐々にIGBT8のコレクタ・エミッタ間電圧が上昇するので、IGBT8のターンオフ損失も非常に小さい。
【0031】
スナバコンデンサ32の電圧が上昇を続け、電源電圧E1よりも高くなろうとする。コンデンサ32と変圧器12の1次巻線12pの漏れインダクタンスとからなるLC回路に過渡電流が流れているので、スナバコンデンサ32の電圧は電源電圧E1よりも高くなろうとするが、IGBT10に逆並列に接続されているフリーホイールダイオード24が導通して、IGBT8のコレクタ・エミッタ間電圧を直流電源2の電圧E1にクランプするので、スナバコンデンサ32の両端間電圧は、直流電源2の電圧E1よりも大きくなることはない。
【0032】
IGBT8、10が各々導通状態あるいは非導通状態に切り替わる転流時には、変圧器12の漏れインダクタンスによって、またIGBT8、10が共に非導通状態にある休止期間には、平滑用リアクトル18のインダクタンスによって、ダイオード14、16が共に導通する期間が存在する。図2(h)、(i)にダイオード14、16の電流波形を示す。
【0033】
ダイオード14、16が共に導通する期間には、変圧器12の2次巻線12sの電圧はゼロであるので、変圧器54の2次巻線54saの電圧も、この期間には同様にゼロとなる。これにより、IGBT10が非導通状態に切り替わる時刻t4において、変圧器12の1次巻線12pに変圧器12の漏れインダクタンスによる電圧振動が発生しても、変圧器54の2次巻線54saには、この電圧振動は伝達されない。この電圧振動によるスナバコンデンサ32の不必要な充放電が防止されており、スナバコンデンサ32の蓄積エネルギーが効率よく、直流電源2に回収される。変圧器54の2次巻線54saの電圧波形を図2(f)に示す。
【0034】
IGBT10についても、IGBT8の場合と位相が180度異なる以外、同様に動作するので、詳細な説明は省略する。
【0035】
第2の実施の形態の電源装置を図3に示す。この実施の形態の電源装置は、回生経路50の第1の経路と第2の経路用とに個別に変圧器54a、54bを設けている。変圧器54a、54bは、1次巻線54ap、54bpを有し、これらは並列に接続され、変圧器12の2次巻線12sに接続されている。他の構成は、第1の実施の形態の電源装置と同様に構成されているので、同等部分には同一符号を付して、詳細な説明は省略する。
【0036】
第3の実施の形態の電源装置を図4に示す。この実施の形態の電源装置は、第1の実施の形態における変圧器12と変圧器54の鉄芯及び1次巻線を共用化したものである。変圧器54の2次巻線54saは、変圧器12の2次巻線12saに、変圧器54の2次巻線54sbは、変圧器12の2次巻線12sbにそれぞれ対応して置き換えられている以外、第1の実施の形態と同様に構成されている。同等部分には同一符号を付して、その説明を省略する。
【0037】
第3の実施の形態の電源装置に適用されている変圧器12の各コイル配置を示す構造の断面図を図5(a)に、その1次巻線12pと2次巻線12s間での漏れ磁束の分布状態を図5(b)に示す。
【0038】
1次巻線12p、2次巻線12s、2次巻線12sa、2次巻線12sbは、鉄芯13を中心として内側から1次巻線12pの1/2、2次巻線12sの1/2、2次巻線12sa、2次巻線12sb、2次巻線12sの残りの1/2、11次巻線12pの残りの1/2の順に同芯状に配置されているので、1次巻線112pと2次巻線12s間の漏れ磁束の影響を受けない位置に、2次巻線12sa、2次巻線12sbが存在する。
【0039】
第3の実施の形態の電源装置に適用される変圧器12の2次巻線12sは、図2(h)及び(i)に示されるダイオード14、16の電流波形において、ダイオード14、16が共に導通する期間では短絡されている。短絡された状態の2次巻線12sで挟まれた2次巻線12sa、12sbは、2次巻線12sで拘束磁化されているので、IGBT10が非導通状態に切り替わる時刻t4において、変圧器12の1次巻線12pに発生する変圧器12の漏れインダクタンスによる電圧振動が、変圧器12の2次巻線12saに伝達されることが無く、この電圧振動に起因してコンデンサ32が不必要に充放電されることが防止できる。その結果、回生経路に変圧器54を用いる第1の実施の形態の電源装置と同様の効果が得られる。
【0040】
第4の実施の形態の電源装置を図6に示す。この実施の形態の電源装置では、第1及び第2の半導体スイッチング素子として、IGBT8a、10aを使用し、第1及び第2の電流通過素子を有する直列回路として、IGBT8b、10bの直列回路を使用している。IGBT8a、8bは同相で動作し、IGBT10a、10bは、IGBT8a、8bと180度位相が異なる状態で動作する。第1の実施の形態の電源装置のスナバ回路26、回生経路50と同様な、スナバ回路26a、26b、28a、28b、回生経路50a、50bが用いられている。これらによって、いわゆるフルブリッジ型のインバータが構成されている。第1の実施の形態の構成要素と同等部分には、同一符号の末尾に添え字aまたはbを付して、その説明を省略する。
【0041】
変圧器12の1次巻線12pに直列に接続されているコンデンサ70は、1次巻線12pに直流成分が印加されるのを阻止するものである。
【0042】
IGBT8a、8bが導通したとき、直流電源2の正極から電流が、IGBT8a、コンデンサ70、変圧器12の1次巻線12p、IGBT8bを介して直流電源2の負極に流れる。IGBT10a、10bが導通したとき、直流電源2の正極からの電流が、IGBT10b、変圧器12の1次巻線12p、コンデンサ70、IGBT10aを介して直流電源2の負極に流れる。
【0043】
即ち、第1乃至3の実施の形態のハーフブリッジ型のインバータで構成されるものと同じく、変圧器12の1次巻線12pには、交互に極性が変化する電流が流れる。この動作以外に、IGBTの数がハーフブリッジ型のインバータの倍になっていることによって、スナバ回路、回生経路の数が共に倍になっているが、個々の動作は、第1の実施の形態と同様であるので、詳細な説明は省略する。
【0044】
上記の各実施の形態では、インバータが発生する高周波電圧を直流に変換して、直流電源として使用したが、これに限ったものではなく、例えばモータ等をインバータからの高周波電圧によって駆動することもできる。上記の実施の形態では、半導体スイッチング素子としてIGBTを使用したが、これに代えてバイポーラトランジスタ、電力FET等を使用することもできる。上記の実施の形態では、ダンピング回路として、抵抗器66とコンデンサ68の直列回路を使用したが、場合によっては、これらを省略することもできる。また、平滑用リアクトル18と負荷20の接続点と変圧器12の中点にコンデンサを入れる場合もある。
【0045】
【発明の効果】
以上のように、本発明によれば、高周波スイッチングされる半導体スイッチング素子が、非導通となるときに、その電圧上昇を抑えるために設けられたスナバコンデンサの電荷を、その高周波スイッチング素子が導通時に電源側に回生する回生経路を設けているので、インバータの効率を向上させることができる上に、電荷を消費させるための大型の抵抗器が不要となり、インバータを小型化することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の電源装置の回路図である。
【図2】図1の電源装置の各部の波形図である。
【図3】本発明の第2の実施の形態の電源装置の回路図である。
【図4】本発明の第3の実施の形態の電源装置の回路図である。
【図5】図4の電源装置に使用する変圧器の巻線構造と磁束分布とを示す図である。
【図6】本発明の第4の実施の形態の電源装置の回路図である。
【図7】従来の電源装置の回路図である。
【符号の説明】
2 直流電源
4、6 コンデンサ(電流通過素子)
8、10 IGBT(第1及び第2の半導体スイッチング素子)
20 負荷
50 回生経路

Claims (7)

  1. 直流電源と、
    この直流電源の両端間に直列に接続された第1及び第2の電流通過素子を有する直列回路と、
    前記直流電源の両端間に直列に接続されて交互に導通する第1及び第2の半導体スイッチング素子と、
    第1及び第2の電流通過素子の相互接続点と、第1及び第2の半導体スイッチング素子の相互接続点との間に接続された負荷と、
    第1の半導体スイッチング素子に並列に接続され、第1のスナバコンデンサと、これに直列に且つ第1の半導体スイッチング素子が非導通時に第1のスナバコンデンサを充電する方向性に接続された第1のスナバ単方向性導通素子とを含む第1のスナバ回路と、
    第2の半導体スイッチング素子に並列に接続され、第2のスナバコンデンサと、これに直列に且つ第2の半導体スイッチング素子が非導通時に第2のスナバコンデンサを充電する方向性に接続された第2のスナバ単方向性導通素子とを含む第2のスナバ回路と、
    前記直流電源と第1のスナバコンデンサとの間に設けられた第1の回生経路と、
    前記直流電源と第2のスナバコンデンサとの間に設けられた第2の回生経路とを、具備し、
    第1の回生経路は、第1のスナバコンデンサと第1のスナバ単方向性導通素子との相互接続点と、前記直流電源との間に接続され、第1の半導体スイッチング素子が導通しているとき、前記負荷の電圧を変換して、第1の回生経路に供給する第1の電圧誘起手段を有し、
    第2の回生経路は、第2のスナバコンデンサと第2のスナバ単方向性導通素子との相互接続点と、前記直流電源との間に接続され、第2の半導体スイッチング素子が導通しているとき、前記負荷の電圧を変換して、第2の回生経路に供給する第2の電圧誘起手段を有している電源装置。
  2. 請求項1記載の電源装置において、前記負荷は、2次側に整流手段が設けられている第1の変圧器を有している電源装置。
  3. 請求項1記載の電源装置において、第1及び第2の電圧誘起手段に直列に単方向性導通素子とリアクトルとが設けられている電源装置。
  4. 請求項3記載の電源装置において、前記第1及び第2の電圧誘起手段は、第2の変圧器の2次巻線であって、前記リアクトルは前記2次巻線の漏れインダクタンスである電源装置。
  5. 請求項2記載の電源装置において、第1及び第2の電圧誘起手段は、互いに共通の鉄心を有している第1の変圧器の2つの2次巻線である電源装置。
  6. 請求項2記載の電源装置において、第1及び第2の電圧誘起手段及び第1の変圧器の1次巻線と、鉄芯とが共用化されている電源装置。
  7. 請求項1記載の電源装置において、第1及び第2の半導体スイッチング素子に逆並列に第1及び第2の単方向性導通素子が接続されている電源装置。
JP2003057060A 2003-03-04 2003-03-04 電源装置 Expired - Lifetime JP4319430B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003057060A JP4319430B2 (ja) 2003-03-04 2003-03-04 電源装置
US10/791,500 US6914788B2 (en) 2003-03-04 2004-03-02 Power supply apparatus
CNB200410007475XA CN100373757C (zh) 2003-03-04 2004-03-04 电源设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057060A JP4319430B2 (ja) 2003-03-04 2003-03-04 電源装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009081586A Division JP4880718B2 (ja) 2009-03-30 2009-03-30 電源装置

Publications (2)

Publication Number Publication Date
JP2004266976A true JP2004266976A (ja) 2004-09-24
JP4319430B2 JP4319430B2 (ja) 2009-08-26

Family

ID=32923534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057060A Expired - Lifetime JP4319430B2 (ja) 2003-03-04 2003-03-04 電源装置

Country Status (3)

Country Link
US (1) US6914788B2 (ja)
JP (1) JP4319430B2 (ja)
CN (1) CN100373757C (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220000A (ja) * 2007-03-01 2008-09-18 Honda Motor Co Ltd 絶縁型dc−dcコンバータ
WO2011074081A1 (ja) * 2009-12-16 2011-06-23 株式会社三社電機製作所 Dc-dcコンバータ回路
JP4988925B2 (ja) * 2009-02-06 2012-08-01 株式会社三社電機製作所 インバータ回路

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2369735A4 (en) * 2008-11-27 2018-01-10 Sansha Electric Manufacturing Co., Ltd. Inverter circuit
CN101983474B (zh) * 2009-01-30 2014-01-29 株式会社三社电机制作所 Dc-dc变流电路
SI2408101T1 (sl) * 2009-03-10 2019-03-29 Sansha Electric Manufacturing Co., Ltd. Inverterski tokokrog
KR101515866B1 (ko) 2013-10-16 2015-05-06 (주)갑진 저주파 변압기를 장착한 직류배전시스템
KR101492620B1 (ko) 2013-12-13 2015-02-11 국민대학교산학협력단 환류 전류의 제거기능을 갖는 위상천이 풀브릿지 컨버터
KR101519490B1 (ko) * 2013-12-13 2015-05-13 경북대학교 산학협력단 스위칭 셀을 포함하는 풀 브릿지 컨버터 및 이를 이용하는 전자 장치
US9531252B2 (en) * 2014-09-25 2016-12-27 Samsung Sdi Co., Ltd. Snubber circuit
CN109215601B (zh) * 2018-10-24 2021-04-27 合肥鑫晟光电科技有限公司 电压提供单元、方法、显示驱动电路和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366522A (en) * 1979-12-10 1982-12-28 Reliance Electric Company Self-snubbing bipolar/field effect (biofet) switching circuits and method
JP3419797B2 (ja) * 1992-01-10 2003-06-23 松下電器産業株式会社 スイッチング電源装置
US5444594A (en) * 1992-02-07 1995-08-22 Kabushiki Kaisha Toshiba Snubber energy recovery circuit for protecting switching devices from voltage and current
JP3636017B2 (ja) 1999-12-28 2005-04-06 ダイキン工業株式会社 インバータ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008220000A (ja) * 2007-03-01 2008-09-18 Honda Motor Co Ltd 絶縁型dc−dcコンバータ
JP4988925B2 (ja) * 2009-02-06 2012-08-01 株式会社三社電機製作所 インバータ回路
WO2011074081A1 (ja) * 2009-12-16 2011-06-23 株式会社三社電機製作所 Dc-dcコンバータ回路
CN102227865A (zh) * 2009-12-16 2011-10-26 株式会社三社电机制作所 Dc-dc转换器电路
US8363432B2 (en) 2009-12-16 2013-01-29 Sansha Electric Manufacturing Co., Ltd. DC-DC converter circuit
JP5143281B2 (ja) * 2009-12-16 2013-02-13 株式会社三社電機製作所 Dc−dcコンバータ回路

Also Published As

Publication number Publication date
CN100373757C (zh) 2008-03-05
US20040174725A1 (en) 2004-09-09
JP4319430B2 (ja) 2009-08-26
CN1531182A (zh) 2004-09-22
US6914788B2 (en) 2005-07-05

Similar Documents

Publication Publication Date Title
JP5065188B2 (ja) 直列共振型コンバータ
TWI326154B (en) Switching power supply circuit
JP2008048483A (ja) 直流交流変換装置
JP5396251B2 (ja) 直流―直流双方向コンバータ回路
US7859870B1 (en) Voltage clamps for energy snubbing
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
JP2003324956A (ja) 直列共振型ブリッジインバータ回路の制御方法及び直列共振型ブリッジインバータ回路
JPH1198861A (ja) インバータ、インバータを使用した直流電源装置
JP2011097688A (ja) 電力変換装置及び電力変換方法
JP4319430B2 (ja) 電源装置
JP2004056971A (ja) Dc−dcコンバータ
JP4142875B2 (ja) インバータ
JP2001333576A (ja) Dc/dcコンバータの制御方法
JP5143281B2 (ja) Dc−dcコンバータ回路
JP6458235B2 (ja) スイッチング電源装置
JP2008048484A (ja) 直流交流変換装置の駆動方法
JP3753978B2 (ja) Dc−dcコンバータ制御方法
JP4880718B2 (ja) 電源装置
CN106817042B (zh) Dc-ac变换器及其控制方法
JP2008048487A (ja) 交流直流変換装置、および交流直流変換装置の駆動方法
JP3593837B2 (ja) フライバック形dc−dcコンバータ
JP3654000B2 (ja) 自励式共振型インバータ回路
JP5075985B2 (ja) Dc−dcコンバータ回路
JPH09252576A (ja) 直流−直流変換装置のスナバ回路
Theron et al. The partial series resonant converter: A new zero voltage switching converter with good light load efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4319430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term